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Abstract—Implicit Neural Representations (INRs) are a
learning-based approach to accelerate Magnetic Resonance Imag-
ing (MRI) acquisitions, particularly in scan-specific settings when
only data from the under-sampled scan itself are available.
Previous work demonstrates that INRs improve rapid MRI
through inherent regularization imposed by neural network
architectures. Typically parameterized by fully-connected neural
networks, INRs support continuous image representations by
taking a physical coordinate location as input and outputting the
intensity at that coordinate. Previous work has applied unlearned
regularization priors during INR training and have been limited
to 2D or low-resolution 3D acquisitions. Meanwhile, diffusion-
based generative models have received recent attention as they
learn powerful image priors decoupled from the measurement
model. This work proposes INFusion, a technique that regularizes
the optimization of INRs from under-sampled MR measurements
with pre-trained diffusion models for improved image reconstruc-
tion. In addition, we propose a hybrid 3D approach with our
diffusion regularization that enables INR application on large-
scale 3D MR datasets. 2D experiments demonstrate improved
INR training with our proposed diffusion regularization, and
3D experiments demonstrate feasibility of INR training with
diffusion regularization on 3D matrix sizes of 256 x 256 x 80.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) suffers from lengthy
acquisition times, but sampling the acquired Fourier (k-space)
data below the Nyquist rate and solving the ill-posed recon-
struction problem accelerates acquisitions, reducing costs to
patients. Widespread reconstruction algorithms include parallel
imaging [1-3] and compressed sensing [4], but deep learning
based techniques exploiting training databases yield state of
the art results [5—10], with diffusion models receiving recent
attention as they decouple the measurement model and learned
prior.

The machinery of Implicit Neural Representations (INRs)
[11,12] serves as an alternative learning-based approach for
accelerating MRI, particularly in scan-specific settings where
only data from the under-sampled scan itself are available.
Previous INR work leverages traditional regularization [13],
the inherent regularization of the dense neural network ar-
chitecture and positional encoding [12,14-17], and periodic
activations [11]. However, previous work applies unlearned

regularization priors when applying INRs for MRI recon-
struction and are mainly limited to 2D or low-resolution 3D
acquisitions [13-17].

Drawing inspiration from recent work in computer vision
that uses diffusion priors to reconstruct INR-representations of
3D scenes from few camera views [18], we present INFusion,
a technique to regularize the optimization of INRs from under-
sampled MR measurements with pre-trained diffusion models
for improved image reconstruction. In addition, we propose
a hybrid 3D approach with our diffusion regularization that
enables INR application on large-scale 3D MR datasets.

II. METHODS
A. MRI Inverse Problems with INRs

The model-based accelerated MRI inverse problem reads:
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where y € CM are the discrete k-space measurements,
A € CM*N jg the linear measurement model, = € C¥ is
the discretized image to reconstruct, and AR(:) : CV — R
imposes regularization (e.g., sparsity, low-rank).

Let Iy : R® — C be an INR parameterized by weights 6,
which represents the image as a function of the continuous
coordinate domain. Then, the following optimization problem
estimates weights of the INR through comparison to the
acquired discrete k-space measurements [13-17]:
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where » € RNXC indexes the spatial coordinates of the
discretized voxel locations of x. Evaluating Iy (r) then yields
the desired image.

B. INFusion: Regularizing INRs with Diffusion Models

Our proposed INFusion method regularizes the INR MRI
inverse problem with pre-trained generative diffusion models
as they are powerful priors that decouple from the measure-
ment model [8-10] enabling applications with INRs. As it is
computationally expensive to evaluate the diffusion model at
every 3D coordinate, we also propose a stochastic regularizer
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Fig. 1. Our proposed approach, INFusion, first computes standard data

consistency loss Lg,t, by evaluating the INR at discrete voxel locations,
applying the MRI forward model to the resultant image, and then comparing
to the acquired k-space data. A second loss Lg;f fusion i computed by
adding gaussian noise to random slices produced by the INR, running prior
sampling with the diffusion model, and comparing the resultant prior sample
to the INR produced random slices with perceptual loss. The diffusion loss
guides the INR to produce images that better match the learned prior.

in which the diffusion model is queried at random spatial
coordinates z C 7 in each iteration.
During each iteration, j, of optimization, we propose the
following procedure:
1: Compute data consistency loss, Liqta = ||y — Alg, (7)]]3.
2: Select spatial coordinates z so that evaluating Iy, (2) yields
random discretized 2D slices from the current estimate of
image volume x.
3: Compute q; = Iy, (2) +n where n ~ N(0,0%) and o ~
Z/I(Jmim 1)
4: Run diffusion [19,20] with initialization g; to give a prior
sample d;.
s: Compute Lygiffusion = LPIPS(Ig,(2),d;) with LPIPS
perceptual loss [21].
6: Compute Liota; = Laata + w(J)Laif fusion With adaptive
scalar weighting w(j), and backpropagate to update 6;.
Fig. 1 presents a schematic summary of the proposed proce-
dure.

