
Memory-Efficient LLM Training with Online
Subspace Descent

Kaizhao Liang†, Bo Liu†, Lizhang Chen†, Qiang Liu†

†The University of Texas at Austin
{kaizhaol,bliu,lzchen,lqiang}@utexas.edu

Abstract

Recently, a wide range of memory-efficient LLM training algorithms have gained
substantial popularity. These methods leverage the low-rank structure of gradients
to project optimizer states into a subspace using projection matrix found by singular
value decomposition (SVD). However, convergence of these algorithms is highly
dependent on the update rules of their projection matrix. In this work, we provide
the first convergence guarantee for arbitrary update rules of projection matrix. This
guarantee is generally applicable to optimizers that can be analyzed with Hamilto-
nian Descent, including most common ones, such as LION, Adam. Inspired by our
theoretical understanding, we propose Online Subspace Descent, a new family of
subspace descent optimizer without SVD. Instead of updating the projection matrix
with eigenvectors, Online Subspace Descent updates the projection matrix with
online PCA. Online Subspace Descent is flexible and introduces only minimum
overhead to training. We show that for the task of pretraining LLaMA models
ranging from 60M to 7B parameters on the C4 dataset, Online Subspace Descent
achieves lower perplexity and better downstream tasks performance than state-of-
the-art low-rank training methods across different settings and narrows the gap
with full-rank baselines.1

1 Introduction

The continual advancement in training large language models (LLMs) presents a compelling challenge
in balancing computational efficiency with model performance. As the scope and complexity of these
models grow, so does the necessity for innovative strategies that optimize memory usage without
compromising the learning capabilities of the model. Recent approaches in low-rank adaptation
strategies, including Stochastic Subspace Descent [13], LoRA [11], ReLoRA [15], Gradient Low-
Rank Projection (GaLore) [25] and Sketchy [9] , have paved the way for memory-efficient training
by utilizing a periodically updated low-rank projection matrix to manage parameter updates. In
particular, GaLore and Sketchy both utilize expensive singular value decomposition to determine the
projection matrix, whereas stochastic subspace descent suggests using random matrices as projection
matrices and provides convergence analysis on convex functions and objectives. However, to the
best of our knowledge, no one has offered any guarantee of convergence for this class of methods on
non-convex functions and objectives.

In this work, we provide the first convergence guarantee for arbitrary update rules of the projection
matrix. This guarantee is significant because it is broadly applicable to a wide range of optimizers that
can be analyzed within the Hamiltonian descent framework [18]. By establishing this convergence
guarantee, we demonstrate that our approach is not limited to specific or narrowly defined update
rules, but can be extended to include many commonly used optimizers in the field. In particular, this

1Code is available at https://github.com/kyleliang919/Online-Subspace-Descent.

Preprint. Under review.

ar
X

iv
:2

40
8.

12
85

7v
1

 [c
s.L

G
]

23
 A

ug
 2

02
4

https://github.com/kyleliang919/Online-Subspace-Descent

Algorithm 1 Online Subspace Descent

1: Required: Optimizer OptimizerW, learning rate ϵWt , weight decay λW for model weights W t;
and {OptimizerP, ϵPt , λP } for the projection matrix P t. Proper initialization.

2: for iteration t do
3: Calculate gradient Gt = ∇L(W t); Update model weights W t by

(∆̂t, Ŝt) = OptimizerW(P⊤
t Gt, Ŝt−1), W t+1 = W t + ϵWt (P t∆̂t+1 − λWW t)

4: Calculate GP
t = ∇LGt(P t) for LGt(·) in Eq (6); Update the projection P t by

(∆P
t ,S

P
t) = OptimizerP(GP

t , SP
t−1), P t+1 = P t + ϵPt (∆

P
t − λPP t)

5: end for
6: Remark: We added weight decay as a common heuristic. We recommend using Adam for both

optimizers, and set ϵPt = αϵWt with a constant α (e.g., α = 5), and λW = λP . 2

includes popular algorithms such as LION [4] and Adam [12], which are widely used in various
machine learning and optimization tasks. Our results therefore offer a robust theoretical foundation
for understanding and analyzing the behavior of these optimizers, ensuring their effectiveness and
reliability in diverse applications.

Inspired by our theoretical understanding, we introduce a novel family of memory-efficient opti-
mizers named Online Subspace Descent, which incorporates a dynamically changing projection
matrix, replacing the conventional periodic updating approach (SVD) with online PCA. By allowing
the projection matrix to evolve in response to the changing gradient landscape, Online Subspace
Descent enhances the model’s ability to navigate the parameter space more effectively. This dynamic
adaptation aligns more closely with the natural progression of learning in deep neural networks,
which is characterized by changes in the importance of different characteristics and interactions as
training progresses. Through extensive experiments and comparative analysis, we demonstrate that
our approach presents lower perplexity in pretraining LLaMA models (ranging from 60M to 1B
parameters) on the C4 dataset compared to state-of-the-art low-rank training methods, closing the
perplexity gap with full-rank baselines on language model pretraining.

