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ABSTRACT

Clinical diagnosis of stuttering requires an assessment by a
licensed speech-language pathologist. However, this process
is time-consuming and requires clinicians with training and
experience in stuttering and fluency disorders. Unfortunately,
only a small percentage of speech-language pathologists re-
port being comfortable working with individuals who stutter,
which is inadequate to accommodate for the 80 million indi-
viduals who stutter worldwide. Developing machine learning
models for detecting stuttered speech would enable univer-
sal and automated screening for stuttering, enabling speech
pathologists to identify and follow up with patients who are
most likely to be diagnosed with a stuttering speech disorder.
Previous research in this area has predominantly focused on
utterance-level detection, which is not sufficient for clini-
cal settings where word-level annotation of stuttering is the
norm. In this study, we curated a stuttered speech dataset with
word-level annotations and introduced a word-level stuttering
speech detection model leveraging self-supervised speech
models. Our evaluation demonstrates that our model sur-
passes previous approaches in word-level stuttering speech
detection. Additionally, we conducted an extensive ablation
analysis of our method, providing insight into the most im-
portant aspects of adapting self-supervised speech models for
stuttered speech detection.

Index Terms— Self-supervised Speech model, Stutter-
ing, Speech Pathology

1. INTRODUCTION

Stuttering is a complex, multifactorial disorder characterized
by atypical disruptions in the forward flow of speech [1]. It af-
fects approximately 1 percent of the population and has a sig-
nificant negative impact on all aspects of an individual’s life
including social, educational, emotional, and vocational [2,
3]. A stuttering assessment is conducted by a licensed speech-
language pathologist. It includes measurement of the impact
of stuttering on the person’s quality of life as well as anal-
ysis of the individual’s speech to determine stuttering sever-
ity. Unfortunately, over the past decades, speech-language
pathologists have consistently reported limited competence
in working with individuals who stutter (e.g., [4, 5, 6, 7] ,

with less than 5 percent of licensed professionals in the United
States reporting expertise working with individuals who stut-
ter [8, 6]. Another challenge is that the process of speech
transcription and disfluency annotation is labor-intensive, as
speech-language pathologists primarily transcribe and anno-
tate speech disfluencies manually.

A potential approach to address the above challenges is
to use deep learning models to serve as an initial screening
for stuttering, which could be deployed on edge devices such
as smartphones or laptops. Early work [9, 10] has used sim-
ple deep learning models to detect stuttering behavior from
speech utterances. However, the main disadvantage is that
the system is highly dependent on the scale of training data.
Unfortunately, the largest publicly available stuttering dataset
is SEP-28K [11], which only contains 15.6 hours of utter-
ance level labeled data, which is relatively small compared to
standard datasets like LibriSpeech [12], which has a total 960
hours for training.

A promising recent approach in the speech community
to deal with limited labeled data is Self-Supervised Learning
(SSL). Speech SSL models are first pretrained on a large
amount of untranscribed speech and then finetuned on a
smaller amount of transcribed/annotated speech for specific
downstream tasks. Due to the task-agnostic nature of the
pretraining, speech SSL models demonstrate high generaliz-
ability across different speech processing tasks [13]. Hence,
speech SSL models are regarded as foundation models in
many applications nowadays, such as Automatic Speech
Recognition [14, 15] and Speaker Verification [16]. Due to
the advantage of reducing the need for disfluency-labeled
data, speech SSL models are a promising approach to tack-
ling stuttered speech detection problems. Specifically, prior
works [17, 18, 19] utilize Wav2vec 2.0 [20] as their model
backbone for stutterred speech detection.

Despite progress in this field, previous work has mainly
focused on utterance-level stuttering detection. However, this
is too coarse for clinical application as stuttering-like disflu-
encies are also present in typically fluent individuals who are
not diagnosed as a Person who Stutters (PWS). Clinically,
stuttering is diagnosed based on meeting a certain frequency
threshold of stuttering-like disfluencies. Hence, we are inter-
ested in developing a more fine-grained stuttering detection
model. To our best knowledge, [21] is the only previous
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Fig. 1. Overall framework diagram. The transformer layers and Convolution Layers are initialized from off-the-shelf WavLM
Large and remain frozen during pretrain and finetune stage. “Hierarchical Conv.” stands for “Hierarchical Convolution”.

work that investigates the task of frame-level stuttering detec-
tion. However, they evaluated their model by removing the
segments that are predicted as stuttering and conducted a user
study on Amazon Mechanical Turk, which was not assessed
on clinical data collected and annotated by speech-language
pathologists (SLPs).

