arXiv:2408.10172v1 [cs.DS] 19 Aug 2024

Eulerian Graph Sparsification
by Effective Resistance Decomposition

Arun Jambulapati Sushant Sachdeva Aaron Sidford
University of Michigan University of Toronto Stanford University
jmblpati@gmail.com sachdeva@cs.toronto.edu sidford@stanford.edu

Kevin Tian Yibin Zhao
University of Texas at Austin University of Toronto
kjtian@cs.utexas.edu ybzhao@cs.toronto.edu
Abstract

We provide an algorithm that, given an n-vertex m-edge Eulerian graph with polynomially
bounded weights, computes an é(n log? n-e~2)-edge e-approximate Eulerian sparsifier with high
probability in O(m log® n) time (where O(-) hides polyloglog(n) factors). Due to a reduction from
[Peng-Song, STOC *22], this yields an O(m log® n+mnlog® n)-time algorithm for solving n-vertex
m-edge Eulerian Laplacian systems with polynomially-bounded weights with high probability,
improving upon the previous state-of-the-art runtime of Q(m log® n + nlog® n). We also give a
polynomial-time algorithm that computes O(min(nlogn-c~2+n log®3n-e=4/3 n log?’/2 n-e=2))-
edge sparsifiers, improving the best such sparsity bound of O(n logZn-e 2+ n10g8/3 n- 5_4/3)
[Sachdeva-Thudi-Zhao, ICALP ’24]. Finally, we show that our techniques extend to yield the
first O(m-polylog(n)) time algorithm for computing O(ne~!-polylog(n))-edge graphical spectral
sketches, as well as a natural Eulerian generalization we introduce.

In contrast to prior Eulerian graph sparsification algorithms which used either short cycle or
expander decompositions, our algorithms use a simple efficient effective resistance decomposition
scheme we introduce. Our algorithms apply a natural sampling scheme and electrical routing
(to achieve degree balance) to such decompositions. Our analysis leverages new asymmetric
variance bounds specialized to Eulerian Laplacians and tools from discrepancy theory.

Contents

1 Introduction
1.1 Ourresults e e
1.2 Overview of approach
1.3 Related work e

1.4 Roadmap e

2 Preliminaries

3 Technical overview

4 Effective resistance decomposition

5 Variance bounds from effective resistance diameter

6 Sparser Eulerian sparsifiers

7 Eulerian sparsification in nearly-linear time
7.1 Approximating modified circulationso
7.2 Basic partial sparsificationo
7.3 Sparsifying an ER decomposition oo Lo
7.4 Complete sparsification algorithm 0oL

8 Applications

9 Graphical spectral sketches
9.1 Degree-preserving primitives Lo
9.2 Expander decomposition and sketching by degrees
9.3 Complete spectral sketching algorithm00,

A Deferred proofs from Section 2

B Rounding

C Potential improvements to Theorem 4

D Proof of Proposition 20

13

17

19

26
26
28
34
37

38

40
41
42
49

56

57

58

60

1 Introduction

Over the past decade, ideas from spectral graph theory have led to a revolution in graph algorithms.
A major frontier for such developments is the design of spectral algorithms for directed graphs.
Such algorithms have wide-ranging applications from fast algorithms for processing Markov chains
(see e.g., [CKPPSV16; AJSS19]) to deterministic low-space computation (see e.g., [AKMPSV20]).
A fundamental challenge in this setting is the fairly involved machinery used in spectral directed
graph algorithms, which include efficient constructions of expander decompositions [CKPPRSV17]
and short cycle decompositions [CGPSSW18]. In this paper we focus on the central topic of spectral
sparsification of directed graphs, for which, this challenge is particularly manifest.

A sparsifier of an undirected graph G = (V, E,w) or directed graph G is another graph sup-
ported on the same set of vertices with fewer edges, that approximately preserves some prop-
erty. Several notions of sparsification for undirected graphs have been studied in the literature,
e.g., spanners [BS03; TZ05], which approximately preserve shortest path distances, and cut spar-
sifiers [BK96], which approximately preserve cut sizes. Spectral sparsification [ST04] has been
particularly influential in the design of graph algorithms. An e-approximate undirected spectral
sparsifier (henceforth, e-approzimate undirected sparsifier) H = (V, E', w’) of undirected G approx-
imately preserves the quadratic form of G’s graph Laplacian, i.e., for all x € RV,

(1- E)XTLgx <x'Lpgx < (1+ €)XTLGx, where x' Lgx = Z We(Xy — Xy)2, (1)
e=(u,v)€E

where Lg and Ly are the undirected Laplacian matrices of G and H (see Section 2 for notation),
and (1) is equivalent to (1 —e)Lg < Ly < (1 + ¢)Lg. Spectral sparsification generalizes cut
sparsification and was key to the advent of nearly-linear time Laplacian systems solvers [ST04].

Simple and efficient algorithms for computing undirected spectral sparsifiers with nearly-optimal
guarantees are known. Spielman and Srivastava [SS11] showed that independently sampling (and
reweighting) O(ne~2logn) edges of an n-vertex graph, with probability proportional to their ef-
fective resistances (a graph-theoretic analog of leverage scores), produces a spectral sparsifier. All
effective resistances can be estimated in O(mlogn) time! using fast Laplacian system solvers [JS21]
(see Lemma 13) — this step dominates the runtime for undirected spectral sparsification. Addition-
ally, Batson, Spielman, and Srivastava [BSS12] showed spectral sparsifiers with O(ne~?) edges exist,
which is optimal [BSS12; CKST19] and constructible in near-linear time [LS17; JRT23].

Obtaining correspondingly simple and fast sparsification algorithms and optimal sparsity bounds
for directed graphs remains elusive. Even proposing useful notions of directed sparsification was
challenging; any sparsifier of the complete, directed, bipartite graph, i.e., the graph with a directed
edge from every node in one side of the bipartition to the other, that approximately preserves all
directed cuts cannot delete any edges. The influential work [CKPPRSV17] overcame this bottleneck
by restricting their attention to directed Eulerian graphs (where every vertex has equal weighted
in-degree and out-degree). Further, [CKPPRSV17] showed that their sparsification notion suffices
for numerous applications, including fast solvers for all directed Laplacian linear systems (not
necessarily corresponding to an Eulerian graph), overviewed in Section 8. In this paper, we consider
the following definition of Eulerian sparsification closely related to that of [CKPPRSV17].2

'When discussing a graph clear from context with n vertices and edge weight ratio bounded by U, we use the O
notation to hide polyloglog(nU) factors for brevity (in runtimes only).
2The key difference is that we add the E(H) C E restriction.

Definition 1 (Eulerian sparsifier). H is an s-approximate Eulerian sparsifier of G = (V,E,w) if
H and G are both Eulerian, V(H) =V, and for G < 7

= und(G), we have

<e, and E(H) C E. (2)

I/ - 1
HL@ (T -La) L3

op

Definition 1 generalizes the notion of undirected sparsification (Fact 7). While useful in ap-
plications, Definition 1 poses computational challenges. Eulerian sparsifiers preserve exact degree
balance, so in contrast to undirected sparsifiers, one cannot simply sample edges independently to
compute sparsifiers. There have been two broad approaches for addressing this key challenge.

The first approach leverages expander decompositions and is related to one used in [ST04] to
sparsify undirected graphs. [CKPPRSV17] followed such an approach and their algorithm consists
of decomposing the Eulerian graph G into expanders, sampling edges independently inside the
expanders, and then fixing the resulting degree imbalance by adding edges; this resulted in spar-
sifiers that did not necessarily satisfy the F (Ef) C E property in (2). This approach was refined
in [APPSV23] (using cycle decompositions as in the second approach below, but not necessarily
short ones), resulting in an algorithm for constructing Eulerian sparsifiers with O(ne=2log? n)
edges in O(mlog’n) time. Existing near-linear time expander decomposition methods [SW19;
ADK23] incur several logarithmic factors in the running time and (inverse) expansion quality, lead-
ing to these large, difficult to improve, polylogarithmic factors in the running time and sparsity.

The second approach leverages that most the edges in G can be decomposed into edge-disjoint
short cycles, termed a short cycle decomposition. [CGPSSW18]| pioneered this approach and sam-
pled the edges in a coordinated manner within each cycle to preserve degree balance. Advances in
short cycle decompositions [LSY19; PY19; STZ24] resulted in an m!*+°(M-time algorithm for con-
structing Eulerian sparsifiers with O(ne=?2 log® n) edges. Short cycle decompositions yield Eulerian
sparsifier constructions with significantly improved sparsity compared to the expander decomposi-
tion approach, at the cost of large m°®) factors in running time.

In summary, all prior algorithms for constructing Eulerian sparsifiers use either expander de-
composition or short cycle decomposition, which result in substantial polylogarithmic factors (or
larger) in sparsities and runtimes. More broadly, large gaps seem to remain in our understanding
of efficient algorithms for constructing Eulerian sparsifiers and the optimal sparsity achievable.

1.1 Our results

We present a new sparsification framework that allows one to preserve exact degree balance while
sampling, as in Eulerian sparsification, and yet analyze the sampling error as if the edges were
sampled independently. Our framework is simple and intuitive, as it is based on randomly signing
multiplicative reweightings to edges, and using electrical flows to fix the degree balance. Combining
our framework with a lightweight graph-theoretic construction, effective resistance decomposition
(Definition 9), we obtain the following Eulerian sparsification result.

Theorem 2. Given Eulerian G = (V, E,w) with |V| = n, |E| = m, integral w € [1, poly(n)]Z and

—

e € (0,1), FASTSPARSIFY (Algorithm 7) in 0, (m log? n) time returns Eulerian H that w.h.p.,® is
an e-approzimate Bulerian sparsifier of G with |[E(H)| = O (ne~21og?(n)log®log (n)) .

3In the introduction only, we use the abbreviation “w.h.p.” (“with high probability”) to mean that a statement
holds with n~¢ failure probability for an arbitrarily large constant C (which affects other constants in the statement).
In the formal variants of theorem statements later in the paper, we state precise dependences on failure probabilities.

Theorem 2 constructs Eulerian sparsifiers with sparsity within a Ou(log2 n) factor of optimal
[CKST19], in time O(mlog®n). Our algorithm simultaneously achieves a substantially faster run-
time than prior Eulerian sparsification schemes and improves the state-of-the-art sparsity bound
(see Table 1). For instance, the prior state-of-the-art Eulerian sparsification algorithm with both
O(ne=2 - polylog(n)) edges and a O(m - polylog(n)) runtime has (up to O(poly loglogn)) factors an
extra Q(log'® n) factor in sparsity and an Q(log* n) factor in the runtime compared to Theorem 2.

As a corollary of our fast sparsification algorithm (Theorem 2), reductions due to Peng and
Song [PS22] and earlier works on solving (variants of) directed Laplacian systems [CKPPSV16;
CKPPRSV17; AJSS19], we obtain a host of additional results. The following is a straightforward
corollary obtained by a direct reduction given in the main result of [PS22].

Corollary 3 (Eulerian Laplacian solver). There is an algorithm which given input Eulerian G =
(V,E,w) with |[V| = n, |E| = m, w € [1,poly(n)]F, and b € RV, in O (mlog® (n) + nlog® (n))

time returns x € RV satisfying, w.h.p., ||x — I_:ngLG < 6HI_;ngLG for G ¥ und(G).

The runtime of Corollary 3 improves upon the prior state-of-the-art claimed in the literature
of O(mlog®n + nlog?®>n) (see Appendix C, [PS22]). Up to small polylogarithmic factor over-
heads in runtimes, our Eulerian Laplacian solver also implies a solver for all directed Laplacians
(Corollary 43), and fast high-accuracy approximations for directed graph primitives such as compu-
tation of stationary distributions, mixing times, Personalized PageRank vectors, etc., as observed
by [CKPPSV16; AJSS19]. We state these additional applications in Section 8.

We further ask: what is the optimal number of edges in an Eulerian sparsifier?” By combining
our new approach with recent advances in discrepancy theory due to Bansal, Jiang, and Meka
[BJM23], we obtain the following improved sparsity bound over Theorem 2.

Theorem 4. Given Eulerian G = (V,E,w) with |V| = n, |E| = m, w € [1,poly(n)]Z and
e € (0,1), EXISTENTIALSPARSIFY (Algorithm 3) in poly(n,e~!) time returns Eulerian H such that
w.h.p. H is an e-approximate Eulerian sparsifier of G with

- . | nlogn nlog5/3n n10g3/2n
|E(H)]:O<m1n{ =2 + 13 2 :

For ¢ < log™!'n, Theorem 4 establishes that O(ne~2logn)-edge Eulerian sparsifiers exist and
are constructible in polynomial time. Moreover for any &, the sparsity is at most ne=2 log% n.
In Appendix C, we discuss potential directions towards showing the existence of even sparser
Eulerian sparsifiers, e.g., with only O(ne~2) nonzero edge weights (matching the optimal sparsity
for undirected graph sparsifiers [BSS12; CKST19]).

We further demonstrate the power of our framework by giving an efficient construction of
graphical spectral sketches [ACKQWZ16; JS18; CGPSSW18], i.e., sparse graphs which satisfy (1)
for any fixed vector x € RV w.h.p. (rather than for all x € RY). The only previously known
construction of graphical spectral sketches was based on short cycle decompositions [CGPSSW18;
LSY19; PY19]. We provide an algorithm that efficiently computes sparse weighted subgraphs that
are simultaneously graphical spectral sketches, spectral sparsifiers (for a larger value of ¢), and
sketches of the pseudoinverse in a suitable sense.

Theorem 5. There is an algorithm that, given undirected graph G = (V,E,w) with |V| = n,
|E| = m, w € [1,poly(n)]Z and € € (0, 1&5), in O (mlog”(n)) time returns an undirected graph H
such that |E(H)| = O (ne~'log”(n)log®log(n)) and the following properties hold.

1. H is a \/e-approximate spectral sparsifier of G w.h.p.

Method Sparsity Runtime Approach
[CKPPRSV17] ne=2log® n mlog®n expanders
[CGPSSW18] ne 2log’n mn short cycles
[CGPSSW18; LSY19; PY19] ne2loghn m—+ nl+OG) short cycles
[PY19] ntte®) 4 ne—2log* n mlog®n short cycles
[APPSV23] ne 2log'*n existential SV sparsification
[APPSV23| ne~21og®¥n mlog’n SV sparsification
[PY19; STZ24] ne=2log®n m!+o short cycles
[STZ24] ne=2log?n + ne~4310g%3 n n¢ short cycles
Theorem 2 ne2log?n mlog®n ER decomposition
Theorem 4 ne~2logn + ne4/3 log5/ 3n n¢ ER decomposition
Theorem 4 ne 2 log?’/ Zn n¢ ER decomposition

Table 1: Eulerian sparsification algorithms. All results apply to Eulerian G= (V,E,w) with
def

n = |V| and m & |E|. For simplicity, w € [1, poly(n)]¥ and all algorithms fail with probability
poly(%). C' denotes an unspecified (large) constant, § denotes an arbitrarily small constant, and
we hide polyloglog(n) factors. The third row requires k > 4. The [CKPPRSV17] sparsifiers were
not reweighted subgraphs of the original graph, but all other sparsifiers in this table are.

2. H is a e-approzimate graphical sketch of G, i.e., for an arbitrarily fized vector x € RV, w.h.p.
over H, }XT(LH - Lg)X‘ <e-x'Lgx.

3. H is a e-approzimate inverse sketch of G, i.e., for an arbitrarily fived vector x € RV, w.h.p.

over H, XT(L}I - Lg)x‘ <e- XTLLX.

While this more general guarantee was also achieved by the short-cycle decomposition based
constructions, the previous best construction of a graphical spectral sketch with ne~! - polylog(n)
edges required m' oM time [PY19]. Additionally, in Section 9 we generalize this notion of graphical
spectral sketches to Eulerian graphs (Definition 45) and provide analogous runtimes and sparsity
bounds for such sketches (Theorem 56); these are the first such results to the best of our knowledge.

1.2 Overview of approach

In this paper, we provide a new, simpler framework for sparsifying Eulerian graphs. Despite its
simplicity, our approach yields Eulerian sparsification algorithms which improve upon prior work
in both runtime and sparsity. We briefly overview our framework and technical contributions here;
see Section 3 for a more detailed technical overview.

Our framework is motivated by the following simple undirected graph sparsification algorithm.

e For all edges e € E with an effective resistance (ER) smaller than p, toss an independent coin
and either drop the edge or double its weight.

e Repeat until there are no edges left with a small ER.

It is straightforward to show that this algorithm produces a spectral sparsifier. In each iteration,
the algorithm’s relative change to the Laplacian (in a multiplicative sense) is » . scAc, where s,

is a random +1 sign and A, = weLgaeb;rLg2 denotes the normalized contribution of the edge

Laplacian. The key step of the analysis is bounding the total matrix variance) . AeAeT, across all
iterations. When setting p = c;> where m is the current number of edges and c is a sufficiently large
constant, the variance contribution for each edge forms an increasing geometric progression (as m
decreases geometrically) where the sum is bounded by the last term. Moreover, each edge Laplacian
only contributes if its leverage score is at most p, so AgAZ < pA.. Summing over all edges, the
loggn
matrix concentration bounds then show the total relative spectral error is O(y/plogn) - I = el

Emulating such a strategy for Eulerian graphs faces an immediate obstacle: adding and dropping
edges independently might result in a non-Eulerian graph, i.e., one that does not satisfy the degree
balance constraints of an Eulerian graph. In fact, there may be no setting of s € {£1}¥ for which
the relative change in edge weights, w o s, satisfies the necessary degree balance. As mentioned
previously, one approach to Eulerian sparsification [CKPPRSV17] independently samples +1 signs
for edges inside an expander, fixes the resulting degree imbalance, and uses the expansion property
to bound the resulting error. Another approach, based on short cycle decomposition [CGPSSW18],
toggles cycles, keeping either only the clockwise or counterclockwise edges, thus ensuring degrees
are preserved. Additionally, [APPSV23] samples +1 signs for cycles (not necessarily short) inside
an expander. Each of these results in large polylogarithmic factors or worse in their guarantees,
due to limitations in algorithms for expander or short-cycle decomposition.

To obtain faster and simpler algorithms with improved sparsity guarantees, we take an alter-
native approach. As a starting point, consider sampling a random signing s on edge Laplacians,
and projecting s down to the degree balance-preserving subspace. We make the simple, yet crucial,
observation: this projection step does not increase the matrix variance (Lemma 17)! This fact,
which lets us bound spectral error as we would if all edge signings were independent, has not been
exploited previously for efficient degree balance-preserving sparsification to our knowledge.

Our second key contribution is recognizing that to bound the variance of an independent edge
Laplacian signing in a subgraph, requiring the subgraph to be an expander is stronger than neces-
sary. In Lemma 19, we show it suffices to work in subgraphs with bounded ER diameter (implied
by expansion in high-degree unweighted graphs, cf. Lemma 52). Decomposing a graph into low
ER diameter pieces can be achieved more simply, efficiently, and with better parameters (for our
purposes) as compared to expander or short cycle decompositions (Proposition 10).

To implement this approach to Eulerian sparsification efficiently, we overcome several addi-
tional technical hurdles. The first one is ensuring (in nearly-linear time) that the updated edge
weight vector is nonnegative; negative weight edges could occur when projecting a large vector to
the degree-preserving space. In previous discrepancy works, e.g., [Rot17], this problem was allevi-
ated by projecting the random vector to the intersection of the subspace with the 4+1 hypercube.
This projection is expensive; on graphs it could be implemented with oblivious routings, but un-
fortunately, the fastest routings of sufficient quality in the literature do not run in nearly-linear
time. We show that by scaling down the step size by a polylogarithmic factor and appealing to
sub-Gaussianity of random projection vectors, we can ensure the nonnegativity of weights.

Secondly, since the weight updates are small in magnitude, there is no immediate reduction
in sparsity. Using a careful two-stage step size schedule (see discussion in Section 7), we give a
potential argument showing that after adding roughly logQ(n) random signings, each projected by
solving an undirected Laplacian system, suffices to make a constant fraction of the weights tiny.
These tiny edge weights can then be rounded to zero, decreasing the sparsity by a constant fac-
tor. Combining our framework with state-of-the-art undirected Laplacian solvers gives our overall
runtime of O(mlog®(n)) in Theorem 2.

total matrix variance is =< pI. Stopping when p = O() for an appropriate constant, standard

1.3 Related work

Undirected sparsifiers and Laplacian solvers. The first nearly-linear time algorithm for
solving undirected Laplacian linear systems was obtained in groundbreaking work of Spielman and
Teng [ST04]. Since then, there has been significant work on developing faster undirected Laplacian
solvers [KMP14; KMP11; PS14; CKMPPRX14; KLPSS16; KS16; JS21; FGLPSY22; SZ23], culmi-
nating in an algorithm that runs in O(m log %) time for approximately solving undirected Laplacian
linear systems up to expected relative error ¢ (see Proposition 12 for a formal statement).

The first spectral sparsifiers for undirected graphs were constructed by Spielman and Teng [ST04],
which incurred significant polylogarithmic overhead in their sparsity. Spielman and Srivastava [SS11]
then gave a simple algorithm for constructing undirected spectral sparsifiers with O(ne=2logn)
edges in nearly-linear time. Batson, Spielman, and Srivastava [BSS12] gave a polynomial time
algorithm for constructing undirected spectral sparsifiers with O(ne~2) edges, and established that
this sparsity bound is optimal. Faster algorithms for O(ne~?)-edge undirected sparsifiers were later
given in [LS17; LS18; JRT23]. We also mention an additional notion of sparsification in undirected
graphs, degree-preserving sparsification, which has been studied in the literature as an interme-
diary between undirected and Eulerian sparsification [CGPSSW18; JRT23]. Degree-preserving
undirected sparsifiers of sparsity O(ne~2) were recently shown to exist and be constructible in
almost-linear time by [JRT23], motivating our work in the related Eulerian sparsification setting.

Eulerian sparsifiers and directed Laplacian solvers. The study of efficient directed Lapla-
cian solvers was initiated by Cohen, Kelner, Peebles, Peng, Sidford, and Vladu [CKPPSV16], who
established that several computational problems related to random walks on directed graphs can
be efficiently reduced to solving linear systems in Fulerian Laplacians. This work also gave an al-
gorithm for solving Eulerian Laplacian linear systems in O((mn?/3 +m3/*n) - polylog(n)) time, the
first such solver with a runtime faster than that known for linear system solving in general. Sub-
sequently, the aforementioned authors and Rao [CKPPRSV17] introduced the notion of Eulerian
sparsifiers and gave the first O(m - polylog(n))-time algorithm for constructing Eulerian sparsifiers
with O(ne=2 - polylog(n)) edges, based on expander decompositions. They used their method to
give the first m'T°() time algorithm for solving linear systems in directed Eulerian Laplacians. A
follow-up work by the aforementioned authors and Kyng [CKKPPRS18] later gave an improved
O(m - polylog(n))-time solver for directed Laplacian linear systems.

