arXiv:2406.02789v1 [cs.DS] 4 Jun 2024

Private Stochastic Convex Optimization with Heavy Tails:
Near-Optimality from Simple Reductions
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Abstract

We study the problem of differentially private stochastic convex optimization (DP-SCO)
with heavy-tailed gradients, where we assume a k*"-moment bound on the Lipschitz constants
of sample functions rather than a uniform bound. We propose a new reduction-based approach
that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed
setting, achieving error G5 - ﬁ + G - (%)1*% under (e, d)-approximate differential privacy, up
to a mild polylog(%) factor, where G2 and Gz are the 2" and &* moment bounds on sample
Lipschitz constants, nearly-matching a lower bound of [LR23].

We further give a suite of private algorithms in the heavy-tailed setting which improve
upon our basic result under additional assumptions, including an optimal algorithm under a
known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and
an optimal linear time algorithm for smooth generalized linear models.

1 Introduction

Differentially private stochastic convex optimization (DP-SCO), where an algorithm aims to mini-
mize a population loss given samples from a distribution, is a fundamental problem in statistics and
machine learning. In this problem, given n samples from a distribution P over a sample space S,
our goal is to privately find an approximate minimizer & € X C R? for the population loss

Fp(z) = Esup [f(;5)],

where f(+;s) is a convex function for all s € S. The quality of an algorithm is measured by the
excess population loss of its output &, that is Fp(&) — ming«cx Fp(z*).

Extensive research efforts have been devoted to DP-SCO, resulting in important progress over the
past few years [BFTT19, FKT20, AFKT21, BGN21, ALD21, KLL21]. In an important milestone,
[BETT19] developed optimal algorithms (in terms of the excess population loss) for DP-SCO under a
uniform Lipschitz assumption (i.e., where every f(-; s) is assumed to have the same Lipschitz bound),
and [FKT20| followed this result with efficient and optimal algorithms that run in linear time for
smooth functions. DP-SCO has also been explored in other notable settings, including developing
faster algorithms for non-smooth settings [AFKT21, KLL21, CJJ*23], different geometries imposed
on the solution space [AFKT21, BGN21, GLL123|, and different notions of privacy [ALD21].

Most existing results in DP-SCO are based on the assumption that the function f(+;s) is uniformly
G-Lipschitz for all s € §. This assumption is convenient for private algorithm design because
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it allows us to straightforwardly bound the sensitivity of iterates of private algorithms, i.e., how
far a pair of iterates defined via algorithms induced by neighboring datasets drift apart. Under
the uniform Lipschitz assumption, the DP-SCO problem is relatively well-understood, as optimal
and efficient algorithms exist (sometimes requiring additional regularity assumptions) [BFTT19,
FKT20].} State-of-the-art SCO algorithms satisfying (¢, §)-differential privacy (Definition 1) in the
uniform Lipschitz setting result in excess population loss

1 dlog(%)
D |-+ Y = 1
G N ; (1)

where D is the diameter of X'. However, the assumption of uniformly G-Lipschitz gradients is strong,
and may be violated in real-life applications where the distribution in question has heavy tails (see
e.g. discussion in [ACGT16]). As a simple motivating example, consider mean estimation, where
each f(:;s) = |- — s||?, so the minimizer of Fp is the population mean. The uniform Lipschitz
requirement amounts to P having a bounded support, whereas an algorithm that can handle heavy
tails only posits the weaker assumuption that P has & bounded moments. As a result, existing
algorithms for DP-SCO may have overly-pessimistic performance bounds when G is large or even
unbounded, necessitating the search for new private algorithms handling heavy-tailed gradients.

Motivated by this weakness of existing DP-SCO analyses, several papers studied the problem of
DP-SCO with heavy-tailed gradients [WXDX20, ADF*21, KL.Z22, LR23|, formally defined in Def-
inition 4. Rather than assuming uniformly-Lipschitz gradients, this line of work builds on the
more realistic assumption that the norm of the gradients has bounded k*-moments. In particular,
[ADF*21] studied heavy-tailed private optimization for the related empirical loss, while [WXDX20|
initiated an analogous study for the population loss. More recently, [KLZ22, LR23] also proposed
algorithms to solve the heavy-tailed DP-SCO problem based on clipped stochastic gradient methods.

Despite significant progress in addressing heavy-tailed DP-SCO, it remains notably less understood
than the uniformly Lipschitz setting. As a benchmark, under a notion called p-concentrated dif-
ferential privacy (CDP, see Definition 3), which translates to (g,8)-DP for p ~ &2 log_l(%), |[LR23]
established that the best excess population loss achievable scales as

-
ala.n. \/15 L GD- (;{/Eﬁ) , (2)

where G is the 7" moment bound on the Lipschitz constant of sampled functions, see Definition 4.
Note that as k — oo, the rate in (2) recovers the uniform Lipschitz rate in (1).

Unfortunately, existing works on heavy-tailed DP-SCO assume stringent conditions on problem
parameters and are suboptimal in the general case. For example, [KLZ22]| requires the loss functions
to be uniformly smooth with various parameter bounds in order to guarantee optimal rates, while
the recent work [LR23] obtains a suboptimal rate scaling as?> GoD - % + GiD - (n—\/\/gﬁ)l_%, which is
worse than (2) by polynomial factors in the dimension for any constant k.

! One notable exception is the lack of linear-time algorithms in the non-smooth setting.

2The rate in [LR23] is stated slightly differently (see Theorem 6 in that work), as they parameterize their error
bound via Go, despite assuming only k bounded moments. However, under the assumption that Go is finite (so the
[LR23] result is usable), the optimal rate scales as in (2) where k is replaced with 2k, leaving a polynomial gap.



1.1 Owur contributions

Motivated by the suboptimality of existing results for heavy-tailed DP-SCO, we develop the first
algorithm for this problem, which achieves the optimal rate (2) up to logarithmic factors with no
additional assumptions. Along the way, we give several simple reduction-based tools for overcoming
technical barriers encountered by prior works. To state our results (deferring a formal problem
statement to Definition 1), we assume that for some k > 2 and all j € [k], we have

Esp

g [V f( SM <qi.

Our results hold in several settings and are based on different reductions, allowing us to apply
DP-SCO strategies from the uniform Lipschitz setting.

Near-optimal rates for heavy-tailed DP-SCO (Section 3). We design an algorithm for the
k-heavy-tailed DP-SCO problem, which satisfies p-CDP?3 and attains near-optimal excess loss

og (% og (+ i
GsD - lgn(é)jquD.(f:L%(é)) , (3)

with probability > 1 — §. This matches the lower bounds recently proved by [KLZ22, LR23| for p-
concentrated DP algorithms up to polylog(}) factors, stated in (2). Standard conversions from CDP

to (g,0)-DP imply that our algorithm also obtains loss ~ G2D - 4/ w +GiD - (%)177
under this parameterization. We note that our bound (3) holds with high probability > 1 — 4,
whereas the lower bound (2) is for an error which holds only in expectation (see Theorem 13,
[LR23]). Our lossiness in (3) is due to a natural sample-splitting strategy used to boost our failure

probability, and we conjecture that (3) may be optimal in the high-probability error bound regime.

As in [LR23], to establish our result we begin by deriving utility guarantees for a clipped stochastic
gradient descent subroutine on an empirical loss, where clipping ensures privacy but induces bias,
parameterized by a dataset-dependent quantity b% defined in (26). We give a standard analysis
of this subroutine in Proposition 1, a variant of which (with slightly different parameterizations)
also appeared as Lemma 27, [LR23|. However, the key technical barrier encountered by the [LR23]
analysis, when converting to population risk, was bounding [Eb% over the sampled dataset, which
naively depends on the 2k*™ moment of gradients. This either incurs an overhead depending on
Goy, or in the absence of such a bound (which is not given under the problem statement), leads to

the aforementioned suboptimal rate in [LR23| losing a factor of ( \\Cﬁ)i in the utility. We give a

further discussion of natural strategies and barriers towards directly bounding [EbD in Appendix C.

Where we depart from the strategy of [LR23] is in the use of a new population-level localization
framework we design (see Algorithm 2), inspired by similar localization techniques in prior work
[FKT20] (discussed in more detail in Section 1.2). This strategy allows us to use constant-success
probability bounds on the quantity bp (which also bound b%)), which are easy to achieve depending
only on Gy, rather than Gy via Markov’s inequality. This bypasses the need in [LR23] for bound-
ing [Eb%. We then apply a simple geometric aggregation technique, showing that it suffices for a
constant fraction of datasets to have this desirable property for us to carry out our population-level
localization argument. We formally state our main result achieving the rate (3) as Theorem 1.

3We state the privacy guarantee of most of our results, save our algorithm in Section 5 which employs the sparse
vector technique of [DNR09, DR14], in terms of CDP, for simpler comparison to the lower bound (2).



Interestingly, as a straightforward corollary of our new localization framework, we achieve a tight rate
for high-probability stochastic convex optimization under a bounded-variance gradient estimator
parameterization, perhaps the most well-studied formulation of SCO. To our knowledge, this result
was only first achieved very recently by [CH24|.* However, we find it a promising proof-of-concept
that our new framework directly yields the same result. For completeness, we include a derivation
in Appendix A (see Theorem 5) as a demonstration of the utility of our framework.

Optimal rates with known Lipschitz constants (Section 4). We next consider the known
Lipschitz setting, where each sample function f (+; s) arrives with a value Ly which is an overestimate

of its Lipschitz constant, such that EL? is bounded for all j € [k] (see Assumption 2). As motivation,
consider the problem of learning a generalized linear model (GLM), where f(-;s) = o((-,s)) for a
known convex activation function o. Typically, the Lipschitz constant for f(-;s) is simply the
Lipschitz constant of o times ||s||, which can be straightforwardly calculated. Thus, for GLMs, our
known Lipschitz heavy-tailed assumption amounts to moment bounds on the distribution P.

