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Abstract—In autonomous robot navigation, terrain c
ment is typically performed using a semantics-based
in which terrain is first labeled using a pre-trained
classifier and costs are then assigned according to a us
mapping between label and cost. While this approach
adaptable to changing user preferences, only prefer:
the types of terrain that are already known by the
classifier can be expressed. In this paper, we hypotl
a machine-learning-based alternative to the semar
paradigm above will allow for rapid cost assignment :
to preferences expressed over new terrains at deploy
without the need for additional training. To inves!
hypothesis, we introduce and study PACER, a novel
to costmap generation that accepts as input a sin
eye view (BEV) image of the surrounding area alo
user-specified preference context and generates a corr
BEV costmap that aligns with the preference contex
staged training procedure leveraging real and syntl
we find that PACER is able to adapt to new user p
at deployment time while also exhibiting better ¢
tion to novel terrains compared to both semantics-based and
representation-learning approaches. We release our code and
dataset at https:/github.com/ut-amrl/PACER_RAL_2025.git

Index Terms—Vision-based navigation, Deep Learning for
Visual Perception

I. INTRODUCTION AND RELATED WORK

OBUST autonomous navigation in a wide variety of

environments is a long-standing goal in robotics. While
there has been significant progress in collision-free naviga-
tion [1], [2], successful navigation in human environments
additionally requires alignment with human preferences, e.g.,
preferring to cross a busy street at a crosswalk even if doing
so results in a longer path [3], [4].

In this paper, we examine how robots can assign terrain
costs that align with human preferences for terrain-aware
navigation. This specific focus represents a special case of
the broader challenge of human preference-aligned naviga-
tion [5]. Such alignment is crucial not only for terrain-aware
navigation, but also for adherence to constraints like social
norms [6], [7]. An alternative to learning to predict navigation
costs is to directly learn navigation policies aligned with
human preferences [8]-[10]. We choose to focus on predicting
navigation costs due to the ease of integration with existing
cost-based navigation planners [11]-[13]. While the focus of
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Fig. 1: Given an input image I and a preference context H of n ordered pairs of terrain
patches where the left terrain is more preferred than the right, PACER generates a costmap
consistent with this preference. Changing the preference context leads to changed terrain
costs, which results in a different plan aligned to the new operator preference. The paths
planned according to the different preferences are shown above. In the costmap, black
represents low cost and white represents high cost.

this work is on terrain-based cost evaluation, we recognize that
a full navigation system would incorporate additional costs
using established methods such as layered costmaps [14].

We are particularly interested in terrain cost assignment
approaches that can rapidly adapt to newly-expressed terrain
preferences. Prevalent approaches to incorporate human pref-
erence into navigation such as inverse reinforcement learning
(IRL) and preference-based IRL (PbIRL) based on terrain
patch clusters do not admit this type of rapid adaptation due
to the amount of additional data required to express new
preferences [15]-[17]. Instead, to the best of our knowledge,
existing solutions for rapid adaptation to preferences rely on
first segmenting terrains into a prescribed set of classes, and
assigning each class a manually-specified cost [4], [18], [19].
While such approaches allows rapid adaptation to new pref-
erences, they are restricted to expressing preferences over the
pre-defined list of terrain classes known to the segmentation
algorithm.

Representation learning is a more recent approach to
terrain-aware navigation that allows preferences to no longer
be limited to terrains with predefined labels [15], [16], [20],
[21]. Patch-based representation learning methods for terrain
understanding typically involve mapping small square patches
from the bird’s-eye view (BEV) to a representation vector that
is further converted into a scalar cost value. Although contin-
uous representation spaces are theoretically generalizable to
new terrains, training such a space effectively is challenging in
practice, as even humans may struggle to identify terrain types
from small patches in the presence of homography artifacts
or difficult lighting conditions. A further limitation is that
each new terrain preference ordering necessitates retraining
the utility function in the representation space, making these
approaches less adaptable to changing preferences.