2 Optimization Background

The training of deep learning models reduces to an optimization problem

min
W

L(W),

where W is the set of weight matrices of the model. For simplicity, we assume W ∈ Rn×m is a
single matrix of size (n,m) without loss of generality. For notation, we write ⟨A,B⟩ = tr(A⊤B)

for inner products of matrices, and ∥A∥2 = tr(A⊤A) the Frobenius norm. We use A⊙B to denote
the elementwise product, and A⊙2 = A⊙A.
Example 2.1. Update rules of common optimizers:

Gradient Descent : W t+1 = W t − ϵt∇L(W t),

Momentum : W t+1 = W t − ϵtM t, M t = (1− β)∇L(W t) + βM t−1,

Lion-K [4] : W t+1 = W t − ϵt∇K(N t), N t = (1− β1)∇L(W t) + β1M t

M t = (1− β2)∇L(W t) + β2M t−1,

Adam [12] : W t+1 = W t − ϵt
M t√
V t + e

, M t = (1− β1t)∇L(W t) + β1tM t−1,

V t = (1− β2t)∇L(W t)
⊙2 + β2tV t−1,

where ϵt are step sizes, and M t,V t are the first and second order momentum, and β, β1, β2 are

momentum coefficients in (0, 1), with βit =
βi−βt+1

i

1−βt+1
i

, i = 1, 2 for β1, β2 ∈ (0, 1) in Adam, and K
is any convex function with ∇K(0) = 0 for Lion-K [4], and Lion [5] uses K(X) = ∥X∥1,1 and
∇K(X) = sign(X).

2

These optimizers can be unifiedly viewed as updating W t together with an optimizer state St:
W t+1 = W t + ϕt(St), St = ψt(St−1,∇L(W t)), (1)

with some mapping ϕt, ψt. We have St = M t for momentum and St = {M t,V t} for Adam.
Note that both M t,V t are of the same size as the model weights W t, resulting in high memory
consumption for large models. This issue is particularly pronounced for Adam, which typically yields
the best performance for large language models (LLMs) but incurs the highest memory cost due to
the need to maintain both M t and V t. One key challenge is to retain the high performance of Adam
while enhancing its memory efficiency.

Hamiltonian+Descent One powerful approach to studying the dynamic properties of optimizers is
to examine their continuous-time ODE forms in the limit of infinitesimal step size. The continuous-
time forms provide clearer insights into the asymptotic convergence of the algorithm, abstracting
away the choices of step size, discretization, and stochastic errors. The underlying logic is that a
"sound" optimizer should be guaranteed to converge to local optima of the loss, at least when using
sufficiently small step sizes.

Inspired by [4, 18], we observe that the continuous-time form of many common optimizers yields a
Hamiltian+Descent structure,

d

dt
W t = ∂SH(W t,St)− Φ(∂WH(W t,St))

d

dt
St = −∂WH(W t,St)−Ψ(∂SH(W t,St)),

(2)

where H(W ,S) is a Hamiltonian (or Lyapunov) function that satisfies
min
S
H(W ,S) = L(W), ∀W ,

so that minimizing L(W) reduces to minimizing H(W ,S); and Φ(·),Ψ(·) are two monotonic
mappings satisfying

∥X∥2Φ := ⟨X,Φ(X)⟩ ≥ 0, ∥X∥2Ψ := ⟨X,Ψ(X)⟩ ≥ 0, ∀X.

With Φ(X) = Ψ(X) = 0, the system in (2) reduces to the standard Hamiltonian system that keeps
H(W t,St) = const along the trajectory. When adding the descending components with Φ and Ψ,
the system then keeps H(W ,S) monotonically non-decreasing:

d

dt
H(W t,St) =

〈
∂WHt,

d

dt
W t

〉
+

〈
∂SHt,

d

dt
St

〉
= ⟨∂WHt, ∂SHt − Φ(∂WHt)⟩+ ⟨∂SHt,−∂WHt −Ψ(∂SHt)⟩
= −∥∂WHt∥2Φ − ∥∂SHt∥2Ψ ≤ 0,

(3)

where we write ∂WHt = ∂WH(W t,St) and similarly for ∂SHt. The main idea is that the cross
terms ⟨∂WHt, ∂SHt⟩ are canceled, leaving only the negative terms.
Example 2.2. The momentum method yields following continuous-time form and Hamiltonian:

d

dt
W t = −M t,

d

dt
M t = a(∇L(W t)−M t), with H(W ,M) = L(W) +

∥M∥2

2a
.

Example 2.3. Adam [12] yields the following continuous-time form and Hamiltonian,
d

dt
W t = − M t√

V t + e
,

d

dt
M t = a(∇L(W t)−M t),

d

dt
V t = b(∇L(W t)

⊙2 − V t),

with H(W ,M ,V) = L(W) +
1

2a

〈
M√
V + e

, M

〉
,

for which we can show that d
dtH(W t,M t,V t) ≤ 0 when a ≥ b/4.

Example 2.4. The Lion-K optimizer [5, 4] (without weight decay) can be written into
d

dt
W t = ∇K((1− b)M t − b∇L(W t)),

d

dt
M t = −a(∇L(W t) +M t),

where a ≥ 0, b ∈ [0, 1] and K(X) is any convex function that attains the minimum at X = 0. One
of its Hamiltonians that yields the Hamiltonian+descent structure (Eq (13) in Chen et al. [4]) is

H(W ,M) = aL(W) +
1

1− b
K((1− b)M).