Our second result, Theorem 2, shows a natural strategy obtains optimal rates in this known Lips-
chitz setting, eliminating logarithmic factors from Theorem 1. As mentioned previously, this result
applies to the important family of GLMs. Our algorithm is based on a straightforward reduction
to the uniformly Lipschitz setting: after simply iterating over the input samples, and replacing
samples whose Lipschitz constant exceeds a given threshold with a new dummy sample, we show
existing Lipschitz DP-SCO algorithms then obtain the optimal heavy-tailed excess population loss
(2). Despite the simplicity of this result, to the best of our knowledge, it was not previously known.

Efficient algorithms for smooth functions (Sections 5 and 6). Finally, we propose algo-
rithms with improved query efficiency for general smooth functions or smooth GLMs, with moder-
ate smoothness bounds. Our strategy is to analyze the stability of clipped-DP-SGD in the smooth
heavy-tailed setting, and use localization-based reductions to transform a stable algorithm into a
private one [FKT20]. This results in linear-time algorithms for the smooth case with near-optimal
rates. In order to prove the privacy of our smooth, heavy-tailed algorithm, we analyze a care-
ful interplay of our clipped stochastic gradient method with the sparse vector technique (SVT)
[DNR109, DR14]. At a high level, our use of SVT comes from the fact that under clipping, smooth
gradient steps no longer enjoy the type of contraction guarantees applicable in the uniform Lips-
chitz setting (see Fact 3), so we must take care not to clip too often. The SVT is then used to
ensure privacy of our count of how many clipping operations were used. In Appendix B, we provide
a simple counterexample showing that the noncontractiveness of contractive steps, after applying
clipping, is inherent. Our general smooth heavy-tailed DP-SCO result is stated as Theorem 3.

We believe the use of SVT within an optimization algorithm to ensure privacy may be of independent
interest, as it is one of few such instances that have appeared in the private optimization literature
to our knowledge; it is inspired by a simpler application of this technique carried out in [AL24].

On the other hand, we make the simple observation that for GLMs, clipping cannot make a
contractive gradient step noncontractive, by taking advantage of the fact that the derivative of
f(z;s) = o((x, s)) is a multiple of s for any x € X (see Lemma 14). We use this observation to

4We mention that an alternative route to obtaining a near-optimal high-probability rate was given slightly earlier
in [SZ23], but lost a polylogarithmic factor in the failure probability. We also wish to acknowledge that in an
independent and concurrent work [JST24] involving the third author, the authors slightly sharpened and generalized
the result of [SZ23], which inspired us to consider this application of our population-level localization framework.



give a straightforward adaptation of the smooth algorithm in [FKT20] to the heavy-tailed setting,
proving Theorem 4, which attains both a linear gradient query complexity and the optimal rate (2).

1.2 Prior work

The best-known rates for heavy-tailed DP-SCO were recently achieved by [KLZ22, LR23|. As
discussed previously, their results do not provide the same optimality guarantees as our Theorem 1.
The rate achieved by [LR23]| is polynomially worse than the optimal loss (2) for any constant k. On
the other hand, the work of [KLZ22| uses a different assumption on the gradients than Assumption 1,
which is arguably more nonstandard: in particular, they require that the k*-order central moments
of each coordinate V; f(x;s) is bounded. Moreover, their algorithms require each sample function
f(-; s) to be B-smooth, and the final rates have a strong dependence on the condition number xk = g
where ) is the strong convexity parameter (see Appendix C in [LR23| for additional discussion).

Our result in the heavy-tailed setting assuming [S-smoothness of sample functions, Theorem 3, is
most directly related to Theorem 15 of [LR23|. Our results and results in [LR23|, respectively

require
1
oGk s 7 _ofCr (IN"
B—O(D € \/;> andB-O(D <6n ,

omitting logarithmic factors in our bound for simplicity to obtain near-optimal rates. These regimes
are different and not generally comparable. However, we find it potentially useful that our upper
bound on /3 grows as more samples are taken, whereas the [LR23] bound degrades with larger n. It
is worth mentioning that |[LR23|’s Theorem 15 shaves roughly one logarithmic factor in the error
bound from our Theorem 3. On the other hand, Theorem 3 actually requires a looser condition
than mentioned above (see (20)), which can improve its guarantees in a wider range of parameters.

Finally, we briefly contextualize our population-level localization framework regarding previous
localization schemes proposed by [FKT20]. The two localization schemes in [FKT20] (see Sections
4.1 and 5.1 of that work) both follow the same strategy of gradually improving distance bounds to a
minimizer in phases. However, their implementation is qualitatively different than our Algorithm 2,
preventing their direct application in our algorithm. For instance, Section 4.1 of [FKT20] does
not use strong convexity, and therefore cannot take advantage of generalization bounds afforded
to strongly convex losses (see discussion in [SSSS09]). On the other hand, the scheme in Section
5.1 of [FKT20] serves a different purpose than Algorithm 2, aiming to reduce strongly convex
optimization to non-strongly convex optimization; our Algorithm 2, on the other hand, directly
targets non-strongly convex optimization. We view our approach as complementary to these prior
frameworks and are optimistic it will find further utility in applications.

2 Preliminaries

General notation. We use [d] to denote the set {i € N | ¢ < d}. We use sign(z) € {£1} to
denote the sign for € R, with sign(0) = 1. We use N(u, X) to denote the multivariate normal
distribution of specified mean and covariance. We denote the all-ones and all-zeroes vectors of
dimension d by 14 and 04. We use ||-|| to denote the Euclidean (¢2) norm. We use I to denote the
identity matrix on RY. We use B(C) to denote the 3 ball of radius C, and for € R? B(z, C) is
used to denote {2’ € R? | ||la’ — || < C}. For a set X C R?, we let diam(X) := sup, ey ||z — 2|,
and we let Iy (z) denote the Euclidean projection of = to X, i.e. argming ¢y |2’ — z||, which exists



and is unique when X’ is compact. We use fy to denote the restriction of a function f to X, i.e.

) f(@) zeXx
fx(w){oo T ()

For 2 € R?, we use Ilg(x) as shorthand for Hgo) (), i.e. Ilg(X) denotes the clipped vector z -

min(ﬁ7 1). We say two datasets D, D’ are neighboring if they differ in one entry, and |D| = |D'|.
We say © € X is an e-approximate minimizer to f : X — R if f(z) — infzxcx f(2*) < e. For two

densities u, v on the same probability space, and a > 1, we define the a-Rényi divergence

Datul) = —1os ([ (M) avte)).

For an event £ on a probability space clear from context, we let l¢ denote the 0-1 indicator of £.
We say f: X — Ris L-Lipschitz if | f(z) — f(2')| < L ||x — 2/|| for all z,2’ € X; if f is differentiable
and convex, an equivalent characterization is ||V f(z)|| < L for all z € X. Wesay f: X — R is
p-strongly convex if f(Ax' + (1 — XN)z) < A f(2') + (1 —N)f(z) — %_)‘) |z — 2/||? for all z,2’ € X.
We say differentiable f : X — R is S-smooth if for all z,2’ € X, |V f(z) — Vf(2)] < B |l — 2|
The subgradient set of a convex function f: X — R at x € &X' is denoted Jf(x).

Differential privacy. We begin with a definition of standard differential privacy.

Definition 1 (Differential privacy). Let ¢ > 0, 6 € [0,1]. We say a mechanism (randomized
algorithm) M : 8™ — Q satisfies (g,0)-differential privacy (alternatively, M is (¢,8)-DP) if for any
neighboring D, D" € 8™, and any S C Q, Pr[M(D) € S] < exp(e) Pr[M(D’) € S] +4.

More generally, for random variables X,Y € Q satisfying Pr[X € S] < exp(e) Pr[Y € S|+ ¢ for all
S CQ, we say that X,Y are (e,9)-indistinguishable.

Throughout the paper, other notions of differential privacy will frequently be useful for our account-
ing of privacy loss in our algorithms. For example, we define the following variants of DP.

Definition 2 (Rényi DP). Let « > 1, ¢ > 0. We say a mechanism M : 8™ — Q satisfies (a, €)-
Rényi differential privacy (RDP) if for any neighboring D, D’ € 8", Do(M(D)||M(D")) < e.

Definition 3 (CDP). Let p > 0. We say a mechanism M : 8™ — Q satisfies p-concentrated
differential privacy (alternatively, M satisfies p-CDP) if for any neighboring D,D" € 8™, and any
a 21, Da(M(D)|M(D')) < ap.

For an extended discussion of RDP and CDP and their properties, we refer the reader to [BS16,
Mir17, BDRS18|. We summarize the main facts about these notions we use here.

Lemma 1 ([Mirl7]). RDP has the following properties.

1. (Composition): Let My : 8™ — Q satisfy («,e1)-RDP and Mgy : 8™ x Q — ' satisfy («,e2)-
RDP for any input in Q. Then the composition of Ma and My, i.e. the randomized algorithm
which takes D to Ma(D, M1(D)), satisfies (o,e1 + €2)-RDP.

2. (RDP to DP): If M satisfies (v, €)-RDP, it satisfies (¢ + 1 log },6)-DP for all § € (0,1).