As an alternative approach to Eulerian sparsification, Chu, Gao, Peng, Sachdeva, Sawlani,
and Wang [CGPSSW18] introduced the short cycle decomposition, and used it to give an O(mn)
time algorithm for computing Eulerian sparsifiers with O(ne 2 log* n) edges. Improved short cycle
decomposition constructions by Liu, Sachdeva, and Yu [LSY19], as well as Parter and Yogev [PY19]
resulted in an improved running time of O(m'*+?%) for any constant § > 0, for the same sparsity.

Very recently, Sachdeva, Thudi, and Zhao [STZ24] gave an improved analysis of the short
cycle decomposition-based construction of Eulerian sparsifiers from [CGPSSW18], improving the
resulting sparsity to O(ne 2 log® n) edges. They complemented their algorithmic construction with
an existential result showing that Eulerian sparsifiers with é(ne_z log? n + ne=*4/3 logg/ 3 n) edges
exist, using recent progress on the matrix Spencer’s conjecture [BJM23]. Our fast algorithm in
Theorem 2 yields an improved sparsity compared to the strongest existential result in [STZ24]
with a significantly improved runtime, and departs from the short cycle decomposition framework
followed by that work. Moreover, our existential result in Theorem 4, which also applies [BJM23]
(combined with our new framework), improves [STZ24]’s existential result by a logarithmic factor.

Finally, we note that our applications in Section 8 follow from known implications in the liter-
ature, e.g., [CKPPSV16; AJSS19; PS22]. In particular, our directed Laplacian linear system solver

follows from reductions in [CKPPSV16; PS22]|, who showed that an efficient Eulerian sparsification
algorithm implies efficient solvers for all directed Laplacian linear systems. Building upon this re-
sult, our other applications follow [CKPPSV16; AJSS19], which show how various other primitives
associated with Markov chains can be reduced to solving appropriate directed Laplacian systems.

Discrepancy-theoretic approaches to sparsification. The use of discrepancy-theoretic tech-
niques for spectral sparsification has been carried out in several prior works. First, [RR20] showed
how to use matrix variance bounds in undirected graphs with the partial coloring framework of
[Rot17] to construct linear-sized sparsifiers. Subsequently, this partial coloring-based sparsification
algorithm was sped up to run in nearly-linear time by [JRT23] and [STZ24] showed how to adapt
these techniques to the Eulerian sparsification setting, by using an improved analysis of the matrix
variance induced by algorithms using short cycle decompositions.

Our strongest existential sparsification result (cf. Theorems 4, 26) follows the discrepancy-
based partial coloring approach to sparsification pioneered in these works, combining it with our
new matrix variance bounds via ER decomposition (Lemma 19) instead of short cycles, as was
done in [STZ24]. Recently, concurrent and independent work of [LWZ24] gave a derandomized
partial colouring framework for spectral sparsification using the “deterministic discrepancy walk”
approach from [PV23], and applied it to obtain polynomial-time deterministic Eulerian sparsifiers
satisfying a stronger notion of spectral approximation known as “singular value (SV) approxima-
tion” [APPSV23|. This result of [LWZ24] complements, but is largely orthogonal to, our results: it
yields directed sparsifiers with larger sparsities and runtimes than ours, but which satisfy stronger
notions of sparsification (i.e., SV sparsification) and are obtained deterministically.

1.4 Roadmap

In Section 2, we introduce notation and useful technical tools used throughout the paper. In
Section 3 we then provide a technical overview of the rest of the paper. Next, we give our effective
resistance decomposition algorithm in Section 4, a key building block in our sparsification methods.
In Section 5, we then show how to take advantage of this decomposition by proving a new matrix
variance bound for directed edge Laplacians after an electric projection. Crucially, this bound is
parameterized by the effective resistance diameter of decomposition pieces.

The remainder of the paper contains applications of our sparsification framework. In Section 6,
we prove Theorem 4, our result with the tightest sparsity guarantees. In Section 7, we prove
Theorem 2, which obtains a significantly improved runtime at the cost of slightly worse sparsity.
In Section 8, we combine our sparsification methods with existing reductions in the literature
and overview additional applications of our algorithms for directed graph primitives. Finally, in
Section 9, we show how to apply our sparsification subroutines to design state-of-the-art graphical
spectral sketches, proving Theorem 5 and an extension to Eulerian graphs that we introduce.

2 Preliminaries

General notation. All logarithms are base e unless otherwise specified. When discussing a graph
clear from context with n vertices and edge weight ratio bounded by U, we use the O notation to
def

hide polyloglog(nU) factors for brevity (in runtimes only). We let [n] = {i e N |1 < i < n}.

Vectors. Vectors are denoted in lower-case boldface. 0; and 1, are the all-zeroes and all-ones
vector respectively of dimension d. e; denote the i*" basis vector. u o v denotes the entrywise
product of u, v of equal dimension.

Matrices. Matrices are denoted in upper-case boldface. We refer to the it" row and j* column

of matrix M by M;. and M.; respectively. We use [v]; to index into the i*® coordinate of vector v,
def def def

and let [M];; = M., [M].; = M.;, and [M];; = M;; in contexts where v, M have subscripts.

I; is the d x d identity matrix. For v € R? diag(v) denotes the associated diagonal d x d
matrix. For linear subspace S of RY, dim(S) is its dimension and Pg is the orthogonal projection
matrix onto S. We let ker(M) and M' denote the kernel and pseudoinverse of M. We denote the
operator norm (largest singular value) of matrix M by ||[M]|,,, and the Frobenius norm (entrywise
¢5 norm) of M by |[M||z. The number of nonzero entries of a matrix M (resp. vector v) is denoted
nnz(M) (resp. nnz(v)), and the subset of indices with nonzero entries is supp(M) (resp. supp(v)).

We use < to denote the Loewner partial order on S¢, the symmetric d x d matrices. We let U¢
denote the set of d x d real unitary matrices. For M € S¢ and i € [d], we let \;(M) denote the *®
smallest eigenvalue of M, so A\; (M) < X\o(M) < ... <) \y(M). For positive semidefinite A € 54 we

define the seminorm induced by A by [x|% = x ' Ax.
Distributions. Geom(p) for p € (0,1] denotes the geometric distribution on N with mean 1.
N(u,X) denotes the multivariate normal distribution with mean p and covariance X. 74 denotes

the Gaussian measure in dimension d, i.e., for K C R?, 4(K) = Pryn0,1)09 € K]; when S is a
linear subspace of RY, we define yg(K) < Pry nr0.,Ps)l9 € K]

Graphs. All graphs throughout this paper are assumed to be simple without loss of generality,
as collapsing parallel multi-edges does not affect (undirected or directed) graph Laplacians. We
denote undirected weighted graphs without an arrow and directed weighted graphs with an arrow,
ie., G = (V,E,w) is an undirected graph with vertices V, edges F, and weights w € RE, and G
is a directed graph. A directed Eulerian graph is a directed graph where weighted in-degree equals
weighted out-degree for every vertex. We refer to the vertex set and edge set of a graph G (resp.
G) by V(G) and E(G) (resp. V(G) and E(G)). We associate a directed edge e from u to v with
the tuple (u,v), and an undirected edge with (u,v) and (v, u) interchangeably. We define h(e) = u
and t(e) = v to be the head and tail of a directed edge e = (u,v).

Finally, when we are discussing Eulerian sparsification of a graph G in the sense of Definition 1,
we will always assume henceforth that G = und(é) is connected. This is without loss of generality:
otherwise, we can define an instance of Definition 1 on each connected component of GG. The left
and right kernels of I_:é and Lg are spanned by the all-ones vectors indicating each connected
component of G. Moreover, each connected component in G still corresponds to an Eulerian graph.
Therefore, satisfying Definition 1 for each component individually implies the same inequality holds

for the entire graph, by adding all the component Laplacians.

Subgraphs and graph operations. We say H is a subgraph of G if the edges and vertices
of H are subsets of the edges and vertices of G (with the same weights), denoting H = Gp if
E(H) = F, and defining the same notion for directed graphs. For U C V, we let G[U] denote the
induced subgraph of G on U (i.e., keeping all of the edges within U). We let rev(G) denote the
directed graph with all edge orientations reversed from G , and und(é) denote the undirected graph
which removes orientations (both keeping the same weights). When V is a set of vertices, we say
{Vitiein is a partition of V' if ;¢ Vi = V, and all V; are disjoint. We say {G} ;¢ are a family of
edge-disjoint subgraphs of G = (V, E, w) if all E(G;) are disjoint, and for all j € [J], V(G;) C V,
E(G;) C E, and every edge weight in G is the same as its weight in G.

Graph matrices. For a graph with edges E and vertices V, we let B € {—1,0,1}¥*V be its edge-
vertex incidence matrix, so that when G is directed and e = (u,v), Be. is 2-sparse with B, = 1,
B., = —1 (for undirected graphs, we fix an arbitrary consistent orientation). For u,v € V, we
define by, & e, —e,. When B is the incidence matrix associated with graph G = (V, E,w) (resp.
é), we say X is a circulation in G (resp. é) if B'x = 0y; when G (resp. é) is clear we simply say
X is a circulation. We let H, T € {0,1}**V indicate the heads and tails of each edge, i.e., have
one nonzero entry per row indicating the relevant head or tail vertex for each edge, respectively, so
that B = H — T. When clear from context that w are edge weights, we let W = diag (w). For
undirected G = (V, E, w) with incidence matrix B, the Laplaman matrix of G is L = BTWB. For
directed G = (V, E,w), the directed Laplacian matrix of GisLYB"WH. To disambiguate, we
use Lg, Hg, Tg, Bg, etc. to denote matrices associated with a graph G when convenient.

T - =

Note that L 1y = Oy for any directed Laplacian L. If G is Eulerian, then its directed Laplacian
also satisfies L1y = Oy and w is a circulation in G (i.e., BT w OV) Note that for a directed graph
G = (V,E,w) and its corresponding undirected graph G ¥ und(G), the undirected Laplacian is

Lg = BTWB and the reversed directed Laplacian is L ov(G) = ~-BTWT.
def

We let I1y denote the Laplacian of the unweighted complete graph on V, ie., IIy = Iy —
|V| 1V1V Note that Il is the orthogonal projection on the the subspace spanned by the vector
that is 1 in the coordinates of V' and 0 elsewhere.

Effective resistance. For undirected G = (V, E, w), the effective resistance (ER) of u,v € V is
ER¢(u,v) < b&,U)LEb(uﬂ,). We also define ERg(e) for e = (u,v) € E by ERg(e) £ ERg(u,v).

Graph linear algebra. In Appendix A we prove the following facts about graph matrices.

Fact 6. Let B = H — T be the edge-vertex incidence matriz of a graph, let x be a circulation in
the graph (i.e. BTx = 0), and let X < diag (x). Then H' XH = T'XT and BTXH = —T ' XB.

Fact 7. Suppose G = (V,E,wé),H (V F,wg) share the same vertex set cmd G ¥ und(G),
H = uwnd(H). IfBiwg =BLwy, then HLg,(LG —Lpg) G||Op < 2HLG(LG~ - Lﬁ)LGHOp.

Fact 8. Suppose G, H are connected graphs on the same vertex set V, and HLT/2 (Lg —Lp) LJ&/QHOp <
e. Then for any M € RV*V we have HLT/QI\/ILT/QHOp <1+ E)HLT/2MLJ§,{/2||Op

3 Technical overview

In this section, we overview our strategy for preserving degree balance in efficient directed sparsifi-
cation primitives, in greater detail than in Section 1.2. We first review a motivating construction for
undirected sparsifiers via randomly signed edge weight updates. Then we introduce our extension
of this construction to the Eulerian setting, based on electric projections of edge Laplacians.

To bound the spectral error incurred by random reweightings in the Eulerian setting, we then
describe a new asymmetric matrix variance bound under certain bounds on the effective resistance
diameter and weight ratio of the edges under consideration (Lemma 19). This Lemma 19 is the
key technical tool enabling our results, proven in Section 5.

We then describe an effective resistance decomposition (Definition 9) subroutine we introduce in
Section 4, used to guarantee the aforementioned weight and effective resistance bounds hold in our

sparsification procedures. Finally, we explain how each of our algorithms (in proving Theorems 2
and 4) and their applications in Sections 6, 7, 8, and 9 build upon these common primitives.

Sparsification from random signings. To motivate our approach, consider the following con-
ceptual framework in the simpler setting of undirected sparsification. (Variants of this framework
have appeared in the recent literature [CGPSSW18; RR20; JRT23].) Starting from undirected
graph G = (V, E, w) with n vertices and m edges, we initialize wo <— w and in each iteration ¢, let

Wit1 < Wi o (g +1sy), (3)

where s; € {+1}¥ has independent Rademacher entries and 1 € (0,1]. Intuitively, the update (3)
drives edge weights rapidly to zero, as it induces an exponential negative drift on each weight:

Elog <[Wt+1]e) = Elog(1 +nfsi]e) ~ —n”. (4)

[Wt}e

This phenomenon is most obvious when n = 1 (which suffices for undirected sparsification), as
a constant fraction of edges are immediately zeroed out in each iteration, but (4) quantifies this

for general 1. Next, consider the spectral approximation error induced by the first step (¢ = 0),
def def

where we denote Go = G = (V, E,wy) and G; = (V, E,w1), and let n = 1. By standard matrix
concentration inequalities on Rademacher signings (see, e.g., Lemma 30), w.h.p.,

|

i i
L¢, (Lg, — Le,) L,

1 1
— HLg,OBg (W1 — W) BaLg,

op op

()

i} i
def 3 3
, where A, = w.L2b.b/LZ.

op

<

= Z Se A,

ecE

D AL

eeE

This argument suggests that it is crucial to control the following matrix variance statistic, o2 ©

13" e ;s AZ|lop, as we incur spectral approximation error & o. It is straightforward to see that, letting

Prmax 4 MaXecp webILgbe = max.cp W.ERg(e) be the maximum weighted effective resistance of
any edge in G, we have

I 1 1 1
STA2= wlLib, (webjLTGbe) b L2 = pmaxLZ (Z webebj> LZ < pmaxly. (6)
eck eck eck

By zeroing entries of s corresponding to the largest half of w.ERg(e) values, we can ensure ppax =
O(), since) . p WeERG(e) < n. Hence, (5) shows the spectral approximation error is < /n/m.
Since the edge sparsity m decreases by a constant factor in each iteration ¢ when n = 1, this induces a
geometric sequence in the spectral approximation quality terminating at ~ & when nnz(w;) ~ ne =2,
as desired. We remark that Rademacher signings are not the only way to instantiate this scheme;
indeed, [RR20; JRT23] show how to use discrepancy-theoretic tools to choose the update (3) in a

way which does not lose logarithmic factors in the spectral error bound.

Asymmetric variance statistics and ER decomposition. The aforementioned framework
for undirected sparsification runs into immediate difficulties in the context of Eulerian sparsifi-
cation (Definition 1), as it does not preserve degree balances. Previous Eulerian sparsification
methods sidestepped this obstacle by either fixing degrees after sampling and incurring errors (e.g.,

10

via expander decomposition) or coordinating the sampling in a degree-preserving way (e.g., via
short cycle decomposition). We propose an arguably more direct approach to preserving degrees,
departing from prior work. Consider Eulerian Go¥ G = (V, E,wyg B w). On iteration ¢ > 0, let

P, £ 1p — W;B4LL,BLW:,

where Lz is the undirected Laplacian of G2 ¥ (V,E,w?), w? is entrywise, and W, & diag (w).
Observe that Py is the orthogonal projection matrix onto the space of degree-preserving reweightings
on the graph G; with weights wy, i.e., for all x € Im(P;), we have Bgt (w;ox) = Oy. Our starting

point is thus a modification of the reweighting scheme (3), where the Rademacher vector s; is

replaced by x; S P;s;, and we choose an appropriate step size n =~ 1og71/ 2(n) to ensure no edge

weight falls below 0. In other words, we simply let
Wit < Wy o (1g + nx¢), where x; < Pys;. (7)

Because this reweighting scheme preserves degree imbalance by construction, it remains to analyze
two properties of the reweighting. First, how much does the spectral approximation factor in (2)
grow in each iteration? Second, does the reweighting significantly decrease the graph sparsity
(ideally, after few iterations)? We postpone discussion of the second point until the end of this
overview, when we discuss implementations of our framework. Our analysis of weight decay will
ultimately carefully quantify the intuition in (4) with an appropriate step size schedule.

Regarding the first point, matrix Rademacher inequalities (extending (5) to the asymmetric
setting) show that the spectral error in the first step ¢ = 0 is controlled by

. ~ ~T ~ ~T
o Tmax [D AA, | AA, ,
eel op eck op (8)
~ 1 1
where A, £) "PrAj and A, < w.Lbee, L,
fer

—

and we abbreviate G = und(G) and Py = P for short. To briefly explain the formula (8), note that
analogously to (5), the matrix A, is defined so that the one-step spectral error when reweighting
by Rademacher s (in the sense of (7)) is precisely |3 cpSeAc|lop. Correspondingly, the matrix A,
is defined to capture the correct error statistic after first applying P to s.

A primary technical contribution of our work is quantifying a sufficient condition under which
the asymmetric variance statistic (8) is bounded, stated formally as Lemma 19. Recall that in the
undirected setting, (6) bounds ¢? in terms of the maximum weighted ER of the edges we choose
to reweight. Similar logic suggests that the Eulerian variance statistic in (8) is small if e, Lgev
is bounded for each vertex v € V, i.e., the diagonal entries of LTG are small. In the undirected,
unweighted case, eI Lgev is bounded for all v € V' if G has small effective resistance diameter, i.e.,
ERg(u,v) = b(Tu,v)LTGb(u,v) is small for all (u,v) € V x V (Lemma 18).

This intuition neglects at least three factors: it only captures the variance matrix) . AA!
(rather than) p A]A,), it is based on the matrices A, (rather than A.), and it ignores the
effects of weights. Our bound in Lemma, 19 tackles all three of these factors by using graph-theoretic
construction we introduce, called an ER decomposition (Definition 9). Again considering only the
first step for simplicity, we prove that if H= (V, F,wp) is a subgraph of G whose vertices all lie in

11

~T ~ ~ =T
U, the quantities Y ;cp Ar Ay and 3 rcp ApAy are both bounded (in the Loewner ordering) by

Pmax(F) - LéLHL(%;, where puax(F) = <H1aXWf> : <max ERg(u,v)> , and H < und(H).
fer u,wel

This suggests that if we can isolate a cluster of edges F' on a vertex set U, such that all edges in F
have roughly even edge weight, and such that U has bounded effective resistance diameter through
G (inversely proportional to the weights in F'), we can pay for the contribution of all A pfor feF
to the variance statistic in (8). We accordingly define ER decompositions to decompose E into
such clusters {Fj }re(x), each with bounded pmax(Fk) ~ ;-
Our ER decomposition scheme. We take a brief digression to answer: how do we find such an
edge-disjoint decomposition {Fy} ¢ (x], each with bounded puax(Fy)? In fact, such a decomposition
is immediately implied by the related ER decomposition of [AALG18], save two issues. The ER
decomposition of [AALG18] only guarantees that a constant fraction of edges by total weight are
cut, as opposed to by edge count (which our recursion can tolerate). The more pressing issue is that
the [AALG18] algorithm uses ©(mn) time, necessitating design of a faster decomposition scheme.

In Section 4, we provide a simple near-linear time decomposition scheme which makes use of the
well-known fact that effective resistances in a graph form a metric. We first partition the undirected
graph G in question into subgraphs {G7}; . <j<j.. for appropriate jmax — jmin + 1 = O(logU),
where G7 consists of edges with weight between 27 and 2/*!, and U is the multiplicative range
of edge weights. In each GY, it suffices to partition the vertices to induce subgraphs {G’ }z‘e[Kjb
each with ER diameter ~ - - 277, and such that few edges are cut. We accomplish this by
first providing constant-factor estimates to all edge effective resistances using standard sketching
tools (Lemma 13). Within each subgraph G’, we induce a shortest path metric based on our ER
overestimates, and then apply classic region-growing techniques [GVY96] to partition the subgraphs
into pieces of bounded shortest path diameter without cutting too many edges.

Implementations of our framework. Finally, we briefly outline how Theorems 2, 4, and 5
follow from the frameworks we outlined. Our Eulerian sparsification algorithms (for establishing
Theorems 2 and 4) simply interleave computation of an ER decomposition on the current graph,
with a small number of reweightings roughly of the form (7). For our nearly-linear time algorithm
in Theorem 2, in each reweighting (7), we zero out the half of entries of s; which are cut by the
ER decomposition, and additionally enforce a linear constraint that the total weight is preserved.
We show that by making the intuition (7) rigorous, after polylogarithmically many reweightings,
a constant fraction of edge weights have decreased by a polynomial factor, which is enough to
explicitly delete them from the graph and (after fixing degrees by routing through a spanning tree)
incur small spectral error. This lets us recurse and obtain the same geometric sequence behavior
on our accumulated spectral error bound as in the undirected setting.

Our proof of Theorem 4 applies carefully-coordinated reweighting vectors x; which yield smaller
spectral error than naive random signing. We choose these vectors x; based on recent progress
towards the matrix Spencer conjecture (a well-known open problem in discrepancy theory) due to
[BJM23]. Specifically, [BJM23] (along with earlier works, e.g., [Rot17; RR23]) provide tools which

construct “partial colorings” x; such that [x;]. = —1 for a constant fraction of e € E, and
Z[Xt]eAe
eck op

12

is smaller than what matrix Rademacher inequalities would predict for random x; (based on the
matrix variance statistic). Applying these higher-quality reweightings x; in each iteration through
(7) (with n = 1) then directly decreases the edge sparsity by a constant factor in each iteration,
allowing for simple control of the spectral error in (2). This strategy immediately yields Theorem 4
upon recursing. As mentioned previously, in Appendix C, we examine natural routes which could
further improve upon the sparsity bounds of Theorem 4.

Finally, we show that our subroutines designed for Eulerian sparsification compose well with
a framework for obtaining graphical spectral sketches by [CGPSSW18], based on expander de-
composition. Specifically, [CGPSSW18] (based on similar ideas in [ACKQWZ16; JS18]) showed
that spectral bounds between degree matrices and Laplacians which hold in expander graphs yield
improved per-vector quadratic form guarantees. We make the simple observation that expander
subgraphs with large minimum degree also have bounded effective resistance diameter (Lemma 52).
Hence, directly using our algorithms for sparsifying pieces of an effective resistance decomposition
using electric projections in place of short cycle decompositions (as used in [CGPSSW18]) improves
state-of-the-art runtimes by m°®) factors. Our spectral sketch algorithm is flexible enough to extend
straightforwardly to the Eulerian setting (following Definition 45), as described in Theorem 56.