3

3 Memory-Efficient Optimizers via Online Subspace Descent

We introduce the idea of constructing memory efficient optimzers by descending in the subspaces that
dynamically changes across iterations as motivated by GaLore [25] and Sketchy [9]. We first derive
static subspace descent by restricting the whole optimization on a subspace (Section 3.1), and then
propose to dynamically change the subspace across iterations as a heuristic to attain the optimization
in the full space while only using subspace descent (Section 3.2). In particular, we propose to update
the subspaces via continuous online PCA like updates to avoids the need of exact SVD like in GaLore
and Sketchy (Section 3.2). Finally, we remark in Section 3.3 the heuristic nature of the derivation of
the method and highlight the difficulty in theoretical understanding, which motivates our analysis
based on Hamiltonian dynamics in Section 4.

3.1 Static Subspace Descent

One popular approach to improving memory efficiency is to confine the optimization to a low-
dimensional space. To do this, we impose a low rank structure of W = PŴ , where P ∈ Rn×k is a
projection matrix to be determined later and Ŵ ∈ Rk×m is a dimension-reduced parameter. When
k ≪ n, P and Ŵ are much smaller in size compared to W . Now consider

min
Ŵ

L(PŴ).

Applying the optimizer from (1) to update Ŵ along with an optimizer state Ŝ, and mapping the
update rule Ŵ t+1 = Ŵ t + ϕt(Ŝt) to that of W = PŴ t, we get

W t+1 = W t + Pϕt(Ŝt), Ŝt = ψt(Ŝt−1,P
⊤∇L(W t)), (4)

where we used the fact that ∇ŴL(PŴ) = P⊤∇WL(W). This yields a more memory-efficient
optimizer, as the size of Ŝt is proportional to that of Ŵt, much smaller than St in (1) when k ≪ n.

3.2 Online Subspace Descent

With a static P , regardless of its values, the parameter W is restricted to have a low rank structure.
Although low rank assumption is proved to be useful for fine-tuning with LoRA-like methods [11], it
is often too limited for pre-training or when the desirable model weights are not inherently low-rank.

To address this problem, Zhao et al. [25] suggested to keep the projected updated in (4), but use
different P across the iterations:

W t+1 = W t + P tϕt(Ŝt), Ŝt = ψt(Ŝt−1,P
⊤
t ∇L(W t)), P t+1 = χt(P t,W t, Ŝt),

where χt is a update rule of P t that will be determined in the sequel. The intuition is to open up
different projection directions at different iterations, so that optimization can be conducted in different
subspaces across different iterations. This is similar to the update of coordinate descent, except in a
continuous fashion. Note that the update of P t can be done in parallel with that of (W t, Ŝt), and
incurs no slowdown once it is fast enough to not cause a speed bottleneck.
Example 3.1. Examples of common optimizers equipped with online subspace descent:

Gradient Descent : W t+1 = W t − ϵtP tP
⊤
t Gt, Gt = ∇L(W t),

Momentum : W t+1 = W t − ϵtP tM̂ t, M̂ t = (1− β)P⊤
t Gt + βM̂ t−1,

Lion-K : W t+1 = W t − ϵtP t∇K(N̂ t), Ĝt = P⊤
t Gt

N̂ t = (1− β1)Ĝt + β1M̂ t, M̂ t = (1− β2)Ĝt + β2M̂ t−1,

Adam : W t+1 = W t − ϵtP t
M̂ t√
V̂ t + e

, Ĝt = P⊤
t Gt,

M̂ t = (1− β1t)Ĝt + β1tM̂ t−1, V̂ t = (1− β2t)Ĝ
⊙2

t + β2tV̂ t−1.

How Should P t be Updated? It is useful to draw intuition from the projected gradient descent rule

W t+1 = W t − ϵtP tP
⊤
t Gt, Gt = ∇L(W t), (5)

4

in which P tP
⊤
t can be viewed as a low rank preconditioning of Gt. To make it follow the exact

gradient descent, we hope to make P tP
⊤
t Gt approximate Gt as much as possible. In Galore, this is

achieved by performing singular value decomposition (SVD) on Gt periodically every T iterations:

P t, _, _ = torch.linalg.svd(GT⌊t/T⌋),

where T ⌊t/T ⌋ is the largest multiple of T less than or equal to t. However, numerical SVD incurs
a large computational cost for very large models. Also, since P t is fully determined by GT⌊t/T⌋
calculated from a single mini-batch at the last periodic point, it does not incorporate the gradient
information from all data in a timely fashion.

In this work, we propose to update P t in a continuous online fashion that incorporates the most
recent gradient information in a timely fashion, without calling torch.linalg.decompositions routines.
We view the update of P t as conducting an online principal component analysis (PCA) based on the
streaming of {Gt}. In particular, we propose to update P t at time t by minimizing the following
PCA objective:

LGt(P) =
∥∥∥PP⊤G̃t − G̃t

∥∥∥2 + λ
∥∥∥P⊤P − Ik×k

∥∥∥2 , G̃t =
Gt

∥Gt∥
, (6)

where ∥A∥ = tr(A⊤A)1/2 and Ik×k is the k× k identity matrix; we introduced an auxiliary loss to
encourage the columns of P to be orthonormal and normalizes Gt to increase stability.

The key property of LGt
(P) in (6) is that all its stable local minimum is a global minimum, and P is

a global minimum iff PP⊤G̃t forms the optimal rank-k approximation of G̃t [e.g., 3]; moreover,
we have P⊤P = Ik×k at optima when λ > 0.