3. (Gaussian mechanism): Let f : S™ — R? be an L-sensitive randomized function for L > 0, i.e.
for any neighboring D, D', we have || f(D) — f(D')|| < L. Then for any o > 0, the mechanism
which outputs f(D) + & for & ~ N(04,0°1) satisfies %-C’DP.



Private SCO. Throughout the paper, we study the problem of private stochastic convex opti-
mization (SCO) with heavy-tailed gradients. We first define the assumptions used in our algorithms.

Assumption 1 (k-heavy-tailed distributions). Let X C R? be a compact, convex set. Let P be
a distribution over a sample space S, such that each s € S induces a continuously-differentiable,
convex, Lg-Lipschitz loss function f(;s) : X — R,5 where Ly := maxgex |V f(z;5)| is unknown.
For k € N satisfying k > 2, we say P satisfies the k-heavy tailed assumption if, for a sequence of
monotonically nondecreasing {G;}jep,® we have Egp[LE] < G < oo for all j € [K].

In Section 4, we consider a variant of Assumption 1 where we have explicit access to upper bounds
on the Lipschitz constants Lg, formalized in the following definition.

Assumption 2 (Known Lipschitz k-heavy-tailed distributions). In the setting of Assumption 1,
suppose that for each s € S we know a value Ly > Lg. For k € N satisfying k > 2, we say P satisfies
the known Lipschitz k-heavy tailed assumption if, for a sequence of monotonically nondecreasing
{Gj}jelk), we have Eswp[L)] < Gg < oo for all j € [K].

Note that Assumption 2 clearly implies Assumption 1, but gives us additional access to Lipschitz
overestimates with bounded moments. Our goal is to approximately optimize a population loss over
sample functions satisfying Assumptions 1 or 2, formalized in the following.

Definition 4 (k-heavy-tailed private SCO). In the k-heavy-tailed private SCO problem, X C R is a
compact, convez set with diam(X') = D. Further, P is a distribution over a sample space S satisfying
Assumption 1. Our goal is to design an algorithm which provides an approrimate minimizer in
expectation to the population loss, Fp(x) := Esup [f(x;5)], subject to satisfying differential privacy.
We say such an algorithm queries N sample gradients if it queries V f(x;s) for N different pairs
(z,8) € X x S. If P further satisfies Assumption 2, we call the corresponding problem the known
Lipschitz k-heavy-tailed private SCO problem.

We first observe the following consequence of Assumption 1.

Lemma 2. Let P be a distribution over S satisfying Assumption 1. Then Fp is G1-Lipschitz.

Proof. This follows from the derivation

; < ; < ; < .
ma o [VF(23.9)]| < mavs o [VF(235)]| < Eynop max |95 a55) | < G

We require the following claim which bounds the bias of clipped heavy-tailed distributions.
Fact 1 ([BD14], Lemma 3). Let k > 1 and X € R% be a random vector with E[|| X||*] < G*. Then,

Gk

ETo(X) = X[ < B[ X lx)>c] < - DoF T

We also use the following standard claim on geometric aggregation.

5The assumed moment bounds shows that f (; s) has a finite Lipschitz constant, except for a probability-zero set
of s. Moreover, convex functions are differentiable almost everywhere. Therefore, if f(-;s) is Lipschitz, perturbing
its first argument by an infinitesimal Gaussian makes it differentiable at the resulting point with probability 1, and
negligibly affects the function value. For this reason, we assume for simplicity that f(-;s) is differentiable everywhere.
5This assumption is without loss of generality by Jensen’s inequality.



Fact 2 ([KLL*23], Claim 1). Let S := {xi};c;) C R? have the property that for (unknown) z € R?,
{i € [k] | |x; — 2|| < R}| > 0.51k for some R > 0. There is an algorithm Aggregate which runs in
time O(dk?) and outputs x € S such that ||z — z|| < 3R.

Finally, given a dataset D € S&* of arbitrary size, and A > 0, we use the following shorthand to
denote the regularized empirical risk minimization (ERM) objective corresponding to the dataset:

Fp () : ’D’S;Jfﬂfs *HfUH (5)

When A = 0, we simply denote the function above by Fp(x) := |—é| Y osep f(T58).

3 Heavy-Tailed Private SCO

In this section, we obtain near-optimal algorithms (up to a polylogarithmic factor) using a new
population-level localization framework, combined with a geometric aggregation strategy for boost-
ing weak subproblem solvers to succeed with high probability (Fact 2). Our algorithm’s main
ingredient, given in Section 3.1, is a clipped DP-SGD subroutine for privately minimizing a regular-
ized ERM subproblem, under a condition on a randomly sampled dataset which holds with constant
probability. Next, in Section 3.2 we show that our algorithm from Section 3.1 returns points near
the minimizer of a regularized loss function over the population, using generalization arguments.
Finally, we develop our population-level localization scheme in Section 3.3, and combine it with our
subproblem solver to give our overall method for heavy-tailed private SCO.

3.1 Strongly convex DP-ERM solver

We give a parameterized subroutine for minimizing a DP-ERM objective Fp )(x) associated with a
dataset D and a regularization parameter A > 0 (recalling the definition (5)). In this section only,

for notational convenience we identify elements of D with [n] where n := |D|, so we will also write
Fpa(x Z filz) + 5 HxH
ze [n]

i.e. we let fi(-) := f(:;s) where s € D is the element identified with i € [n]. Our subroutine is a
clipped DP-SGD algorithm (Algorithm 1), which only clips the heavy-tailed portion of VFp y (i.e.
the sample gradients), and leaves both the regularization and additive noise unchanged. The utility
of Algorithm 1 is parameterized by the following function of the dataset:

b = max || - 37 Vi) - 3 (V@) (6)

1€[n] 1€[n]

In other words, bp denotes the maximum bias incurred by the clipped gradient of F)p when compared
to the true gradient, over points in &X’; note the maximum is achieved as X’ is compact.

We are now ready to state our algorithm, Clipped-DP-SGD, as Algorithm 1.
We provide the following guarantee on Clipped-DP-SGD, by modifying an analysis of [LSB12].
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Algorithm 1: Clipped-DP-SGD(D, C, A, {nt }+e(1) o2, T,r,X)

Input: Dataset D € S™, clip threshold C' € R>, regularization A € R>, step sizes
{n}1er) C R0, noise 0® € Rxo, iteration count T € N, radius r € R>o, domain X C B(r) with
X 3 04
zg Oy
for 0 <t < T do
& ~ N(@d, UQId)
gt < %Zie[n] He(V fi(wt))
w1 4 argmingey, {ne (3 + &, @) + 5 |2]* + § o — 2%}
end

2o<t<r(t+4)ze

Return: 7 + S ocror (7D

Proposition 1. Let p > 0, and & be the output of Clipped-DP-SGD with n, <+ ﬁ for all
0<t<T, 0%« 25225, and T > max(n, %p) Clipped-DP-SGD satisfies p-CDP, and

3202%d @ TAr2

E[Fp(Z) — Fpa(z®)] < % 3 m_— where £* := arwgerr/%in Fp \(z).

Proof. For the privacy claim, note that each call to Line 3 is a postprocessing of a %—sensitive

statistic of the dataset D, since neighboring databases can only change % Zie[n] Ie(Vfi(xy)) by %

in the £5 norm, via the triangle inequality. Therefore, applying the first and third parts of Lemma 1
2

shows that after T iterations, the CDP of the mechanism is at most 7" - 2200 7 < p.

n

We next prove the utility claim. For each 0 < ¢ < T, denote
1
Ay = E[Fpa(zi) — Fpa(z®)], ¢ :=E [2 | — ﬁ”ﬂ , gt == VFp(x),

where all expectations are only over randomness used by the algorithm, and not the randomness in
sampling D. First-order optimality applied to the definition of z;4; implies, for all 0 < ¢ < T,

(e + &2 — ) + Qs oo —2%) < oo (Il =2 = oo — 1) + 5 130+ &01

S -
21y
Adding (g — g1 — &, x¢ — x*) to both sides and rearranging shows

A A
Fp(x) + 5 zesa]® — Fp(2*) + 5 |21 — 2*)° < (ge, 1 — &%) + (AZeg1, Teg1 — 77)

1
< 5 (o =21 = e — 27)?)

2m
+ g0 + &l + {ge — e — &m0 — )
1
< ok 2_ Lk 2)
A i

+ 0 C% e |61 + bp [l — 2| — (&0 — )

In the first line, we used strong convexity of the function %||:c||2, and in the last line, we used
la +b|[> < 2|lal|* + 2|b]|* and the definitions of C' and bp. Next, adding 3 (||z¢|* — ||lze1]®) to



both sides above and taking expectations over the first ¢ iterations yields

1 b2 A A
A+ APy < 77 (Dy — Pry1) + 77t(C2 + 02d) + TD + 5@ + 5 <[E HﬂUtH2 -k Hﬁ?t+1H2> )
¢

2
where we used the Fenchel-Young inequality to bound bp ||z; — z*|| < bTD + 3 ||l — 2*||>. Now,

plugging in our step size schedule 7, = ﬁ, multiplying by ¢ + 4, and rearranging shows
t+3)(t+4 At+5)(t+4
(t+4)A; < Al i( )(I)t _ A i< )(I)t+1
4(t +4) 3C2Td (t+4)b%  A(t+4) 9 9
E —E
D) + 2+ B (E e — E )

where we plugged in the choice of o2 and T > %, so C? < %. Summing the above for 0 <t < T,
using that all iterates and z* lie in B(r), and dividing by Z := 3 o, o (t +4) > T;, shows

1 3Py 16C2T2d b2, A 9
< e E
7 g, T a v +3z 2 Elal
0<t<T te[T]

6 2 32C2%d  b%  Ar? <3202d b2, TAr?