In our work, we first collect a set of speech recordings
with stuttering events annotated by speech-language pathol-
ogists and use it as a word-level stuttering detection evalu-
ation benchmark. Then we propose a word-level stuttering
detection model that utilizes WavLM [22] as our backbone.
Following [21], we first pretrain on LibriSpeech with syn-
thetic disfluency augmentations and then finetune our model
on SEP-28K dataset. We show that our model not only shows
strong performance on utterance-level stuttering detection on
SEP28K but also outperforms prior work on word-level stut-
tered speech benchmark by a large margin. In addition, we
study the effect of the utilization of Speech SSL models on
word-level stuttering detection with extensive experiments. In
conclusion, our contribution can be summarized as the fol-
lowing:

1. We are the first to focus on word-level stuttering detec-
tion, which is more closely aligned to clinical applica-
tions.

2. We propose a word-level stuttering detection model
that achieves state-of-the-art performance.

3. We study the effect of utilizing Speech Self-supervised
models on word-level stuttering detection with clinical
data evaluation and extensive ablations.

We open source our code on Github!.

'www.github.com/atosystem/SpeechSSLStutterDetect

2. RELATED WORK

In the field of stuttered speech detection, there are several
proposed datasets, such as UClass [23], KSoF [24], and Sep-
28K [11]. UClass is an unlabeled dataset while the others
are labeled. KSoF and Sep-28K share the same format. Both
of them consist of 3-second clips with utterance-level anno-
tations. Specifically, Sep-28K also includes a subset of ut-
terance level annotation from Fluency Bank. Not only the
size of the dataset are relatively small, but they only provide
utterance-level labels, which we believe is one of the main
obstacles in this field.

Several recent works have used Speech SSL models in
stuttering detection. In [18], they adopted Wav2vec 2.0 as
their backbone and trained different models using different
upstream layers of Wav2vec 2.0 for stuttering detection. They
also proposed to employ gender prediction as an auxiliary
task for enhancing performance. In [19], they pointed out that
stuttering types do not happen independently, so they framed
the detection problem as a multi-label classification problem.
In [17], they improved the quality of Wav2vec 2.0 embed-
dings for stuttered speech detection using Siamese network
and contrastive training. Despite these impressive results,
their models predict at the utterance level, which is insuffi-
cient for clinical usage. Furthermore, the optimal strategies
for utilizing Speech SSL models for stuttering detection are
still not fully understood. Several prior works also incorpo-
rate Speech SSL models into their model design, such as for
detecting dysarthria [25] and aphasia [26, 27], but they focus
on other types of speech disorders and are not directly appli-
cable to our task.

To the best of our knowledge, [21] is the only study that
focused on fine-grained stuttering detection, more specifically
frame-level stuttering detection. Hence, we chose it as our
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baseline. It is first pretrained on LibriSpeech with synthetic
disfluencies augmented during training with frame-level su-
pervision. Then, they added a max pooling layer to finetune
on utterance-level SEP-28K dataset.

3. METHOD

3.1. Model Architecture

Following prior work using Wav2vec 2.0 on stuttered speech
detection, we chose another Speech SSL model, WavLM
Large [22] as our backbone since it significantly outperforms
Wav2vec 2.0 on most SUPERB [13] benchmark tasks. Our
model structure is shown in Figure 1. Furthermore, we adopt
the recent Hierarchical Convolution Interface (HConv.) as
our method for utilizing the WavLM backbone according to
recent work [28], which was shown to improve overtaking a
learnable weighted sum of layer activations. As pointed out
in [18], the information for stuttering detection exists in mul-
tiple layers, so we decided to use HConv. due to its ability to
aggregate information across multiple layers. After that, we
add a few non-linear layers as the prediction head to classify
individual frames as stuttered or non-stuttered.

In [18], it was shown that phoneme recognition and stut-
tering detection tasks utilize the same set of layers in the
upstream Speech SSL model. Motivated by this, we de-
cided to add an auxiliary Connectionist Temporal Classifica-
tion (CTC) Loss to predict the phoneme sequences. The CTC
loss is only applied in the pretraining stage where we have
the ground truth phoneme sequences.

We roughly follow the training pipeline in [21], our
framework consists of two stages: Pretrain on synthetic aug-
mentation of LibriSpeech 360 and Finetune on SEP-28K.
Pretrain on LibriSpeech: Different from previous works,
we add our synthetic augmentations between the convolu-
tion layers and the transformer layers of WavLM rather than
adding augmentation directly on the input waveform. We
keep the augmentation types the same as [21], which includes
artificial prolongation, and word/sound repetition. By do-
ing so, we significantly save on computation and speed up
the online augmentation. Suppose the outputs of the predic-
tion head for each input utterance are o = [01, 02,...07],
where o; = [0, 0}], corresponding to the probability of pos-
itive and negative for frame ¢ respectively. The labels are
1 = [14,15,...17]. The loss is calculated as a cross entropy
between the prediction head outputs and the label sequence.