Instead of minimizing LGt
(P) exactly, to retain computational efficiency, we propose to update P t

by only performing one step of optimization on LGt
(P):

P t+1 = OptimizerP.step(P t, ∇PLGt
(P t)),

where OptimizerP.step can be a favorite optimizer, such as gradient descent or Adam. Note that
when using Adam, we introduce a copy of optimizer state SP

t for P t. See Algorithm 1. Compared
to the exact SVD, each online update of P t here is fast and can be executed in parallel with the
(W t, Ŝt) updates to avoid slowdown.

3.3 Difficulty in Theoretical Understanding

The idea above of projecting an arbitrary optimizer with a dynamically changing P t is heuristically
motivated and lacks an immediate rigorous theoretical justification. The main challenge lies in the
complex interaction between the update of U t and the optimization state St, which could potentially
degrade the convergence and other theoretical properties of the original optimizer. A key question
is whether we can develop a theoretical framework to understand how P t impacts the optimizer’s
convergence behavior and provide guidance for the design of the update rules of P t.

To gain understanding, it is useful to first exam the simple case of projected gradient descent in (5)
which does not have an optimizer state (St = ∅). In this case, since P tP

⊤
t is positive semi-finite,

the update P tP
⊤
t Gt is always non-increasing direction of L(W) for any P t. The algorithm is

essentially a variant of coordinate or subspace descent, where P t defines the subspace on which one
step of gradient descent is conduced at iteration t. To ensure that (5) finds a local optimum, we mainly
need to ensure that P tGt = 0 only if Gt = 0 to prevent the optimizer from stopping prematurely;
this is a mild condition that can be satisfied e.g. when P t is updated by (online) PCA on Gt.

Unfortunately, this coordinate-descent-like interpretation does not apply to more advanced optimizers
that track a momentum state St. This is because St accumulates the information from the projected
gradient P τGτ at all earlier iterations τ ≤ t. As P t changes across time, it is unclear whether
the gradient projected to different subspaces P τ would be coherent with each other, and useful for
future updates that are conducted in different subspaces P t for t > τ . The difficulty is the inertia
effect of St that entangles the different subspaces, making the dynamic behavior fundamentally more
complicated than naive coordinate descent where the descent in different subspaces is uncoupled.
This is what we address in Section 4 via the Hamiltonian descent framework.

5

4 Hamiltonian Descent Meets Subspace Descent: A Lyapunov Analysis
In this section, we show a surprising result that the complication outlined above in Section 3.3 is not
a problem for optimizers that yields the Hamiltonian+descent structure in (2). Our result is two-fold:

• Section 4.1: When applying Online Subspace Descent on systems in (2), the Hamiltonian+descent
structure is preserved once the update rule of P t has a smooth continuous-time limit. Hence,
under very mild conditions, Online Subspace Descent equipped with common optimizers like Adam
and Lion automatically yield a Lyapunov function and hence benign continuous-time convergence.
Moreover, P t can, in fact, be generalized to an arbitrary linear operator as shown in Section 4.3.

• Section 4.2: For any smooth P t update rules that eliminates the degenerate case of P⊤
t Gt = 0

while Gt = 0 at convergence, the online subspace optimizer guarantees to converge in continuous
time to a stationary point of the loss L(W). This mild condition is satisfied, for example, when P t

is updated by a typical optimizer on the online PCA objective LGt
(P).

4.1 Online Subspace Descent Preserves the Hamiltonian+Descent Structure
Applying dynamic projection to Hamiltonian descent in (2), we obtain the following systems:

d

dt
W t = P t∂ŜH(W t, Ŝt)− Φ(∂WH(W t, Ŝt))

d

dt
Ŝt = −P⊤

t ∂WH(W t, Ŝt)−Ψ(∂ŜH(W t, Ŝt))

d

dt
P t = Γ(P t,∇L(W t)),

(7)

where Γ specifies the update rule of P t. Following essentially the same derivation as (3), one can
show that H(W ,S) remains a Lyapunov function of (7), regardless of the choice of Γ:

d

dt
H(W t, Ŝt) = −∥∂WHt∥2Φ − ∥∂SHt∥2Ψ + ⟨∂WHt,P t∂ŜHt⟩ − ⟨∂ŜHt,P

⊤
t ∂WHt⟩

= −∥∂WHt∥2Φ − ∥∂SHt∥2Ψ ≤ 0,

(8)

where the key is to use the adjoint property of P and P⊤ that ⟨P tX,Y ⟩ = ⟨X,P⊤
t Y ⟩, which

cancels the crossing terms, independent of the values of P t. There is no requirement on Γ here,
besides that the derivative in (8) should exist. As shown in Section 4.3, we can generalize (8) by
replacing P t and P⊤

t with a general linear operator Pt and its adjoint P∗
t .

The following are examples of continuous-time Momentum, Lion-K and Adam with subspace descent
and their Hamiltonian functions.

Example 4.1. Momentum + Online Subspace Descent is

d

dt
W t = −P tM̂ t, Ĝt = P⊤

t ∇L(W t),
d

dt
M̂ t = a(Ĝt − M̂ t),

with Lyapunov function H(W ,M̂) = L(W) +
∥M̂∥

2

2a
, for which

d

dt
H(W t,M̂ t) = −∇L(W t)

⊤P tM̂ t + M̂
⊤
t (P

⊤
t ∇L(W t)− M̂ t) = −

∥∥∥M̂ t

∥∥∥2
2
≤ 0.