<2 27 o -2 .
_T2+)\n2p+)\ T_An2p+)\ T

The conclusion follows from convexity of Fp , the definition of &, and T > n. O

For ease of use of Proposition 1, we now provide a simple bound on bp which holds with constant
probability from a dataset drawn from a distribution satisfying Assumption 1.

Lemma 3. Let D ~ P", where P is a distribution over S satisfying Assumption 1. With probability
at least %, denoting bp as in (26), we have

5GF
bp < — kB
P = (k—1)Ck1

Proof. For every s € S let 2*(s) := argmax,cy |V f(z;s) — Hc(V f(x;5))|l. Then, we have

1
Ep~pn[bp] = Ep~pn max || -~ Z Vfi(z) — — Z He(V fi(x
i€[n] ze [n]
1
P [V i) - HCNfi(x))H]
E IV (s)ss)]*] Gt

= Eop [[IVf(27(s); ) = Le(Vf(27(s); 9))[] <

G—DCFT S (e—DoF T

The last line used independence of samples, used Fact 1 on the random vector V f(z*(s);s), and
applied Assumption 1 with the definition of 2*(s). The conclusion uses Markov’s inequality. O

We therefore have the following corollary of Proposition 1 and Lemma 3.

10



Corollary 1. Let D ~ P", where P is a distribution over S satisfying Assumption 1, and let x7, =
argmin,c y Fp z(x), following (5). If we run Clipped-DP-SGD with parameters in Proposition 1 and

1
25n2p> 2%

C(—Gk'< 32d

Clipped-DP-SGD is p-CDP, and there is a universal constant Cen such that with probability > %
over the randomness of D and Clipped-DP-SGD, %, the output of Clipped-DP-SGD, satisfies

-}
sl = Cen (S (2)

) T

Clipped-DP-SGD queries at most max(n?, "%p) sample gradients (using samples in D).
Proof. Condition on the conclusion of Lemma 3, which holds with probability %. Therefore,
Markov’s inequality shows that with probability at least %, after a union bound with Lemma 3,

A

~ 2 ~
5 11— pa|l” < Poa(2) — Poa(ah,y)
160C%d  125G2% Ta? _ 320G} < d >1‘i LT

n2p Yoz I Wl WP

9

n2p n

where we used strong convexity in the first inequality, and plugged in our choice of C' in the last. The
conclusion follows by rearranging the above display, and using va? + > < a+b for a,b € R>g. O

3.2 Localizing regularized population loss minimizers

In this section, we use generalization arguments from the SCO literature to show how Clipped-DP-SGD
acts as an oracle which, with a constant probability of success, returns a point which is near the
minimizer of a regularized population loss. We begin with a standard helper statement.

Lemma 4. Let A\ > 0, let P be a distribution over S satisfying Assumption 1, let T € X where
X C R is compact and conver, and let

:1:§\j = arfélvin {Fp(:c) + % |l — x\|2} , where Fp(x) := Esup [f(x;9)]. (7)
Then ||z — 23 4| < %
Proof. Let r := ||z — 2*||. By strong convexity and the definition of 7 ,,
Ar? _ A 192 _
5 S Fp(@) = Fp(a”) — 5 lla" —2|” < Fp(z) — Fp(a7™) < Gur.
Here, we used that Fp is G1-Lipschitz (Lemma 2), and rearranging yields the conclusion. O

Next, we apply a result on generalization due to [LR23| to bound the expected distance between a
restricted empirical regularized minimizer and the minimizer of the population variant in (7).

11



Lemma 5. Let A > 0, let D ~ P"™ where P is a distribution over S satisfying Assumption 1, and
let T € X where X C R? is compact and convex. Following notation (4), (5), let

. A B 20
Y -= alglnii {[FD][B(I,T) (z) + 5 |z — 30”2} , Jorri= Tl
reX
and let x;f be defined as in (7). Then with probability > 0.95 over the randomness of D ~ P™,

ly — 5.0, < 252
ATl = )\\/ﬁ

Proof. For each f(x;s), define a restricted variant f(z;s) := fe(z,r) (7;s), and let Fp:=E,usf(-:9).
Similarly, define ﬁp to be the restricted variant of the empirical loss Fp. Because 157; is pointwise
larger than Fp and «3} . € B(Z,r) by Lemma 4, it is clear that

~ A
x}) ; = argmin {Fp(:ﬂ) + = ||z — a‘c||2} ,
’ reX 2

and y is the minimizer of the empirical (restricted) variant of the above display. Moreover, each
of the regularized functions f(z;s) + % |z — Z||* has a Lipschitz constant at most A\r = 2G larger
than its unregularized counterpart in X N B(Z,r), so these functions satisfy the moment bound in
Assumption 1 for j = 2 with a bound of 2G3 + 8G?. Now, applying Proposition 29, [LR23| yields

E :(ﬁp(y) + % ly — $||2) - <ﬁ7>(“53w) * % 3.2 = $H2>}
— | (Folw) + 5 Iy =al) = (Folata) + 5 kel

+E :(ﬁp(y) + % ly - fll2> - <ﬁD(y) * % v = 5”2”

4G3 +16G3  4G% +16G3 - 20G2

<0+

An An - An
The first equality used that 7 . is independent of sampling D, and the second used 2 is the empirical
risk minimizer. The conclusion follows from Markov’s inequality and strong convexity. O

Corollary 2. Let D ~ P", where P is a distribution over S satisfying Assumption 1, and let T € X
where X C R? is compact and convex. Let X > 0 and define x} . as in (7). There is a p-CDP
algorithm A which queries max(n?, %) sample gradients (using samples in D). With probability
0.55 over the randomness of A and D, A returns & satisfying, for a universal constant Creg-pop,

a (Vi) G
A\ nyp A/n

A~

*
i .Z')\",E

‘ < C’reg—pop

Proof. Condition on the conclusion of Lemma 5 holding for our dataset, which loses 0.05 in the
failure probability. Next, consider the guarantee of Corollary 1, when applied to the truncated
and shifted functions, f(x;s) < fg@,(* — Z;s), where r is set as in Lemma 5. It shows that with

probability 2, || +z — y| = O(%(n—‘/glp)l_% + %) , for the point Z returned by the algorithm, and

y the exact minimizer of the empirical loss restricted to B(z,r). Therefore, the conclusion follows by
overloading & < % + Z, applying the triangle inequality with the conclusions of Corollary 1 and 2,
and taking a union bound over their failure probabilities. O

12



3.3 Population-level localization

In this section, we provide a generic population-level localization scheme for stochastic convex
optimization, which may be of broader interest. Our localization scheme is largely patterned off of
the analogous localization methods developed by [FKT20|, but directly argues about contraction
to population-level regularized minimizers (as opposed to empirical minimizers), which makes it
compatible with our framework in Section 3.1 and 3.2, specificially the guarantees of Corollary 2.

Algorithm 2: Population-Localize(xg, P, A\, I)

Input: Initial point zg € X, distribution P over samples in S, for X, S inducing a
k-heavy-tailed DP-SCO problem as in Definition 4, with a population loss Fp := Esws[f(+;s)],
A>0,IeN
2 for i € [I] do
Ai 4 X320
x; < any point satisfying

7

A4 Ai
<5 where 2 := argmin {Fp(x) + EI |z — $z’1||2} (8)
i zeX

5 end
6 Return: z;

Proposition 2. Following notation of Algorithm 2, let x* := argmin,cy Fp(x). Then,

Gi1A A% \D?
F. —Fp(a*) < =+ = 4

In particular, choosing A to optimize this bound, we have

. GiIA
Fp(zg) — Fp(z*) < 2D\/$ + DA.

Proof. We denote zf) := 2™ throughout the proof. First, we expand
Fp(zr) — Fp(a() = Fp(zr) — Fp(a]) + Fp(z]) — Fp(xf)

= Fp(x) — Fp(a}) + Y Fp(a}) — Pp(afy).
€[]

Moreover, for each i € [I], since x} minimizes Fp(z) + 3 ||z — i1,

)\‘ 2 )\ 2
5 ot =z < Fp(efy) + 5 [|lafy — e
Combining the above two displays, and using that Fp is Gp-Lipschitz (Lemma 2), we have

Fp(a}) < Pp(ay) +

Ai
Fp(er) = Fp(a*) < Gy llar =3l + Y 5 oty —ziaa |
i€(l]
G1A A%16°  AD?  GiA A% \D?
<t T 0

< -
‘ 2)\i+2_)\81+4>\+27
1e[I—-1]

where we used the diameter bound assumption diam(X) = D, as in Definition 4. O
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In particular, note that Corollary 2 shows that by using n samples from P and a CDP budget of p,
with constant probability, we can satisfy the requirement (8) with

1—1
. Vd\ " G
AL =0 | Gy | — + —=

By plugging this guarantee into the aggregation subroutine in Fact 2, we have our SCO algorithm.