Towards overcoming the limitations of the semantics-based
and representation-learning paradigms to terrain cost assign-
ment, we propose and study PACER, a novel approach to
costmap generation that accepts as input a single birds-eye
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Fig. 2: Relationships between spaces of Terrains, Image Observations, and Costmaps.
There exists a hidden “true” costing function based on human preferences directly on
terrains. PACER approximates this function from visual observations of terrains.
view (BEV) image of the surrounding terrain along with a
user-specified preference context and generates a correspond-
ing BEV cost map that aligns with that preference context (see
Fig. 1). By preference context, we mean a small set of terrain
patches and pairwise preferences over those patches that are
supplied at deployment time. We design PACER to exhibit three
design desiderata: (/) it is capable of representing a prior over
terrain preferences; (2) it is capable of adapting to a wide
variety of preference contexts; and (3) it is able to assign
aligned costs to terrains that appear in both the preference
context and the BEV image, even for novel terrain types.
Using real and synthetic terrain data, we implement a
training pipeline to realize these three properties and evaluate
the resulting preference-conditioned costmap functions over
a wide variety of BEV images. Additionally, we study the
impact of the resulting costmaps on cost-optimal navigation
behavior with respect to adherence to human preferences. We
find that our method overcomes limitations in prior works by
being easily adaptable to new operator preferences and pro-
ducing fine-grained costmaps that illicit desirable navigation
behaviors even in previously unseen environments.

II. THE TERRAIN-AWARE PREFERENCE-ALIGNED
PLANNING PROBLEM

We now develop the terrain-aware preference-aligned plan-
ning problem. We will first formulate the path planning
problem, and then we will discuss the problem of learning
preference-aligned terrain costs.

A. Path Planning

In this paper, we are concerned with the general problem
of planning a path in a robot state space X’ (SE(2) for ground
vehicles) from a start and goal pose z1, G € X as the problem
of finding the finite trajectory I's = [z, ..., 2g] consisting of
S states x € X which minimizes a total objective function

(D

where ||zg — G| is the distance between the final state zg
and G, and J(T') is the cost function scaled by the relative
weight A.

A cost function 7 (I") may include various terms such as the
geometric cost of obstacles, social navigation cost, or terrain
Ccost,

I's = argr min|jzg — G|| + AT (I),

j<F) = \7geometric (F) + as7social(1—‘) + B‘jterrain(r) (2)

where «, 3 are relative weights. This paper is concerned with
the terrain cost term Jierain(I') of the general function.

B. Preference-Aligned Terrain Costs

To better understand preference-aligned terrain costs, we
first introduce a fixed terrain function to represent the spatial
distribution of the terrains in the world. Let a terrain map
T : X — T be a function that maps a robot pose x € X to
the terrain 7 € T that the robot interacts with when in pose
x, where a terrain 7 captures all the properties of the ground
relevant to robot navigation.

Additionally, we assume the human has an unknown true
cost function H : 7 — R%" mapping terrains to scalar real-
valued costs based on their preferences. This cost function
is influenced by various factors, including the personal pref-
erences of human operator, the environment, and the task
at hand. Let H denote the continuous space of such cost
functions, such that H € H.

For terrain-aware navigation, the robot relies on its visual
observations to infer terrain-specific costs. We assume that
these observations arrive in the form of images generated
according to a black-box observation function O : X xT — Z,
ie., I = O(x,T), where x is the observing pose of the robot,
T is a terrain map, T is the space of terrain maps, and Z
is the space of images. In practice, most methods operate on
synthetic birds-eye-views generated from the original camera
images. BEV images can be generated via static ground-plane
homography [15], [16], or a BEV accumulation algorithm
[22]. Henceforth, we define input images to be BEV images.
We assume that the the visual appearance of the terrain
provides sufficient information for the robot to perform terrain-
aware navigation. The observation function is thus fixed, but
unknown to the robot.

During planning, the terrain cost of a pose is found using a
costmap C : X — R°T that maps from robot poses to costs.
We introduce a costmap generation function R : Z X H — C
as the function mapping from the space of images Z to the
space of costmaps C, conditioned on an unknown human cost
function that belongs to H.

Since the robot has no direct access to the terrain map
T and there is no clear representation of H, the terrain-
aware preference-aligned planning problem is thus to learn the
function R such that, given an image observation of terrain, the
optimal trajectory planned with respect to R is also optimal
with respect H. The conditions in the next section will be
introduced as our analyses of how we address this problem.