4 Effective resistance decomposition

In this section, we show how to efficiently decompose a weighted, undirected graph into subgraphs
with bounded weight ratio, small effective resistance diameter (relative to the edge weights it con-
tains), a limited number of edges cut, and each vertex appearing in a limited number of subgraphs.
This procedure will be a key subroutine in our sparsification algorithms, as captured by the variance
bound in Lemma 19. Below in Definition 9 we formally define this type of decomposition guarantee
and then in Proposition 10 we provide our main result on computing said decompositions.

Definition 9 (ER decomposition). We call {G}ic(r a (p,7, J)-effective resistance (ER) decompo-
sition if {G}icin) are edge-disjoint subgraphs of G = (V, E,w), and the following hold.

MmaXeep(G;) We <r
) mineEE(Gi)WE - .

1. Bounded weight ratio: For all i € [I]

2. Effective resistance diameter: For alli € [I], (max.cp(q,) We) - (max, ,ev(a,) ERG (4, v)) < p.
3. Edges cut: |[E(G)\ (U;je E(G)| < 73
4. Vertex coverage: Every vertex v € V(G) appears in at most J of the subgraphs.

Proposition 10. There is an algorithm, ERDECOMP(G,r,¢), which given any G = (V, E, w) with
n=|V|, m=|E|, =¥ < andr >1, 6 € (0,1), computes a

7 mineep We

(8rn log(n + 1)

, 1, log, (W) 4+ 3> -ER decomposition of G,
m

with probability > 1 — 6 in time*

n

o) (m log (3) + nlog(n) log,(W)) .

“The O(nlogn) term arises from the use of Fibonacci heaps to compute shortest paths in undirected graphs
in Proposition 15. There are results that have since obtained faster algorithms for computing shortest paths in
undirected graphs [Tho99; DMSY23]. Moreover, the shortest paths do not necessarily need to be computed exactly,
so it is possible that this factor could be improved as it has been in other region growing settings [MPX13; AN19].
However, since this is not a bottleneck in the runtimes of our main results, we make no attempt to improve it here.

13

In the remainder of this section, we prove Proposition 10. The algorithm consists of two
components. First, we use standard randomized algorithms (Lemma 14) to efficiently compute an
ER overestimate for the graph edges (Definition 11). Then, we apply a standard result on region
growing (Proposition 15) from [GVY96] to efficiently partition the edges within one weight range
(Lemma 16). Applying this decomposition scheme at every weight scale to the graph with edge
lengths given by the effective resistance overestimates then yields the result. Interestingly, the only
use of randomization in this algorithm is in computing overestimates of effective resistances and if
a sufficiently efficient deterministic subroutine for this was developed, substituting this subroutine
into our algorithm would would obtain a deterministic counterpart of Proposition 10.

Definition 11 (Effective resistance overestimate). Given G = (V,E,w) with n = |V|, we call
t € RF an a-approximate effective resistance (ER) overestimate if

w' 't <an and T, > ERg(e) for alle € E.

To efficiently compute ER overestimates for use in our decomposition algorithms, we rely on
near-linear time undirected Laplacian linear system solvers. To begin, we first provide a statement
of the current fastest Laplacian linear system solver in the literature.

Proposition 12 (Theorem 1.6, [JS21]). Let Lg be the Laplacian of G = (V, E,w). There is an
algorithm which takes Lg, b € RV, and 6,6 € (0,1), and outputs x such that with probability
>1-—9, x is an &-approximate solution to Lgx = b, i.e.,

Hx—Lgb)

<<uio

Lo Lo
in time O(|E| - log %) Moreover, the algorithm returns x = Mb where M is a random linear
operator constructed independently of b, such that the above guarantee holds with 1 — § for all b.

The runtime guarantee of the above proposition follows from Theorem 1.6 of [JS21]. We now
briefly justify the second clause in Proposition 12, i.e. that the Laplacian solver is a randomized
linear function of b, as it is not explicitly stated in [JS21]. Theorem 1.6 follows by combin-
ing an algorithm which constructs low-stretch subgraphs with a recursive preconditioning frame-
work (Algorithm 12). Algorithm 12 returns the result of an error-robust accelerated gradient
descent procedure PreconNoisyAGD, which only applies linear transformations and a procedure
RichardsonSolver, to b. In turn, RichardsonSolver performs only linear transformations and another
procedure PreconRichardson to its input. Finally, PreconRichardson applies linear transformations
and Algorithm 12 to its input: in addition, these calls to Algorithm 12 operate on strictly smaller
problems. Thus, if we assume that these inner calls to Algorithm 12 perform a linear transformation
of b, the outer call is also a linear transformation: the last claim in Proposition 12 follows.

Proposition 12 combined with a Johnson-Lindenstrauss based sketching approach from [SS11]
shows we can efficiently approximate a set of effective resistances to constant multiplicative error,
which we summarize in the following. We remark that the runtime in [SS11] is larger than in
Lemma 13; our improvement stems from replacing the solver used there with Proposition 12.

Lemma 13 (Theorem 2, [SS11]). Let 6 € (0,1), let L be the Laplacian of G = (V, E,w), and let
S CV xV. There is an algorithm, APPROXER(G, S, 8), which runs in time O((|E|+|S|) log(%))
and outputs t = {r(y) }(uw)es Satisfying with probability > 1 — 4,

2 4
gERg(u, V) STy < gERg(u,v), for all (u,v) € S.

14

Proof. Consider the following algorithm for approximating ERg(u,v) for some (u,v) € S. We

output the median of K = O(log @) independent evaluations of

2

; (9)

1
HQWéBgM(eU —ey)
2

for Q € ROWXIE filled with random scaled Gaussian entries, and where M is the random linear
operator given by the approximate solver in Proposition 12 with a sufficiently small constant £&. We
claim that (9) lies in the range [2ER¢(u, v), sER¢(u, v)] with probability 2. By standard Johnson-
Lindenstrauss guarantees (see, e.g., the proof of Theorem 2 in [SS11]), it suffices to prove that with
probability %, letting M be the resulting linear operator from Proposition 12,

1 2 1 2 2
‘HWéBgMb - HW@BGLgb
2 2

e 1t

2

To this end, using 0.9 |Jul|3 — 11||v|5 < |ju+ v||3 < 1.1|jul3 + 11 ||v||3, we have

1 2 1 2 1 2
HWéBgMb <11 HW&BGLgb 11 ng;BG (Lgb - Mb) ,
2 2 2
1 2 1 2 1 2
HWéBgMb > 0.9 HW@BgLTGb 11 ngBG (Lgb — Mb) ,
2 2 2
so choosing § = % and £ = ﬁ in Proposition 12 yields the desired claim on each individual

evaluation of (9). Thus, by Chernoff bounds the median estimate will lie in the specified range
with probability > 1 — %, yielding correctness after a union bound over all of S.

We now discuss how to implement the above algorithm within the stated runtime. For each
independent run k € [K], we first precompute QWé/ZBG in the given time, and apply M from
Proposition 12 to each of the ©(1) rows of this matrix. Notably, we can reuse the same random
seed in the solver of [JS21] so that the random linear operator M provided by Proposition 12 is the
same for all rows of QWéﬂBg. The random linear function M is constructed obliviously to the
choice of Q, so Q is independent of these calls and Johnson-Lindenstrauss applies. Each evaluation
of (9) takes constant time, which we need to repeat |S|K times in total. O

Our ER overestimate computations then follow from an immediate application of Lemma 13.

Lemma 14. There is a randomized algorithm, that given any G = (V, E,w) withn = |V|, m = |E|,
computes a 2-approvimate ER overestimate with probability > 1 — ¢ in O(mlog %) time.

Proof. Consider applying Lemma 13 with S = FE and the specified §. In O(m log %) time this
procedure computes r € RF such that with probability > 1 — 6,

2 4
gERg(u,v) < Tl < gERg(e), for all e € E.
Our algorithm simply computes this r and then outputs r = %r. The output r has the desired

properties as . > ERg(e) for all e € E and

Zwef‘e < <§ : Z) Zwe : ERG(G) < 2n,

eck eck

as) .cp WeERg(e) is n — ¢ where ¢ is the number of connected components in G. O

15

Next, we provide a key subroutine from prior work used in our decomposition.

Proposition 15 (Region growing, [GVY96], Section 4). There is a deterministic algorithm that
given G = (V, E,w) withn = |V |, m = |E|, edge lengths £ € RE, and d > 0, in O(m+nlogn)-time
outputs a partition {Sy}reix) of V, each with diameter < 2dlog(n + 1) with respect to £, and with

d - Z we < 2WT£,
e€d({Sk}re(k])
where O({ Sk }re[k)) is the set of edges (u,v) € E withu € S;, v € Sj and i # j.
By applying Proposition 15 instantiated with appropriate edge lengths, we have the following.

Lemma 16. There is a deterministic algorithm that given G = (V, E,w) with n = |V|, m = |E|,
edge lengths £ € [Rgo, and parameters v,a > 0 and r > 1, in O(m + nlogn)-time outputs vertez-
disjoint subgraphs {Gy}re(x] such that the following hold.

1. UkE[K]E(Gk)CFforF—{e€E|We (7, v]}.

2. For all k € [K], the diameter of Gy with respect to £ is at most -

maXee p(G,) We

3. [F\ {Urei B(GR)} < 20D 5wk,

Proof. Let w, = w, for alle € F'and w, = 0 for all e € E'\ F. We apply Proposition 15 to G with
w <+ w and d + ZUIOg% to obtain {Sk}ke[K] Define {Gy }re(k) so that V(Gy) = Sk and E(Gy)
are the edges of F' with both endpoints in Si, with the same weight as in G.

We prove that the {G}re[k) satisfy Items 1, 2, and 3. Item 1 follows directly by construction.
Next, Proposition 15 implies that the diameter of each G}, with respect to £ is at most ¢. Item 2
then follows as max.cp(qg,) We < v. For Item 3, note that Proposition 15 implies that

@ ~ _T
S .< .
<2vln(n+ 1)> Z Wer 2 £

e€E\(Urei) E(Gr))

Item 3 then follows from combining the above, w'£ = Y ccr Wele, and

v T We
AUsal- v e oy me
ke[K] e€E\(Ukek) E(G1)) e€E\(Urex) E(Gr))
w5>0

O]

Proof of Proposition 10. Consider the following algorithm. First, apply Lemma 14 to compute a
2-approximate effective resistance overestimate with probability > 1—4, and save these as £ € [REO
We then apply Lemma 16 for all integers j € [jmin,jmax] Where jmin = [log,(mine.cgp we)| and
Jmax = [log, (max.cg we)| with

16rnl 1
. 6rn og(n+1)
m

defj
Vv =17, , and 7 < .

For all j € [jmin, jmax] We let {G? }16] be the vertex-disjoint subgraphs output by Lemma 16
and we let I} be the value of I for thls apphcatlon of Lemma 16. This algorithm has the desired

16

runtime as applying Lemma 14 takes time é(m log %) and each application of Lemma 16 takes
time O(|E(Gy)|+nlogn). Note that the sum of all the O(|E(Gy)|) terms only contributes a single
O(m) to the runtime. Additionally, the number of distinct j is

Jmax — Jmin + 1 < log, (65152(%2)we) +1-— (logr (eergi(rGli)We> — 1> +1=log,(W)+3. (10)

The runtime follows and it remains only to show that the output {G{ } jinin <j<jmaic[K;] Dave the
desired properties provided that the € were indeed a 2-approximate ER overestimate.

Bounded weight ratio (Item 1). This follows directly by construction from Lemma 16.

Effective resistance diameter (Item 2). By Lemma 16, Item 2 we know that for any G{ it is
the case that the diameter of G7 with respect to £ is at most a(max, cE(GY) w.)~!. Consequently,
for each u,v € V(G{) it is the case that there is a path of edges whose sum of lengths is at most
a(max, PG w.)~!. Each of these lengths is at least the effective resistance of the associated edge.
Since effective resistances form a metric, by triangle inequality this means

a

max ERg(u,v) < —————
u,weV(GY) maxX cpgly We

and Item 2 follows by the setting of a.

Edges cut (Item 3). Note that by our choice of v; and Lemma 16, the {F}} partition E. Since
E(G!) C Fj for all i € [K;] and j € [jmin, jmax] We have that

E(G)\ U EGH = Y |[B@\S U EG)

jminsjgjmaxJE[Kj} jmingjgjmax ZE[K]]
drin(n+1 m
D DR LR o S R N
. —~ « in
]minSJSJmax eeFj ecE

where we applied Lemma 16, Item 3 in the inequality. Since) ., Wcfe < 2n by the definition of
a 2-approximate effective resistance overestimate, the result follows.

Vertex coverage (Item 4). Each collection of {Gi }ielk;) for fixed j € [jmin; jmax| is vertex-
disjoint by Lemma 16. Consequently, each vertex v € V(G) is in at most jmax — Jmin + 1 subgraphs
and the result follows by our earlier bound (10). O

5 Variance bounds from effective resistance diameter

In this section, we provide an operator norm bound on a matrix variance quantity, used to bound
the Gaussian measure of convex bodies induced by operator norm bounds encountered in our
sparsification procedures. This variance bound (Lemma 19) is a key new structural insight which
enables our applications in the remainder of the paper. In particular, it shows bounded ER diameter
of decomposition pieces can be used to control the spectral error incurred by our reweightings.

We first provide a helpful result which upper bounds matrix variances after a projection oper-
ation, by the corresponding variance before the projection.

17

Lemma 17. Let {A;}icm) € R™*" and let P,Q € R™*™ be orthogonal projection matrices such
that ker(Q) C ker(P). For each i € [m], let A; = > jeim) PjiAj and A, e > jeim) QjiAj- Then,

Proof. Throughout this proof, we denote the Kronecker product of matrices A and B by A ® B.
By ker(Q) C ker(P), we have P < Q. Define the n x mn block-partitioned matrices

A &t (A1 Ay -~ Ay), A X! (Al Ay --- Km), Al (Kl A, --- Km>
Since A = AP ® L) and A = A(Q ® I,,) it now suffices to prove AAT < AAT. Note that

PeL,)?=P)2(1,)’=PeL,<QaL,=(Q)°® (I,)?=(Q®1L,)?

where the equality utilizes P, Q are orthogonal projection matrices and the inequality holds since
since P < Q. Now utilizing the fact that if A < B and C is any matrix of compatible dimension,
then CACT < CBC' and we get the desired bound that

AAT = AP 1, AT 2 AQ®1,)2AT = AAT .
O

We also show that effective resistance decomposition pieces have bounded diagonal entries in
an appropriate subgraph inverse Laplacian.

Lemma 18. For any G = (V,E,w), U CV, andu € U, eIHULEHUeu < max,pc ERG(a, b).

Proof. First, observe that Ilye, = e, — |—[1]|1U = ﬁ ZUGU’W Zu b(y). The conclusion follows from

T

1
i Y bw | LE[YD b

veU,v#u veU,v#u

Ul-1 T i (U] - 1)?
< Z b(u,v)LGb(U,U) < W ar/.%éé.}é ERG(CL, b),

where the first inequality was the Cauchy-Schwarz inequality. O
We now combine Fact 6, Lemma 17, and Lemma 18 to obtain the main result of this section.

Lemma 19. Let G = (V,E,w) and let H be a subgraph on vertex set U C V. Suppose that for
p>0, (maxeeE(ﬁ) W) - (max, e ERG(u,v)) < p. Define

def 5 T vx72 ~

def f nT
Pg= IE(H) - WE(ﬁ)BﬁLH2BﬁWE(ﬁ)’

~ s 1 -
AcZLE |) [Pglrewsbrey sy | L for all e € E(H),
fEE(H)

18

where W IE(g) zero out entries of W, IE(é) not corresponding to edges in E(ﬁ) Then,

E(H)’
S AA, < < p-LiLyLZ, S AlA, < p-LiLyLZ,
ecE(H) e€E(H)

where G < und(G), H < und(H).

Proof. For simplicity, we write W 5 = W B(i) and Bz = BéIE(ﬁ)' We first note that P is a
orthogonal projection matrix, since W ;B HLLQBEW ; 1s an orthogonal projection on the restric-
tion to H. This justifies our notation: the A6 are as in Lemma 17, where A, S LT/2 ebe eh()LT/2
Next, let x, & [P le: and X, & diag (x.), so A, = Lg2BEWHX6Hﬁng. Since P 5 is an
orthogonal projection matrix,

Pix. =%, = W;B;LL,BLW x, =0y = BLW;x, =0y.

H HPHYH?

To see the last implication, note that B—EWH’XQ is always orthogonal to the kernel of L2 =
BTW B ;. The last equality then follows by noticing that ker(Lj2) = ker(LLQ). In other words,

W jjXe 1s a circulation on H. Since Iy is the projection onto the coordinates of U orthogonal to
1y, by ker(H 5) 2 span(1y) U RV\Y, we further have

T T A 1 T i
BLW XH; =BLW;XH;Ily = A, =LZBLW ;X H;II L.

Applying Lemma 17 to {A }ee B(A) using the characterization in the above display then gives

~ ~T 1 1
> AA, L[D w?-bee TyLiIye,.b. | L
ecE(H) ecE(H)
1 T 1 1 1
<LZ| Y. pwe-beb, | LZ =p-LZLyLE.

ecE(H)

The second inequality follows from Lemma 18 and the w. < max, . B(i) We- This yields the first
claim. To see the second, since W x, is a circulation by Fact 6, Ke = —Lg2T;WI§XeBﬁLg2.

By instead applying Lemma 17 to the matrices {— A }6€E (as X Tzly = X Hz1y = x.) and
following an analogous derivation, we obtain the desured bound. O

6 Sparser Eulerian sparsifiers

In this section, we give the first application of our framework by proving our Eulerian sparsification
result obtaining the best-known sparsity bound in Theorem 4. This application serves as a warmup
for our nearly-linear time sparsification result in Section 7.

Our approach is to recursively apply Lemma 19 on each subgraph component in a ER decompo-
sition (Proposition 10), with known results from the literature on discrepancy theory, to sparsify an
Fulerian graph. Specifically, our main tools are a powerful matrix discrepancy Gaussian measure
lower bound recently developed by [BJM23] (motivated by the matrix Spencer conjecture), and a
corresponding partial coloring framework from [Rot17; RR23].

19

Proposition 20 (Proof of Lemma 3.1, [BJM23]). For every constant ¢ € (0, 3), there is a con-
~ ~2

stant Ceolor Such that for any {Ai}ie[m] C S™ with m > 2n that satisfy Hzie[m] Alllop < 02,

Zze[m}HKZH% < mf?, and letting

KE¥{xeR™ szﬁz SCCOlormin{a—i—\/aflog%n,Ulog%n—i—\/aflog%n} ,

1€[m] op

there is a subspace T C R™ with dim(T) > (1 — ¢)m, vp(K) > exp(—cm).

We note that the proof of Lemma 3.1 in [BJM23] only showed how to obtain the first of the two
operator norm upper bounds within the min expression in Proposition 20, but the second follows
straightforwardly by substituting an alternative matrix concentration inequality from [Trol8] into
the same proof of [BJM23]. We formally show how to obtain the second bound in Appendix D.

Proposition 21 (Theorem 6, [RR23]). Let ciignt € (0,1) be a constant, let S C R™ be a subspace
with dim(S) > 2c¢iignem, and let I C R™ be symmetric and convex. Suppose v, (K) > exp(—Cm)
for a constant C. There is Csey > 0 depending only on ciight, C such that if g ~ N (0y,, 1), and

def .
X = ar min % —
gXECsch:ﬂ[le]mmS H gH27

then [{i € [m] | |x;| = 1}| > cigntm with probability 1 — exp(—§(m)).

Roughly speaking, Proposition 20 shows that a convex body over x € R™, corresponding to a
sublevel set of [|3; 1, xiA; llop, has large Gaussian measure restricted to a subspace. Proposition 21
then produces a “partially colored” point [—1,1]™ with many tight constraints, i.e., coordinates
i € [m] with |x;| = 1, which also lies in the convex body from Proposition 20. We summarize a
useful consequence of Proposition 21 that is more compatible with Proposition 20. The difference
is that the variant in Corollary 22 only requires a Gaussian measure lower bound on the convex
body restricted to a subspace, the type of guarantee that Proposition 20 gives.

Corollary 22. In the setting of Proposition 21, assume that vs(K) > exp(—Cm) for a constant
C, instead of ym(K) > exp(=Cm). There is Cset > 0 depending only on ciight, C' such that if
g~ N(0,,1,), and

def
x = arg Ix — gll2,

min
XECset’Cm[—l,l]mﬂS

then [{i € [m] | |x;| = 1}| > cignem with probability 1 — exp(—§(m)).

Proof. Define K’ C R™ to be K N S expanded by a hypercube (centered at the origin and with

side length 2) in the subspace orthogonal to S, denoted S, ; concretely, let K’ S (KNS)a®
(Pg,)[—1,1]9m™(50) where @ denotes the direct sum of two sets. Note that K’ is symmetric and
convex, and 7, (K') > exp(—C’m) for a constant C’ depending only on C and the universal constant
7 ([—1,1]), since the probability g ~ N (0y,,1,,) falls in £’ is the product of the probabilities of
the independent events g € K'N S and g € K’ N S|. Therefore, applying Proposition 21 to the
subspace S and the set K’ yields the conclusion, as Cyet KXK' NS = Cset KN S. O

Finally, we give an equivalence we will later use.

20

Lemma 23. For {A;}cm C S", a subspace S C R™ and a parameter R > 0, define

x&i det Z [PS]ji A; for alli € [m],

J€[m]

and their induced operator norm bodies

KE{xeR™ sz‘Ai <Ry, K=E{xeR" ZXZ;&Z SR
i€[m

] op i€[m] op

Then KNT =KNT for any subspace T C S.

Proof. Tt suffices to note that for x € T', Pgx = x and therefore

Y oxiAi= > Y [PlixiAj = > [Psx]jA; = > xA;.

i€[m] i€[m] j€[m] j€lm] j€lm]
This shows that for x € T, [|3 ;1) XiAillop < R < 12 ieim) XiAillop < R, s0 KNT' = KnT. O

Next, we state a guarantee on a degree-rounding algorithm, ROUNDING. This algorithm is
used in all of our sparsification subroutines, to deal with small degree imbalances induced by
approximation errors in projection operations. The algorithm (Algorithm 1) follows a standard
approach of rerouting the vertex imbalances Bgz through a spanning tree. We bound the incurred
discrepancy in the directed Laplacian by the size of z. This procedure is related to, and inspired
by, other tree-based rounding schemes in the literature, see e.g., [KOSZ13].

Algorithm 1: RoUNDING(G, z,T)

1 Input: G = (V,E,w), z € RF, T a tree subgraph of G S und(é)
2 d « Bz

3 y < unique vector in R¥ with supp(y) € E(T) and Bgy =d

4 return y

)

Lemma 24. Given G = (V,E,w), a tree subgraph T of G & und(C_j) with minge gy we > 1
ROUNDING (Algorithm 1) returns in O(n) time y € RF with supp(y) C T satisfying:

Ty —
1. Béy =d.
2 ¥l < 3 ldlly -

L 2 2
3. For any z € RE satisfying Bgz =d, we have HLL/ BE(Y — Z)HGLTG/ lop < 1|2l -

2 2
4. LY’ BLYHSLY? |op < nlyll;.