III. EXPERIMENTS
A. In-vivo 2D Single- and Multi- Coil Brain

We used axial, T2-weighted, single-coil and 4-coil 2D k-
space from the fastMRI [22] dataset, cropped both to 192 x 192
resolution, and retrospectively under-sampled with a 2D-
Poisson pattern generated with BART [23] corresponding to
an acceleration rate of R = 4 for single-coil (R times less
than Nyquist) and R = 6 for multi-coil. Both experiments
compared the discretized image produced by solving the
standard MRI inverse problem with L1-Wavelet regularization
[24] to an INR trained with (i) none, (ii) L1-Wavelet, or (iii)
our proposed diffusion regularization.

Second, we took 96 additional, multi-coil 2D samples from
the fastMRI dataset, and retrospectively under-sampled them
with 2D-Poisson under-sampling masks with an acceleration

rate of R = 8 and R = 9. These samples had coil counts
ranging from 4 — 20. We compared error of the discretized
images produced by solving the standard MRI inverse problem
with L1-Wavelet regularization and INRs with L.1-Wavelet and
our proposed diffusion regularization.

B. In-vivo small 3D Single Coil Brain and large 3D Multi-coil
Knee

We used a multi-slice single-coil 192 x 192 x 16 dataset
from fastMRI with axial brain slices, and treated it as 3D by
retrospectively under-sampling it in the y — z direction with a
R = 2 Poisson under-sampling mask.

Finally, we used k-space of an 8-coil 3D knee volume from
the SKM-TEA [25] dataset, resized it to 256 x 256 x 80, and
uniformly under-sampled by R = 4 x 1 in the y — 2 directions.
Fitting the problem in GPU memory and solving it in feasible
time required two changes to our INR procedure:

e Only the z—y dimensions were encoded with coordinates,
and the model instead returned 80 discretized slice values
at each coordinate.

« Diffusion regularization was computed with respect to
two random slices each iteration.

Both 3D experiments compared discretized images produced
by an INR trained with and without our INFusion method.
Note that our diffusion model was trained on x — y images,
but under-sampling was performed in the y — 2z direction.

C. INR Details

All INRs consisted of fully-connected neural-networks with
ReLU activations and 128 gaussian Fourier-features [12]. 2D,
3D brain, and 3D knee networks had 165K, 1643K, and
21411K parameters, respectively.

D. Diffusion Model Details

We trained separate diffusion models, using an architecture
and training procedure provided in [20], for the brain model
with 8500 axial fastMRI slices and the knee with 15720
sagittal SKM-TEA slices.

IV. RESULTS

INFusion achieved lower normalized-root-mean-squared-
error (NRMSE) on the single (Fig. 3, A) and multi (Fig. 3, B)
coil brain slice in comparison to INRs trained with Wavelet or
without regularization and the standard Compressed Sensing
(CS) L1-Wavelet MRI inverse problem. The box plot in Fig.
2 shows that INFusion improves reconstruction performance
with respect NRMSE over 96 slices in comparison to standard
CS L1-Wavelet and INRs with Wavelet regularization.

In Fig. 4, A, INFusion outperforms no regularization on
the modest, single-coil 3D dataset, but encoding all three
spatial dimensions in the INR required prohibitively large GPU
memory usage and compute. Fig. 4, B shows that our proposed
approach of diffusion regularization with random slices and
just encoding the x — y dimensions in coordinates enables
training of INRs on 256 x 256 x 80 matrix size k-space.
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Fig. 2. Quantitative comparison of standard L1-Wavelet CS and INRs trained
with Wavelet and our proposed regularization at R = 8 and R = 9 across
96 samples. Our proposed INFusion approach improves NRMSE across the
dataset.

V. DISCUSSION

INFusion exploits the generative capabilities of diffusion
models to regularize INR training from scan-specific MR
measurements. We show improved performance in 2D and
enable application in realistic 3D settings where the diffusion
models were also trained on a different orientation than the
under-sampling. In this way, we regularize 3D reconstructions
without an explicit 3D prior.

Future work will investigate the effectiveness of INRs as an
image representation and explore the trade-offs between using
diffusion models as regularization for INRs versus using them
for posterior sampling directly on the discretized voxel grid.
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Fig. 3. Reconstructions of discrete images on the (A.) 2D single-coil brain data at R = 4 and (B.) 2D multi-coil brain data at R = 6 with standard L1-wavelet
Compressed Sensing (CS) and INRs with none, L1-wavelet, and our proposed diffusion regularization. The proposed INFusion approach yields images with
lowest NRMSE.
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Fig. 4. (A.) INFusion outperforms no regularization on the modest, single-coil 3D dataset, but encoding all three spatial dimensions in the INR required
prohibitively large GPU memory usage and compute. (B.) Applying diffusion regularization to random slices at each iteration and encoding only the x-y
coordinates enables training of INRs with diffusion regularization on a realistically sized 256 x 256 x 80 3D k-space volume.
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