III. NECESSARY CONDITIONS FOR PREFERENCE-ALIGNED
NAVIGATION

Seeking training tasks to help us compute valid preference-
conditioned costmap functions R(-|H), we now state a set of
necessary conditions for these tasks to produce costmaps that
are consistent with human preferences for terrain.

In particular, we will state conditions for equivalence and
partial ordering, and we will show that Rs that produce
costmaps that yield optimal trajectories consistent with a
human preference must obey these conditions.

Let R(:|H) denote a costmap generated according to an
H € H, and C|, denote that costmap C € C is evaluated at
pose z. For a generated costmap R(-|H) to be consistent with
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H, we specify it must exhibit both equivalence and partial
ordering. By equivalence, we mean that the terrains at two
poses are given the same cost by H if and only if the costmap
generated by R from an image observation and evaluated at
those two poses have equal cost, i.e.,

Hi(T(x1)) = Hi(T(x2)) <= R(O(-,T) | H:)

1

T2
By partial ordering, we mean that H assigns a preference
order over the terrains at two poses if and only if the costmap
generated by R from an image observation assigns those two
poses the same preference order, i.e.,

Hi(T(21)) < Hi(T(x2)) = R(O(T) | Hi)|
<R( ( ) |H) V$1,.T27Hi. (NC2)
T2
We let O(-,T) denote an image observation captured from

any observing pose from which z,z9 are visible.

We now provide a brief proof that (NC1), (NC2) are neces-
sary for aligning the preferences of H; with R. Specifically,
if the most optimal path with respect to R(- | H;) has the
same optimal cost when evaluated with H ;, then the conditions
(NC1),(NC2) must hold. For a trajectory I' composed of
discrete poses, let the cumulative cost function for the human’s
evaluation be denoted by H|r =}, - H(T(x;)). Similarly,
let the cumulative cost function for the generated costmap
be denoted as Rlr = >, . R(O(-,T) | H)|s,. Given this
setup, the following theorem establishes the necessity of the
conditions (NC1), (NC2) such that H|p~ = R|f.

Theorem 1. Let T* = argrmin H|r, T = argpmin R|r
denote the optimal trajectories with respect to H and R
respectively. If the optimal trajectory with respect to R has
equal cost to the optimal path with respect to H when both
are evaluated on H such that H|p- = R|g, then conditions
(NC1) and (NC2) hold.

Proof. Since H|r- = R|y, we must have that:

(@) H|r, < H|r, = R|r, < R|r, for all paths I';, T's.
Otherwise, there exist paths I';, 'y such that H|p, <
H|r, and R|r, > R|r,. Then, I'y may be selected as
T, but has greater cost than H |p~ when evaluated on H,
which is a contradiction.

(b) R|r, < R|r, = H|r, < H|r, for all paths I';, T'5.
Otherwise, there exist paths I'1, I's such that R|r, < R|r,
and H|r, > H|p, (by contraposition on (a), we eliminate
the case where R|r, < R|r, and H|p, = H|r,). Then,
I'; may be selected as T, but may have greater cost than
H |r+ when evaluated on H, which is a contradiction.

By (a) and (b), we have that H|r, < H|r, <= R|r, <

R|r,. By contraposition, we also have H|p, = H|p, <=

R|pr, = R|r,. Finally, since a path " can consist of a single

state, conditions (NC1) and (NC2) must also then hold. [

In the next section, we use conditions (NC1) and (NC2)
to define training tasks for learning the optimal R from data,
which drives our proposed approach to the online generation
of costmaps which result in preference-aligned navigation.

IV. PREFERENCE-ALIGNED ALL-TERRAIN COSTMAP
GENERATION

We now present our proposed approach for computing
aligned terrain costmaps, which we refer to as Preference-
aligned, All-terrain Costmap genERation (PACER). PACER
introduces the notion of a preference context and comprises
several components, including a neural network architecture,
and a data curation and training methodology based on the
three design desiderata.

A. Preference Context

The preference-aligned terrain costs discussed in Section
II depend on a human’s cost function H : 7 — RO,
Unfortunately, we do not have access to H directly since it is
known only to the human operator. Therefore, we propose to
obtain and utilize an approximate representation of H that we
call a preference context.