A proof of Lemma 24 is deferred to Appendix B.
We next show how to combine Corollary 22 with our variance bound in Lemma 19 to slightly
sparsify an Eulerian graph, while incurring small operator norm discrepancy.

21

Algorithm 2: EXISTENTIALDECOMPSPARSIFY({@-}iem, G, T,e, W)

1 Input: {é(i)}ie[lb subgraphs of simple G = (V, E, w) with MaXeegupp(w) We < W, and
such that {G() & und(é(i))}iem are a (p,2,J)-ER decomposition of G & und(G), T a
tree subgraph of G' with min.e gy we > 1 and E(T) N U;¢; E(GD) =10, 8¢ € (0,)

2 1 < mz(w), E + supp(w), G =L und(G), n « |V|

3 if m > 8nJ then

4 Si+ {x¢€ RE | supp(x) C E(C_j(")),Bng@x =0y} for all i € [I]

5 S UiE[I} S;)

6 X < point in [—1, 1]E NS such that for universal constants Cgso, Ciight,

s s
L | D D xewebeey | Lé

i€l ecE(Gy) op
(12)

log(n) + pf log(n) }

‘{6 S E ’ Xe = —1}‘ > Ctjght’ﬁ’l

N

< Cgso min {p% log? +p1logi (n), p

> Existence of x, Crso, Ciight follow from Lemma 19, Proposition 20, and Corollary 22, see Lemma 25.
/ . E . ! . . ! .
7 | x' < extension of x to R” with x = x, if e € J;c; £(G;) and x| = 0 otherwise

8 w < wo (1g+x)
def

9 D= {ecE|w.</(}
10 return G’ + (V, E, [W]E\D + RouNDING(G, [w]p, T))

Lemma 25. Suppose that EXISTENTIALDECOMPSPARSIFY (Algorithm 2) is run on inputs as spec-
ified in Line 1. Then, it returns G' = (V, E,w') satisfying the following properties, with probability
>1-9.

1. max,_pw, < 2W, min__p W, > £ and mingegry W, > minge gy we — nimnt.
T/ — RT

2. Béw = Béw.

3. mnz([w']z) < (1 — ciignt)m + Crso - nd.

4.

CEso min{p% log% n+ p% log% n

/20T t/2 ;

HLG{ B@(Wl - W)HGLG/ HOP < 1 3 3 R

p2 login+ palogn} + nimd.

Moreover, EXISTENTIALDECOMPSPARSIFY is implementable in poly(n,log U, log %) time.

Proof. If Line 3 does not pass, then Items 1 to 3 trivially hold and it only incurs the second term
in the spectral error (Item 4) due to Lemma 24. We then assume it does pass for the remainder
of the proof. We defer proving existence of x, Crso, Ctight in (12) until the end. Since x € [-1, ¥
and supp(x) C E, no edge weight in E more than doubles, giving the first claim of Item 1. Our

22

definition of D on Line 9 and ROUNDING ensures the second claim of Item 1. Next, since w o x is
only supported on E’ & Uien E (G™) and [w o x| is the sum of disjoint circulations on each G;
by the definition of each S;, w o x is itself a circulation on G. Combining with the first guarantee
of Lemma 24, this implies Item 2. Since any e € F where x, = —1 necessary has we(l +x.) =0
and that ROUNDING only introduces new non-zero entries on F(T'), Item 3 holds. Item 4 is follows
from the definitions of w' and D, (12) and the third guarantee of Lemma 24.

It remains to prove x, Cgso, Ciight €xist when Line 3 passes. For each e € F’, define A, and Ke
as in the proof of Lemma 19 where H is set to the partition piece G with E(G®) 3 e. Summing
the bound in Lemma 19 over all pieces gives 0 = p in Proposition 20, where we overload

in its use (padding with zeroes as necessary). Correctness follows from the observations

(o =Y) e)

Further, we always have f? < %‘2 by linearity of trace and H:&H% = Tr(;f) for A € S". This gives
a Gaussian measure lower bound on K restricted to a subspace S of S. By the characterization in
Lemma 23, this also implies a Gaussian measure lower bound on K restricted to S’. We next observe
that S is a subspace of R®’ where each S; enforces |V (G?)| — 1 linear constraints (corresponding to
weighted degrees in the subgraph). By Definition 9, the total number of such linear constraints is
<nJ and |E'| > %m The condition on Line 3 then guarantees our final subspace has sufficiently
large dimension to apply Corollary 22. Finally, Corollary 22 guarantees existence of X, ctight, CESO
satisfying the guarantees in (12) (we may negate x if it has more 1s than —1s, and halve cgignt).

Lastly, we observe that Algorithm 2 is implementable in polynomial time. This is clear for
ROUNDING and Line 7 to 9. The most computationally intensive step is Line 6, which consists
of finding a subspace of large Gaussian measure and solving a convex program. The latter is
polynomial time [GLS88]; the former is due to intersecting the explicit subspace from Line 5 and
the subspace from Proposition 20. The subspace from Proposition 20 is explicitly described in the
proof of Lemma 3.1 of [BJM23]; it is an eigenspace of a flattened second moment matrix.

All steps are deterministic except for the use of Corollary 22 in Line 6 (note that we can bypass
Lemma 13 via exact linear algebra computations). This line succeeds with probability > % for
a random draw. Finally, we can boost this line to have failure probability ¢ by running log(%)
independent trials, as we can verify whether a run succeeds in poly(n,log U) time. O

= [[Allgp -

op

We are now ready to state and analyze our overall sparsification algorithm, EXISTENTIALSPARSIFY
(Algorithm 3). The following is a refined version of Theorem 4.
Theorem 26. Given Eulerian G = (V, E,w) with |V| = n, |E| = m, w € [L,U]® and ¢ € (0,1),
EXISTENTIALSPARSIFY (Algorithm 3) returns Eulerian H such that H is an e-approzimate Eulerian
sparsifier of G, and

nlogn

]ﬁ]zO(nlogU+ >
€

min {1 + (Elogn)g, log? n}) ,

/
o <maxeesupp<w>“’e> = 0 (log (nU)).

; /
MiNecsupp(w’) We

EXISTENTIALSPARSIFY succeeds with probability > 1 — 6 and runs in time poly(n,log U, log %)

23

Algorithm 3: EXISTENTIALSPARSIFY(G, €,)

Input: Eulerian G = (V, E,w) with w, € [1,U] for all e € E, ¢ € (0,1)
n <« |V|, m < |E]

T « arbitrary spanning tree of G £ und(G), E «+ E \ E(T)

3
1 256CEsO \2 256CEso 4/3 256CEso 3/2
4 R Uoglféctight nJ +1, Ci (Ctight) G2 (Ctight) ,Cs ¢ (Ctight) for

[

Ctight, CEso in (12)

5 Umax «~U- 2R7 Jmax — 10g2 (%)
6 t <+ 0, C_jo — C_j
7 while

nnz([wt]E) > max{2C’Esoctight - NS maxs min{6’1 . nlg# +Cy - nkfjg?)n, 2C5 - nloizmn}} do
8 Gy < und(Gy)
9 S ERDECOMP([Gt]E, 2, %) > See Proposition 10.
10 @tﬂ oot (V, E,wi11) < EXISTENTIALDECOMPSPARSIFY (S, G, T', 555, Umax)

11 t—t+1
12 return H « (V,supp(wy), wy)

Proof. Recall from Section 2 that we assume without loss of generality that G is connected.
Throughout, condition on the event that all of the at most R calls to ERDECOMP succeed, which
happens with probability > 1 — §. Because EXISTENTIALDECOMPSPARSIFY guarantees that no
weight grows by more than a 2 factor in each call, Upyax is a valid upper bound for the maximum
weight of any edge throughout the algorithm’s execution. Moreover, since no weight falls below
S throughout by EXISTENTIALDECOMPSPARSIFY, Jiax o log2(%) is an upper bound
on the number of decomposition pieces ever returned by ERDECOMP, by Proposition 10.

Next, note that under the given lower bound on nnz([wy]) in a given iteration (which is larger
than 2CEsoCright - "Jmax), the sparsity progress guarantee in Item 3 of Lemma 25 shows that the
number of edges in each iteration is decreasing by at least a (1 — ctignt) + %Ctight =(1- %Ctight)
factor until termination. Since m < n? and the algorithm terminates before reaching n edges, R
is a valid upper bound on the number of iterations before the second condition in Line 7 fails to
hold, which gives the sparsity claim.

Let 7n; = nnz([w] 7). To prove the spectral error bound, we show by induction that until the
algorithm terminates, the following conditions hold, where we use t to denote the number of times
the while loop runs in total:

1. BTWi = BTWO

2. 1 < (1 — Fciignt) 1o

3. ILV2BT(W, — Wo)HL!?||o, < 2Ckso Sj—f min{("2E")2 + (;2)7 logi n, ()7 logi n +
3 i :
(%)4 logn} + 4%5.

Note that Items 1 to 3 all hold trivially for ¢ = 0. Suppose inductively all conditions above hold

for all iterations k£ < i < t. By our stopping condition, n < m; < (1 — %cﬁght)i—lmo and hence

i< —len R Ttems 2 and 3 of Lemma 25 then implies Items 1 and 2 are satisfied for
—10g(1—50t1ght)

24

iteration ¢ + 1. We also have by Item 4 of Lemma 25 that

1 1
’ L B' (Wi — W) HLZ,
op
I login) * i
< Cpsomin { /"ot 4 [222 [dogl(n) + (<) log(n) ¢+ <=,
m; m; mg m; SR

def def

where we define G; < (V, E, w;) and G; & und(G;) for any 0 < i < t. Note that Gy = (V, B, wo) =
G, the original input Eulerian graph. Moreover, Lg —Lg, = =B (W, — Wy)H. By our choice of
C1, (o, the stopping condition, Item 2, and Lemma 25

3
1—1 5 1 3
1 log3 1
2CEso § min LU (n = n)) ,/fn log%(n) + < e) log(n)
=0 mj mj mj mj

: i1
< 2CEso Z (& ght)

3

2 3
1 logsn " 1
- min nAogn + (n f)gg n) , An log%(n) + (An) log(n)
mi—1 mi—1 mi—1 mi—1
8C! 1 logd n) ¥ 1 1
3
i 2RI S LU (A SEL I 1ngi(n)+<A) log(n) $ < = < =.
Ctight m;—1 mi—1 m;—1 mi—1 878

As we also have 4—5 <5< 1 Fact 7 then gives 2L < Lg, = 3L Consequently, GG; has the same
connected components as the original graph G, i.e., since we assumed G is connected, so is G;.
Hence, Fact 8 implies that

HL%BT(Wiﬂ ~ W,)HL?

1 1
2 HL&BT(WHI — W,)HLZ

op op

5 3 3

1 logs 4 4
< 2CEso min i E)gn + i OAgS n , TL log%(n) + fl log(n) » + i
m; m; m; m; 4R

tth

This proves Item 3 in the inductive hypothesis, as desired, and also implies that after the loop,

<e. (13)

‘L%BT (W, — W) HL?

op

The sparsity bound follows by explicitly removing any e € E where [w;]. = 0 from H. In light of
Lemma 25, we note that each of the poly(n) calls to EXISTENTIALSPARSIFY can be implemented in
poly(n,log U, log %) time, and all steps of Algorithm 3 other than EXISTENTIALDECOMPSPARSIFY
run in linear time. We adjust the failure probability by a poly(n) factor to account for the multiple
uses of Corollary 22 via a union bound, giving the claim. O

Theorem 4 is one logarithmic factor in nU away from being optimal, up to low-order terms
in €. The extra logarithmic factor is due to the parameters of our ER decomposition in Proposi-
tion 10, and the low-order terms come from the additive terms with polylogarithmic overhead in
Proposition 20. In Appendix C, we discuss routes towards removing this overhead, and relate them
to known results and open problems in the literature on graph decomposition (i.e., the [AALG18|
decomposition scheme) and matrix discrepancy (i.e., the matrix Spencer conjecture).

25

7 Eulerian sparsification in nearly-linear time

In this section, building upon our approach from Section 6, we provide a nearly-linear time algorithm
for sparsifying Eulerian directed graphs. We develop our algorithm via several reductions.

e In Section 7.2, we develop BASICFASTSPARSIFY, a basic subroutine which takes as input an
initial subgraph with bounded ER diameter (in the sense of Definition 9), and edge weights
within a constant multiplicative range. It then returns a reweighting of the initial subgraph
which decreases weights by a constant factor on average.

e In Section 7.3, we give a two-phase algorithm which builds upon BASICFASTSPARSIFY. In the
first phase, the algorithm calls BASICFASTSPARSIFY = loglogn times, and we demonstrate
that these applications decrease a constant fraction of the edge weights from the original
subgraph by a polylog(n) factor. We separate out this small cluster of edges and pass it to
the second phase, which applies BASICFASTSPARSIFY = logn times to decrease a constant
fraction of edge weights by a polynomial factor. We then apply ROUNDING to fully sparsify
these edge weights, incurring small spectral error. Our sparsity-spectral error tradeoff in the
second phase loses a polylogarithmic factor over our final desired tradeoff; this is canceled
out by the mild edge weight decrease from the first phase, and does not dominate.

e In Section 7.4, we recursively call our ER decomposition algorithm from Section 4, and the
two-phase procedure described above. Each round of calls makes constant factor progress on
the overall sparsity of our final graph, and hence terminates quickly.

As a preliminary, we provide tools in Section 7.1 to streamline handling of approximation error
incurred by state-of-the-art undirected Laplacian solvers, when projecting into circulation space.

7.1 Approximating modified circulations

In this section, we give a self-contained solution to the key computational bottleneck in Section 7.2
when using approximate Laplaman system solvers. We begin by introducing some notation to
simplify our presentation. Let H be a subgraph of G = (V,E,w) with edge set F. We define

def

H “ und(H) and H2 < (V(H), F, w2), where w? is w with its entries squared. We further define

P; ©1p— Cy, where C; = WypB;LL,BLWy, (14)
and where Ip, Wp € [R%E zero out entries of Iz, W which do not correspond to edges in F'. In

Section 7.2, we apply reweightings which are circulations on H , but which also are orthogonal to a
specified vector v. We will eventually set v to be a current weight vector, to enforce that the total
weight of the edges remains unchanged. We hence define the modified projection matrix

. 1
P: “P,—u; u. , where ug d:fiPﬁv. (15)

Ay i HvYi~ v
A /VTPﬁV

We prove a basic fact about P _, motivated by the Sherman-Morrison formula.

Lemma 27. For any u € RE, P, defined in (15) satisfies

_ 2 _p., T R _
PH’NV—OE, Pﬁ,v _PH,V’ and BﬁW PH,VU-—OE'

E(H)

26

Proof. The first claim follows from directly computing u; vug V= P;v. The second follows

similarly: since P ; is an orthogonal projection matrix, u is a unit vector, and we observe

H,v
T T P T
Paug ug, =ugug Pg=ug ug

Finally, the last follows from the fact that BEW B ﬁ)P ;i 1s the zero operator on REXE, O

Thus, P 5 is the projection matrix into the subspace of P 5’s span that is orthogonal to v.

Algorithm 4 solves the following problem: on input £ > 0, z € RF with supp(z) C F, |z|, <
return x € R¥ with

supp(x) C F, Hx —Py oz

+
<6 |BIwx| <& [xv) <€l (16)
oo o0

In other words, for an error parameter £, we wish to enforce that wox is an approximate circulation,
and that x is approximately orthogonal to v and approximates the true P 5 z we wish to compute.

We remark that x = Pﬁ z satisfies (16) with £ = 0. We will ultlmately call Algorithm 4 with

inverse-polynomially small ¢, and apply ROUNDING to incur small error when rounding the residual.

Algorithm 4: PROJMINUSRANKONE(H, v, z, 8, £)
def

1 Input: H, a subgraph of G = (V, E, w) with |[w|s < u and F & E(H), v,z € RE with
supp(v),supp(z) C F and ||z]l« < 1, 6,£ € (0,1)

2 N |V|
/
3 & 9nu\/>
4 a < ¢-approximate solution to Ljz2a = BEWFV, with probability > 1 — g
5 b + &-approximate solution to Lyz2b = BIEW rz, with probability > 1 — g
WrBit e WrBLb
¢ U WeBLa Y T W

7 returnx<—z—y—<y, u)u

Before giving our analysis in Lemma 29, we require one elementary helper calculation.

Lemma 28. Let a,a, € R? satisfy ||a—a.|l, < ollall, for a € (0,1). Then, for u «f B ” and

def g,
W = Ta, [,

S5 we have ||lu — u,||, < 20.

Proof. The problem statement is invariant under scaling a, so without loss of generality assume
u = a, which implies ||a,| € [l — «,1 + a]. The conclusion follows by triangle inequality:

u—wly < flu—auly + flac —wly < a+[flaf| = 1] < 2a.
O

Lemma 29. Under the stated input assumptions, PROIMINUSRANKONE (Algorithm 4) using
Proposition 12 in Lines 4-5 returns x satisfying (16) in time O(|F|log ’g—g) with probability > 1 —19.

Proof. The problem definition and error guarantee (16) are invariant under scaling v, so we assume
|v|l, = 1 without loss of generality. Further, the problem is identical if we eliminate all coordinates
on E'\ F' (as the input and output are supported in F'), so we only handle the case £ = F'. Finally,

27

def

for simplicity in this proof, we let L = L2, B S B;, W S Wpg, 1 o Ip, and n
and define the ideal vectors (which would be computed in the algorithm if £ = 0):

def def

= |V‘7m = |F|7

a, “L'BTWv, b, L' BTWg,
1wt WBa, def

def
u, = m = uﬁ,v’ y, = ‘AfBb,.(7 Xe =Z— Y, — (y*,u*>u* —P- 3

Hv™"
First, by the definition of approximate solutions (see Proposition 12), we have
[WB(a —a)|, = la—adly, <& lladly, =& [[WBay|,.
Hence, by applying Lemma 28, we have ||u — u,|, < 2¢'. Similarly,
[y = ¥.lls = [[WB(b = by)[l, = [[b = bull, <& |[billy, = & [WBb. |, =& ||yl < & ||zl
where the last equality follows by y, = C;z and the fact that C; is a orthogonal projection. Now,
X=X = (¥ —¥) + (¥ w) us — (y, u) u)
==Y+ you —wu+ (y, —y,u)u, + (y,u) (u, —u),
so that by the triangle and Cauchy-Schwarz inequalities, the first conclusion in (16) holds:
[= Xl < lIx = %],
< lyx = yllo + o = ully [lylly luely + [lyx = vl lhully [[ucdly + o =ully [[yll; [[all,

< Nye = ylla + 28" yullo + vy = ¥l + 28 (lyalls + 1y, = ¥ll2)
< 9¢ lzll, < 98"Vm |z]| o, < 98'Vm <&,

de

given that ¢ < 1. Moreover, letting ||A|| = SUP||x||o=1 ||[AX[|,, e the largest ¢; norm of a

o0—r00
row of A, and noting that ||BJ| ., <n and [[W]|__ . < u, we have
HBTWXH @ HBTW(X — %)
o oo

< BT Wl I = 3o < [= x|, < Omug' v,

OO—)OO’
(®)
[, v) | =[x =xov) [< x =%l [Vl < 98Vm v, -

Here, both (a) and (b) followed from Lemma 27. By our choice of ¢’ = gmf 7m < 1, we can guarantee

all the desired bounds in (16). Finally, the runtime bound follows directly from Proposition 12. [J

7.2 Basic partial sparsification

In this section, we give the basic subroutine of our fast sparsification algorithms, which modifies the
edge weights on a well-controlled subgraph (formally, see Definition 33). We first require stating
several standard helper matrix concentration results from the literature.

Lemma 30 (Theorem 7.1, [Troll]). Let § € (0,1) and let {My} e € R¥4 be a sequence of

matrices, and let s € {il}K be a martingale sequence of Rademachers, i.e., s is a Rademacher
random variable conditioned on {s;};cj—1) for all k € [K]|. Further, suppose for o >0,

> MM} =0Ty, > MMy, <0’ (17)
ke[K) ke[K]

28

Then with probability > 1 — 4,

Z s My, < o4/8log <26d>

ke[K] op

Lemma 31. Let 6 € (0,1), let P € R™? be an orthogonal projection matriz, and let s € {+1}¢
have independent Rademacher entries. There is a universal constant Cgign such that

d
|IPs||,, < Csignt/log 5 with probability > 1 — 0.

Proof. For any fixed j € [d], the random variable X o e;—Ps is sub-Gaussian with parameter
o™ |Pj.]l2 < 1. Standard sub-Gaussian concentration bounds (e.g., [Ver18], Proposition 2.5.2)

now imply that with probability > 1 — g, we have for a universal constant Cgign, X < Cgigny/log %.
Applying a union bound for all j € [d] concludes the proof. O

We also use the following helper scalar concentration inequality.

Lemma 32. Let X be a 1-sub-Gaussian random variable with EX = 0, and let £ be an event on
the outcome of X with Pr[€] > 1 — 6 where § < 5. Then, |E [X? — E [X?] | £]] < 300v/5.

Proof. Let g and lgc denote the 0-1 indicator variables for £ and its complement £¢. Further, we will
assume Pr[£¢] = § as the stated bound is monotone in §. The random variable Z < X? — E[X?] is
16-sub-exponential (Lemma 1.12, [RH17]), so applying the Cauchy-Schwarz inequality and standard
sub-exponential moment bounds (Lemma 1.10, [RH17]) yields

1 1

IE[Z] €] = Prl[g] E[Z - le]| = 1= [E[Z - Ie]| < mm[zﬂ%mngcﬁ < 300V/5.

Finally, to simplify the statement of the input to our algorithm, we give a useful definition.

Definition 33 (Cluster). We say H is a (w, p)-cluster in G = (V, E,w) if H is a subgraph of G,
7 def -

W € [w,2w] for all e € E(H), and letting G = und(G),

max w |- | max_ ERg(u,v) | < p.
ecE(H) u,veV (H)

By definition, any piece in a (p, 2, J)-ER decomposition of G = und(G) (Definition 9) is a (w, p)-
cluster in C_j, for some w. We now state our main algorithm in this section, BASICFASTSPARSIFY.

Intuitively, BASICFASTSPARSIFY randomly reweights a current subset of edges in each of 7 iter-
ations, after removing any edge whose weight has significantly changed with respect to a reference
vector w,. In each loop of Lines 6 to 16, the algorithm terminates if either a constant fraction
of edge weights in E(ﬁ) have decreased by an ¢ factor compared to w,, or a certain potential
function bounding the change in weights has decreased significantly. Moreover, each reweighting
adds a circulation (and hence preserves degrees), while maintaining that ||w¢||; is unchanged, up
to an inverse-polynomial approximation error due to our subroutine PROJMINUSRANKONE. The
algorithm simply iterates this loop until termination. We now analyze Algorithm 5, by bounding
the spectral error and showing that each loop of Lines 6 to 16 is likely to terminate.