Example 4.2. Adam + Online Subspace Descent is

d

dt
W t = P t

M̂ t√
V̂ t + e

, Ĝt = P⊤
t ∇L(W t),

d

dt
M̂ t = a(Ĝt − M̂ t),

d

dt
V̂ t = b(Ĝ

2

t − V̂ t).

with Lyapunov function H(W ,M ,V) = L(W) +
1

2a

〈
M̂√
V̂ + e

, M̂

〉
, for which

6

d

dt
H(W t,M̂ t, V̂ t)

= −

〈
Gt,P t

M̂ t√
V̂ t + e

〉
+

1

a

〈
M̂ t√
V̂ t + e

, a(P⊤
t Gt − M̂ t)

〉
− b

4a

〈
M̂

⊙2

t√
V̂ t ⊙ (

√
V̂ t + e)⊙2

, (Ĝ
⊙2

t − V̂ t)

〉

= −

〈
1− b

4a

√
V̂ t√

V̂ t + e
,

M̂
⊙2

t√
V̂ t + e

〉
− b

4a

〈
M̂

⊙2

t√
V̂ t ⊙ (

√
V̂ t + e)⊙2

, Ĝ
⊙2

t

〉

≤ −
(
1− b

4a

)∥∥∥∥∥∥ M̂ t√√
V̂ t + e

∥∥∥∥∥∥
2

− b

4a

∥∥∥∥∥ M̂ tĜt

4
√
V̂ t(

√
V̂ t + e)

∥∥∥∥∥
2

≤ 0,

where we assume a ≥ b/4.
Example 4.3. The Lion-K + Online Subspace Descent is

d

dt
W t = P t∇K((1− b)M̂ t − bĜt),

d

dt
M t = −a(Ĝt + M̂ t), Ĝt = P⊤

t ∇L(W t)

Consider the Hamiltonian function in Eq (13) of [4]:

H(W ,M̂) = aL(W) +
1

1− b
K((1− b)M̂).

d

dt
H(W t,M t) = a⟨Gt,P t∇K((1− b)M̂ t − bĜt)⟩ − a⟨∇K((1− b)M̂ t), Ĝt + M̂ t⟩

= a⟨Ĝt,∇K((1− b)M̂ t − bĜt)−∇K((1− b)M̂ t)⟩ − a⟨∇K((1− b)M̂ t),M̂ t⟩

= −a
b
[(1− b)M̂ t; − bĜt]∇K − a

(1− b)
[0; (1− b)M̂ t]∇K ≤ 0

where we defined [X;Y]∇K = ⟨Y , ∇K(X+Y)−∇K(X)⟩ and used the fact that [X;Y]∇K ≥ 0

by the convexity of K; we used ⟨Gt,P tXt⟩ = ⟨P⊤
t Gt,Xt⟩ = ⟨Ĝt,Xt⟩.

In all examples above, although the form of Hamiltonian H(W , Ŝ) is independent of the update
rule of P t, the decreasing rate d

dtH(W t, Ŝt) depends on P t in a complicate way through M̂ t, V̂ t,
Ĝt. An interesting direction for future investigation is to find optimal rules of P t to maximize the
decreasing rate as an optimal control problem.

4.2 Convergence to Local Optima

In addition to the Lyapunov structure, we need an additional mild condition on the update rule of
P t to ensure the system converges to the local optimum of the loss L(W). The main idea is to
prevent the system from stopping prematurely before reaching zero gradient Gt = 0 by excluding
the degenerate case of P tGt = 0 while Gt ̸= 0 in the invariant set of the system.
Assumption 4.4. Assume the functions in system (7) are continuously differentiable and

i) d
dtH(W t, Ŝt) = 0 implies Ĝt = P⊤

t ∇L(W t) = 0 and d
dtW t = 0.

ii) When Gt ≡ G ̸= 0, the set {P : P⊤G = 0} is not a positive invariant set of d
dtP t = Γ(P t,Gt).

This is a mild condition. Assumption i) says that the optimizer should stop at a point with Ĝt = 0,
which is easy to verify for the common optimizers like momentum, Adam, Lion-K. Assumption ii)
ensures Ĝt = 0 would imply Gt = 0 in invariance sets, which is satisfied when for example, P t is
updated by a reasonable optimizer of the online PCA loss that converges to a stable local minimum.
Theorem 4.5. Assume Assumption 4.4 holds. Let (W t,St,P t)t be a bounded solution of (7), then
all the accumulation points {W t} as t→ +∞ are stationary points of L(W).

Proof. By LaSalle’s invariance principle, the positive limit set of (W t,St,P t)t must be contained
in I, where I = {the union of complete trajectories satisfying d

dtH(W t, Ŝt) = 0, ∀t }.

7

From the Assumption i), the trajectories contained in I must satisfy d
dtW t = 0, which implies

d
dtGt =

d
dt∇L(W t) = 0 and Ĝt = 0 and hence Gt ≡ G is a constant with P⊤

t G = 0. Moreover,
from Assumption ii), we must have ∇L(W t) = Gt ≡ 0, since otherwise the trajectory is not
invariant. As a result, all trajectories in the limit set I must have ∇L(W t) = 0. Because d

dtWt = 0,
these trajectories are static points of W t.