We deﬁne a preference context H as a set of n image patch
pairs s T constructed from human input

such that the human prefers the/ terrain observed in image
T over the terrain observed in 7, where an I € T is an
observation of terrain as a small image patch. The small patch
may be a part of a larger bird’s-eye-view image of the ground.
More specifically, H consists~0f n Breferegces dgived from
H and is defined as H = {(I, > I,),...(I, > 1,)}. Fig 3
shows some example preference contexts with n = 3 patch
pairs and their corresponding costmaps.

In our implementation, the n pairwise preferences are
expressed using image patches of size h x w. H is then
represented by vertically concatenating the patches within a
pair with the more-preferred terrain patch on top and forming
a single (n-c¢) x 2h x w tensor, where ¢ is the number of color
channels. Given a finite preference context, it is impossible to
specify all pairwise preferences over the terrains, especially
since the terrain set is continuous - hence it is not possible
to specify a stronger sufficient condition that would guarantee
that the algorithm generates human-aligned costs.

B. Model Architecture

To generate costmaps, we propose to approximate functions
R : 7T x H — C, which require H as input, with functions
R : I xH — C, where H is the space of all preference
contexts as defined above. We model R as a neural network
with a two encoders and a single decoder. The input image
is passed through a BEV image encoder Fpgy to form an
image embedding, and, similarly, the input preference context
is passed through a preference context encoder Fp,c to form a
preference embedding. The output costmap is then generated
by concatenating these embeddings and then passing them
through a decoder D. A visual depiction of this architecture
is provided in Fig. 1.

C. Loss Function

PACER is trained using supervised machine learning, i.e.,
given a dataset D = {(H,I,Cr);}X, of preference context,
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Fig. 3: Overview of the dataset structure. Each training example contains a preference context, image, and target costmap. We vary the preferences and images, resulting in a large
combinatorial dataset despite the relatively small amount of real recorded data. In a later training phase, we also augment with synthetic data by artificially finding and replacing
certain terrain types with synthetic terrain textures. The real-valued costs assigned to terrain types based on an input total ordering are shown in the Generate Examples procedure,

where black represents low cost and white is high cost.

image, and target costmap tuples, we seek the parameters ¢
of R that minimize a loss between the real and predicted
costmaps. More specifically, we seek ¢* such that

¢ = argminE( g e, ¢ (Botr, ). )] )

where we use the binary cross entropy loss averaged over each
pixel as the loss function /.

V. DATASET CURATION AND TRAINING PACER

We now describe the dataset curation and training process
for PACER. PACER is trained using three distinct phases of
supervised machine learning, each corresponding to a unique
training dataset that corresponds to one of the desiderata
described in Section I. In what follows, we will first describe
how we generate training examples, then describe each of the
three training phases and the training procedure.

A. Training Example Generation

The datasets D we use to train the PACER model consist
of tuples of preference contexts, images, and target costmaps
(fI ,I,Cr). To construct these datasets, we bootstrap off of
semantic terrain classification and use a pretrained terrain
patch classifier that assigns one of L predefined semantic
labels to a given terrain image patch.

The inputs to the training example generation process are a
single image I along with a total ordering over terrain types
Ty > To > ... > 71, where each terrain type 7; corresponds
to a bank of image patches. PACER assumes that the cost
value associated with 7 is given by H(7;) = +=%. The bank
corresponding to 7; consists of patches of that type extracted
from images collected during robot deployment.

We use these inputs to generate H and Crp. To generate H,
we first choose n ordered pairs from the total ordering over the
L terrain types without replacement. For each of the resulting
ordered pairs, we sample uniformly at random patches from
the corresponding patch banks, and use these 2n patches to
construct H according to the process detailed in Section IV-A
above. To generate C'r, we perform semantic segmentation on

I and transform the segmented image into C'r by setting the
cost for a pixel labelled [ to be H (7).

Constructing training examples in this way encourages ]%*
to follow our necessary conditions. First, because C'r assigns
the same cost value to image locations that received the
same semantic label, f{¢* is encouraged to identify regions
of visually-similar terrain and assign equivalent costs within
the region, as per condition (NC1). Second, because both H
and C are, by construction, consistent with H, R¢* is encour-
aged to predict costmaps given H which preserve the partial
ordering of H, as per condition (NC2). Interestingly, assuming
sequential segmented images are temporally consistent, we
observe that R¢* is encouraged to be viewpoint-invariant.