29

Algorithm 5: BASICFASTSPARSIFY(H, G, w,, (,0,¢, F,T)

1 Input: £ € (0,1), H a subgraph of G = (V, E,w) with |E(H)| > 40|V (H)|, w, € R” with

[[wil

[wlly

and g[w*}e < w, < 60[w,]. for all e € E(ﬁ),
(18)

€ [0.99, 1.01], Wil p\ gty = Wi\ (i)

def 7

and H, < (V(H),E(H), (Wl gy B8 a (@, p)-cluster in G, E (V,E,w,) and
0.9L¢ = L, < L1Lg for G, “ und(G,), 6,2 € (0,), F C B(H) with |F| > [EUDL 74

tree subgraph of G & und(C_j) with minge gy we > 1
2 m <« |E(G)], n + [V(G)]

: l 1 5 .
3 § < min(qg, T000C 17y Tog (B} 500z)» for Csign from Lemma 31
4 ——— e 7 []
20Csign 4/ log ST n

540, Ly ¢ {e € F | [wile > 50min([w,]e, WEIY, 8 fe € F [[wile < ffw.]}

¢ while |S;| < }|F| and 3=, _p g log([wi]e) — log([wole) > —|E(H)| do

7 W <— W

8 for 0 <t <r7do

9 Ly« {e € F | [wile > 50min([w,], WEI)}, S fe € F | [wile < (fw e}

10 if | S| < |F| and ZeeE log([wt]) — log([wo.) > —|E(H)| then

11 Hy « (V(Hy), F\ (S; ULt% (Wil p\(s,uL0))

12 s «+— random vector in {—1,0,1}¥, where s, is an independent +1 random

variable for all e € E(H,), and s, = 0 for all ec E\ E(H,)
13 Xy PROJMINUSRANKONE(FIt, Wi, NS, - log e ,€)
5
> That is, x¢ ~ [X«]+ det I/PH/_W/S.

14 Wiyl < W O (1E+Xt)
15 else

16 ‘ Wil < Wy

17 d + Bj(w — wy)
18 y < unique vector in R¥ with supp(y) C E(T) and BTy d

19 Wi <~ Wity
20 return w’ «— wy

Lemma 34. There is a universal constant Cprs such that if Crs - ap log(%) <1, where

e Wl

|Flw

BASICFASTSPARSIFY (Algorithm 5) returns w' satisfying, with probability > 1 — 6:

1. ng’ = ng and lllﬁvvmll €l—g,1+¢.

2. wl € [£[w,]e, 60[w,]e] for all e € E(H).

3. Either |{c € E(H) | w, < (lw.Je}| > 1|F|, or X,y log (VL) < —|E(H)|.

We

30

4. |LE*BL(W' — W)HSLY? lop < Cips - \/aplog() + ¢ , where G = und(G).

The runtime of BASICFASTSPARSIFY is, for Z ~ Geom(p) where p € [%, 1],

O(|E()\log((S g)log<5>-Z+|V]).

Proof. Let m = |E(H)| Because the algorithm continues looping Lines 6 to 16 until the condition
in Item 3 is met, the conclusion that Item 3 holds is immediate. The remainder of the proof
proceeds as follows. We first prove the runtime claim by giving a constant lower bound on the
probability a single run of Lines 6 to 16 ever fails to enter the else branch on Line 15, assuming for
simplicity that all calls to PROJMINUSRANKONE are exact, i.e., that every time Line 13 is run,

x¢ =[xt =nPpg, s (19)

We next prove that Items 1, 2, and 4 hold with the requisite failure probability. Finally, we modify
the argument to handle approximation error due to inexactness in Line 13.

Runtime bound. Our goal in this part of the proof is to establish that each run of Lines 6 to 16
results in the else branch on Line 15 being entered with probability > % We use this claim to
obtain our runtime bound. In the following discussion, fix a single run of Lines 6 to 16. We let &
denote the event that ||x||,, < 15 conditioned on the randomness of all iterations 0 < s < t. We

also let F; denote the event that the algorithm enters the if branch on Line 10 on iteration ¢, and

p®pPr| |J A & & ¥E Zl (W”l) U &l (20)

0<s<t 0<s<t 0<s<t

where both definitions in (20) are taken with respect to all randomness used in the current run of
Lines 6 to 16. In other words, p; is the probability the algorithm has not entered the else branch on
Line 15 in any iteration 0 < s < t, and ®; is an expected potential function tracking edge weights
over iterations 0 < s <t, both conditioned on Jy< <t € occurring. Also, note that by Lemma 31,

Pr[&] >1— 4 ;80 PrllUpcpe, &l 21— £ > 3. Thus, if we can show p, > 2, we have our goal:
pr| |J A|l=P| U RIU &l U & >2.3_1 (21)
-3 4 2
0<s<t 0<s<t 0<s<t 0<s<rt
Suppose for contradiction that p, < , so that p; < for all 0 < ¢ < 7. First, we compute,

®The polyloglog factors hidden by the O notation will be polyloglog(nU) factors where U is the edge weight ratio
of the original graph we sparsify in Section 7.4, as discussed in that section.

31

following the convention that [x;], = 0 if e ¢ E(H;) or we run the else branch in iteration ¢,

o —®=FE| Y log(l U &
lecE(H,) O=s<t
1
<t Zﬂ [xt]e — §[Xt]z ‘ U Es
lecE(H;y) 0<s<t

(22)

1 1
< gmax | E Zﬁ [xt]e—g[xt]zl&u U EuFy|,o0
ecE(Hy) Oss<t

The second line used the approximation log(1 + z) < z — 222 for |z| < &, the third line used that
no weight changes if we enter the else branch, and the last line used our assumption p; < %
We next upper bound the right-hand side of (22). Observe that the definition of x; (assuming

(19)) ensures) . p[x¢ 0 Wi]e = 0 using Lemma 27, so ||w;||; = ||wol|; in every iteration. Since any
e € Ly due to [W¢]e > 50[w,]. must have [Wt] > 50w, and ||v¢]|; < 1.01 [|w,||; < 2.02/mw, there can
be at most 5 such edges. Similarly, at most £ edges e € F can have [wy]. > 50}‘;"”1 so |Ly| < 1| F|

throughout the algorithm. Hence under [J,, <t(55 U Fs), which also implies |S;| < 1|F|, we always
have |E(H,)| > |F|. Moreover, note that since x; = nP g, s for Rademacher s,

2
B X bae| =0.E| 30 bkt =[Py = ()

ecE(Hy) e€E(Hy)

However, note that the dimension of the subspace spanned by P A, 15 at least

A~ A~

B - (V) -1 12 TR =T

under the assumption |E(H;)| > A= % since it has |V (H)| — 1 degree constraints and one
orthogonality constraint to w;. We now handle conditioning on the event &;, which satisfies
1—-Pri&] < W. Combining (23) with the above, and using that each [x]. is 1-sub-Gaussian
(Lemma 31) and the set of s satisfying & is closed under negation, applying Lemma 32 shows

_ 2 o (M 1 P
E| > xlel&|=0,E| Y [xZ|&|>n (m—m-<300-6000>)_ 5 (24

ecE(Hy) e€E(Hy)

Therefore, combining with (22) shows that ®; decreases by at least % for each of the first 7
iterations. However, we also have that with probability 1

[ws
GEEz(ﬁ)logQ) U &> 2

0<s<t

32

This is because the algorithm freezes the weights w; as soon as Zee B(i) log (%:VV;}]Z) < —m, and
) > —1

the potential can only change by —rm in an iteration ¢ assuming &, since then log(1 + [x¢]¢) >
entrywise for e € F. This is a contradiction since 7 > ?;7%0 (indeed, we choose T larger by a constant

factor to account for inexactness in PROJMINUSRANKONE later), so p; > % as claimed. The

runtime follows from Lemma 29, as the number of runs of Lines 6 to 16 is Z ~ Geom(p) for p > 1.

Items 1, 2, and 4. We have shown that with probability > 1 — ¢, Lines 6 to 16 terminate after

4
|
OgZ <(5>

loops. Conditional on this event and following our earlier notation, the probability of | Jy<,, & all

occurring in each of the at most k loops is at least 1 — g by our choice of and Lemma 31. Under
these events (i.e. that there are at most k loops and all ||x¢||., are small), Item 2 is immediate,
since edges e with [wy]e & [¢/[wy]e, 50[w,]c] are removed from consideration in a current iteration ¢,
and no edge weight changes by more than a 1.1 factor multiplicatively. Also, assuming (19), Item 1
is also immediate (we will analyze the inexactness tolerance later).

We now prove Item 4. Forall 0 < ¢ < 7, let G, < (V,E, w;) and let Gt ' und(Gy). We assumed
that H, was a (w, p)-cluster in G,, and no entry of w, restricted to E(H,) = F \ (S; U L) is larger
than 50aw by definition of L, so

max [wyle | - | max ERg(u,v) | < 7bapforall0 <t < 7.
ecE(Hy) u,veV(H)

Here we used that ER¢(u,v) < 1.5ERg, (u, v) for all u,v by assumption. By applying Lemma 19

for all iterations 0 < ¢ <t to the sequence of matrlces A, in (11) for e € E(H;), we inductively

apply Lemma 30 to show that with probability 1 — ﬂ, on any of the & runs of Lines 6 to 16,
8mtk

1
: 4\/75apt log <
‘ 0Csigny/log 80mT ot

There are a few subtleties in the above calculation. First, observe that Lemma 19 implies that if the
A, are defined with respect to P, w, rather than P (as in Algorithm 5), the variance bound still
holds, because Lemma 17 apphes to P 7, wy 38 well. Second, inductively using the guarantee above
with Fact 7 shows that 0.9Lg < Lg, -< 1.1L¢g for all iterations t, where we used the assumption
on ap for a large enough choice of Cprg, so we adjusted the right-hand side by a constant factor.
Third, note that the above argument holds with probability > 1 — ﬁ for each of the < k runs of
Lines 6 to 16, so it holds with probability > 1 — g for all of them by a union bound.

Finally, we need to condition on all & holding in all loops. We give a simple argument which
removes this conditioning. If any & fails, we set all future weight updates to zero. Therefore,
regardless of whether the & occur, the matrix variance (17) in our application of Lemma 30 is
bounded as we claimed. In particular, in an iteration t, as long as no & has occured for 0 < s < ¢,
Lemma 19 holds, and if any have occured, the variance is trivially bounded by 0

The overall failure probability of < § comes from union bounding on the three events we have
conditioned on so far (finishing in & loops, all & holding in all loops, Item 4 holding), and the event
that all of the < k7 executions of Line 13 succeeed, which occurs with probability > 1 — %.

<

1 1
LEBS (W, — W)HgLg

4
> < -y apt.
C’sign

33

Inexactness of projection. It remains to discuss the effect of replacing our exact projections
with our approximation through PROJMINUSRANKONE. Because we ensured & < 1%, the first
bound in (16) shows that entrywise x; is not affected by more than 1% by approximation, so

accounting for slack in our earlier argument Item 2 remains true. Next, using

1 1 1
~3bel? < — o el + Ak — B2 < —5 b2 + 482
we have by § < 1= 110g (o0 that the approximation negligibly affects the argument in (24),
sign -5

which we accommodated in the constant factors in 7, so it is still the case that Lines 6 to 16
terminate with probability > % in each loop. Regarding Item 1, note that

ngt + Bgy = ng

in each iteration after applying the degree fixing in Line 19, so the invariant on degrees holds as
claimed. The bound |w¢|l, < v/m ||w||, < 120y/mw, combined with the last claim in (16) and
shows the #1 norm of the weights cannot grow by more than ew throughout. Moreover,

g
&= 200/m7’
the assumption { < —£;— with the second guarantee in (16) shows that in each iteration, the total
3}

degree imbalance [|d||; < 5-55-, and the error vector z (in the context of Lemma 24) satisfies

|z]|; < m& < 5. Lemma 24 then shows that ||y|; < m|y| < m|d|; < 55==. The last two

3n2t " 3nT
guarantees in Lemma 24 combined with the triangle inequality show that in each iteration, the

additional spectral error due to approximate solves is g—i, and the additional error due to rounding
13

is 5 giving the additional spectral error term in Item 4 after accumulating over all iterations.

Finally, the runtime follows directly from Lemma 24 (for computing y), and Lemma 29. O
We provide one additional result which helps in disjoint applications of BASICFASTSPARSIFY.

Corollary 35. Consider calling BASICFASTSPARSIFY [times, with shared parameters é, wi,l, 6, ¢,
but on edge-disjoint subgraphs {ﬁi}ie[l] through G, so that the corresponding [ﬁ*]l are all (w;, p)-
clusters in Gy for some value of w;. Then with probability > 1 — §1, the total operator norm error
(i.e., Item /) incurred by all calls is bounded by

Cgrs -/ plog (%) +el.

Proof. The claim is that we do not incur an I factor overhead in the operator norm error on the
first term in the spectral error, and also do not incur an I factor overhead on the |V| term in the
runtime. Note that the bound came from combining the variance bound in Lemma 19 with the
high-probability guarantee in Lemma 30. By treating each of the at most 7 reweightings applied
by Algorithm 5 in parallel across the edge-disjoint clusters, the combined variance in the sense of
Lemma 19, where H is set to the union of all clusters, is still bounded. The failure probability is
by a union bound over I calls. For the runtime, note that we can compute the degree imbalances
in Line 17 for all clusters simultaneously, and route them on 7" in time O(|V|) per iteration. [

7.3 Sparsifying an ER decomposition

In this section, we state and analyze DECOMPSPARSIFY, which is a two-phase application (with
different parameters) of BASICFASTSPARSIFY to components of an ER decomposition.
We use the following scalar concentration inequality to bound the runtime with high probability.

34

Algorithm 6: DECOMPSPARSIFY({éi}iE[I], G,T,6,e, W)

1 Input: {é(i)}ie , subgraphs of simple G = (V, E, w) with MaXeegupp(w) We < W, and
such that {G() d—Cf und(G(i))}iem are a (p,2,J)-ER decomposition of G & und(G), T a
tree subgraph of G' with min.e gy we > 1, 6, € (0, ﬁ)

2 m <+ E(G), n+ V(G), R« 0

3 for i € [I] do

4 | H+ GO i |EH)|, n |[V(H)|, w, —w

5 if m > 40n then

6 WO%W G(]<—G H()(—H El%m Tl%log(%)

7 for 0 <t <7 do

8 Wil < BASICFASTSPARSIFY(E,ét,w*,ﬁl, T 4171 E(ﬁ) T)

9 G+ (V,E,wepn), Hepy + (V(H), E(H), Wil pimy)
10 F+ {ec EH)|[w]. < li]w.]e}
11 wo < Wi, Go = Gy, Hy + H, ly + 15, 70« log(£)
12 for 0 <t < m™ do
13 Wiil ¢ BASICFASTSPARSIFY(ﬁt,ét,w*,ﬁg, Ve 4172 F,T)
14 Gip1 < (V,E,wepn), Hupy + (V(H), E(H), Wil piy)

bW wy

15 R+ RU{ee E(H) | [wie < T,
16 return G’ « (V, E, WE\R+ROUNDING(G,WR,T))

Lemma 36. Let § € (0,1), and let {Z;};c) C N be distributed as Z; | {Z;}j<i ~ Geom(p;) where
pi € [3,1] for all i € [I]. Then for S o Yiein Zis

s (rome ()]

Proof. It suffices to handle the case where p; = 1 for all ¢ € [I], since otherwise we can couple Z; to
an instance of Geom/(2) which never exceeds Z;. Then we compute the moment generatlng function

of S: for A < log(2), Eexp(AS) = (exp(2))1, so by Markov’s inequality, for ¢ < 5(I + logy(1)),

2—exp(A)
I t
exp(A) 2\ a1
Pr[S >t M) ———=) =(z) 3 <o
r[S >t] <exp()(Z—exp()\)) (3 <0,
where we use the choice A = log(3) and substituted our choice of ¢. O

We now state our guarantee on Algorithm 6 and provide its analysis.

Lemma 37. There is a universal constant Cps such that if Cpg - plog("s¥)log®log(™¥) < 1,
DECOMPSPARSIFY (Algorithm 6) returns G = (V,E,w') satisfying, with probabzlzty >1-96,

31
Bl ~w = ng, nnz(w’) < 3—2nnz(w) + Cps - nJ,

< Cpsy [plog (5W) log log (nl/V) +e.

35

1 i (25)
and HL&BE (W' — W) HzLZ

op

!
Moreover, maXecp % < Cps. The runtime of DECOMPSPARSIFY s

ot (2)on ().

Proof. Throughout the proof, condition on all calls to BASICFASTSPARSIFY succeeding assuming
their input conditions are met (i.e., the guarantees in Lemma 34 hold, with total spectral error
controlled by Corollary 35), which gives a failure probability of g. We claim that every ét used in
calls to BASICFASTSPARSIFY satisfies 0.9Lg, < Lg < 1.1L¢,, where G % und(G) for G the original
input to the algorithm, and G; & und(ét). We defer the proof of this claim to the end.

Next, fix ¢ € [I] and consider the 71 loops of Lines 7 to 9. In all calls to BASICFASTSPARSIFY,
the conditions on w, are met by assumption (i.e., each G® is an ER decomposition piece with pa-
rameters (1.2p,2) in Gy, since we claimed 0.9L¢, = Lg = 1.1L¢g,). Moreover, BASICFASTSPARSIFY
is only called if m > 40n, and the conditions in (18) are preserved inductively by Lemma 34, since
the ¢1 norm of the weights does not change by more than a 4571 factor in each iteration. This shows
that the 7 loops of Lines 7 to 9 all have their input conditions met, so we may assume they succeed.
We claim that in this case, ' on Line 10 must have |F| > 2. To see this, suppose |F| < 2, which
means the second part of Item 3 in Lemma 34 holds for all iterations 0 < ¢ < 7. However, since

Lemma 34 also guarantees
™ . 2 .
Z log <[W]e> > —mlog <) = —mTy,
., We L
ecE(H

)

we arrive at a contradiction after 71 iterations, so the first part of Item 3 must have held at some
point. With this size bound (showing F' is a valid input), an analogous argument shows that after
the 79 loops in Lines 12 to 14 have finished, at least % edges are added to R. Observe that each
component G with m; edges and n; vertices either has %6 of its edges added to R or m; < 4070,
and further Zie[1 fi; < nJ. Since all edges from R are zeroed out in the final weighting w’, and

at most half the edges do not belong to any (_j(i), this gives the bound on nnz(w’). Similarly, if
all calls to BASICFASTSPARSIFY succeed, since applying ROUNDING at the end of the algorithm
preserves degrees, recursively applying Item 1 in Lemma 34 shows that ng/ = ng.

It remains to show the spectral error bound. Observe that we have a = 2 in the first 71 calls

to BASICFASTSPARSIFY for each cluster (in Lines 9 to 9), and o = @ in the last 72 calls (in

Lines 12 to 14). Therefore, taking note of Corollary 35 and since I < m, the spectral error in all
intermediate iterations across all decomposition pieces is bounded by

o) (Mplog (%) e \/10g2 ?’”{V) log (m;?) .72> —0 (plog (”?j/) log log (T)) :

Additionally, there is an = - 711 + ;=7 - 72/ additive error term which comes from Corollary 35,

which is bounded by %5 after accounting for the change in the graph Laplacian (i.e., by Fact 8).
For appropriate Cpg, this both proves the desired spectral error bound by the triangle inequality,
as well as the claimed 0.9Lg, < Lg =< 1.1Lg, throughout the algorithm by Fact 7, which again
implies that Gy is connected under our assumption that G is connected (see discussion in Section 2).
Finally, applying ROUNDING incurs at most § spectral error through the final graph by Lemma 24,
which is at most € spectral error through the original graph by Fact 8. The guarantee on the weight
increase is clear as we only modify weights within clusters, and Item 2 of Lemma 34 shows no edge
weight grows by more than a factor of 60. This concludes the correctness proof.

36

For the runtime, the total number of times we call BASICFASTSPARSIFY on each piece of the
ER decomposition is 71 + 7 = O(log "~) Thus Lemma 36 shows that with probability < 5 , the
number of times Lines 6 to 16 runs is O(log W) for all decomposition pieces amultaneously ThlS
gives the first term in the runtime via Lemma 34, as all decomposition pieces have disjoint edges.
For the second term in the runtime, it suffices to note that Lines 17 to 19 can be applied in parallel
(after summing the degree imbalances d in Line 17) for all decomposition pieces which terminate
in a given run of Lines 6 to 16, so we do not pay a multiplicative overhead of |I| on the runtime of
Lemma 24. The total failure probability is via a union bound over Lemmas 34 and 36. 0

7.4 Complete sparsification algorithm

We now provide our complete near-linear time Eulerian sparsification algorithm. Our algorithm
iteratively applies the ER decomposition from Proposition 10, sparsifies the decomposition using
Algorithm 6, and calls Algorithm 1 on small-weight edges to maintain a bounded weight ratio. The
following theorem gives a refined version of Theorem 2.

Algorithm 7: FASTSPARSIFY(G, ¢,)
Input: Eulerian G = (V, E,w) with w, € [1,U] for all e € E, ¢,6 € (0,1)

1
2 n< V|, m<«+ |E]
3 T < arbitrary spanning tree of G & und(G), E «+ E\ E(T)
4 R+ 6logn, Upax < U - CPI?S for Cpg in Lemma 37
5t 0, wg W
while ¢ < R and nnz([w] ;) > nlog()log(m) log? log (22AmnUmax) . 2225%2’5 do

Gy« (V,E,wy), G < und(G,)

S+ ERDECOMP([Gt]E, 2, %) > See Proposition 10.
c‘;’g o (V,E,w}) < DECOMPSPARSIFY(S, Gy, T, 2%, 17> Umax)

10 | De{ecE|[w) <35}

11 Wil < [Wilpp + ROUNDING(G}, [w!]p,T)

12 t—t+1

13 return H « (V, E, w;)

© o N O

Theorem 38. Given Eulerian G = (V, E,w) with |V| =n, |E| =m, w € [L,U] ande,d € (0,1),
FASTSPARSIFY (Algorithm 7) returns Eulerian H such that with probability > 1 —§, H is an
g-approximate Eulerian sparsifier of G, and

/
B()| = 0 (” log(n) log <”5U> log? log <nU>> log (m‘f‘x‘f@“"p‘w) wf) — 0 (log (n)).

MMNecsupp(w’) We

The runtime of FASTSPARSIFY is 0, (m log? (%) log (nU))

Proof. Throughout, condition on the event that all of the at most R calls to ERDECOMP and
DECOMPSPARSIFY succeed, which happens with probability > 1 — §. Because DECOMPSPARSIFY
guarantees that no weight grows by more than a Cpg factor in each call, Uy,ax is a valid upper bound
for the maximum weight of any edge throughout the algorithm’s execution Moreover we explicitly
delete any edge whose weight falls below =

37

never appear in a call to ERDECOMP again. Hence, Jpax o logﬂ%) is a valid upper bound

on the number of decomposition pieces ever returned by ERDECOMP, by Proposition 10.