Algorithm 3: Aggregate-ERM(Z, A, J, p, {s¢}ecpn)s R)

Input: Regularization center € X, regularization A € R>(, sample split parameter J € N,
privacy parameter p € R>o, samples {s¢} e[y C S, distance bound R € R>g

for j € [J] do
D'j {80} (j—1)n<t<jn for all j € [J]
27 + result of Corollary 2 using D7, on loss defined by Z, A with privacy parameter p
end
x + Aggregate({a’} je(s), R) (see Fact 2)
Return: z

Theorem 1. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
let x* := argmin, cy Fp(z), and let p > 0, § € (0,1). Algorithm 2 using Algorithm 3 in Line 5 is a
p-CDP algorithm which draws D ~ P", queries Cseo max(n?, %) sample gradients (using samples
in D) for a universal constant Csco, and outputs x € X satisfying, with probability > 1 — ¢,

Vdlog (% 1% oo (1
Fp(z) — Pp(2") < Csco Gk”(n(zg[p(a) +GyD- Ogn(é)

Proof. Throughout, we assume that % is at least a large enough constant (where lossiness can be
absorbed into Cyc), and that n is at least a sufficiently large constant multiple of log % (because the
entire range of Fp is < G2D). We first handle the case where % is larger than polylog(n), deferring
the case of small % to the end of the proof. Let I, J € N be chosen such that

I= [logg (%)J Je [40010g (f;) ,5001og (é)] ,

which is achievable with I = O(logn) and J = O(log 1°§”) = O(log}). Let m := 2, and assume
without loss that m is a power of 2, which we can guarantee by discarding < % our samples, losing
a constant factor in the claim. For each i € [I], let m; := 5. We subdivide D into J portions, each
with m samples, and subdivide each portion into I parts each with m; samples. For j € [J] and

i € [I], we denote the samples corresponding to the i part of the 5 portion by D7, so

| U D! D, D} =m;forall j € J], DIND} =0 for all (i,5) # (i, j).
ieln) jely]

Next, we show how to implement Line 5 in Algorithm 2, for an iteration ¢ € [I], by calling Algo-
rithm 3 with appropriate parameters. Let n < m;, p < p, and initialize Algorithm 3 with the

14



dataset Uje[J}Dg and R := A)\—‘ji, where

v\ o

A = 3Chreg-pop | G - (

By Corollary 2, each independent run outputs xf € X satisfying, with probability 0.55,

<
= \;

1-1 ;
C'reg-pop Gk . \/g + G2 < A4 _ E (9)
ml\/ﬁ A/ TG 3)\1 3

Therefore, by a Chernoff bound, with probability > 1 — % at least 0.51J of the copies satisfy the
above bound, so Fact 2 yields z; satisfying ||z; — 27|| < R = A/\f with the same probability. Union
bounding over all I iterations of Algorithm 2 yields the failure probability, and so we obtain the
claim from Proposition 2, after plugging in n = O(m log(%)), since the dominant term is DA. The
privacy proof follows from the first part of Lemma 1 since for each pair of neighboring databases,
exactly one of the datasets D/ are neighboring, and Corollary 2 guarantees privacy of the empirical
risk minimization algorithm using that dataset; privacy for all other datasets used is immediate
from postprocessing properties of privacy. The gradient complexity comes from aggregating all of
the IJ calls to Corollary 2, where we recall the sample sizes decay geometrically.

Finally, if % is smaller than polylog(n), for the ith iteration of Algorithm 2 we instead set J; €
[400 log(é), 500 log(é%)] where §; := % Then we subdivide a consecutive batch of ; samples into
J; portions, and follow the above proof. It is straightforward to check that (9) still holds with the
new value of m; = LQZLJZJ because the 4° factor growth on the right-hand side continues to outweigh

the change in m;. The error bound follows from Proposition 2, and the privacy proof is identical. [

3.4 Strongly convex heavy-tailed private SCO via localization

Finally, by following the template of standard localization reductions in the literature (see e.g.
Theorem 5.1, [FKT20| or Lemma 5.5, [KLL21]), Theorem 1 obtains an improved rate when all
sample functions are strongly convex. For completeness, we state this result below.

Corollary 3. In the setting of Theorem 1, suppose f(x;s) is p-strongly convex for all s € S. There
is an algorithm which draws D ~ P", queries Cseo max(n?, %p) sample gradients (using samples in

D) for a universal constant Cseo, and outputs x € X satisfying, with probability > 1 — 0,

1
2 (dog® (1)) G2 log (L
zwmdwmg@mGh(%yﬂ> L G5 los(})
7 n2p pooom

Proof. This is immediate from the development in Section 5.1 (and the proof of Theorem 5.1) of
[FKT20], but we mention one slight difference here. Our guarantees in Theorem 1 do not scale with
the initial distance bound to the function minimizer, and instead scale with the domain size, which
makes it less directly compatible with the standard localization framework in [FKT20]. However,
because Theorem 1 holds with high probability, we also have explicit bounds on the domain size
via function error, as seen in the proof of Theorem 5.1 in [FKT20], so we can explicitly truncate
our domain to have smaller domain without removing the minimizer. With this modification, the
claim follows directly from Theorem 5.1 in [FKT20]. O
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4 Optimal Algorithms in the Known Lipschitz Setting

Compared to the standard Lipschitz setting (i.e. the oo-heavy-tailed private SCO problem), our
algorithm in Section 3 has two downsides: it pays a polylogarithmic overhead in the utility, and
it requires an extra aggregation step. In this section, assuming we are in the known Lipschitz k-
heavy-tailed setting (see Assumption 2, Definition 4), we provide a simple reduction to the standard
Lipschitz setting, resulting in optimal rates. To this end, we require some additional definitions
used throughout the section. First, we augment S with a designated element sy € S, and define

f(z;80) =0 forall z € X. (10)

We also define a truncated distribution parameterized by C' > 0, where we use f(-;sg) in place of
sample functions with large Lipschitz overestimates, following notation of Assumption 2:

[Oass) = {jﬁgz) T Fowise) = fwiso), B (i) = Eeup [FCwis)] . (1)

We denote Sy := S U {sg}, and for D € S", the dataset D € S} replaces all s € D satisfying
L, > C with sg. We additionally provide a second reduction in the known Lipschitz heavy-tailed
setting, when all sample functions are assumed to be p-strongly convex. Because our treatments of
these cases are slightly different, we use different notation when p = 0 and p > 0, for convenience
of exposition. Fixing an arbitrary point £ € X', for u > 0, instead of using the constant 0 function
as in (10), we define a strongly convex alternative f(-;s,), for a designated element s,:

flxysy) = g”:n — Z||?, forall z € X. (12)

The truncated distribution parameterized by C' > uD, is defined in a similar way:

f(z;s) C

We denote S, := S U {s,}, and for D € ", the dataset DE € §, replaces every s € D such that
Ls > C with s,. Our focus on the regime C' > % is motivated by the following well-known claim.

1O (@;s) = {f ) B S s = S, S w) = B [ 0] (19

Lemma 6. Let X C R? be compact and convex satisfying diam(X) = D, and suppose f: X — R is
L-Lipschitz and p-strongly conver. Then, L > %.

Proof. Let x* := argmin,cy f(z). By strong convexity, for all x € X,
K * 12 * *
5 le = 2"l1" < f(2) = f(2") < Lz —2™].

Now, choose x such that ||z —z*| > %. To see this is always possible, let z,2’ € X realize
|z — 2/|| = D; then at least one of x, ' must have distance > £ from z* by the triangle inequality.

The conclusion follows by rearranging after using our choice of z. O

In other words, if C' < % then no sample function will survive the truncation in (13). Finally, we
parameterize the performance of algorithms in the standard Lipschitz setting.

16



B = NV, B N JUR )

Definition 5 (Lipschitz private SCO algorithm). We say A is an L-Lipschitz private SCO algorithm
if it takes input (D, p, X), where D € 8™ is drawn i.i.d. from P, a distribution over S where every
s € S induces L-Lipschitz f(-;s) over X C R, A(D,p,X) € X, and A satisfies p-CDP. We denote

Err(A) = E4 [Fp (A(D, p, X)) ~ min Fip(),
where Fp(z) := Eswpf(x;s), and denote the number of sample gradients queried by A by N(A).

Moreover, if each Lipschitz function f(;s) is u-strongly convex over the convex domain X, we say
A is an L-Lipschitz, p-strongly convex private SCO algorithm, and define Err(A), N(A) as before.

With this notation in place, we state our reduction.

Algorithm 4: KnownLipReduction(D, C, u1, p, X, A)

Input: Dataset D € §™, clip threshold C' € R>¢, strong convexity parameter i € R>q, privacy
parameter p € Ro, domain X € R?, C-Lipschitz private SCO algorithm A (if x4 = 0), or
C-Lipschitz p-strongly convex private SCO algorithm A (if x> 0)

if 4 =0 then

‘ Return: A(D%, p, X)
end
else

‘ Return: A(Dg,p, X)
end

We begin with a simple bound relating Ff Fg # and Fp.

Lemma 7. Let Fp be defined as in Definition 4, where P satisfies Assumption 2, and define Fg

. C . . Cu - Gk 4GFTL .
as in (11). Then, Fp — F is -Lipschitz, and Fp — Fp't is (k—l)lgjk71 + —g—-Lipschitz.

Gy
=D CF 1
Proof. For s € S, let m(s) := s if Ly > C, and otherwise let 7(s) := s. For any z,2’ € X, we have

(Fp(z) — F§ (2)) — (Fp(a2') — FE (2") = Esup [f(238) — f(z;7(s)) — f(2's8) + f(a';7(s))]
= Esop [(f(z35) — f(2';9)) 17, o]

sz
<o [T o=@z, 0) < e

/
(k—1)Ck1 H:c -z H :
In the second line, we used that m(s) = s unless Ly > C, in which case f(-;m(s)) = 0 uniformly.
The last line used the definition of Ly and Fact 1 with X < L,, recalling Assumption 2.