During inference time, there are no semantic labels and only
the visual appearances of terrains are considered.

B. Dataset Size

The size of the space from which we sample data is very
large. From a total ordering of L discrete terrain types, there
are m (g) different ordered pairs of terrains and (ZL)
different sets of n pairs. For each set of n pairs, there n! ways
to shuffle the pairs to construct the preference context, yielding
(’s) -n! possible preference contexts. Moreover, for each terrain
type in the preference context, we sample a patch from the
bank. Our dataset contains a bank of around 800 patches for
each terrain label, and about 950 full images. Therefore, for
each total ordering, we have ((g))n' arrangements of labels
into preference contexts, where we sample a patch from a
bank of 800 patches for each terrain type. For L terrains,

= Llog L pairs are needed to describe a total ordering,
though we evaluate on a smaller n 3 pairs due to size
considerations for the model and dataset.

C. Training Phases

Each of the three system desiderata stated in Section I
is manifested in a distinct training phase, each of which
utilizes a unique training dataset generated using the procedure
described above. More specifically, these phases generate
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datasets Dreal, Dshuffied> and Dgyntnetic, Which promote adher-
ence to prior preferences in seen terrains, robustness to new
preferences, and robustness to new terrains, respectively.

A visualization of each of these phases is given in Figure
3, and we describe each phase in more detail below.
Training Phase 1: Pretraining with Real Data and Realistic
Preferences. To promote a prior towards an overall “realistic”
ordering (as per our first desired property), PACER’s first
training phase constructs and utilizes a dataset D,,) generated
using real-world data collected from robot deployments around
our campus at The University of Texas at Austin and realistic
preferences over terrain classes. An example of a realistic
preference ordering is as follows: concrete > pebble
>~ grass > marble > bush. The “realistic preferences”
were defined by the first author according to considerations
for robot safety (e.g. preferring grass over loose marble for
a wheeled robot) and societal norms (e.g. preferring concrete
over grass to avoid trampling lawns, even though both terrains
are relatively safe).

Training Phase 2: Augmentation with Changed Prefer-
ences. During deployment in terrains not seen during training,
the robot should adhere to preferences given by the operator
(as per our second desired property). Even when operator
preferences contradict “realistic preferences”, the robot should
follow operator preferences over learned priors. To encourage
this adherence to the ordering in the preference context, we
train using the same real data but with changed preferences on
a smaller corpus of data by using a randomly-permuted total
ordering over terrain labels.

Training Phase 3: Augmentation with Synthetic Terrains.
To promote the model’s ability to generalize to terrains unseen
during training (as per our third desired property), we further
train with synthetically augmented data.

We pick a random subset of terrains to replace and randomly
permute the preference order. An image containing at least
one such terrain is selected, and those terrains are artificially
replaced with terrain textures from an open-source database
[23] using dense segmentation. We used 14 synthetic textures.
The training example is formed with a preference context
(where terrains have been replaced), the image, and a costmap
with costs reassigned according to the new preference order.

In the first phase, only Di,,; is used for training examples.
In the second, both D;c, and Dgpumeq are used. In the third,
all three datasets are used. Within a phase, training examples
are drawn uniformly among the datasets used. Before training
on D,eal, weights are initialized randomly. After completing a
training phase, we switch to the next phase starting from the
previous trained weights. We trained for 100 epochs in phase
1, 5 in phase 2, and 100 in phase 3.

VI. EXPERIMENTS

To evaluate PACER, we seek to answer the following ques-
tions empirically:
1 How effectively is the robot able to navigate in terrains
seen during training when the preference context contains
(a) only seen terrains or (b) only previously unseen
terrains?

2 How effectively is the robot able to navigate in unseen
terrains when the preference context contains (a) only
those unseen terrains or (b) only seen terrains?

By dividing deployment scenarios into the four situations
above, we will be able to understand the performance of
PACER under the four ways to combine seen and unseen
terrains in the preference context and environment. In 1b and
2b, the preference context does not provide information about
the terrains appearing in the environment, so the robot must
rely on learned priors about realistic cost assignment. We term
this scenario as having an uninformative context.