Next, note that under the given lower bound on [w¢; in a given iteration (which is larger
than 2Cpg - nJmax), the sparsity progress guarantee in (25) shows that the number of edges in each
iteration is decreasing by at least a 6—14 factor until termination. Since m < n? and the algorithm
terminates before reaching n edges, R is a valid upper bound on the number of iterations before the
second condition in Line 6 fails to hold, which gives the sparsity claim. Moreover, because the first
term in the spectral error bound in (25) decreases by a geometric factor of 1 — ﬁ in each round
(as p scales inversely in the current support size of wy), the sum of all such terms contributes at
most 256 times the final contribution before termination. By plugging in the bound p < B?’ninﬂ
from Proposition 10 with the lower bound on m throughout the algorithm, the total contribution
of these terms is at most §. Similarly, the second additive term in (25) contributes at most §
throughout the R rounds, and the rounding on Line 11 also contributes at most § by Lemma 24.
Here we remark that once an edge is rounded on Line 11, it is removed from the support of w; for

the rest of the algorithm. Adjusting these error terms by a % factor (i.e., because of Fact 7 which

shows Lg, for G; & und(G,) is stable throughout the algorithm, and Fact 8 which shows how this
affects the error terms), we have the claimed spectral error guarantee. The sparsity bound follows
again by explicitly removing any e € E where [w;]. = 0 from H.

Finally, the runtime follows from combining Proposition 10 (which does not dominate), and
Lemma 37. Here we note that we do not incur an extra logarithmic factor over Lemma 37 because
the edge count is a geometrically decreasing sequence (with constant ratio).]

8 Applications

A direct consequence of our improved nearly-linear time Fulerian sparsifier in Theorem 38 is a
significant improvement in the runtime of solving Eulerian Laplacian linear systems due to Peng
and Song [PS22]. In turn, combined with reductions in [CKPPSV16], our improved Eulerian
system solver implies faster algorithms for a host of problems in directed graphs. We summarize
these applications in this section. As a starting point, we state the reduction of [PS22] from solving
Eulerian Laplacian linear systems to sparsifying Eulerian graphs.

Proposition 39 (Theorem 1.1, [PS22]). Suppose there is an algorithm which takes in Eulerian
G = (V,E,w) with n = |V|, m = |E|, w € [1,U]E, and returns an &'-approzimate BEulerian
sparsifier with S(n,U,&") edges with probability > 1 — &, in time T (m,n,U,e’,8). Then given
Bulerian G = (V,E,w) with n = |V|, m = |E|, w € [1,U]®, b € RV, and error parameter
e € (0,1), there is an algorithm running in time

0 (mlog (nU) +T (m,n, U,1, 6))
€ lognU

v 0 nU
+0 (7' <8 (n,U,1),n,U,1, lognU> log(nU) 4+ S(n, U, 1) log(nU) log (5))

which returns x € RV satisfying, with probability > 1 — 6,

x—Lgb , where G = und(G). (26)

%~
Lg

=7
< L~b’
Lo _EH G

Plugging Theorem 38 into Proposition 39, we obtain our faster solver for Eulerian Laplacians.
The following corollary is a refined version of Corollary 3.

38

Corollary 40 (Eulerian Laplacian solver). Given Eulerian G = (V,E,w) with |V| = n,|E| =
m,w € [1, U]E, b € RY, and error parameter € € (0,1), there is an algorithm running in time

0, <m log? (Tbg) log (n{ff) + nlog? (nU) log? (71(5(]) log (T))

which returns x € RY satisfying, with probability > 1 — 6,

Hx - f%b , where G < und(G).

Lg

_
< ¢e||Lzb
Lo _8H G

We remark that there is a more precise runtime improving upon Corollary 40 in the logarithmic
terms when d, ¢ are sufficiently small or U is sufficiently large, but we state the simpler variant for
the following applications and for readability purposes. Plugging our primitive in Corollary 40 into
black-box reductions from [CKPPSV16] then gives algorithms to solve linear systems in row-or-
column diagonally dominant matrices, which we now define.

Definition 41. We say M € R™*" is row-column diagonally dominant (RCDD) if My; > 3., | M|
and My; > 3., [Mji| for all i € [n]. We say M € R™™" is row-or-column diagonally dominant
(ROCDD) if either My; > 3. ; [Mj| for alli € [n], or My > 3, [Mj;| for all i € [n].

Most notably, Eulerian Laplacians are RCDD, and all directed Laplacians are ROCDD. In
[CKPPSV16] (see also [AJSS19] for an alternative exposition), the following reduction was provided.

Proposition 42 (Theorem 42, [CKPPSV16]). Let M € R™™*™ be ROCDD, and suppose both M
and its diagonal have multiplicative range at most k on their nonzero singular values. There is an
algorithm which, given M, b € Im(M), and error parameter € € (0,1), solves logz(%) Eulerian
linear systems to relative accuracy poly(-=-) (in the sense of (26)) and returns x € R" satisfying

IMx —bl|, < &bl (27)
Moreover, if M is RCDD, a single such Fulerian linear system solve suffices.

Combining Corollary 40, Proposition 42, and a union bound then yields the following.

Corollary 43 (Directed Laplacian solver). Given G = (V,E,w) with |V| = n,|E| = m,w €
[1,U)¥, b € RY, and error parameter € € (0,1), there is an algorithm running in time

O (mlog? nt log® nt + nlog? (nU) log® v log® nt
de € oe €

which returns x € RY satisfying, with probability > 1 — 6,

x —Lgb , where G < und(G).

<~ L
Lg

=
< ¢e||Lzb
Lo _€H G

Finally, we mention a number of results from [CKPPSV16; CKPPRSV17; AJSS19] which lever-
age RCDD solvers as a black box. Plugging Corollary 40, Proposition 42, and Corollary 43 into
these results, we obtain the following runtimes. For simplicity, we only consider problems with

def

poly(n)-bounded conditioning and poly(X)-bounded failure probability, and let Tsolve(m,n,e) =

n

O(mlog?(n) log(2) 4+ nlog”(n)log(Z)) be the runtime of our Eulerian Laplacian solver.

e Stationary distributions. We can compute a vector within ¢s distance € of the stationary
distribution of a random walk on a directed graph in time Tgoye(m,n,1) - O(logz(g)).

39

e Random walks. We can compute the escape probability, hitting times and commute times
for a random walk on a directed graph to e additive error in time Tgopye(m,n, 1) - O(logz(g)).

e Mixing time. We can compute an e-multiplicative approximation of the mixing time of a
random walk on a directed graph in time Tgopye(m,n, 1) - O(logz(g)).

e PageRank. We can compute a vector within ¢5 distance ¢ of the Personalized PageRank
vector with restart probability 8 on a directed graph in time Tgo1ve(m, 1, 1)-O(log2(%)+log(é)).

e M-matrix linear systems. We can compute a vector achieving relative accuracy ¢ (in the
sense of (27)) to a linear system in an M-matrix M in time

HM_1H1—>1 + HM_lHoo—wo)))
g

%olve(ma n, 5) -0 <log2(n) IOg (

e Perron-Frobenius theory. Given a nonnegative matrix A € R™*"™ with m nonzero entries,
we can find s € R and vy, v, € R" such that ﬁ €[1,14¢l5 [|Av, — sv, |l < eV, and

HATVZ —5Vi|leo <€ ||Vl||oo, in time

Al + A
g . 1 3 H 11 00—00 .
ﬁolve(ma n, 5) @ (og < Ep(A)

9 Graphical spectral sketches

In this section, we give an additional application of the techniques we developed for efficiently
constructing Eulerian sparsifiers in Sections 6 and 7. Specifically, we show that they yield improved
constructions of the following graph-theoretic object, originally introduced in [ACKQWZ16; JS18;
CGPSSW18] in the undirected graph setting.

Definition 44 (Graphical spectral sketch). Given a undirected graph G = (V, E,w), a distribution
H over random undirected graphs H = (V,E',w') with E' C FE is said to be a (e,0)-graphical
spectral sketch for G if for any fized vector x € RY, with probability > 1 — § over the sample
H ~H, we have

xT(LH —Lg)x| <e- x 'Lgx.

We generalize Definition 44 to the Eulerian graph setting (which to our knowledge has not been
studied before), and show that our primitives extend to capture this generalization.

Definition 45 (Eulerian graphical spectral sketch). Given an Eulerian graph G = (V,E,w), a
distribution H over random Eulerian graphs H = (V,E',w') with E' C E is said to be a (,0)-
Eulerian graphlcal spectral sketch for G zf for any fized vectors a,z € R, with probability > 1 — §
over the sample H ~ H, we have for G % und(G),

—

a'(Lg —Lg)z| < ¢ |ally, 2, - (28)

Our algorithm closely follows the framework of [JS18; CGPSSW18]. We aim to recursively
reduce a constant fraction of the edges while keeping a small additive error for a bilinear form

5p(A) is the spectral radius of A: p(A) hmk_moHAkHl/k.

40

applied to fixed vectors a,z, as in (28). Similar to our spectral sparsification algorithm in Sec-
tion 7, we repeat this process for O(logn) phases. Within each phase, we accomplish our goal by
first using an expander decomposition from prior work [ADK23], and then within each piece, we
restrict to a subgraph on vertices with sufficiently large combinatorial (unweighted) degrees. At
this point, Cheeger’s inequality (Lemma 50) gives us an effective resistance diameter bound on the
decomposition piece as well, so we can use most of the guarantees from Section 7 directly. We
are able to obtain the tighter per-vector pair parameter tradeoff required by spectral sketches by
exploiting a tighter connection between the Laplacian and degree matrices within expanders, as in
[JS18] which used this for undirected spectral sketches. This is used alongside a key degree-based
spectral inequality from [CGPSSW18] (see Lemma 51).

9.1 Degree-preserving primitives

In this section, we give several basic helper results which we use to ensure degree-preserving prop-
erties of our algorithms by working with bipartite lifts. Given a directed graph G = (V, E, w), we

let the directed graph Gt blift(é) be its bipartite lift, which is defined so that Vz = V U 1%
where V' is a copy of V, and Eg = {f = (u,?)|(u,v) € E} with w, 5 = w(,,). Notice that our
definition gives a canonical bijection between Ez and Es.

Lemma 46. Let G = (V, E,w) be a directed graph and let its bipartite lift be GT < (VUV', BT, w) =
blift(G), with G < und(G) and GT < und(G"). Suppose that for some e >0, w' € RE, satisfies

i i
LZ,BL (W —W)Hg L, | <e

T «/ _ R
BC—;»TW—B@TW, ’
op

Then, letting |BG~\ apply the absolute value entrywise,

t t
B.w' =Bjw, [Bg|'w' =|Bg|'w, HLéBg(W’ ~W)HLZ|| <e

op

Proof. Consider the edge-vertex incidence matrix of G, B & = Hgz—Tga. The edge-vertex incidence
matrix of G is then Bs = (H@ —T@). Hence, any vector x satisfying BgTX = Oy must have
ng = 0y, Tgx = 0y, giving us preservation of both the difference between in and out degrees

and the sum of in and out degrees é, ie.,
T T
BéXZOV, |Bé‘ XZOV,

where we used that By = Hs — Tz and |[Bz| = Hz + T 5. Taking x ' w’ — w then gives the the
first two claims. We remark that the directed graph G need not be Eulerian.

We proceed to prove the third claim. For ease of notation, we omit G in the subscripts of the
matrices and denote A & Ag, Ay & A s for all matrices A. We also use the following equivalent

definition of operator norms with the convention that the fraction is 0 if the numerator is 0:

:
x' Ay

1AL, = max =AY
X T Ty

where the max is over x,y of compatible dimensions. Also, we let Q € RVUV)IXV he defined by

€y
Qev = <ev>

41

for all v € V, where v is identified with v. Notice that H = H;Q, T = T4+Q and B = B4+Q. Then,
Q'LiQ=Q'B/{WB;,Q=B'WB=L.
Finally, for any non-trivial vectors x,y € RV satisfying x,y L 1y, and defining

def

i i
alLix by x4 L:Qa, y & L2Qb,
we have
x'L:BT(W - W)HL2y| |a'BT (W' — W)Hb|
x5 [yl lallg, [Py,
_ [a"Q"B{ (W' — W)H;Qb|
[Qally, Qb
ATL%BT W' — WIH,L?$
 &"LIB(JH, L2y
1[5 1371,

il

giving us the desired operator norm bound. We note that Qa, Qb L ker(Ly).
Finally, we record a consequence of this proof we will later use. Recall that we have shown

H=H,Q, T=T;Q, B=B:Q, Q'LQ=L.

Therefore, suppose that for some ¢ > 0 and fixed vectors x,y € RV, w’ € [REO satisfies

xTQTB] (W' - W)H,Qy| < - [Qxlly, [Qylly, (29)
Then, we also have the bound in the unlifted graph G,

X BT(W' — W)Hy| < ¢ x|, llyll, - (30)

9.2 Expander decomposition and sketching by degrees

In this section, we provide guarantees on our earlier BASICFASTSPARSIFY (Algorithm 5) which hold
when the algorithm is passed a expander graph, that is also a bipartite lift, as input. We first recall
the definition of an expander graph, parameterized by a minimum conductance threshold ¢.

Definition 47 (Expander graphs). Let G = (V, E,w) be an undirected graph, and let d € RY, be
its weighted degrees. For a set S C'V, let Vol(S) = 3, cgdy be the sum of weighted degrees in S,
and let 0S = {e = (u,v) € E|u € S andv ¢ S} be the edge boundary of S. We define the cut
value of S by w(9S) o Y ecos We, and the conductance of S by

w(0S)

(5) = n{Vol(S), Vol ST}

Finally, we say G is a ¢-expander if ®(S) > ¢ for all S C V.

An important algorithmic primitive related to Definition 47 is an expander decomposition.

42

Definition 48 (Expander decomposition). We call {G;}ic(r) a (¢, 7, J)-expander decomposition if
{Gi}ien are edge-disjoint subgraphs of G = (V, E,w), and the following hold.

maXecp(G;) We <r

7 mineep(g) We —

2. Conductance: For alli € [I], ®(G;) > ¢.

1. Bounded weight ratio: For all i € [I]

5. Edges cut: [E(G)\ (U;jen E(G)| < 77
4. Vertex coverage: Every vertex v € V(G) appears in at most J of the subgraphs.

We recall the state-of-the-art expander decomposition algorithm in the literature, which will
later be used in conjunction with the subroutines developed in this section.

Proposition 49 (Theorem 4.4, [ADK23]). There is an algorithm EXPANDERDECOMPADK(G, , §)

that, given as input undirected G = (V, E, w) with %‘w < W andr > 1, computes in time
ecsupp(w e

(0] (m log®(n) log (%))

a (Capk log=2(n), r,log, W+3)-ezpander decomposition of G with probability > 1—§, for a universal
constant Capk.”

We further require two spectral inequalities based on the expansion.

Lemma 50 (Cheeger’s inequality). If G is a ¢-expander with Laplacian Lg and degrees D¢, then

¢2
Ay <D2 LGD2>
Lemma 51 (Lemma 6.6, [CGPSSW18|). If G = (V, E,w) is a ¢-expander that satisfies, for some
w >0, W € [w,2w] for all e € E, then for any x € RV,

|| 2 > ¢2’U_] d ~\2
i, > TS deggl.(x, - 7%

veV

- def de
4% = Tael-

Importantly, Lemma 51 allows us to obtain improved tradeoffs on how well spectral sketch guar-
antees are preserved in Lemma 55, by first lower bounding degrees of vertices under consideration.
Next, we show that expander graphs with small weight ratio form clusters (Definition 33), which
make them compatible with our algorithm BASICFASTSPARSIFY.

where deg € I]\l>0 is the combinatorial (unweighted) degrees of G, an

Lemma 52. Let G = (V,E,w) and let G = und(é). Suppose G is a ¢-expander and that for all
e € B, w, € [w,2w| for some w > 0. Given any f > 0, let U C V be the set of vertices with
[degcy > B for every uw € U. Then, the subgraph G[U] is a (w, 88 1¢~2)-cluster in G.

"The algorithm of [ADK23] is stated for n~9W failure probabilities, but examining Section 5.3, the only place
where randomness is used in the argument, shows that we can obtain failure probability § at the stated overhead.
The vertex coverage parameter log,. (W) + 3 is due to bucketing the edges by weight, analogously to the proof of
Proposition 10. We note that there is no log, (W) overhead in the runtime, as the edges in each piece are disjoint.

43

Proof. Let Dg € RV*V be the diagonal matrix whose diagonal is the weighted degrees of G. By
Cheeger’s inequality (Lemma 50), for any pair of distinct vertices a,b € U, we have the desired

weERG(a,b) < 2wb, ,LEbgy < 409 ?b/, ;D5 b(as)

1 1 —2,5-1
=4 ([degc]a+[degc]b> =86

O]

Finally, we state one additional sketching property enjoyed by BASICFASTSPARSIFY in Lemma 53.
We mention that this is the key step in our proof where we require that our input graph is a bipartite
lift of a directed graph. We exploit this property by employing machinery from Section 9.1.

Lemma 53. Suppose BASICFASTSPARSIFY s given input C instead of G where C is a subgraph
of G = (V,E,w), a bipartite lift of a directed graph, satisfying V.= AUB and E C A X B,

def

H, is a (w,p)-cluster of C, = (V(C), E(C), [W*]E(C‘)) and T is a subgraph of G = und(G) and

E(T)NE(C) =0, where C < und(C). Under the same assumptions as Lemma 34, with probability
>1-9, Items 1 to 4 and the runtime of Lemma 34 still hold.
In addition, |Bglw = |Bg|w', and for fived a,z € RY,

_ 1
A BY(W' — W)Hga] < Clrs - ooy 105 (5) Il ., el @ + =+ Jalh Dol @D

Proof. Ttems 2 and 3 and the second claim in Item 1 of Lemma 34 are not affected by the change
in input. Further, the first claim in Item 1 follows by Lemma 24, where the relevant edge-vertex
incidence matrix remains B (since 7' is a subgraph of (). By the same argument in the proof of

the second equation in Lemma 46, the assumption that G is a bipartite lift gives Bglw = [Bslw'.
Thus, it suffices to discuss Item 4 and (31).

We now prove Item 4. Note that the key difference is that we assume H,isa (w, p)-cluster, when
ERs are measured through C instead of G. Under the assumption that PROJIMINUSRANKONE is
exact, the same argument as in the proof of Lemma 34 gives that

1 1
HLng(W’ ~W)HLZ| < Cgrsy/aplog (%) (32)

op

Since supp(w’ — w) C E(C) and Lo < Lg, we obtain the first term in the inequality in Item 4
of Lemma 34 (i.e., without the additive €) under an exact PROJMINUSRANKONE. The error due
to inexactness is then handled the same way as in Item 4 of Lemma 34, since the spectral error
guarantees of Lemma 24 are measured with respect to G, not C.

In the remainder of the proof, we handle (31). We first consider the sketching error assuming
PROJMINUSRANKONE is exact. In iteration ¢, the difference to the directed Laplacian is:

Bg(wt+1 — Wt)Hé =n Z [Wt]e [Pﬁhwts}e beh;r
eEE(ﬁt)

= Z Z HtWt fe Wt]fbfhf

ecE(H:) feE(Hy)

(33)

44

By the third equality of Lemma 27, Bth[Pﬁtth]:e — 0g for any e € E(Hy), ie., WP g, o lie i

a circulation on the graph C. Again, by the same argument in Lemma 46, we have

BalTWi[Py, . Jee = Ov, (34)

i.e., both in-degrees and out-degrees are preserved.
Next, because all edges in C' are from A to B, we have [|[Bs|].a = Hz. Then, we compute that

> [Py, lrewshih} = [Boll Wediag ([P,]) Ho
fEE(Hy) (35)

— diag ([B&ILWilPj, ,, J)

Combining (34) and (35) shows:

Y [P g lrewsbshp = > [Py lrewstshy. (36)
fEE(Hy) fEE(Hy)

In addition, we have by Fact 6 and that W[P 5 _ |. is a circulation that the following hold:

BLW.diag ([P, ,, J) Holy = BIW.[P |, J.c = Oy,
/B W,diag ([P,) Hs = 17T W.diag ([P ,]) Ba (37)
- [Py, Wt]TWtB 5 =07

Recalling the formula (33), and summing (37) over all e € E(H;), gives

BL(Wi 1 - W)Hgsly = > 50y =0y, 1/BL(W,1 - W)Hz =0]. (38)
ecE(Hy)

Define for each e € E(H,) a scalar x! by:

x < w,].a' I, <t TT

e V(©) V(G
where we recall that HV(@) = IV(C‘) |V(51 Ly)1;(5)' We showed in (38) that 1y, and hence
1y (g, Is in the left and right kernel of B C(Wt+1 W;)H . Combining (33) and (36) then yields

a' BL(We — Wy Hez = a' I, 4 B5(Wep — W) HGIL, (2

= Z Z HtWt fe t)' (39)

ecE(Hy) feE(Ht)

Each n ZfEE(Ht) [P 4, w,)feXs - Se is sub-Gaussian with parameter o 4 NP7, w, e x(®)|. There-
fore, the left-hand side of (39) is sub-Gaussian with parameter

2 Zﬁ <[Pﬁt7Wt]:e,x(t)>2 =i’xPy x <o HX(
e€E(Hy)

45

where [|x®)]|’

, can be bounded, using the definition of o and Item 1, by

ecE(Hy)

<8a®a? | Y [y al; > My

veV (C) ueV (C)
= 8a’w? ||a 7|} .
Il o, Nl o,
Summing over at most 7 iterations, the total sub-Gaussian parameter of aTBg(W' — W)Hgz is:
8atw?n? - ||a z < 6000a%w? - ||a||2 7|} .
2 Nall, o I, Il o 21, o

Standard sub-Gaussian concentration finally yields, with probability 1 — %, the desired
1
TpT ! — 2 2
o — . < . — .
A BY(W' ~ W)Hga| < Clrs - ooy 1og (5) Il ., Il

Following the notation in Lemma 34, conditioning on the events | J,,, & does not affect the proof,
for the same reason as outlined in Lemma 34: if any & fails, we set all future weight updates to zero
in the scalar martingale. Finally, as T' is edge-disjoint from C', the additive spectral error term due
to the inexactness of PROJMINUSRANKONE and the final rounding in each iteration is measured
with respect to Lg, as is done in Lemma 29. Applying this additive spectral error to vectors a and
z gives an additive term of € - ||al|y, . [|z[|r,,. This completes our proof. O

Corollary 54. Consider calling BASICFASTSPARSIFY [times, all with shared parameters wy, £, 6, ¢,
but on edge-disjoint subgraphs {H;};c;r) and {C;}icin of G = (V, E w) a bipartite lift of a directed
graph, with V. = AUB and E C A x B, so that each corresponding [H.,); is a (w;, p)-cluster in C;

for some value of w;. Then with probability > 1 — §1, the runtime and spectral error guarantee in
Corollary 35 still hold. In addition, |B@|TW = \B@|Tw’, and for fizred a,z € R, for alli € I,

a' BL(W'— W)H gz

10g<)szuaun I, o +21 - allpg 2l

ie(I]

def

where G < und(G) and for each i € [I], C; < und(C;).