T
1
Lais = 7 ; —of logI? — o log 7, (1)

Lt is calculated between the frame level output of Phoneme
Prediction head and the ground truth phoneme sequence in
LibriSpeech (which is obtained from a force aligner). The

overall pretrain loss is:
['pretrain = »Cdis + Wete * ﬁctca (2

where wet 1s a scalar hyperparameter.

Finetune on SEP-28K: For the fine-tuning stage, since we
do not have frame-level labels for SEP-28K, we simply take
the timestep with the largest positive class prediction to calcu-
late cross entropy with the utterance level target in SEP-28K,
which is same as [21]. Formally,

I p
" = argmaxy <, <7 0y, 3)

Lais = —oy, logly, — o} log 1. 4)

3.2. Implementation Details

Model and training details: The scalar hyperparameter wct,
is set to 0.3 empirically to balance the magnitude between the
two losses. For the finetuning stage, we feed the entire audio
without augmentation and calculate a global level loss with its
corresponding label. In both stages, the HConv. interface and
the stuttering detection head are trainable. We use Adam opti-
mizer with a learning rate of 1e — 4. We select the checkpoint
with the lowest validation loss for the pretraining stage and
for the finetuneing stage, we select the one with the highest
F1 score on the validation set.

Dataset: For pretraining, we use LibriSpeech 360hr and for
SEP-28K, we follow the split specified in [21] for SEP-28K
as they make the dataset balanced across positive and negative
classes.

4. WORD LEVEL STUTTERING SPEECH DATASET

To make our system clinically applicable, students in speech-
language pathology, trained in fluency disorders and stutter-
ing, transcribed and annotated all the speech samples using
CHAT, a transcription program that is part of CLAN and the
Talk-Bank initiative [29]. We used a set of codes developed
to be used with CHAT [30] to annotate stuttering disfluencies
and typical disfluencies. Our dataset comes from two sources:
FluencyBank: This dataset included interview data from 36
adult individuals who stutter from the FluencyBank [31] En-
glish Voices-AWS Corpus.

Bilinguals Speech: This dataset included narrative samples
produced in English by 62 bilingual adults, 6 of whom stut-
tered. Participants were asked to generate a story based on a
wordless picture book. In our evaluation, we have two par-
titions for this dataset: Stuttering Bilinguals Speech, Non-
stuttering Bilinguals Speech.

To conduct a word-level stuttering evaluation on the
CHAT annotations, we need timestamp information. To this
end, we first leverage Whisper Large [32] to transcribe the
corresponding audio file and get the transcripts as well as the



timestamps for each word. Then, we employ Dynamic Time
Warping(DTW) to align the Whisper ASR transcripts with
the human transcriptions in CHAT files and slice the audio
into multiple utterances according to the lines in CHAT files.
For each aligned word between the Whisper ASR transcript
and CHAT file transcript, we label the word as stutter if there
is any stuttering annotation in its CHAT annotation, which
includes: Prolongation, Epenthesis, Broken Word, Block,
Sound/Syllable Repetition. We add a little margin (less than
0.2 sec) on the Whisper timestamps of each word due to the
fact that Whisper truncates the audio segment where Block
manifests. Notice that we only evaluate those words with
exact alignment in DTW since we do not have word-level
timestamps for unaligned words. We end up obtaining about
14.43 min of Non-stuttering Bilinguals Speech, 8.28 min of
Stuttering Bilinguals Speech, 45.69 min of FluencyBank and
a total of 1.14 hr recordings.

5. EVALUATION

While we aim to evaluate the performance of our model
on word-level stuttered speech detection, we also want to
compare it with previous works that studied utterance-level
stuttering detection. Hence, we evaluate under both the
utterance-level and word-level stuttering detection condi-
tions. For the former, we evaluate on SEP-28K testing set
and also report the F1 score for each stuttering type on Flu-
ency Bank (a subset of SEP-28K). For the latter, we evaluate
models on our word-level stuttering dataset and report F1,
precision, and recall on each partition separately. Addition-
ally, we report the F1 score and Average precision on the
entire dataset. We choose to report F1 score instead of other
metrics such as accuracy due to the fact that the data is highly
imbalanced (There are many more non-stuttered speech seg-
ments than stuttered segments). We sweep the detection
threshold from 0 to 1 with a step of 0.05 to find the optimal
threshold for all settings. Throughout our evaluation, we
found out that the word-level dataset is very sensitive to the
threshold selection. Hence, we also report Average Precision
on the entire word-level stuttered speech dataset. F1 score on
the one hand is more intuitive but sensitive to threshold selec-
tion especially on this dataset, while Average Precision is a
threshold-independent metric that evaluates the classification
model under all possible thresholds. With these two evalu-
ation benchmarks, we further conduct ablation experiments
on the effect of CTC loss, the SSL interface/model selection,
and the size of the finetuning dataset. Finally, we show some
qualitative examples of our model’s outputs.