Next, we analyze Fg’“. Overloading 7 (s) := s, if Ly > C, and letting 7(s) := s otherwise,

(Fp(2) - F5"(@)) = (Fp(a') = FE"(@)) = Eop [f(a38) = flaim(s)) = f(a'ss) + flalim(s))]
= Eop [(f(ws5) = f(2's8) + f(2'50) — f(@55,)) Vg o]
< Esop Es Hx - $IH I]ZS>C] + Esp [4Gk Hl’ - le HZS>C]

Gk 4Gk+1
< ((k— 1)kck—1 + Ckk > | — 2’|

In the third line, we used that pD < 4Gy < 4Gj, by Lemma 6 and Lemma 2 to show that f(-;s,)
is 4G-Lipschitz over X'. Finally, the last line used Markov’s inequality to bound [E[HZS>C]' O
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Using Lemma 7, we provide a straightforward analysis of Algorithm 4.

Proposition 3. Consider an instance of known-Lipschitz k-heavy-tailed private SCO (Definition 4),
and let p > 0. If A is a C-Lipschitz private SCO algorithm (Definition 5) and p = 0, Algorithm 4
using A is a p-CDP algorithm which outputs © € X satisfying

GFD
k where x* := argmin Fp(z).

E[Fp(z) — Fp(z")] < Err(A) + (k —1)Ck—1’ zeX

Further, if f(+;s) is u-strongly convex for all s € S and A is a C-Lipschitz, u-strongly convex private
SCO algorithm for u > 0, Algorithm 4 using A is a p-CDP algorithm which outputs x € X satisfying
E[Fp(z) — Fp(z™)] < Err(A)
k 4G 2G% 8GH T
T Gy 1+ 2k Gy sl S 2 Err(A) | ,
(k—1)Ck-1 Ck w(k —1)Ck=1 ~ uCk W

where x* := argmin Fp(x).
TeEX

In either case, Algorithm 4 queries N(A) sample gradients (using samples in D).
Proof. For the first utility claim, letting 2*¢ := argmin,, y Fg (x), we have

E[Fp(x) - Pp(e)] = E [FS(x) — F§ (a")] + E[(Pp(2) — F§ (@) — (Pp(a*) — FS ("))

k
< E[FS(z) — F§ (x*9)] + (/{:—?)}CCH[E (Il = =[] (14)
GrFD
< Err(A) + MW’

where the first inequality used the definition of 2*¢ and Lemma 7, and the second used the definition

of Err and diam(X) = D. For the second claim, we first have
E [% |z — g;*fCHQ} < Err(A)

by the definition of Err(A) and u-strong convexity of Fg’“, so that E[||z — 2z%C||] < (%Err(.ﬁl))l/2
by Jensen’s inequality. Moreover, we also have

g |2*C — 2*||* < Fp(2*) - Fp(a*)

< (Fp(a€) = FE (2°0)) — (Fp(a*) — F§ ("))

Gk 4Gk+1 )
< (= 1 -2

where we use optimality of 2*C in the second inequality, and Lemma 7 in the third. Combining,

2 Gk Telas 2
[E||:r—x*||§lu-( k + —k + ;-Err(A),

(k—1)Ck1 " CF

and then the claim follows by substituting this bound into (14). O
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We can use any existing optimal algorithms for DP-SCO to instantiate our reduction. In particular,
we can use the algorithm of [FKT20|, denoted by Ay, which has the following guarantees. For
simplicity of exposition, we focus on the case where our functions do not possess additional regularity
properties e.g. smoothness, and we also focus on the simplest Apj, which attains the optimal utility
bound. Because of the generality of our reduction, however, improvements can be made by using
more structured or faster subroutines as Ajjp, such as the smooth DP-SCO algorithms of [FKT20] or
the Lipschitz DP-SCO algorithms of e.g. [AFKT21, KLL21, CJJ*23], which are more query-efficient,
sometimes at the cost of logarithmic factors in the utility (in the case of [CJJT23]).

Proposition 4. Let P be a distribution over S such that f(-;s) is L-Lipschitz and convex for all
s € §. There exists a constant Cyi, such that given D ~ S", the algorithm Apip is p-CDP and
outputs Tpriv such that, for a universal constant Clip, letting * := argmin, ¢y Fp(x),

GD LD\/3>

E[Fp(puiv) — Fp(2)] < Cuip- ( Vi e

and Apip queries < Clip max(n?, 2 sample gradients (using samples in D), where Ga is defined

3
d
as in Assumption 1. Moreover, if f(-;s) is p-strongly convex for all s € S, then
G: L%
= + 5 R
pn  pn?p

E[Fp(zpriv) — Fp(2*)] < Clip - <

2

and Apip queries < Clip max(n®, %) sample gradients (using samples in D).

Proof. This follows from developments in [FKT20], but we briefly explain any discrepancies. The
= 0 case applies Theorem 4.8 in [FKT20], where for simplicity we consider the full-batch variant
which does not subsample.” Moreover, Theorem 4.8 in [FKT20] is stated with a dependence on L
rather than G on the n~/2 term, but inspecting the proof shows it only uses a second moment
bound. The p > 0 case follows from Theorem 5.1 of [FKT20], using Theorem 4.8 as a subroutine. [

We are now ready to present our main result in this section, using our reduction with A;p,.

Theorem 2. Consider an instance of known-Lipschitz k-heavy-tailed private SCO (Definition 4), let
p >0, and let z* := argmin,c y Fp(z). Algorithm 4 with C < Gk(n—\\//;)% using Atip in Proposition 4
is a p-CDP algorithm which outputs x € X satisfying, for a universal constant Cyr,

E[Fp(z) — Fp(z)] < Cur <D GiD - vd B
— \/ﬁ n\/ﬁ 7

querying < CyT max(n?, %) sample gradients (using samples in D). Further, if f(-; s) is p-strongly

convex for all s € S, Algorithm 4 with C <+ Gk(%)i using Apip in Proposition 4 is a p-CDP
algorithm which outputs x € X satisfying

G G [ d\'*
E[Fp(z) — Fp(z*)] < Cur | —= + —£ - [ = :
pn o \n?p

querying < Cyt max(n?, "%lp) sample gradients (using samples in D).

"The subsampled variant only satisfies a weaker variant of CDP called truncated CDP, with an upside of using n
times fewer sample gradient queries, but this is less comparable to the lower bounds in [LR23].
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Proof. Throughout the proof, assume without loss of generality that d < n?p, as otherwise all

2
stated bounds are vacuous since the additive function value range over X is at most G1 D < % by
Lemma 6 and Lemma 2. This also implies that C' > G}, in either case.

In the 1 = 0 case, Proposition 3 and the guarantees of Ay, in Proposition 4 imply that
G¥D
_|_ PR —
Ckfl
G2D  CDVd\ & GiD
< Clip - 2= 4 15—1
Vn ny/p C

1—1
G2D vd '\ "
cwen (o (3F) ).

E [Fp(2) — Fp(e*)] < Err(Aup)

where the last inequality follows from our choice of C'. Next, we consider y > 0. Proposition 3 and
the guarantees of Ay, in Proposition 4 for this case imply that, assuming Ci;, > 2 without loss,

. ) 5Gk 2Err(n,d, p,C, D 10G*
E[Fp(z) — Fp(z*)] < Err(ALip) + Ck_’fl (\/ ( MP ) 4 ch—kl>

<cu. g§+02d+5Gg Ga +C\/Zz+ 10G%
=" \wn o opn?p  CR Y\ puy/n pny/p o pCrEL

2 2 -4
g(CLap+61)-(G2+G’“-< ’ ) k)

pn o \n%p

where we used C > G}, to simplify bounds, and applied our choice of C. O

5 Fast Algorithms for Smooth Functions

In this section, we develop a linear-time algorithm for the smooth setting where we additionally
assume f(+; s) is S-smooth for all s € S. Our algorithm attains nearly-optimal rates for a sufficiently
small value of /3, and is based on the localization framework of [FKT20]. To apply this framework,
we show that a variant of clipped DP-SGD (see Algorithm 5) is stable in the heavy-tailed setting
with high probability. We then ensure that stability holds for any input dataset (not necessarily
sampled from a distribution P), by using the sparse vector technique [DR14] to verify that the
number of clipped gradients is not too large. In Section 5.1, we provide some standard preliminary
results from the literature. We use these results in Section 5.2, where we state our algorithm in full
as Algorithm 7 and analyze it in Theorem 3, the main result of this section.

5.1 Helper tools
First, we state a standard bound on the contractivity of smooth gradient descent iterations.

Fact 3 (Lemma 3.7, [HRS16|). Let f : X — R be B-smooth, and let n < % Then for any x,x’ € X,
[z = 2') = n(Vf(@) = V)| < [l= = /]

Next, we provide a standard utility bound on a one-pass SGD algorithm using clipped gradients.
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Algorithm 5: OnePass-Clipped-SGD(D, C,n, T, X, x¢)
Input: Dataset D = {s;},¢7) € ST clip threshold C' € Rxg, step size 7 € R, iteration count
T € N, domain X C B(zg, D) for g € X
for0<t<T do
viy1 < argminge v {n TMo(Vf (26 541)), 2) + 5 o — 2]}
end
Return: & < 7 > ,or ot

Lemma 8. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
and let u € X be independent of D. Assuming D ~ P i.i.d., Algorithm 5 outputs & € X satisfying

2
_ o —ul® _ nG3

E [Fp(2) - Fp(u)] < yGD

2T 2 (k—1)CkT

Proof. To simplify notation, let g, := V f(x; s441) for all 0 < ¢t < T, and let g, := Tc(g:). Because
St4+1 ~ P is independent of x;, we have that Eg; = VFp(x;). Therefore, in iteration ¢,

Fp(xt) = Fp(u) = E[{gt, z¢ — u)]

< E[ge xe — u) + |lgr — Gell D]
1
2

(15)

G2 GED
USSP + k

<
=k > |t oo

1
2 2
llxy — u|® — B |lxer1 — u|” +

where all expectations are conditional on the first ¢ iterations of the algorithm, and taken over the
randomness of s;41. In the third line, we used the first-order optimality condition on x441, applied
Fact 1 to bound E ||g; — §¢||, and used

-2 2
Elg:l* <Ellg:l” < G3. (16)
Summing across all iterations and dividing by T yields the result upon iterating expectations. [
We also note the following straightforward generalization of Lemma 8 to the case of randomized
clipping thresholds, which is used in our later development.
Corollary 4. For C,C >0 and g € R%, define the operation

lc(g) gl =€
Hc’é(g) - {g else .