4.3 Online Subspace Descent with General Linear Projection Operators

We can generalize the online subspace descent with general linear operators:

d

dt
W t = Pt(∂ŜH(W t, Ŝt))− Φ(∂WH(W t, Ŝt))

d

dt
Ŝt = −P∗

t (∂WH(W t, Ŝt))−Ψ(∂ŜH(W t, Ŝt))

d

dt
Pt = Γ(Pt,∇L(W t)),

where we generalize P t to be any linear operator Pt with an adjoint operator P∗
t , satisfying

⟨X,Pt(Y)⟩ = ⟨P∗
t (X),Y ⟩, ∀X,Y .

The derivation of Lyapunov follows a similar way:

d

dt
H(W t, Ŝt) = −∥∂WHt∥2Φ − ∥∂SHt∥2Ψ + ⟨∂WHt,Pt(∂ŜHt)⟩ − ⟨∂ŜHt,P∗

t (∂WHt)⟩

= −∥∂WHt∥2Φ − ∥∂SHt∥2Ψ ≤ 0,

where the crossing terms are again canceled due to the adjoint property.

As an example of the general framework, consider Pt(X) = P tXQt, where Qt is another projection
matrix applied on the different dimension of X (see also [25]). The adjoint operator of Pt is
P∗
t (X) = P⊤

t XQ⊤
t . This can be verified by

⟨P tXQt,Y ⟩ = tr(P tXQtY
⊤) = tr(XQtY

⊤P t) = tr(X(P⊤
t Y Q⊤

t)
⊤) = ⟨X,P⊤

t Y Q⊤
t ⟩.

The subspace descent system of this operator is

d

dt
W t = P t∂ŜH(W t, Ŝt)Qt − Φ(∂WH(W t, Ŝt))

d

dt
Ŝt = −P⊤

t ∂WH(W t, Ŝt))Q
⊤
t −Ψ(∂ŜH(W t, Ŝt))

d

dt
P t = ΓP (P t,Qt,∇L(W t))

d

dt
Qt = ΓQ(P t,Qt,∇L(W t)),

where P t,Qt can be updated jointly via an online SVD on Gt.

Another linear operator that involves two matrices is Pt(X) = P tX+XQt, which yields P∗
t (X) =

P⊤
t X +XQ⊤

t .

5 Experiment

We answer a number of key questions with pretraining experiments of LLaMA [22] on the C4
dataset [20]. All experiments except for large 7B experiments are conducted on a single NVIDIA
A100 GPU.

5.1 Why do we Need Online Subspace Descent?

Overall, Online Subspace Descent offers two major advantages over previous methods that rely on
SVD, better convergence and lower overhead. In this section, we discuss both in detail.

8

First, Online Subspace Descent closes the gap between the state-of-the-art low-rank method and full
rank baseline uniformly across different model sizes, as shown in figure 1. A highlight amongst these
results is LLaMA 1B (SS 256). As shown in table 1, Online Subspace Descent attains significant
improvement over GaLore in perplexity, while consuming a similar amount of GPU memory (8.64
GB v.s 9.01 GB). One additional observation in 1 shows as model size and sequence length grow,
Online Subspace Descent becomes more effective. We hypothesize that this is due to the higher
intrinsic rank of the underlying optimization problem in larger models. Hence, the positive impact on
the convergence of the online update of P t becomes more obvious. See more details in Appendix A.

Method Perplexity(↓)

60M 350M 1B
8bit-AdamW (Full Rank) 32.75 30.43 29.40

GaLore (Rank = 512) 57.03 44.34 35.52
Ours (Rank = 512) 56.12 43.67 31.30

Table 1: Pretraining LLaMA 1B with a sequence
length of 256 and for 10K steps, perplexity was re-
ported as the training average of the last 10 steps.
AdamW8bit serves as the base optimizer for both. Figure 1: Validation perplexity of LLaMA 1B with

sequence length 256, rank 512 for 10K steps.

Another favorable characteristic of Online Subspace Descent is its minimum overhead. In figure 2,
we measure and analyze the execution time of SVD and online PCA on a popular data center GPU
(A100) and a consumer GPU (RTX 3090). The typical Pytorch implementation of SVD can be up
to 142 times slower than running a single-step online PCA on representative weight tensors from
LLaMA architectures. Online PCA is fast because it is implemented as a single optimization step
with respect to a simple loss function. Hence, each step of online PCA can be cleverly scheduled and
hidden in the weight optimization step when executed in parallel, whereas SVD is too expensive to
be hidden.

Figure 2: The execution time of torch.svd
and that a single-step backward() call for on-
line PCA in PyTorch, on matrices of typical
shapes in linear layers in the LLaMA 60M to
7B. Thanks to the high speed of single-step
online PCA, P t updates can be executed in
parallel with weight updates, adding no over-
head to the training process. In contrast, SVD
incurs significant overhead as the model and
weight tensor sizes increase.

5.2 What Rank Should we Pick for Online Subspace Descent?

We conduct an ablation study on the rank of Online Subspace Descent. Figure 3 shows that the
final perplexity is inversely correlated with rank: higher ranks result in lower convergent perplexity.
However, the rate of reduction of perplexity decreases as the rank increases, eventually reaching a
saturation point. We propose an intuitive explanation for this phenomenon. In language modeling,
high-frequency tokens can be effectively learned with low-rank training. However, learning lower-
frequency tokens requires higher ranks. Once these lower-frequency tokens are adequately learned,
further increasing the rank does not significantly decrease perplexity. In conclusion, given sufficient
time and resources, higher ranks yield better performance for Online Subspace Descent. It is
recommended that the highest rank be selected until the perplexity reduction saturates.