5.1. Utterance Level stuttered speech detection

Since our model is only trained to detect stuttering events and
not to distinguish between different types of stuttering, we
report the type-specific stuttering detection F1 score by se-
lecting different subsets of the testing dataset. For example,

A WavLMLg + WS + CTC @® WavLMLg + WS
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Fig. 2. The learned weights distribution of weighted sum in-
terface in WavLMLg + WS and WavLMLg + WS + CTC.

to test the F1 score for blocks on SEP-28K - Fluency Bank,
we filter the testing set to include only utterances with blocks
and utterances without stuttering.

As shown in Table 1, overall, our model surpasses the
baseline systems. Specifically, [18, 19] and our model out-
performs [21] by a large margin, indicating the benefit of
using Speech SSL models and probably the transformer ar-
chitecture. Interestingly, our model beats [18, 19] in general,
except for interjections. This could potentially be improved
by adding synthesized sound interjections in the pretraining
stage.

5.2. Word Level stuttered speech detection

In Table 2, overall “WavLMLg + HConv. + CTC” outper-
forms the baseline model and other variations. In terms of
different partitions, Fluency Bank has the highest F1 scores
regardless of method. The reason might be the difference be-
tween native speakers and bilingual speakers. For Bilinguals
Speech, stuttering bilinguals tend to have higher F1 scores
compared to non-stuttering bilinguals. The reason is that our
model tends to have a high recall and a low precision in most
cases, which is also true for the baseline model. Compared to
the baseline method, our model improves more on recall than
precision. One avenue for future work would be to incorpo-
rate an improved prior over where stuttered speech is likely
to occur within an utterance or a better way to condition the
model on different patient demographics.

5.3. The effect of CTC loss and SSL interface selection

To study the effect of CTC loss and HConv. Interface we
design several ablation experiments. For the utilization of
WavLM, we design models using weighted sum (which is
a set of learnable weights that is multiplied layer-wisely on
WavLM Large hidden layers and sum up) or simply select a
single layer. Due to the extensive computing, we select every
4 layers of WavLM Large for our experiment. For HConv.
and Weighted Sum, we also try adding CTC loss or not.

On the utterance level (See Table 2), we see that with the
help of CTC loss, the performance with both HConv. and
Weighted Sum layer aggregation strategies improved. Inter-
estingly, without CTC loss, both interfaces perform roughly
the same overall. We hypothesize that HConv. could ben-
efit more from the guidance of CTC loss in terms of word-
level stuttered speech detection. The same trend can also be



SEP-28K - Fluency Bank

Model SEP-28K Test
All  Blocks Interjections Prolongation Sound Rep. Word Rep.
Baseline [18]" - - 0.33 0.84 0.60 0.60 0.43
Baseline [19]* - - 0.17 0.82 0.60 0.63 0.47
Baseline [21] 0.700 0.68 0.34 0.62 0.28 0.39 0.39
WavLMLg + HConv. 0.800 085 0.63 0.59 0.63 0.75 0.70
WavLMLg + HConv. + CTC 0.803 0.84  0.62 0.57 0.61 0.74 0.67
Using Weighted Sum (WS)
WavLMLg + WS 0.789 0.82 0.58 0.63 0.54 0.70 0.63
WavLMLg + WS + CTC 0.790 0.82  0.59 0.59 0.55 0.69 0.62
Different Finetune Dataset Size using “WavLMLg + HConv. + CTC”

Data Ratio: 0% 0.685 0.70  0.36 0.59 0.31 0.43 0.37
Data Ratio: 25% 0.774 0.82 0.62 0.58 0.61 0.77 0.72
Data Ratio: 50% 0.798 0.84 0.65 0.57 0.64 0.76 0.71
Data Ratio: 75% 0.793 0.83  0.66 0.56 0.65 0.79 0.74
Data Ratio: 100% 0.803 0.84 0.62 0.57 0.61 0.74 0.67

Table 1. Utterance Level Stuttered Speech Detection Evaluation on SEP-28K and Fluency Bank. The numbers are F1 scores.
Notice that for models with , they are trained to distinguish different stuttering types while training. Also the numbers are
directly reported from their paper.