If Algorithm 5 is run with U (V f(zy; s141)) replaced by I, o (V f (245 S141)) where Cy is independent
of st+1 and satisfies Cy > % for all 0 <t < T, then following notation in Lemma 8,
G¥D

[0 — ul

2
E[Fp(2) — Fp(u)] < 20T + 2nG3 +

Proof. For a fixed iteration 0 < t < T, the calculation (16) changes in two ways. First, in place
of the variance bound (16) (which used [|g|| < [|g:| deterministically), when using the modified
clipping operators we require the modified deterministic bound

lgell < 219l
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which follows because ||g¢|| # ||g¢|| (which implies C = ||g¢||) only if ||g¢|| > % Moreover, in place of
k
the bias bound E ||g; — §¢|| < (k_g# which followed from Fact 1, we instead have

E e (0) - o = 1 gl o | <E[llgell? ]<G2
C,Ct gt gil| = ||gtH |gt HgtHZmaX(Ct,C) — gt HgtIIZ% — (k' . 1)(%)]671

The conclusion follows by adjusting these constants appropriately in Lemma 8. O

Next, for R, 7 > 0, we let BLap(R, 7) denote the bounded Laplace distribution with scale parameter
R and truncation threshold 7 be defined as the conditional distribution of £ ~ Lap(R) on the event
|¢] < 7 (recall that Lap(R) has a density function oc exp(—%[¢|)). It is a standard calculation that

1
Pr <Rlog|=])|=1-9, 17
B 15705 ) an

so that the total variation distance between Lap(R) and BLap(R, Rlog($)) is 6. We hence have the
following bounded generalization of the privacy given by the Laplace mechanism.

Lemma 9. Let ¢,6 € (0,1). If S(D) € R is a A-sensitive statistic of the dataset D, i.e. for
neighboring datasets D, D" we have that |S(D) — S(D")| < A, then the bounded Laplace mechanism
which outputs S(D) + & where & ~ BLap(%,T) for any T > % log(%) satisfies (¢,0)-DP.

Proof. For notational simplicity, let A denote the Laplace mechanism (which samples £ ~ Lap(%)
instead of BLap(%, 7)), let A denote the bounded Laplace mechanism, and let £ C R be an event
in the outcome space. By standard guarantees on (g,0)-DP of A (e.g. Theorem 3.6, [DR14]),

Pr[A(D) € €] < PrA(D) < &) + %

(18)
< exp(e) Pr [A(D') € £] + g < exp(e) Pr [A(D') € &£] + 6,

for any neighboring datasets, where we used exp(e) < 3 and that the total variation distance between
(A(D), A(D)) and (A(D'), A(D')) are bounded by ¢ by (17). O

We also use the sparse vector technique (SVT) [DR14|, which has been used recently in private
optimization in the user-level setting [AL24]. Given an input dataset D = {s;};c[,) € S™, SVT takes
a stream of queries ¢g1,¢o,...,q7r : D — R in an online manner. We assume each ¢; is A-sensitive,
ie. |¢(D) — ¢;(D)] < A for neighboring datasets D, D’ € S™. One notable difference is that our
SVT algorithm will use the bounded Laplace mechanism rather than the Laplace mechanism, but
this distinction is handled similarly to Lemma 9. We provide a guarantee on this variant of SVT in
Lemma 10, and pseudocode is provided as Algorithm 6.

Lemma 10. Let §,e € (0,1) and suppose

R> % clog <§) 7> Rlog <105T> (19)

Algorithm 6 outputs a sequence of answers {a; € { L, T }}icpy for some k € [T], and is (¢,5)-DP.
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Algorithm 6: SVT(D, {¢; }ic(r), ¢, L, R, T)

Input: Dataset D = {s;};c[n) € S", A-sensitive queries {g; : 8" — R};c[7), count threshold
c € N, query threshold L € R, scale parameter R € R>q, truncation threshold 7 € R>g
1< 1, count + 0
b+ L+¢ for { ~BLap(R,T)
while i € [T] and count < ¢ do
& ~ BLap(2R, 27)
if ¢;(D) 4+ & < b then
Output: a; + L
141+1
nd
Ise
Output: a; < T
1 <1+ 1, count < count + 1
b+« L+¢ for & ~BLap(R,T)
end

[CR¢)

end

Halt

Proof. The proof is analogous to Lemma 9. Let A denote SVT run with Laplace noise in place of
bounded Laplace noise (i.e. 7 = o), and let A denote SVT run with bounded Laplace noise. We
first claim that A is (e, g)—DP7 which is immediate from Theorem 3.23 and Theorem 3.20 in [DR14].

Next, by a union bound on all of the < 2T random variables sampled, the total variation distance
between (A(D),. A(D)) for any dataset D is bounded by %. Then, for neighboring datasets D, D’
and some event £ in the outcome space, repeating the calculation (18),

Pr [A(D) € £] <Pr[A(D) € &] + g

<exp(e) Pr[A(D) € €] + g + g < exp(e) Pr[A(D) € €] +6.

5.2 Algorithm statement and analysis

In this section, we present the full details of our algorithm (see Algorithm 7) and prove its corre-
sponding guarantees, separating out the privacy analysis and utility analysis.
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Algorithm 7: Localized-Clipped-DP-SGD(D, ¢, 1, ¢, €, 9)

1 Input: Dataset D € S§7, initial point zg € X, step size n € Rsq, parameters C, c,w € Rsg,
privacy parameters (¢,8) € R%,

2 I+ [logyn], n « 27

3 for i € [I] do

4 N 4 g0, Mi 4 4, wi < w607
5 | C+ C+ BLap(w;,w;log(2%4)), & «+ c+ BLap(, £), count « 0
6 Til & Ti—1
7 for j € [n;] do
8 Sij < (Qpep i + §)t™ element of D
9 v; j ~ BLap(2w;, 2w; log(2%4))
10 if ”Vf(xz‘,jS Sz',j)H + Vi > C then
11 count < count + 1
12 gij < Ho(Vf(wij;sij))
13 C + C + BLap(wi, w; log(294))
14 end
15 else
16 | 9ij < Vf(xig;sij)
17 end
18 if count > ¢; then
19 ‘ Return: L
20 end
21 Tij+1  Wa(zij — migi;)
22 end
2| Ti g Yjefn) o
24 | m; < T; + (;, where §; ~ N(0,071,) with o; = M
25 end

26 Return: z;

The following theorem summarizes the guarantees of Algorithm 7.

Theorem 3. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
and let * = argmin,c y Fp(x), and €,6 € (0,1). Algorithm 7 run with parameters

(551
o \/Z D DI n?e? .
min — = . )
7 n Gy Gen \ 14400d1og?(122)

_1

Gy DIne? o 240v/d log(132) 18 15

C«+2 1200dm loa2 (151 e ———— %L W — 2clog< >,
nlog*( 5 ) € €

is (€,0)-DP and outputs x that satisfies, for a universal constant Csmooth,

3/rn
. G2D dlog”(%)
— < - . =~ @@ @ @O
2 [Fp(wk) Fp(l‘ )] < Camooth \/ﬁ +GiD ne ,

24



assuming f(-;s) is f-smooth for all s € S, where

51.5

8 < —
24000m+v/d log? (2%2)

s b 20
Gy Vnel® Gy eldn dlog*(%)
D Vdlog’(3)" D Vdlog(n)log*(}) n?e?

= max

We now proceed to prove Theorem 3.

Privacy proof overview. We first overview the structure of our privacy proof. Consider two
neighboring datasets D, D’ that differ on a single sample s; j, # 327]-0. The core argument used to
prove privacy is controlling the total number of times when gradients are clipped, so we introduce
the variable “count.” Note that we have [|z;j,+1 — 2 ; 11/l = O(Cn) due to the clip operation. If
no clip ever happened afterward, then we know ||zin, — 2}, | < [[%ijo+1 — 2 jo+1ll = O(Cn) due
to our smoothness assumption (see Fact 3), which means the algorithm is private. When count is
not too large, we can still bound the sensitivity between ||z;,, — ;.|| by O(Cn). However, when
the value of count is larger, there is a risk that the sensitivity of x; ,, is not bounded as before, and

hence we halt the algorithm when count exceeds some appropriate cutoff point ¢;.

One subtle difference between our algorithm and standard uses of SVT is that we add Laplace
noise to the cutoff point ¢ to obtain a randomized cutoff ¢;. This is because the sensitivity of the
count increment at the ji iteration of phase i is bounded by one, even though \V (24505 Sijo)ll —
IV f(x ;5 8% j,)|| can be arbitrarily large. The guarantees of the bounded Laplace mechanism imply
that the noise added in ¢; hence suffices to privatize count.