Evaluations are performed using simulated experiments on
an aerial map. In a later section, we also provide results from
real robot deployments. We compare against STERLING [15] (a
representation learning approach) and a classifier (a semantics-
based approach) as baselines. The classifier is the same as
used generate the training data for PACER. The same model
for PACER is utilized across all environments. No retraining
or fine-tuning is done. Additionally, a single context is used
for the duration of a simulated deployment in an environment
(i.e. the context is not switched out midway through the path-
planning).

To quantify the navigation performance in our experiments,
we posit that factors such as the distance traversed or closeness
to a human-defined trajectory do not matter as much as
traveling on only the preferred terrains. We therefore assign
terrain types in each experiment a low, medium, and high cost,
according to the human deployer’s preference and report the
proportion of the planned path which belonging to each tier.
The assignment of semantic terrain types to these three tiers
is based on a hidden total ordering of all the terrains which
appear in the environment. Each of the methods and baselines
tested are deployed with a preference (provided according
to their respective representations) consistent with the hidden
total ordering. Note that we have purposely chosen this metric
to be different from the commonly-used Hausdorff distance
between the planned trajectory and one defined by a human
operator, which can vary greatly when there are multiple valid
paths to the goal.

A. Aerial Map Experiments

In our simulated experiments, we build aerial maps from
drone footage of three locations around our campus, which we
consider seen environments. We also use open-source aerial
maps [24] from around the world, covering a wide variety of
both urban and natural terrain types and which we consider
unseen. For each of the seen and unseen environments, we
provide a start and goal location and test varying operator
preferences. We test realistic preferences, and “inverted” pref-
erences, in which each of the pairwise orderings in the realistic
preference are reversed. Given the robot’s pose on the aerial
map, the robot’s projected bird’s eye view can be found,
and used as input to generate the local costmap. Planning is
done using the A* algorithm [25] on the costmap. In Fig.
5, we show examples of paths planned using PACER in our
aerial map simulator. These experiments are an evaluation
purely over planning based on terrain preference, with no



Fig. 4: The effect of changing preference on path planning is shown on the left image of an aerial map. The blue path corresponds to the middle costmap and the red path
corresponds to the right costmap. The generated costmaps reflect the preferences provided in the context. Dark purple corresponds to low cost and yellow is high cost.

Fig. 5: Examples of several paths planned using our method in an urban unseen
environment and their corresponding preference contexts. Here, we visualize the large
scale of these simulated deployments, and the diversity of visual terrain appearances.

kinodynamic constraints, no errors due to localization, and no
costs associated with elevation.

Tab. I displays the results for seen environments. Towards
answering question la, PACER has similar results to the
STERLING baseline, as both approaches were trained on the
same in-distribution data. When no useful context has been
provided for PACER (i.e. the context contains only unseen
terrains which do not match the environment as per 1b),
the results are on par with the classifier baseline. PACER’S
success despite the lack of an informative preference context
shows that the model has captured a prior over realistic cost-
assignment for in-distribution terrains.

Tab. II displays the results for unseen environments. To-
wards answering question 2a, when given an informative
context, PACER outperforms the STERLING baseline. Though
representation-learning approaches like STERLING should the-
oretically generalize due to their continuous representation
space, this is contingent on similar terrains forming clusters
in this space, which may not be the case for unseen terrains.
Fapt install r-base-coreor unseen environments, the classifier
baseline has been omitted, as it allows no way for a user to
provide terrain preferences for classes that are not predefined.
PACER overcomes the limitations of previous paradigms, as
it both allows preferences in unseen environments to be
expressed and generalizes well to these unseen environments.
Additionally, when no useful context has been provided for
the unseen terrains (per 2b), PACER is not able to adapt.

B. Ablation Study

To understand the effects of each phase in the training
process, we perform an ablation study using the same envi-
ronments as in the aerial simulator experiments. In the Diq.)
phase, the model is trained only on real data and realistic
preferences. In the Dghumeq phase, the model is pretrained
on real data with realistic preferences, and then trained on a

Method Low (%) | Medium (%) | High (%)
PACER 73.83% 19.70% 6.47%
PACER (uninformative context) 67.97% 15.89% 16.15%
STERLING 74.72% 18.65% 6.63%
Classifier 65.86% 21.46% 12.69%
Ground Truth 82.82% 13.69% 3.49%

Tab. I: Proportion of planned paths that traverse low, medium, and high-cost
terrains in seen environments, relating to 1a,1b.