Model All Stut. Blngl. Speech Non-stut. Blngl. Speech Stut. Fluency Bank
F1 Avg. P Fl P R F1 P R F1 P R
Baseline [21] 0411 0.864 0389 0.360 0423 0342 0.245 0565 0440 0315 0.728
WavLMLg + HConv. 0.536 0.899 0484 0.364 0.723 0496 0.391 0.680 0.585 0.496 0.715
WavLMLg + HConv.+ CTC 0.554 0.927 0490 0.375 0.708 0.518 0.439 0.633 0.591 0.508 0.708
Using Weighted Sum (WS)
WavLMLg + WS. 0.536  0.898 0425 0.356 0.529 0425 0356 0529 0.594 0507 0.718
WavLMLg + WS. + CTC 0.540 0.888 0460 0.336 0.730 0403 0.344 0486 0.603 0.514 0.729
Select Single WavLM Large Layer
WavLMLg Layer 0 0439 0.864 0340 0.214 0.825 0279 0.192 0507 0.519 0415 0.694
WavLMLg Layer 4 0479 0.876 0403 0.292 0.650 0332 0.256 0471 0.539 0434 0.709
WavLMLg Layer 8 0499 0.875 0442 0.389 0511 0424 0341 0561  0.541 0476 0.628
WavLMLg Layer 12 0.522 0.891 0458 0.331 0.745 0417 0.334 0554 0.581 0493 0.707
WavLMLg Layer 16 0.548 0910 0480 0418 0562 0513 0462 0576 0.589 0513 0.692
WavLMLg Layer 20 0.552 0903 0486 0.378 0.679 0488 0415 0594 0.592 0521 0.684
WavLMLg Layer 22 0.550 0912 0488 0.361 0.752 0484 0391 0.633 0.590 0.522 0.679
WavLMLg Layer 24 0.504 0901 0464 0366 0.635 0429 0.345 0568 0.546 0470 0.651
Different Finetune Dataset Size using “WavLMLg + HConv. + CTC”

Data Ratio: 0% 0469 0.872 0377 0.299 0511 0305 0.259 0371 0.545 0457 0.674
Data Ratio: 25% 0.530 0.892 0471 0405 0562 0362 0452 0302 0579 0487 0.713
Data Ratio: 50% 0.533 0904 0470 0.338 0.774 0493 0413 0.612 0.579 0487 0.713
Data Ratio: 75% 0.516 0.888 0460 0.368 0.613 0386 0417 0360 0.557 0472 0.678
Data Ratio: 100% 0.554 0927 0490 0.375 0.708 0.518 0.439 0.633 0.591 0.508 0.708

Table 2. Word Level Stuttered Speech Detection Evaluation. “WavLMLg” stands for WavLM Large. HConv. indicates
Hierarchical Convolution Interface and WS means weighted sum interface. For the metrics, “Avg. P” stands for Average
Precision while “P” and “R” indicate precision and recall respectively. “Stut. Blngl. Speech” and “Non-stut. Blngl. Speech”
stands for Stuttering Bilinguals Speech and Non-stuttering Bilinguals Speech.



GroundTruth Annotation: So he's running towards the place that the frog stands
Baseline [21] Prediction: So he's running towards the place that the frog stands
WavLMLg + HConv. + CTC Prediction:  So he's running towards the place that the frog stands
GroundTruth Annotation: and when they finally it is found that when they are outside of the lake they see the frog
Baseline [21] Prediction: and when they finally it is found that when they are outside of the lake they see the frog

WavLMLg + HConv. + CTC Prediction:  and when they finally, it is found that when they are outside of the lake they see the frog

Fig. 3. ExafieSrsut 8P and baseline modBFbHR &84 stuttering speech detection. Only the words with underscores

are consider%%fe\%lz %[12 Qvle)lli%da{ 1%%1.: Words in red ig&%ega%g%i%%tegorized as stuttered speech.
WavLMLg + HConv. + CTC Prediction: ~ They sign to the frog

Model ooy SERASLES. WOrd Level Suetedh ne see 1R EKDRIRATM WHAYSGR (0 WavLM.

BaselineHask]ine [21] Preidton: 0.4H& also yeah he see ti>Boy Thepefteetinfline tuning dataset size

WavLM WargMLg + HC8:803 CTC Prediction:0.584 also yeah he see thepayandihe degdetheshehsreffect of fine-tuning dataset size,
WavLM Base 0.747 0.484

we tried using different proportions of our fine-tuning data:
Wavzve(Qr@mg"gruth Annptagon: 0.5« frog became frieng}th %ﬁ@ iﬁﬁfaﬂgﬁglé.d 86 %%ca%gtgviggd [%eaeﬂi %ﬁg %ﬁ% %Ifl together
Wav2ve®Baghigee [21] Pre@igticn: 0.48® frog became friends Uh fi1énds with uh"yeah the ofd t]I‘CClb friends and the Elave fun together

ec%me 1S aind
Data2veMeukddLeg + HCOSt CTC Prediction:0), 549 frog became frien?s"&i'mtﬁ’i%nﬁgwg i&eﬁgéﬁ RS e alge ﬁ?é%&?%nﬁfﬂ%ﬁaég%% together
Data2vec Base 0745 0530 while using differént proportions of the data. We report both