5.3 What are the Best Hyperparameters?

α and λ: The parameter α controls the update speed of P t, while λ determines the regularization
strength on the optimization objective of P t. Empirically, we find that the result is not sensitive to λ

9

for small models (60M). and set λ = 0.1 for all subsequent experiments. We find that α must be kept
small to avoid instability (Figure 3), and we set α = 5 for all experiments.

Learning rate: For the small model (60M), learning rate choices are more flexible, producing similar
results. However, for larger models (350M, 1B), we recommend using a learning rate that is 10 times
smaller, specifically 0.001. Larger learning rates cause unrecoverable spikes and instability, a general
characteristic observed across all methods. See additional hyperparameter choices in Appendix A.

Figure 3: From left to right are loss curves of 10K steps on LLaMA 60M: leftmost is the sweep of rank, middle
is the sweep of α and rightmost is the sweep of λ.

5.4 Can Online Subspace Descent be Applied to Different Optimizers?

One straightforward extension of Online Subspace Descent is to apply it to other base optimizers
beyond AdamW8bit. We conduct ablation studies on LION [6] and Adafactor [21], finding that
Online Subspace Descent behaves similarly to how it does with AdamW8bit. Despite the initial
observation that updating P t with AdamW8bit consistently yields better results, we discover that
updating Pt with simple SGD can achieve similar performance.

Method GaLore Ours

Lion Adaf. Lion+Lion Adaf.+Adaf. Lion+AdamW Adaf.+AdamW

Perplexity 46.90 34.32 57.97 47.61 44.76 34.15

Table 2: LLaMA 60M on C4 with sequence length 1024, with optimizers on P t and W t, denote as "Ours {W t

optimizer} + {P t optimizer}". Adaf., and Adam refer to Adafactor and 8bit-AdamW, respectively.

5.5 Can Online Subspace Descent Scale to Larger Model?

We pretrain from scratch a 7B LLaMA model on the C4 dataset for 10K steps, where the P t

matrix is updated by SGD. The perplexity is the lower the better. The final perplexity and training
wall-clock time are provided in Table 3. We further provide the downstream evaluation of the
pretrained checkpoints using Galore and our method on the GLUE benchmark in Table 4. Our method
consistently outperforms Galore when the model size scales up.

Method Perplexity Wall Clock Time (hours)
Galore 51.21 9.7439
Ours 43.72 7.1428

Table 3: Perplexity and Wall Clock Time for 7B models pretrained on C4 for 10K steps. Lower perplexity is
better. Online Subspace Descent can be upto 1.3x faster than GaLore.

6 Related Works

We discuss related works on memory-efficient optimization and low-rank adaptation techniques.

10

Method MRPC RTE SST2 MNLI QNLI QQP AVG
Galore 0.6838 0.5018 0.5183 0.3506 0.4946 0.3682 0.4862
Ours 0.6982 0.4901 0.5233 0.3654 0.5142 0.3795 0.4951

Table 4: Standardized GLUE evaluation for 7B model checkpoints using eval-harness. Results are reported for
various downstream tasks.

Low-Rank Adaptation Low-Rank Adaptation (LoRA) [11] adds a low-rank adaptor to speficic
linear layers in a model, and finetune only the low-rank adaptor. As the adaptors are small, LoRA is
widely applied for finetuning large models. Many variants have been proposed since LoRA, including
support for multi-task learning Wang et al. [23] and further memory reductions Dettmers et al. [8].
Notably, Lialin et al. [15] proposed ReLoRA for pretraining, requiring a full-rank training warmup
to match standard performance levels. It’s important to note that LoRA is fundamentally distinct
from subspace descent. While subspace descent optimizes within the original model parameter space,
LoRA focuses its optimization efforts within the space of the adaptors.

Memory-Efficient Optimization Several approaches aim to reduce memory costs associated
with gradient statistics in adaptive optimization algorithms [21, 2, 7]. In particular, Adafactor [21]
factorizes the second-order statistics by a row-column outer product and update the factorized bases
on the fly, hence achieving a sub-linear memory cost. K-Fac [19] presents a factorized approximation
of the Fisher information matrix which leads to a sublinear natural gradient method. More recently,
Feinberg et al. [9] observes that the spectra of the Kronecker-factored gradient covariance matrix
in deep learning (DL) training tasks are concentrated on a small leading eigenspace and propose
to maintain a matrix preconditioner using the frequent directions sketch. However, their method
requires conducting the eigendecomposition at every step, which can be costly for large models.
Other than factorization methods, quantization techniques [7, 1, 24, 16] are also widely used, where
the gradient (or the momentum and the preconditioner) are directly quantized to tradeoff performance
for memory. Fused gradient computation method [17] have also been used to minimize memory
costs during training. GaLore [25] is the most relevant work to ours. GaLore focuses on low-rank
gradient structures, reducing memory costs for both first and second-order statistics. Our method can
be viewed as a general extension to GaLore where we replace the infrequent SVD by a continuous
subspace descent [14, 10]. As a result, our method not only provides a more general framework to
study memory-efficient subspace descent, but is also more performant than GaLore in practice.