Method Low (%) | Medium (%) | High (%)
PACER 81.85% 8.00% 10.15%
PACER (uninformative context) 53.83% 2.20% 43.97%
STERLING 61.39% 10.12% 26.86%
Ground Truth ; 6.02% 2.13%

Tab. II: Proportion of planned paths that traverse low, medium, and high-cost
terrains in unseen environments, relating to 2a,2b.

In-Dist. Scenario Low (%) | Medium (%) | High (%)

Realistic Preference

Dreal 1.70% 2.32%

Dshuffied 70.50% 18.94% 10.55%
synthetic 76.66% 18.43% 4.91%

Inverted Preference

Dreal 18.55% 20.97% 60.48%

Dshuffied 69.21% 22.56% 8.23%
synthetic 70.22% 21.32% 8.46%

Tab. III: Proportion of planned paths that traverse low, medium, and high-cost
terrains in seen environments for each training phase. The model after each phase
of training is tested using realistic and inverted contexts.

Out-of-Dist. Scenario | Low (%) | Medium (%) | High (%)
Realistic Preference

Dreal 60.78% 7.05% 32.18%
Dshufled 65.16% 6.44% 28.40%
Dsynthetic 88.09% 2.57% 9.34%
Inverted Preference

Dreal 22.59% 15.31% 62.10%
Deghufled 39.86% 13.96% 46.17%
Dsynthetic 65.65% 22.10% 12.25%

Tab. IV: Proportion of planned paths that traverse low, medium, and high-cost
terrains in unseen environments for each training phase. The model after each
phase of training is tested using realistic and inverted contexts.

smaller amount of changed preferences. In Dgynthetic phase,
the model is trained according to all three phases.

Results are shown in Tab. III, IV. In seen environments, the
model trained on D,., performs the best of the three with
realistic preferences, but is unable to adapt when the prefer-
ences are inverted. Results for realistic preferences (black) are
significantly better than those for inverted preference (blue)
for this method in Tab. III. In unseen environments (Tab.
IV), this method performs the worst regardless of preference
context. The model trained on Dgphumeq is able to adapt to
changing preference orderings in seen environments, seen by
comparing results for realistic preferences (black) to inverted
preferences (blue) in Tab. III. However, it is unable to recog-
nize and match new terrains in the preference context to the
new environment as evidenced by the drop in performance
from Tab. III to Tab. IV. The model trained on Dsyninetic 1S



MAO et al.: PACER

Test Dataset Dreal Dshuffied Dsynthetic
Model

Dreal 0017 | 0.099 0.072
Dshuffied 0.086 0.019 0.064
Dsynthetic 0.053 0.069 0.013

Tab. V: Margin ranking error for each of the three models on the test set of each

of the three datasets. Lower error is better.

shown to both respect changing preference order and recognize
new terrains. Our findings indicate that training the model
to respond to preferences reduces performance with realistic
preferences in seen environments, as Dghuffied and Dgynenetic
have slightly poorer performance than D,, with realistic but
far better performance with inverted preferences. Furthermore,
performance across all three methods decreases from seen to
unseen since the scenario is harder, but Dgyninetic has the
least drop in performance. Variable preferences and unseen
environments introduce greater complexity, requiring models
to adapt and generalize. We prioritize these harder, practical
scenarios, accepting a trade-off with peak accuracy in simpler
settings.

C. Performance on Test Set

There are infinite costmaps which may satisfy a preference
over terrains (given as a partial order of terrains), since the
scale of the numerical costs do not matter as long as the
ordering is followed. Therefore, rather that direct comparison
with a “ground-truth” costmap, we report the margin ranking
error of predicted costmaps using holdout set from each
dataset in Tab. V. We sample the 500 points across the
costmap, then for each pair of points, calculate the error as 0
if the relative magnitude of the two costs is correct. Otherwise
the error is the difference between the two costs. We report
the mean error for each category.