GroumdFruthAmmotationr sotrestarted—o smile Utterance and word level results on Table 1 and Table 2. On

Table 3. THRawkined3id Wil‘igiﬁ{’g different Sp ceth g gprivg, (g smile both datasets, we observe a large improvement from 0% to

els. All mo¥ikMFe frﬁggﬂv'ﬁﬁlgcﬁﬁgﬁfmca%%ﬁg smile 50%. Surprisingly, there is a little drop in the performance
when using 75% of the data, but there’s a large leap when

and CTC loésr'oundTruth Annotation: so the the boy gets upsgthecapigphesseeinsyiathinli it wa hg dng'stfnult batibe didbenseh b frog
observed oy prek-fevekissitering speech datasebdBolers ungslisrontes sEdte ikl an e ieeroaulb las bl ol g froe
ble 2. Henceavievivgthercvisual zedipeclizaioed weighthetothets URgR RECRHIF I 5amS 4oy thifkjiigs the doe's fault that he didn't catch the frog
weighted sum in “WavLMLg + WS” and “WavLMLg + WS + L. . .

CTC” in Fisiirum TWHAREH of CTC loss, tHadtbssiapaissen sobbro Qualitativaresults phiStuttening Detectioms o bah
tribution beB3RkRHIL et #itrated on the peakld {ixiicRakeen 208 Qithieladu s SO B SUdRNAS REW SIS SDIHE ex-
that CTC 1088 IsMIpin B onY mGHEITTSdigton a Brtedie stehp ksen ol ior dae haBigom, shersdbellitie fid-apd feden aeiidnea baftaset.

wtilizing upgifeammadel fsates - theboy and the doe afe BNOWR: MRS 2, O BRARARE snd our model end
We alsayienart ¢ speriopance of using 4, 3igle, [yelyo, of0 RIEIE UGS, SYELIS Mot Jicduently than the speec

from WavLMhAfes Iidghlc. & RufenEAPSIBSDR g JEORIAN RS ER AN e baseline model, our
every four layers of WavLM-Large, we also include an exper- ~ model’s predictions tend to be of higher precision.

iment usingGha:2@hrdthayenoadtiavL.M-Large aceoddilgitothe just more like challenging a t_l@ W it is that the speech therapy has been very help

ingly, layer3v8vhil 22 Hevovthie(HigResdittame danddilhitss tmen just Inothiskpapatsnee shedlthephtioptot afiitdrthiinke gpaenk dheraplulaas been very help
overall the best performance falls roughly on the upper half tion of stuttered speech detection which is also closer to clin-
of WaVLM-@Q??@T BARESHYayer 12 to 24). %@é&%fm%%?%ﬁ%y%%%ical word-level stuttering speech
“WavLML%]?v 5085 BAHPElician verall F1 scoré e ot %E?rSaP Olhfnxfarf? et @F&%W%&éﬂga word-level stuttered speech de-
best model Wg%l‘ﬁ/[igcfnl\-’légr};gfwg?'bu%%ﬁ%%ﬁqul%iLil ﬁ%%%%ge%% significant improvements com-

5.4. The effect of different Speech SSL models the potential scaling of our method.

... GroundTruth Annotation; . i talk to don't care For future work, we think that increasing the dataset size
In additionto Fhe &qﬁﬁ(ge.selecﬂon, we also Ep?d using. . . . . . .
different si Base 1}%&[ 1 1%t10n. Soeech lé.fg.]g‘_o %E and diversity would bring additional improvements for this
e IPE SR, YREHEPRIRBSHE™ it d Y e field. Finally, we would also like to incorporate word-level
As shown in Table 3, overall, the Speech SSL models out- tuttering t Jassification in our model. to better St
perform theGhaseiinatimeadehtibdicating the effgetivanessbofvhat ssugcees:‘%ulgct %%niccz?t?csin Fggmé(s)t—%%'%o‘; ] diO 6131 , i0 etter assis
self-superviBagtliwajnin@rediFsthermore, Largepkize dnodedsvhat RN R m%gnes:?_o yo_% a agnoss.
surpass Bas¥asi2dLipodélonn tallTCaReslicthast bleasadesleist what successful commuiicadda KNOWLIEDGEMENT
WavLM performs the best compared to Wav2vec2 [20] and  This research has been supported by NSF Grants AF 1901292,
Data2vec [33]. From our results, we believe that WavLM is ~ CNS 2148141, IFML CCF 2019844 and research gifts by
a more suitable choice for stuttering detection and that previ-  Cisco, WNCG IAP and the UT Austin Machine Learning

ous works [17, 18, 19] might also benefit if they change their =~ Lab (MLL).