7 Conclusion

In conclusion, we provide the first convergence guarantee for arbitrary update rules of projection
matrix, applicable to a range of optimizers that can be analyzed using Hamiltonian Descent, including
common ones like LION, AdamW, and Adafactor. Inspired by this theoretical foundation, we
introduce Dynamic Subspace Descent, a novel family of subspace descent optimizers that eschews
SVD in favor of online PCA for updating projection matrix. Dynamic Subspace Descent is both
flexible and minimally intrusive, and our experiments show that it achieves lower perplexity in
pretraining LLaMA models (ranging from 60M to 1B parameters) on the C4 dataset compared
to state-of-the-art low-rank training methods, while also closing the perplexity gap with full-rank
baselines.

For future research, we propose several open and intriguing questions: (1) Are there alternative
methods for updating projection matrix that could accelerate convergence? (2) What is the impact
of weight decay on convergence in Dynamic Subspace Descent? (3) Can low-rank gradients and
updates be combined with dynamic low-rank weights (e.g., Mixture of Experts) to further enhance
training efficiency? (4) Can this method be applied to problems beyond language modeling? We
hope that our work provides a strong foundation for exploring these questions.

11

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:

Communication-efficient sgd via gradient quantization and encoding. Advances in neural
information processing systems, 30, 2017.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive
optimization. Advances in Neural Information Processing Systems, 32, 2019.

[3] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58, 1989.

[4] Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained
optimization: As lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

[5] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algo-
rithms. arXiv preprint arXiv:2302.06675, 2023.

[6] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization
algorithms. Advances in Neural Information Processing Systems, 36, 2024.

[7] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. arXiv preprint arXiv:2110.02861, 2021.

[8] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[9] Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information
Processing Systems, 36, 2024.

[10] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace.
arXiv preprint arXiv:1812.04754, 2018.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] David Kozak, Stephen Becker, Alireza Doostan, and Luis Tenorio. Stochastic subspace descent.
arXiv preprint arXiv:1904.01145, 2019.

[14] Brett W Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of
freedom do we need to train deep networks: a loss landscape perspective. arXiv preprint
arXiv:2107.05802, 2021.

[15] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023),
2023.

[16] Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman
Krishnamoorthi, and Qiang Liu. Communication efficient distributed training with distributed
lion. arXiv preprint arXiv:2404.00438, 2024.

[17] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

[18] Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan O’Donoghue, and Arnaud Doucet.
Hamiltonian descent methods. arXiv preprint arXiv:1809.05042, 2018.

12

[19] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approx-
imate curvature. In International conference on machine learning, pages 2408–2417. PMLR,
2015.

[20] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv e-prints, 2019.

[21] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory
cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[22] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[23] Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023.

[24] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

[25] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

13

A Experiments

A.1 Hyperparameters

We sweep learning rate from [0.01, 0.005, 0.001]. For GaLore as well as Adam8bit, we follow
the recommended hyperparameters as much as possible. For instance, GaLore update gap is set to
recommended default, 200. Warmup is set to 10% of the total training steps. Batch size is set to 512
and gradient clipping is set to 1.0.

A.2 Rank Sweep

In the following table, is a sweep on different ranks and their final perplexity of LLaMA 60M (SS =
1024) on C4. All other hyperparameters are fixed and using recommended default. Notice that as the
rank increases, both Dynamic Subspace Descent and GaLore improve.

Rank Perplexity (Ours) Perplexity (GaLore)
32 85.90 86.16
128 49.01 48.05
512 37.41 36.93
Full 37.18 36.51

Table 5: On LLaMA 60M SS 1024, we sweep across different ranks, the trend is clear and intuitive that higher
rank is preferred when it’s feasible.

A.3 Optimizer Sweep

Method Perplexity
Lion 52.65
Adafactor 33.45
Adam8bit 29.77
SGD 3469.14

Galore LION 46.90
Galore Adafactor 34.32
Galore AdamW8bit 48.05
Ours LION + LION 57.97
Ours Adafactor + Adafactor 47.61
Ours AdamW8bit + AdamW8bit 49.01
Ours LION + Adam8bit 44.76
Ours Adafactor + AdamW8bit 34.15
Ours AdamW8bit + SGD 53.53

Table 6: In this experiment, we train LLaMA 60M on C4 with sequence length of 1024. We combine different
base optimizers to update both Pt and Wt, denote as "Ours weight optimizer + Pt optimizer".

14

	Introduction
	Optimization Background
	Memory-Efficient Optimizers via Online Subspace Descent
	Static Subspace Descent
	Online Subspace Descent
	Difficulty in Theoretical Understanding

	Hamiltonian Descent Meets Subspace Descent: A Lyapunov Analysis
	Online Subspace Descent Preserves the Hamiltonian+Descent Structure
	Convergence to Local Optima
	Online Subspace Descent with General Linear Projection Operators

	Experiment
	Why do we Need Online Subspace Descent?
	What Rank Should we Pick for Online Subspace Descent?
	What are the Best Hyperparameters?
	Can Online Subspace Descent be Applied to Different Optimizers?
	Can Online Subspace Descent Scale to Larger Model?

	Related Works
	Conclusion
	Experiments
	Hyperparameters
	Rank Sweep
	Optimizer Sweep