For each dataset, the model which was trained on that
dataset had the lowest error. Across all datasets, Dgynthetic
had the lowest or second-lowest error, and had therefore the
overall best performance.

D. Discussion

The results presented in this section demonstrate that PACER
fulfills our three design desiderata. The adherence of PACER to
realistic preferences when not given an informative preference
context fulfills the first key property of being able to make
inferences when there is no context by capturing a prior over
realistic preferences (1b). As per the second key property,
PACER has been shown to align costs to preferred terrains even
as preferences are varied (1a). An example of paths planned
according to different preferences is shown in Fig. 4. The
performance of PACER in both seen and unseen environments
when given an informative preference context shows that
PACER exhibits the third key property (1a, 2a).

VII. REAL ROBOT EXPERIMENTS

We now seek to demonstrate that PACER performs well
during execution in the real world. We deploy our method,
STERLING, and the classifier approach on a mobile robot at

Fig. 6: The four environments where real-robot trials were performed. Blue arrows and
yellow stars show start and goal locations respectively. The red dashed line marks the
intended path based on operator preference.

Environment Envl Env2 Env3 Envd4
Classifier 5/5 4/5 1/5 2/5
STERLING 0/5 2/5 0/5 4/5
Ours 5/5 5/5 5/5 4/5

Tab. VI: Number of successes per 5 trials of different approaches across various
environments. A trial is a success if the robot reaches the goal without traversing across
undesirable terrain and without operator intervention.

four different locations on the UT campus which are not
included in the simulated environments. These four loca-
tions cover red brick, concrete sidewalk, grass,
mulch, and pebble pavement.

Since all methods are trained to be view-point invariant
and platform-agnostic, we trained them all with the same data
collected from a Boston Dynamics Spot, and deployed zero-
shot on a Clearpath Jackal which has significant differences
in viewpoint and mobility than the Spot. We evaluate the
performance of each method with a realistic preference on a
variety of terrain types. In these experiments, we measure the
robot’s ability to execute the plan, which includes robustness to
a different viewpoint and platform. We integrate each method
with a sampling-based local planner [26] and maintain the
same planner parameters to ensure fairness.

Tab. VI shows results from real robot experiments. Our
approach had the most successful trials across all environ-
ments. While the classifier performed well in environments
1 and 2, we hypothesize that difficult lightning conditions
and variations in terrain appearance caused the failures in
environments 3 and 4. Though STERLING performed as the
best baseline in the simulated experiments (which involved
only planning), it seemed to be unable to execute these plans in
real-robot experiments. Many of the failure cases involved the
robot driving slightly off-path and just grazing the undesirable
terrains. In patch-based representations, a single patch may
contain multiple different terrains (e.g. half sidewalk and half
grass), so the cost assigned to the patch would be some
combination of the different terrain costs, resulting in a coarser
degree of control on the physical robot. Our approach over-
comes this limitation since it directly outputs a fine-grained
costmap in a single forward pass.

VIII. LIMITATIONS AND FUTURE WORK

The experiments reported in this paper were conducted on
a single campus with one robot. Future work should extend
the study to more varied terrains and deploy multiple robots
with diverse sensors. Additionally, we aim to evaluate the
ease with which human users can express preferences using
our method, as well as explore alternative mechanisms for
preference expression in costmap generation. Incorporating a
variable-length preference context would also be an interesting
direction for future work, enabling greater flexibility and
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adaptability in representing user preferences. Exploring other
model architectures could further enhance the system’s robust-
ness and performance in diverse scenarios. Finally, incorporat-
ing depth data into the costmap generation is another key area
for improvement, as our current reliance on a homography
transformation assumes flat ground, leading to limitations like
the inability to avoid obstacles such as concrete curbs, despite
their preferable terrain.

IX. CONCLUSION

In this paper we presented PACER, a novel architecture
and training approach to quickly produce costmaps according
to arbitrary user preferences and new terrains with no fine-
tuning. Our approach was evaluated against semanics-based
and representation-learning baselines in both simulated and
real robot experiments. We have shown this approach to be
highly adaptable to new preferences and terrains, as well as
able to infer the traversability of some terrains according to
realistic preferences.
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