(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

8. REFERENCES

Anne Smith and Christine Weber, “How stuttering de-
velops: The multifactorial dynamic pathways theory,”
Journal of speech, language, and hearing research :
JSLHR, vol. 60, pp. 1-23, 08 2017.

Ashley Craig, Elaine Blumgart, and Yvonne Tran, “The
impact of stuttering on the quality of life in adults who
stutter,” Journal of Fluency Disorders, vol. 34, no. 2,
pp. 61-71, 2009.

Caroline Koedoot, Clazien Bouwmans, Marie-Christine
Franken, and Elly Stolk, “Quality of life in adults who
stutter,” Journal of Communication Disorders, vol. 44,
no. 4, pp. 429443, 2011.

Deborah J. Brisk, E. Charles Healey, and Karen A.
Hux, “Clinicians’ training and confidence associated
with treating school-age children who stutter,” Lan-

guage, Speech, and Hearing Services in Schools, vol.
28, no. 2, pp. 164-176, 1997.

Rodney M. Gabel, “School speech-language pathol-
ogists’ experiences with stuttering: an ohio survey,’
eHearsay, vol. 3, no. 1, pp. 5-23, 2013.

Ellen M. Kelly, Jane S. Martin, Kendra E. Baker,
Norma I. Rivera, Jane E. Bishop, Cindy B. Krizizke,
Deborah S. Stettler, and June M. Stealy, “Academic
and clinical preparation and practices of school speech-
language pathologists with people who stutter,” Lan-
guage, Speech, and Hearing Services in Schools, vol.
28, no. 3, pp. 195-212, 1997.

Kenneth St. Louis and C Durrenberger, “What com-
munication disorders do experienced clinicians prefer to
manage?,” ASHA, vol. 35, pp. 23-31, 35, 01 1994.

Geoffrey A. Coalson, Courtney T. Byrd, and Elizabeth
Rives, “Academic, clinical, and educational experiences
of self-identified fluency specialists,” Perspectives of the
ASHA Special Interest Groups, vol. 1, no. 4, pp. 16-43,
2016.

Shakeel Ahmad Sheikh, Md Sahidullah, Fabrice Hirsch,
and Slim Ouni, “StutterNet: Stuttering Detection Us-
ing Time Delay Neural Network,” in EUSIPCO 2021 -
29th European Signal Processing Conference, Dublin /
Virtual, Ireland, 2021.

Tedd Kourkounakis, Amirhossein Hajavi, and Ali
Etemad, “Fluentnet: End-to-end detection of stuttered
speech disfluencies with deep learning,” IEEE/ACM
Transactions on Audio, Speech, and Language Process-

ing, vol. 29, pp. 29862999, 2021.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Colin Lea, Vikramjit Mitra, Aparna Joshi, Sachin Ka-
jarekar, and Jeffrey Bigham, ‘“Sep-28k: A dataset for
stuttering event detection from podcasts with people
who stutter,” in ICASSP, 2021.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: An asr corpus based
on public domain audio books,” in 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 5206-5210.

Shuwen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-
I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, Andy T.
Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-
Hsien Huang, Wei-Cheng Tseng, Ko tik Lee, Da-Rong
Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji
Watanabe, Abdelrahman Mohamed, and Hung yi Lee,
“SUPERB: Speech Processing Universal PERformance
Benchmark,” in Proc. Interspeech 2021, 2021, pp.
1194-1198.

Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and
Michael Auli, “Unsupervised speech recognition,”
NeurlPS, 2021.

Alexander H. Liu, Wei-Ning Hsu, Michael Auli, and
Alexei Baevski, “Towards end-to-end unsupervised
speech recognition,” in 2022 IEEE Spoken Language
Technology Workshop (SLT), 2023, pp. 221-228.

Junyi Peng, Themos Stafylakis, Rongzhi Gu, Oldfich
Plchot, Ladislav MosSner, Luk4$ Burget, and Jan
Cernocky, “Parameter-efficient transfer learning of pre-
trained transformer models for speaker verification us-
ing adapters,” in ICASSP 2023 - 2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2023, pp. 1-5.

Payal Mohapatra, Bashima Islam, Md Tamzeed Islam,
Ruochen Jiao, and Qi Zhu, “Efficient stuttering event
detection using siamese networks,” in ICASSP 2023
- 2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2023, pp. 1-
5.

Sebastian Peter Bayerl, Dominik Wagner, Elmar Noeth,
and Korbinian Riedhammer, “Detecting Dysfluencies in
Stuttering Therapy Using wav2vec 2.0,” in Proc. Inter-
speech 2022, 2022, pp. 2868-2872.