Proof. This claim follows by an analogous argument as in the proof of Corollary 35, where we use
the sketching error claim (31) from Lemma 53 summed across each subgraph. O

We are now ready to give the main algorithm of this section, as well as its analysis. To clarify the
role of the expander decomposition (and degree-based spectral bounds), we note that the sketching

guarantee provided to a fixed pair of vectors in (40) scales as 37!, as opposed to the 57% bound
one would naively apply from our ER decomposition-based guarantee in Lemma 37.

Lemma 55. There is a universal constant Cgss such that if Cgss - 31 ¢2 log (" W) log? log (™2~ Wy <

1, and G = (V,E,w) is a bipartite lift of a directed graph, EXPANDERSPECTRALSKETCH (Algo—
rithm 8) returns G' = (V, E,w') satisfying the following guarantees with probability > 1 — 4.

46

Algorithm 8: EXPANDERSPECTRALSKETCH({C_ji}ie[I], G, T, d,e, W, 3)

1 Input: {C_}'(i)}iem, subgraphs of simple G = (V,E,w),withV =AUB, EC AXx B,
MaX,cqupp(w) We < W, and such that {a) = und(@(i))}ie[l] are a (¢, 2, J)-expander
decomposition of G & und(G), T a tree subgraph of G with min e piry We > 1,
5,e€(0,155), B>0

2 m <+ B(G), n+ V(G), R« 0

3 for i € [I] do

4 Vi C V(G®) be vertices in G() with combinatorial (unweighted) degrees at least /3
5 | H« CEGIV, m |EH)|, 7+ |V(H)|, w, <~ w

6 if m > 40n then

7 w0<—w760%6,ﬁoeﬁ,£1eﬁ(%m,flelog(%)

8 for 0 <t <7 do

9 Wiy1 ¢ BASICFASTSPARSIFY (Hy, Cr, W, b1, 51 15 E(H), T)

10 Crpr + (V(C), E(C), [Wett]p@)s Hyyy = (V(H), E(H), Wil)
1 F<—{6€E(ﬁ)|[tle < Gi[wile}

12 W0<—Wt,t<—0 G0<—Gt,HQ<—H €2<—4 W,TQ(-]Og(%)

13 for 0<t<m do

14 Wil BASICFASTSPARSIFY(ﬁt, Ch, Wi, Uy, 52 Ty 4172 F,T)

15 Crar (V(C), BO), Iwral y)s o e (V(H), B, Wei])
16 R+ RU{ee E(H) | [wie < G W W

17 return G’ + (V,E,Wp\r + ROUNDING(G,WR,T))

1. Bjw' =Bw, Bgl|'

w = \BG\TW
2. nnz(w') < Znnz(w) + Ciss - nJ .

3. For G < und(G),

4. For any fived a,z € R,

+

LZBL (W - W) HéLé

w w
< CESSB_%¢_1 log <n65> log log <n€> +e.

op

a"B} (W'~ W) Hgz

1 ,— nW nW
< (CEssﬁ '¢72 /log <5€> log log <€> +5> Nally, 1zl -

(40)

!
Moreover, maXecp :—Z < Cgss. The runtime of EXPANDERSPECTRALSKETCH s

(e () m (%)

47

Proof. We closely follow the arguments in the proof of Lemma 37. In light of Lemma 52, we
let p o 837 1¢p~2. Further, throughout the proof, we condition on the success of all calls to
BASICFASTSPARSIFY, assuming their input conditions are met, which gives the failure probability.
We claim that every G satisfies 0.9Lg, < Lo < 1.1Lg,, where G & und(G) and Gy & und(Gy).
Again, we defer proving this statement to the end of the proof.

For a fixed i € [I], consider the first 71 loops from line 8 to line 10. Since we claimed 0.9L¢, <
Lo = 1.1Lg, for all ¢, Lemma 52 gives that each G® [Vi] is an ER decomposition piece with
parameters (1.2p,2). Then, in all calls to BASICFASTSPARSIFY, the conditions on w, are met
by assumption. Moreover, BASICFASTSPARSIFY is only called if m > 40n, and the conditions
in Equation (18) are preserved inductively by Lemma 34, since the ¢; norm of the weights does

£

not change by more than a e factor in each iteration. Thus, the 7 loops all satisfy their input

conditions and we may assume they succeed. We then show that F' on Line 11 must have |F'| > %.
Suppose for contradiction that |F| < %, which means the second part of Item 3 in Lemma 34 holds
for all iterations 0 < t < 11. However, since Lemma 34 also guarantees

TlE A 2 A
Z log (th]) > —mlog (€> = —1mmy,

ecE(H)

we arrive at a contradiction after 7| iterations. By using a similar argument, we also show that
after 72 loops from line 13 to line 15 have finished, at least 7z edges are added to R. Notice that

for each i € [I], at most n;3 edges are not included in E(H), we then have the total number of
remaining edges (i.e., nnz(w’)) is bounded by

15 1 1 31
(mzml> +Z (ﬁzﬂ+l6mz) Sm—ﬁ-iernJB: §m+njﬁa

i€l i€l

where the inequality follows by Item 3 of Definition 48. Similarly, conditioned on all calls to
BASICFASTSPARSIFY succeeding, by Item 1 of Lemma 34 and the first additional guarantee in
Lemma 53, we obtain Item 1.

Now, consider both error bounds in Items 3 and 4. Note that we have a = 2 in the first 7
calls to BASICFASTSPARSIFY for each cluster and a = @ in the last 7 calls. Since I < m,
we have by Corollaries 35 and 54 and our decomposition parsameters that the total spectral error
in all intermediate iterations across all decomposition pieces is bounded by

0 (n .1/ plog (%) Ty m%) ~0 (5—%45—1) /log (”g) loglog (”fv) . (41)

where we used p = 83 1¢p~2. Additionally, there is an AjT .
error term, which is < %5 after accounting for the change in the graph Laplacian by Fact 8. For
appropriate Cgss, this both proves the desired spectral error bound by the triangle inequality, as

well as the claimed 0.9Lg, < Lg < 1.1Lg, throughout the algorithm by Fact 7.
Consider now the sketching error bound (40). For each cluster G with GO < und(GD), let
L;, D, and L;, D; be the corresponding undirected Laplacians and weighted degrees of G and

— .

und(GW[V;]) respectively. Following the notation of Corollary 54, and using that HXHHV(@) <

7l + ﬁﬂ - 791 additive spectral

k3

48

Il[x — il]v(é_) |2 for any & € R, we have that if all calls to BASICFASTSPARSIFY succeed,

mW mW _ ~ ~
~z| < O (log <5€> -log log <€>> : Z w; ||[a — @]y ||, Iz — Zillv; ||y

€[]

a' BL(W - W)T

+ 5 lally g

for any choices of scalars {@; }ic(r), {Zi}ic[r)- In the above, we used a calculation analogous to (41) to
bound the first term on the right-hand side. Now, we choose each @; and Z; as defined in Lemma 51,
so that for all i € [I],

wi [|[a—al]y; |3 < @87 [deggmlo(a, — @) < 287 ¢ %a Lia,
veV;

w; ||z — Z]y |5 < @~ > [deggwlu(zo — 2:)* < 287 "¢ %2 Liz.
veV;

(42)

By the Cauchy-Schwarz inequality and (42), we then obtain the first term in (40):

S i lfa— @iy iz - Fllvill, < \/sz|an W2 \/sznzzz ll2

i€[I] €[] 1€[1]

<287 1¢7%2. |aT ZLi a- |z' ZLi z

ie[l] i€[l]
<2879 |ally,, Izl -

The second term in (40) comes from our earlier application of Corollary 54.

Finally, ROUNDING incurs at most § spectral error through the final graph by Lemma 24, which
is at most § spectral error through the original graph by Fact 8. Here we again used that G is
connected (Section 2), which implies each G} is connected via our earlier bound 0.9Lg, < Lg, =
1.1L¢,. Using an analogous argument from above, this also gives an additive sketching error of at
most § - [|ally,, |z]ly,- By the first claim in Lemma 24, Item 1 remains true. Item 2 in the lemma
statement is clear as we only modify weights within clusters, and Item 2 of Lemma 34 shows no
edge weight grows by more than a factor of 60. The runtime follows by applying Corollary 54 to
each of the 71 + 7 = O(log "~ W) times we call BASICFASTSPARSIFY on each expander. O

9.3 Complete spectral sketching algorithm

We are now ready to give our main guarantee on improved constructions of graphical spectral
sketches (Definition 44), as well as their Eulerian generalization (Definition 45).

Theorem 56. Given Eulerian G = (V, E,w) with |V| = n, |E| = m, w € [1, UlF and €,0 €
(0, 185), SPECTRALSKETCH (Algorithm 9) returns a distribution over H that is an (,8)-Eulerian

graphical sketch. Moreover, with probability > 1 — 6, Hisa Ve-approzimate Eulerian sparsifier of

é, and
\E(H)| =0 (Z log” () log? (”;J> log? log (ﬁj)) ,

'
log <m2'iXeesupp(W) We) = O(log(nU)).

mlneEsupp(w’) We

49

Algorithm 9: SPECTRALSKETCH(G, ¢, §)

Input: G = (V,E,w) with w, € [1,U] for alle € E, ¢,0 € (0, 1—(1)0)

n <« |V|, m < |E]

3 GTY (VuV/, E' w) < blift(G)

4 T < arbitrary spanning tree of GT < und(blift(G)), ET « ET\ E(T)
5

R < 6logn, Upax < U - C’ESS for Cggg in Lemma 55
B« ks .
7 while ¢t < R and nnz([w¢]z;) > 4Cgssn/f3 logQ(m) do

8 | Gl (VUV,E"w), G] «und(G))

9 S EXPANDERDECOMPADK([GI] it 2 4‘;) > See Proposition 49.
10 (éj)’ VUV, E', w}) + EXPANDERSPECTRALSKETCH(S, C?I,T, 4%, 17> Umax, B)

11 | D« {ecE|[w] <

12 | Wit < [Wilgnp + RouNDING(GT, [w/]p, T)

13 tt+1

14 return H + (V, E,w;)

N =

log® n log ("Uma") log? log ("Uma") t<— 0, wp<—Ww

The runtime of SPECTRALSKETCH is

0 <m log? <”§]> log (nU) + mlog®(n) log (?)) .

Proof. Throughout, we condition on the event that all of the R calls to EXPANDERDECOM-
PADK and EXPANDERSPECTRALSKETCH succeed, which happens with probability > 1 — §. Since
EXPANDERSPECTRALSKETCH guarantees no weight grows by more than a Cggg factor in each call,
Umax is an upper bound for the maximum possible weight throughout the algorithm. As we remove
10— on line 12, the number of expander pieces is upper bounded by

any edge with weight below

def 32anmdx)

Jmax = 10gs(by Proposition 49.

When nnz(wt) > 4Cgss - nfBJmax, Item 3 of Definition 48 and Item 2 of Lemma 55 guarantees
that the number of edges in each iteration decreases by at least a (%4 factor. Since m < n?, we
may assume for the rest of the proof that € > # Therefore, after R iterations, we are guaranteed
that the number of edges at termination is at most O(nfJmax). Plugging in the definition of 5 and
¢ = Capk log™?(m) > 1Capk log~?(n) and noting that log(Umax) = O(log(nU)) gives the desired
sparsity bound. The runtime follows from combining Proposition 49, Lemma 55 and noting that
the number of edges decreases geometrically until the lower bound on line 7.

The degree-preserving property follows from Item 1 of Lemma 55 and the first claim of Lemma 24.
This guarantees that if G is Fulerian, then H is also Eulerian.

Next, consider the spectral error bound. By Item 3 of Lemma 55, the total spectral error
incurred within each iteration of the while loop from line 7 to line 13 with respect to the current
Laplacian is bounded by

L& 1ve 1e 14E
R4R 4R~ 2 R’

— — nUmax
5Cgss - B 27! 10g< 5 >loglog(nUmaX)

We condition on 0.9Lg < Lg, < 1.1L¢ for all ¢ < R, which shows a total spectral error of at most

g e over all iterations due to Fact 7. Similarly, the rounding on line 12 also contributes at most §

50

by Lemma 24 and Fact 7. This also shows our assumption 0.9Lg < Lg, < 1.1Lg holds, as € < ﬁ.
As before, we achieve the sparsity bound by dropping edges with zero weight in wy.

Finally, consider the sketching error bound. We take the same definition of Q as in Lemma 46.
Let a,z € RY be arbitrary fixed vectors. We have, by Item 4 of Lemma 55, the sketching error for
Qa and Qz in G is bounded by HQaHLGT HQZHLGT times

2

4 1 ,-9 NUmax €
. . . 1 1 1 max S S o<
3 R <5CESS B¢ og < 5) oglog(nUpax) + 4R> 35

where the factor of % again comes from the valid assumption of 0.9Lg < Lg, < 1.1Lg and Fact 7
for each factor of the form HX”Lct' By an analogous argument in the proof of Lemma 55, the
additive error by ROUNDING on line 12 is bounded by % - % HQaHLGT HQZHLm' Now, the fact that
(29) implies (30) gives the desired sketching error bound in the unlifted graph. O

Our spectral sketch algorithm has additional desirable properties in the undirected graph set-
ting, where we can ensure that the sketched graph is also undirected via the following reduction.

Lemma 57. For an undirected graph G = (V, E,w), let H= (V,E',w) be a directed graph where
each edge €' € E' has the same endpoints as an undirected edge e € E with an arbitrary orientation.
Let w' € RE satisfy BI?W’ = ng. Then for any x € RV,

)

1 i
HLg,Bg(W’ — W)BeLZ

1 I
< 4HL;1BE(W’ ~ W)H;L},

op op

TL%BTW’—WB L% <4
X L G() GLGX| >

)

T 1 T 1
x'LEBL(W' — W)H ;L7 x

where H < und(H) = (V, E, 2w).

Proof. Without loss of generality, we assume that orientations are chosen so that Bg “B - Since
w’ — w is a circulation, we have by Fact 6, BE(W’ -W)H; = —TE(W’ — W)B;. Further, as

Bi(W' —W)Bg =B (W - W)H; - BL(W' - W)Tj,

applying the triangle inequalities on operator norms and absolute values, combined with the fact

Ly = 2L, gives both desired inequalities.]

Moreover, we can use the following claim from [CGPSSW18] to show that the output of our
algorithm in the undirected case is an approximate inverse sketch of G, i.e., it preserves quadratic
forms with the Laplacian pseudoinverse. This is useful for approximating effective resistances.

Lemma 58 (Lemma 6.8, [CGPSSW18]). Let M, N be symmetric PSD matrices of the same di-
mension, and let x be a vector of the same dimension such that for some ¢ € (0,0.1),

HM%(M ~ N)M?

<Ve, |xMI(M-N)M'x|<e-x"M'x.
op

Then,
x"(Ml - NN)x| < 7e - x ' M'x.®

8The original Lemma 6.8 in [CGPSSW18] uses a different, more symmetric definition of e-approximation, involving
multiplicative factors of e®, but it is straightforward to check that the same constant factors hold for our definition.

51

The following theorem is a refined version of Theorem 5. To obtain these results, we crucially
use the fact that the guarantees of Lemma 55 continue to hold even if the input directed graph is
not Eulerian (as the signed variant of an undirected graph, as in Lemma 57, need not be Eulerian).

Corollary 59. There is an algorithm that, given undirected graph G = (V, E,w) with |V| = n,
|E| =m, w € [1,U)F and £,6 € (0, 1t5), returns a distribution over graphs H which is an (e,6)-
graphical spectral sketch, and

\E(H)| =0 (Z log” () log? ("g) log? log (”g)) ,

/
log (maxe&upp(W’) We) = O(log(nU)).

mlne€supp(wl) We

Moreover, with probability > 1 — §, H is a /e-approximate spectral sparsifier of G, and for
an arbitrary fivzed x € RY, |XT(LL — Lg)x| <e- XTLJ}IX. The runtime of the algorithm is
o) (m log? (%) log (nU) + mlogg(n) log(%)).

Proof. This is a direct consequence of Lemmas 57 and 58 and Theorem 56. Here, instead of the
standard transformation of doubling the edges and taking both directions of each edge for G, we keep
one edge each and set an arbitrary direction as in Lemma 57. We remark that the input directed
graph, say G = (V, E',w), to SPECTRALSKETCH need not be Eulerian. Let G/ = (V, E/,w') be
the resulting directed graph, then ng’ = BEW by Item 1 of Lemma 55 and the first claim of

Lemma 24. Scaling € by a factor of % then guarantees our desired approximation factors. O

Acknowledgments

We thank Richard Peng [Pen23| for clarifying the dependence in Proposition 39 on § and U. We
thank the authors of [CKPPRSV17] for helpful discussions. Sushant Sachdeva’s research is sup-
ported by an Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grant RGPIN-2018-06398, an Ontario Early Researcher Award (ERA) ER21-16-283, and a Sloan
Research Fellowship. Aaron Sidford was supported in part by a Microsoft Research Faculty Fellow-
ship, NSF CAREER Grant CCF-1844855, NSF Grant CCF-1955039, and a PayPal research award.
Part of this work was conducted while authors were visiting the Simons Institute for the Theory of
Computing Fall 2023 Program Data Structures and Optimization for Fast Algorithms. The authors
are grateful to the Simons Institute for its support.

References

[AALG18] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. “Graph Clustering
using Effective Resistance”. In: 9th Innovations in Theoretical Computer Science Confer-
ence, ITCS 2018. Vol. 94. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2018, 41:1-41:16 (cit. on pp. 12, 25, 59, 60).

[ACKQWZ16] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin
Zhang. “On Sketching Quadratic Forms”. In: Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, 2016. ACM, 2016, pp. 311-319 (cit. on pp. 3,
13, 40).

52

[ADK23]

[AJSS19]

[AKMPSV20]

[AN19]

[APPSV23]

[BBH23]

[BIM23]

[BK96]

[BS03]

[BSS12]

[CGPSSW18]

[CKKPPRS18]

[CKMPPRX14]

Daniel Agassy, Dani Dorfman, and Haim Kaplan. “Expander Decomposition with Fewer
Inter-Cluster Edges Using a Spectral Cut Player”. In: 50th International Colloguium on
Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Ger-
many. Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023, 9:1-9:20
(cit. on pp. 2, 41, 43).

AmirMahdi Ahmadinejad, Arun Jambulapati, Amin Saberi, and Aaron Sidford. “Perron-
Frobenius Theory in Nearly Linear Time: Positive Eigenvectors, M-matrices, Graph Ker-
nels, and Other Applications”. In: Proceedings of the 2019 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 2019, pp. 1387-1404 (cit. on pp. 1, 3, 6, 7, 39).

AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sid-
ford, and Salil P. Vadhan. “High-precision Estimation of Random Walks in Small Space”.
In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS. IEEE,
2020, pp. 1295-1306 (cit. on p. 1).

Ittai Abraham and Ofer Neiman. “Using Petal-Decompositions to Build a Low Stretch
Spanning Tree”. In: SIAM J. Comput. 48.2 (2019), pp. 227-248 (cit. on p. 13).

AmirMahdi Ahmadinejad, John Peebles, Edward Pyne, Aaron Sidford, and Salil P. Vad-
han. “Singular Value Approximation and Sparsifying Random Walks on Directed Graphs”.
In: 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023.
IEEE, 2023, pp. 846-854 (cit. on pp. 2, 4, 5, 7).

Afonso S Bandeira, March T Boedihardjo, and Ramon van Handel. “Matrix concentration
inequalities and free probability”. In: Inventiones mathematicae (2023), pp. 1-69 (cit. on
p. 61).

Nikhil Bansal, Haotian Jiang, and Raghu Meka. “Resolving Matrix Spencer Conjecture
Up to Poly-logarithmic Rank”. In: Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023. ACM, 2023, pp. 1814-1819 (cit. on pp. 3, 6, 12, 19,
20, 23, 59-61).

Andrias A. Benczur and David R. Karger. “Approximating S-t Minimum Cuts in O(NQ)
Time”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting. STOC ’96. Association for Computing Machinery, 1996, pp. 47-55 (cit. on p. 1).

Surender Baswana and Sandeep Sen. “A Simple Linear Time Algorithm for Computing

a (2k-1)-Spanner of O(nH'l/k) Size in Weighted Graphs”. In: Automata, Languages and
Programming, 30th International Colloquium, ICALP 2003. Vol. 2719. Lecture Notes in
Computer Science. Springer, 2003, pp. 384-296 (cit. on p. 1).

Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. “Twice-Ramanujan Sparsi-
fiers”. In: STAM J. Comput. 41.6 (2012), pp. 1704-1721 (cit. on pp. 1, 3, 6).

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing
Wang. “Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via
Short Cycle Decompositions”. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS). 2018, pp. 361-372 (cit. on pp. 1-6, 10, 13, 40, 41, 43, 51).

Michael B Cohen, Jonathan Kelner, Rasmus Kyng, John Peebles, Richard Peng, Anup B
Rao, and Aaron Sidford. “Solving directed Laplacian systems in nearly-linear time through
sparse LU factorizations”. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2018, pp. 898-909 (cit. on p. 6).

Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup
B Rao, and Shen Chen Xu. “Solving SDD linear systems in nearly m logl/2 n time”.
In: Proceedings of the forty-sizth annual ACM symposium on Theory of computing. 2014,
pp- 343-352 (cit. on p. 6).

53

[CKPPRSV17]

[CKPPSV16]

[CKST19]

[DMSY23]

[FGLPSY?22]

[Gia97]
[GLS8S]

[GVY96]

[HRS22]

[JRT23]

[JS18]

[7S21]

[KLPSS16]

[KLS20]

[KMP11]

Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B Rao, Aaron
Sidford, and Adrian Vladu. “Almost-linear-time algorithms for markov chains and new
spectral primitives for directed graphs”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing. 2017, pp. 410-419 (cit. on pp. 1-6, 39, 52).

Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and
Adrian Vladu. “Faster algorithms for computing the stationary distribution, simulating
random walks, and more”. In: 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS). IEEE. 2016, pp. 583-592 (cit. on pp. 1, 3, 6, 7, 38, 39).

Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. “Optimal Lower
Bounds for Sketching Graph Cuts”. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019. STAM, 2019, pp. 2565-2569 (cit. on pp. 1,
3).

Ran Duan, Jiayi Mao, Xinkai Shu, and Longhui Yin. “A Randomized Algorithm for Single-
Source Shortest Path on Undirected Real-Weighted Graphs”. In: 64th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2023. IEEE Computer Society, 2023
(cit. on p. 13).