Sebastian P. Bayerl, Dominik Wagner, Ilja Baumann,
Florian Honig, Tobias Bocklet, Elmar Noth, and Ko-
rbinian Riedhammer, “A Stutter Seldom Comes Alone
— Cross-Corpus Stuttering Detection as a Multi-label
Problem,” in Proc. INTERSPEECH 2023, 2023, pp.
1538-1542.



(20]

(21]

[22]

(23]

[24]

[25]

(26]

[27]

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli, “wav2vec 2.0: a framework for self-
supervised learning of speech representations,” in Pro-
ceedings of the 34th International Conference on Neural
Information Processing Systems, Red Hook, NY, USA,
2020, NIPS ’20, Curran Associates Inc.

John Harvill, Mark Hasegawa-Johnson, and Chang D.
Yoo, “Frame-Level Stutter Detection,” in Proc. Inter-
speech 2022, 2022, pp. 2843-2847.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long
Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Micheal
Zeng, and Furu Wei, “Wavlm: Large-scale self-
supervised pre-training for full stack speech process-
ing,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 16, pp. 1505-1518, 2021.

Peter Howell, Stephen Davis, and Jon Bartrip, “The
university college london archive of stuttered speech
(uclass),” Journal of speech, language, and hearing re-
search : JSLHR, vol. 52, pp. 556-69, 05 2009.

Sebastian Bayerl, Alexander Wolff von Gudenberg, Flo-
rian Honig, Elmar Noeth, and Korbinian Riedhammer,
“Ksof: The kassel state of fluency dataset — a therapy
centered dataset of stuttering,” in Proceedings of the
Language Resources and Evaluation Conference, Mar-
seille, France, June 2022, pp. 1780-1787, European
Language Resources Association.

Farhad Javanmardi, Saska Tirronen, Manila Kodali, Su-
darsana Reddy Kadiri, and Paavo Alku, “Wav2vec-
based detection and severity level classification of
dysarthria from speech,” in ICASSP 2023 - 2023 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2023, pp. 1-5.

Jiachen Lian, Carly Feng, Naasir Farooqi, Steve
Li, Anshul Kashyap, Cheol Jun Cho, Peter Wu,
Robin Netzorg, Tingle Li, and Gopala Krishna Anu-
manchipalli, “Unconstrained dysfluency modeling for
dysfluent speech transcription and detection,” 2023
IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), pp. 1-8, 2023.

Jiachen Lian and Gopala Anumanchipalli, “Towards hi-
erarchical spoken language disfluency modeling,” in
Proceedings of the 18th Conference of the European
Chapter of the Association for Computational Linguis-
tics (Volume 1: Long Papers), St. Julian’s, Malta, Mar.
2024, pp. 539-551, Association for Computational Lin-
guistics.

[28] Yi-Jen Shih and David Harwath, “Interface Design
for Self-Supervised Speech Models,” in Proc. INTER-
SPEECH 2024, 2024.

[29] Brian Macwhinney, “The childes project: Tools for an-
alyzing talk: Transcription format and programs (3rd
ed.).” Lawrence Erlbaum Associates Publishers, vol.
1, 2000.

[30] Nan Bernstein Ratner and Shelley B. Brundage, “A clin-
ician’s complete guide to clan and praat,” 2020.

[31] Nan Bernstein Ratner and Brian MacWhinney, “Fluency
bank: A new resource for fluency research and practice,”
Journal of Fluency Disorders, vol. 56, pp. 69-80, 2018.

[32] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine Mcleavey, and Ilya Sutskever, “Robust
speech recognition via large-scale weak supervision,”
in Proceedings of the 40th International Conference on
Machine Learning. 23-29 Jul 2023, vol. 202 of Pro-
ceedings of Machine Learning Research, pp. 28492—

28518, PMLR.

[33] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun
Babu, Jiatao Gu, and Michael Auli, “data2vec: A gen-
eral framework for self-supervised learning in speech,
vision and language,” in Proceedings of the 39th Inter-
national Conference on Machine Learning, Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
vari, Gang Niu, and Sivan Sabato, Eds. 17-23 Jul 2022,
vol. 162 of Proceedings of Machine Learning Research,

pp. 1298-1312, PMLR.



	 Introduction
	 Related Work
	 Method
	 Model Architecture
	 Implementation Details

	 Word Level Stuttering Speech Dataset
	 Evaluation
	 Utterance Level stuttered speech detection
	 Word Level stuttered speech detection
	 The effect of CTC loss and SSL interface selection
	 The effect of different Speech SSL models
	 The effect of fine-tuning dataset size
	 Qualitative results of Stuttering Detection

	 Conclusions
	 Acknowledgement
	 References