Sebastian Forster, Gramoz Goranci, Yang P Liu, Richard Peng, Xiaorui Sun, and Mingquan
Ye. “Minor sparsifiers and the distributed laplacian paradigm”. In: 2021 IEEE 62nd An-
nual Symposium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 989-999
(cit. on p. 6).

Apostolos A. Giannopoulos. “On some vector balancing problems”. In: Studia Mathematica
122.3 (1997), pp. 225234 (cit. on p. 59).

Martin Grotschel, Lész16 Lovasz, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization. Springer, 1988 (cit. on p. 23).

Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. “Approximate Max-Flow Min-
(Multi)Cut Theorems and Their Applications”. In: STAM J. Comput. 25.2 (1996), pp. 235-
251 (cit. on pp. 12, 14, 16).

Samuel B. Hopkins, Prasad Raghavendra, and Abhishek Shetty. “Matrix discrepancy from
Quantum communication”. In: STOC ’22: 54th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 2022, pp. 637-648 (cit. on p. 59).

Arun Jambulapati, Victor Reis, and Kevin Tian. “Linear-Sized Sparsifiers via Near-Linear
Time Discrepancy Theory”. In: arXiv preprint arXiv:2305.08434 (2023) (cit. on pp. 1, 6,
7, 10).

Arun Jambulapati and Aaron Sidford. “Efficient O(n/e) Spectral Sketches for the Lapla-
cian and its Pseudoinverse”. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018. STAM, 2018, pp. 2487-2503 (cit. on pp. 3, 13, 40, 41).

Arun Jambulapati and Aaron Sidford. “Ultrasparse Ultrasparsifiers and Faster Laplacian
System Solvers”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2021. STAM, 2021, pp. 540-559 (cit. on pp. 1, 6, 14, 15).

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman.
“Sparsified cholesky and multigrid solvers for connection laplacians”. In: Proceedings of
the forty-eighth annual ACM symposium on Theory of Computing. 2016, pp. 842-850 (cit.
on p. 6).

Rasmus Kyng, Kyle Luh, and Zhao Song. “Four deviations suffice for rank 1 matrices”.
In: Advances in Mathematics 375.2 (2020), pp. 557-567 (cit. on p. 59).

Toannis Koutis, Gary L Miller, and Richard Peng. “A nearly-m log n time solver for sdd
linear systems”. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science. IEEE. 2011, pp. 590-598 (cit. on p. 6).

o4

[KMP14]

[KOSZ13]

[KS16]

[LS17]

[LS18]

[LSY19)

[LWZ24]
[Moh91]

[MPX13]

[Pen23]
[PS14]

[PS22]

[PV23]

[PY19]

[RH17]
[Rot17]

[RR20]

[RR23]

[SS11]

Ioannis Koutis, Gary L Miller, and Richard Peng. “Approaching optimality for solving
SDD linear systems”. In: SIAM Journal on Computing 43.1 (2014), pp. 337-354 (cit. on

p. 6).
Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. “A simple,

combinatorial algorithm for solving SDD systems in nearly-linear time”. In: Symposium
on Theory of Computing Conference, STOC’13. ACM, 2013, pp. 911-920 (cit. on p. 21).

Rasmus Kyng and Sushant Sachdeva. “Approximate gaussian elimination for laplacians-
fast, sparse, and simple”. In: 2016 IEEE 57th Annual Symposium on Foundations of Com-
puter Science (FOCS). IEEE. 2016, pp. 573-582 (cit. on p. 6).

Yin Tat Lee and He Sun. “An sdp-based algorithm for linear-sized spectral sparsification”.
In: Proceedings of the 49th annual acm sigact symposium on theory of computing. 2017,

pp. 678-687 (cit. on pp. 1, 6).

Yin Tat Lee and He Sun. “Constructing linear-sized spectral sparsification in almost-linear
time”. In: STAM Journal on Computing 47.6 (2018), pp. 2315-2336 (cit. on p. 6).

Yang P Liu, Sushant Sachdeva, and Zejun Yu. “Short cycles via low-diameter decom-
positions”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. STAM. 2019, pp. 2602—2615 (cit. on pp. 2—4, 6).

Lap Chi Lau, Robert Wang, and Hong Zhou. Spectral Sparsification by Deterministic
Discrepancy Walk. 2024. arXiv: 2408.06146 [cs.DS] (cit. on p. 7).

Bojan Mohar. “Eigenvalues, diameter, and mean distance in graphs”. In: Graphs and
combinatorics 7.1 (1991), pp. 53-64 (cit. on p. 58).

Gary L. Miller, Richard Peng, and Shen Chen Xu. “Parallel graph decompositions using
random shifts”. In: 25th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’13. ACM, 2013, pp. 196-203 (cit. on p. 13).

Richard Peng. Personal communication. 2023 (cit. on p. 52).

Richard Peng and Daniel A Spielman. “An efficient parallel solver for SDD linear systems”.
In: Proceedings of the forty-sizth annual ACM symposium on Theory of computing. 2014,
pp. 333-342 (cit. on p. 6).

Richard Peng and Zhuoqing Song. “Sparsified block elimination for directed laplacians”.
In: STOC ’22: 5/th Annual ACM SIGACT Symposium on Theory of Computing. ACM,
2022, pp. b57-567 (cit. on pp. 3, 6, 7, 38).

Lucas Pesenti and Adrian Vladu. “Discrepancy Minimization via Regularization”. In: Pro-
ceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2023, pp. 1734-1758 (cit. on p. 7).

Merav Parter and Eylon Yogev. “Optimal short cycle decomposition in almost linear time”.
In: 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019 (cit. on pp. 2-4, 6).

Philippe Rigollet and Jan-Christian Hiitter. High-Dimensional Statistics. 2017 (cit. on
p. 29).

Thomas Rothvoss. “Constructive Discrepancy Minimization for Convex Sets”. In: STAM
J. Comput. 46.1 (2017), pp. 224-234 (cit. on pp. 5, 7, 12, 19, 59).

Victor Reis and Thomas Rothvoss. “Linear Size Sparsifier and the Geometry of the Op-
erator Norm Ball”. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2020. STAM, 2020, pp. 2337-2348 (cit. on pp. 7, 10).

Victor Reis and Thomas Rothvoss. “Vector balancing in Lebesgue spaces”. In: Random
Structures & Algorithms 62.3 (2023), pp. 667-688 (cit. on pp. 12, 19, 20, 58).

Daniel Spielman and Nikhil Srivastava. “Graph Sparsification by Effective Resistances”.
In: SIAM Journal on Computing 40.6 (2011), pp. 1913-1926 (cit. on pp. 1, 6, 14, 15).

95

https://arxiv.org/abs/2408.06146

[ST04] Daniel A. Spielman and Shang-Hua Teng. “Nearly-Linear Time Algorithms for Graph
Partitioning, Graph Sparsification, and Solving Linear Systems”. In: Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing. STOC ’04. Association
for Computing Machinery, 2004, pp. 81-90 (cit. on pp. 1, 2, 6).

[STZ24] Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. “Better Sparsifiers for Directed Eulerian
Graphs”. In: 51st International Colloguium on Automata, Languages, and Programming
(ICALP 2024). Ed. by Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson.
Vol. 297. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2024, 119:1-119:20 (cit. on pp. 2, 4,
6, 7).

[SW19] Thatchaphol Saranurak and Di Wang. “Expander Decomposition and Pruning: Faster,
Stronger, and Simpler”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019. Ed. by Timothy M. Chan. STAM, 2019, pp. 2616
2635 (cit. on p. 2).

[SZ23] Sushant Sachdeva and Yibin Zhao. “A Simple and Efficient Parallel Laplacian Solver”. In:
Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures.
SPAA ’23. 2023, pp. 315-325 (cit. on p. 6).

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer Weights
in Linear Time”. In: J. ACM 46.3 (1999), pp. 362-394 (cit. on p. 13).

[Troll] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. 2011 (cit. on p. 28).

[Trol8] Joel A. Tropp. “Second-order matrix concentration inequalities”. In: Applied and Compu-
tational Harmonic Analysis 44.3 (2018), pp. 700-736 (cit. on pp. 20, 61).

[TZ05) Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J. ACM 52.1 (2005),

pp. 1-24 (cit. on p. 1).

[Verl8] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Cambridge University Press, 2018 (cit. on p. 29).

A Deferred proofs from Section 2

Fact 6. Let B = H — T be the edge-vertex incidence matriz of a graph, let x be a circulation in
the graph (i.e. BTx =0), and let X < diag (x). Then H' XH = T'XT and B'XH = —T 'XB.

Proof. We observe that H' XH = diag (HTX) and T'XT = diag (TTX). The first claim then
follows from H'x = T ' x as x is a circulation. The second claim then follows from

B'XH=H' XH-T'XH=T'XT-T'XH=-T'XB.
O

Fact 7. Suppose G = (V,E,wé),ﬁ = (V,F,wy) share the same vertex set and G o und(é),

def -

1 1 RN _ 1
H=uwnd(H). IfBiwg =B wy, then [[LE(Le — Ly)Lg|lop < 2[L&(Lg — L)L lop-
Proof. Throughout the proof, let

B & (B@

B > € {0, Y w = < -) € R*Y,
H

_Wﬁ

and define H, T € {0, 1}(EUF)%V 6 be appropriate concatenations such that B = H — T. Observe
that B'w = ngé — BI?WH, = 0y. By Fact 6, we have

—

_ nT _uqT _rL_ L
L&) = - B'WT=H'WB=Ls-Lj.

_ = T _
LG_" o LH =B WH, o Lrev(ﬁ)

96

It then suffices to apply the trlangle 1nequahty, that transposition preserves the operator norm,

and the characterization Lg = LG + Lrev(c'i) (with a similar equality for H and H). O
Fact 8. Suppose G, H are connected graphs on the same vertex set V, and HLT/2 (Lg —Lp) Lg/QHop <
e. Then for any M € RV*Y | we have |[LI/*ML?|,, < (1 + E)HLT/QMLZZHOP
Proof. Since Lg and Ly share a kernel, the given condition implies (1 —¢)Lg < Ly < (1 + ¢)Lg.
Hence, ||v||L, <1 implies |[v|lr,, < /1 + ¢, and so the conclusion follows from
! L . . o
LEZMLG| = sup u Mv < (1+¢) sup u Mv = (1+¢)||L;ML},
u,vl 1y u,vl 1y op
lullLg llvlleg <1 lulle gy llvlle, <1
O

B Rounding

In this section, we prove Lemma 24, our guarantee on ROUNDING.

Lemma 24. Given G = (V,E,w), a tree subgraph T of G = o d((_j) with minge gy we > 1,
ROUNDING (Algorithm 1) returns in O(n) time y € RY with supp() C T satisfying:

1. BTy d.

2 yllo < 3 l1dll; -

3. For any z € RE satisfying Bgz =d, we have ||LTG/2Bg(Y - Z)H@LgZHOP <nlzl.
4 L BEYHGLE Jop < 1y

Proof. Throughout the proof we drop the subscripts C_j, G from B, H, L for simplicity. The
algorithm sets y to be the unique flow on the edges of tree T that satisfies BTy = d. Such a vector
y can be constructed in O(n) time by recursively computing the flow required at each leaf, and then
removing the leaf. By construction, supp(y) C 7. Since d L 1y, we also have |y| ., < 3[/d||; -
Next, recall B'z = d, so ||d||; = |B"z|1 < 2|z||;, and y — z is a circulation on G. We
now show that spectral error induced by this circulation y — z is not significant in the directed
Laplacians. For every edge e ¢ T, we let ¢(7®) € {0,1}¥ denote the (signed) incidence vector of
the unique cycle in T'U e. We observe that z — y can be expressed uniquely as) edT z.c"®) | so

HL%BT(Y— Z)HL:| <3 |z HL%BTCW)HL%
op
e¢T

op

It suffices to show that each operator norm in the right-hand side is bounded by n. Note that

HLQBTC(Te)

op

\/H (L:BTCTOHLE)(L:BTCTOHLE)T
(43)

- \/HLz(BTC(T’G)H)LT(BTC(T’Q)H)TL;

op

We will bound the norm of the last matrix in the above expression. Observe that BT CT)H is just
the directed Laplacian of the cycle with unit weights. Denote it M for brevity. We further observe

o7

that MM is twice the undirected Laplacian of the cycle with unit weights. Since the cycle with
unit weights is a downweighted subgraph of (the undirected graph) G, we have MM < 2L. Thus,

ML'MT <2MM™M)'M" < 21y

This implies
L:(BTCTOH)L(BTCTOH)TL: < 2Lf < 2Lf.

Since T has edge weights > 1 and diameter < n, ||LTTHOp < %2 [Moh91]. By using this bound in
(43) and taking square roots, we obtain the third result.
To see the last result, we bound using the triangle inequality:

< lyle
op eeT

Note that bee;(e)eh(e)beT = beb, =< L. Therefore, using ||LTTHOp < ”72 < n?, we have the claim:

HL%BTYHL% Lib.e], L?

op

HL%bee;(e)L%

1 T, 1
o \/ [bee Lley bl Lt

op

op

1 1
< \/ |Libee], Lhenob/ L2

< n.
op

< n\/ |LEbee], en(obl Lt

C Potential improvements to Theorem 4

In this section, we discuss two natural avenues to improve the sparsity of our sparsifier construction
in Theorem 4: improving the matrix discrepancy result in Proposition 20, and obtaining a graph
decomposition with stronger guarantees than Proposition 10.

Partial coloring matrix Spencer. Consider the following conjecture.

Conjecture 60 (Partial coloring matrix Spencer). There is a constant v € (0,1) such that for
{Aiticim) C 5™ with |3 ;cpm) A?||op < 1, there exists x € [—1,1]™ such that

[{i € [m] | |xi| = 13| > vm, and | D~ xAif <

1€[m)|

20

op

By observation, applying the posited coloring in Conjecture 60 in place of Proposition 20 and
Corollary 22 when designing our EXISTENTIALDECOMPSPARSIFY (see the proof of Lemma 25)would
remove the last low-order term in Theorem 4, giving a sparsity bound of O(nlog U +nlog(n)-c~2),
which is O(nlog(n) - e72) for U = poly(n). Conjecture 60 has already been stated implicitly or
explicitly in the literature in several forms (see e.g., Conjecture 3 in [RR23] with p = 00). Notably,
it is stronger than the matrix Spencer conjecture, which asserts (in the most prominent special case)
that for a set of matrices {A;};cjn,) € S" with [|A|lop < 1 for all i € [n], there exists x € {£1}" such
that [|3;cp,) XiAillop = O(y/n). In the context of Conjecture 60, considering the matrices ﬁAi,

98

the assumption is satisfied since = Z A2 < I, and hence Conjecture 60 implies a partial coloring
with spectral discrepancy O(1) (1 e., x € [—1,1]" with a constant fraction of coordinate magnitudes
equal to 1). Standard boosting techniques (see, e.g., [Gia97] or Section 4 of [Rot17]) show that we
can recurse upon this partial coloring scheme to obtain a full coloring in {£1}", since the matrix
variance decreases by a constant factor in each iteration.

We also note that Conjecture 60 has already been established in prominent settings, when the
matrices {A;}icpn C S" are all low-rank. For example, Theorem 1.4 of [KLS20] proves Con-
jecture 60 for rank-1 matrices (with a precise constant v = 1), and if all {Ai}ic[m) have images
supported in the same O(y/n)-dimensional subspace, Theorem 3.5 of [HRS22] also proves the claim.
For completeness, using tools recently developed in [BJM23], we provide a proof of Conjecture 60
in one of the strongest settings we are aware of known in the literature.

Proposition 61 (Lemma 3.1, [BJM23]). There is a constanty € (0,1) such that for {A;}icim) C S™

with {13 e (m) A?||op < 0% and with Zie[m]HAiH% < mf2, there exists x € [~1,1]™ such that

i [m] | bl =1} = 9m, and |3 xiA; (+\ﬁlog%)

1€[m] op

Corollary 62. If the images of all A; are supported in the same r-dimensional subspace and
m > r-log®n, Conjecture 60 is true.

Proof. By linearity of trace, we can choose f such that

ZTrAQ— r| Y A <7 ZA2 <
zEm] i€[m] op "

where we use that the rank of Zie[m] A? is at most r. The resulting discrepancy bound is

0 <1 + i*/Z-logi(n))

which proves the claim for sufficiently small ~y, under the assumed parameter bounds. O

For example, while Corollary 62 does not establish Conjecture 60 in full generality, it does
establish it when m is larger than n by a polylogarithmic factor, as we may take r = n.

Stronger effective resistance decomposition. We further observe that another avenue to
improving Theorem 4 is via strengthening Proposition 10, the graph decomposition result it is
based on. We present one source of optimism that the parameters in Proposition 10, which gives
an (O(mfn&), 0(1),0(logU))-ER decomposition, can be directly improved, though this remains
an open question suggested by our work. In particular, we use the following claim in [AALG18].

Proposition 63 (Theorem 3, [AALG18]). Given G = (V,E,w) with n = |V| and sufficiently

large C > 1, there is a constant o € (0,1) and a polynomial-time algorithm which finds a partition
det

= {Vi}jeun such that if {G; = G[Vj]}jeis are the corresponding induced subgraphs, we have

> we < ZEE,E We (44)
a
e€E\Uj 1) E(G5)
and

max ERg(u,v) < i

—_—— iyelJl. 45
max s o elli €1 (5)

99

Proposition 63 immediately implies an improvement of Proposition 10 when w is well-behaved.

Corollary 64. If G = (V,E,w) has w € [1,U]¥ for U = ©(1), there exists a (3,00, 1)-ER
decomposition of G, for a constant § € (0,1).

Proof. Let m © |E|. Apply Proposition 63 to G with parameter C' < % = O(1). The guarantee
(44) implies that the total cut weight is at most %, so less than half the edges are cut as mineep we >
1. Further, (45) shows that the p parameter in Definition 9 is bounded by U - &~ = © (%), as
desired. FEach vertex appears in at most one decomposition piece by definition. O

The main difference between the statement of Proposition 63 and that needed to generalize
Corollary 64 beyond the bounded weight ratio case is that Proposition 63 measures the cut edges
by the amount of total weight cut, rather than the number of edges cut. Indeed, for a general
n-vertex, m-edge graph G = (V, E,w) with w € [1,U]E but where U may be superconstant, let
W Y ecr We, and let G’ = (V, E',wgy) where E/ C E removes any edge in E with weight larger
than % (so |E'| > 3Tm) Applying Proposition 63 with any constant C' on G’ yields

(o,) (g Brotun) =0 (35)-0 () =0 (7).

as desired. Unfortunately, the claim (44) does not imply few edges are cut in this case, though for
sufficiently large C', it does imply only a small fraction of total weight is cut.

We conclude this section by mentioning one barrier to improving the guarantees of [AALG18],
towards obtaining a variant of Corollary 64 which holds for superconstant weight ratios U. In
particular, no single decomposition of G’s vertices can simultaneously guarantee a bounded effective
resistance diameter while cutting a small number of edges, as the following example demonstrates.

Let H be a path graph with all edge weights 1, and let G equal H plus a clique with edge weights
n~%. Since Ly < Lg < 2Ly, we have %ERH(U,U) < ERg(u,v) < ERg(u,v) for any vertices u,v.
We claim that any vertex-disjoint partition of G which cuts at most % edges must have one
component with resistance diameter Q(n). Indeed, any partition Py, P, ... P, with |P;| = n; does

ni(ni—1) m

not cut exactly Z;“:l ——5— edges: as this must be more than 7, we have

TS ngl<maxni—1> Zni:n(maxni—l>.
2 . 2 2 \i€[k) : 2 \lic[k]
i€[k] i€[k]
Since m = n(n;l), the largest partition piece has > % vertices, and since any path of length
k has resistance diameter k, this piece has diameter (n). Thus any potential application of the
techniques of [AALG18] towards improving Proposition 10 must partition its input by both vertices
and edges; extending [AALG18]’s approach to subsets of edges is an intriguing open question.
Finally, we mention that the definition of a graph decomposition highlighted in this work, the ER

decomposition of Definition 9, may not be the only useful notion of decomposition for constructing
Eulerian sparsifiers. A potentially fruitful open direction is to explore other related decomposition
notions, for which there may be better bounds bypassing difficulties with ER decompositions.

D Proof of Proposition 20

In this section, we show how to modify the proof of Lemma 3.1 in [BJM23] to yield the tighter
concentration bound claimed in Proposition 20. In particular, we show how to obtain the second

60

argument in the minimum, since the first was already shown by [BJM23]. To do so, we recall the
following known concentration bounds from [Trol8; BBH23].

Proposition 65 (Corollary 3.6, [Trol8]). Let n > 8 and {Ai}icim) € S™ satisfy |3 ;cm) AZlop <
o? and maXU,V,WEU"HZi,je[m} A UA;VAWA,|lop < w. Then, for g ~ N(0p,1,), there is a
universal constant Cio such that

E Z giAi < Ciro - (O‘ log% n—+ wlog% n)
i€lm

] op

Lemma 66 (Proposition 4.6, [BBH23]). For {A;};c(m € S",

2 2

) .)) < 2 .) AT
R %:}AZUAJVAZWAJ < ;:]AZ Ag]vec(Al)vec(Az) : (46)
,7€|m op em nem

op op

where vec(A) € R" is the vectorization of A.
By combining Proposition 65 and Lemma 66, we have the following corollary.

Corollary 67. Let n > 8 and {Ai}icpn € S" satisfy |3 ;cpm) A?|op < 02, Zie[m]”AiH% < mf?.

Then, for g ~ N (0, 1,,), there is a universal constant Ciyo such that

E Z giAi < Ciro - (0’ log% n -+ \/Elog% n) .
i€[m] op

Proof. 1t suffices to combine Proposition 65 and Lemma 66, where we use

1 1
Z vec(Aj)vec(A;) || < ETY Z vec(A;)vec(A;)T | = — Z 1A% -
i€[m] op i€[m] i€[m]
The first inequality used that the summed vectorized outer products has rank at most m. O

By replacing Theorem 1.2 of [BBH23] with Corollary 67 in the proof of Lemma 3.1 in [BJM23],
we obtain the second term in Proposition 20; we may use the better of the two bounds. To handle
the n > 8 constraint, for any smaller n, we can pad with zeroes up to dimension n = 8, which does
not affect any operator norms and only changes constants in the claim.

61

	Introduction
	Our results
	Overview of approach
	Related work
	Roadmap

	Preliminaries
	Technical overview
	Effective resistance decomposition
	Variance bounds from effective resistance diameter
	Sparser Eulerian sparsifiers
	Eulerian sparsification in nearly-linear time
	Approximating modified circulations
	Basic partial sparsification
	Sparsifying an ER decomposition
	Complete sparsification algorithm

	Applications
	Graphical spectral sketches
	Degree-preserving primitives
	Expander decomposition and sketching by degrees
	Complete spectral sketching algorithm

	Deferred proofs from Section 2
	Rounding
	Potential improvements to Theorem 4
	Proof of Proposition 20