In summary, we can control the sensitivity between ||z;; — :c;]H for all j due to the termination
condition in Line 18 and our use of bounded Laplace noise, and hence can control the sensitivity of
the query for ||V f(x;5; 8:7)Il — [V f (2] ;5 87 ;)| for all j # jo. By adding Laplace noise on the cutoff
¢, we handle the issue of the sensitivity of the j&" query ||V f(z; o; 8ijo)|| being unbounded. If the
algorithm succeeds and returns xy, we know the sensitivity [|z;,, — 7, | is O(Cn;) and the privacy
guarantee follows from the Gaussian mechanism. If the algorithm fails and outputs L, the privacy

guarantee follows from the bounded Laplace noise on the cutoff point and the guarantees of SVT.

Privacy proof. We now provide our formal privacy analysis following this overview. To fix
notation in the remainder of the privacy proof, we consider running Algorithm 7 on two neighboring
datasets D, D’ that differ on a single sample s; j, # sgj io? for some i € [I]. By standard postprocessing
properties of differential privacy, it suffices to argue that the i'" phase (i.e. the run of the loop in
Lines 3 to 25 corresponding to this value of ) is private, so we fix i € [I] in the following discussion.

We let {;;}jc[n,) and {2} ;}jcn,) be the iterates of the ith phase of Algorithm 7 using D and 7,
and we let Y; ; and YZ’ ; be the respective 0-1 indicator variables that count increases by 1 in iteration
j. We also let count; and countg denote the values of count at the end of the ;' iteration, and

abusing notation we let ¢;, ¢ be the values of ¢ in the ith phase when using D or D’ respectively.
Finally, we denote T; := n% > jeln;] Tiyj and let 7, denote the average iterate using D’ similarly.

We first bound the sensitivity between the iterates {; ;} je[n,) and {¥; ;}je[n,) in the following lemma,
assuming count; and count; are bounded. The proof is deferred to Appendix D.
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Lemma 11. Let t € [n;], and suppose that 192n;c < 1 and C > 8w; log(%), If county < &,
count; < ¢, and Y;; =Y/, for all j <t with j # jo, then

i = il < 6Cn;.

Using this bound on the sensitivity, we are now ready to prove privacy of the algorithm.

Lemma 12. Algorithm 7 is (¢,6)-DP if it is run with parameters satisfying

i 12 1 1
C > 8w;log 30n , > §log — |, w> 18 2clog 15 , 192m;8c < 1.
) € 0 € )

Proof. Recall our assumption that D and D’ only differ in s; j,, the j§® sample used in the i*" phase
of the algorithm. The privacy of all phases of the algorithm other than phase ¢ is immediate from
postprocessing properties of DP, so it suffices to argue that phase i is (¢,d)-DP. Note also that the
conditions of Lemma 11 are met after reparameterizing § < g. We split our privacy argument into
two cases, depending on whether the algorithm terminates on Line 18 or Line 26.

Termination on Line 18. We begin with the case where the algorithm outputs L. We introduce some
simplifying notation. For iterations S C [n;], define Wy := {Y;;}, 5 to be the 0-1 indicator variables
for whether count incremented on iterations j € S (when run on D), and define [W]g =3, 5Yi;
to be their sum. Similarly, define W§ and [W']g for when the algorithm is run on D’. Observe that
the algorithm outputs L iff the following event occurs:

Yijo + Wlningoy = & <= (Yijo — &) + Wlnitio) = —[Wlo—1-

The right-hand side —[W] ljo—1) is independent of whether the dataset used was D or D', so it suffices
to argue about the privacy loss of the random variables Y; j, — ¢; and W, )\[j,] as a function of the
dataset used. First, Y; j, — c is clearly a 1-sensitive statistic, so Lemma 9 implies Y; j, — ¢; is (5, g)—
indistinguishable as a function of the dataset used. Next, conditioning on the value of Y; ;, — ¢;,
the random variable W7, 1\[j,] 1s an instance of Algorithm 6 run with a fixed threshold ¢; — Y j, —
(W]ijo—1) < 2¢, where we rename the output variables { L, T} to {0,1}. Moreover, Lemma 11 and
smoothness of each sample function implies that the sensitivity of each query ||V f(-; s;,7)| is bounded
by A := 6Cn;3. Therefore, Lemma 10 shows that Wi, \[j,] is (5, g)—indistinguishable, where we
note that we adjusted constants appropriately in w and the failure probabilities everywhere. By
basic composition of DP, this implies Y; j, — & + [W]p,)\jo) (2 postprocessing of Y;;, — & and
2e 20

Wha\Go) | Yijo — @) is (5, F)-DP, as required.

Termination on Line 26. Finally, we argue about the privacy when the algorithm does not terminate
on Line 18. As before, the sensitivity of Z; is bounded by 6C7n; via Lemma 11 and the triangle
inequality, conditioned on a (%, %)—indistinguishable event (i.e. the values of Y j, —¢; and W,.\(jo] |
Yijo — ¢). Then z; is (5, g)—indistinguishable by standard bounds on the Gaussian mechanism
(Theorem A.1, [DR14]), which completes the proof upon applying basic composition. O

Utility proof. The utility proof follows the standard analysis of localized SGD algorithms and a
specialized analysis of clipped SGD (Corollary 4). We first state a utility guarantee in each phase.
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Lemma 13. Following notation in Algorithm 7, fix i € [I|, and suppose D ~ P"™ i.i.d. where P
satisfies Assumption 1. For any x € X, if C' > 8w; log(305"i) and § > max(n - (%)k, 6log(n)),

— 212 GED GsD
|z — 21| b omG2 + k 2

E[Fp(Ti) — Fp(z)] < S (F=1)(9) + 5

Proof. By Markov’s inequality, [ESNP[”LS>%] < (%)k, so the total number of expected samples
with Ls > % is at most §. Hence by applying a Chernoff bound,

c 1
Pr 0 < - >1-—.
seD

=&

Conditional on &, the algorithm will not halt (i.e., return L) and is running one-pass clipped-SGD
(Algorithm 5) using the modified clipping operation defined in the precondition in Corollary 4.
Then, the statement follows from Corollary 4 as follows: letting £¢ denote the complement of &,

E[Fp(%:) — Fp(x)] = E[Fp(z;) — Fp(x) | €] PrlE] + E[Fp(z;) — Fp(x) | £ Prl€"]

lo—zical® o ga G2 Epp(s,) - Foe) | £ Pele"
2min; (k—1)(5)k1
lz = @i 2 GiD
< ——+ 2G5+ ——2——— + G2 D Pr[é°
= 2y T 1)(§)k-1 2D Prie”]
lo—zial® ., o GED  GuD
< 4 omGE + :
2 N P TTS T e
where we used that Fp is G; < Ga-Lipschitz by Lemma 2. O

Combining our privacy and utility guarantees, we are ready to prove this section’s main theorem.

Proof of Theorem 3. For simplicity, let Zp := x* and (y := z¢ — z*, so ||(p]| < D by assumption.
Also, suppose that n is a power of 2, as the adjustment on Line 2 only affects n (and hence the
guarantees) by constant factors. The privacy claim follows immediately from Lemma 12 assuming
its preconditions are met, which we verify at the end of the proof. By applying Lemma 13 in each
phase i € [I] to = < z;, assuming its preconditions are met, we have

E (6111 GED \ | GoDI
2n; G2 k 2
i +2n;G5 + (%)k;—l o

E[Fp(zr) — Fp(a)] < )
1€[1]
4D? nG3  GiDI  GyD

< d
S 5 (%)k_l + T + GaopVd

Z <360002dmlog(§) +mG%>

+ E[Fp(xg) — Fp(Zy)]

n;e2 2
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In the first inequality, we used G1 < Ga-Lipschitzness of Fp by Lemma 2, and in the second
inequality, we pulled out the ¢ = 1 term and adjusted indices, and bounded I < n and used Jensen’s
inequality to bound (E [|¢7])? < E||¢7]|* = o7d. Now using that Ji and n; are geometrically decaying
sequences, we continue bounding the above display using our choice of C:

D? o, 14400(%)%dnlog(3)  GEDI ~ GoD

4
EF — Fp(x)] < — d
[Fp(zr) — Fp(x*)] < p +nG5 + 2 + (%)k—l + NG + GoopVd
4D2 2 k=1 k 1H2—1 GQD
< =
< G 2(An) (G,p[) o + GooVd,

1
14400d log? (122 GEDI #1
for A := Og(‘s),C:2< k ) .

ne? An

Next, plugging in our choice of

4 D DI /n\5%
. 2 Y (1 21
77 i \/; GQ’ Gkn (A) ’ ( )
N e’
=M =2

we have the claimed utility bound upon simplifying, and using that Goo7v/d is a low-order term.

We now verify our parameters satisfy the conditions in Lemma 12 and Lemma 13, which concludes
the proof. First, it is straightforward to check that both sets of conditions are implied by

96n3c 30n 2G, \ " 26 15n
1 — | <1, ec>4n - | == de> =1 —_— 22
\/g og ( 5 > s 1, c=4n < C > , ana ¢ =2 c og 5 s ( )

given that we chose w = 18, /2clog(1?) < % Indeed, C' > 8w; log(305"’i) — 2nfwlog(3Y) < 1
1

which is subsumed by the first condition in (22). Clearly, ¢ > 25—6 log(%), giving the third condition
n (22). Next, a direct computation with the definition of 7y in (21) yields

1 k
[A Ang | B+
c=2VAn =4n- n=4n-<Gk-<G£Dl> )

Now because C' depends inversely on 1 < 7, defined in (21), the second condition in (22) holds:

1N\ k 1\ k k
c=4n - Gk-<én2 )k+l > 4n - G,f.(;fm)kﬂ :4n.<2Gk> )
GEDI GFDI C

Finally, the first condition in (22) now follows from our upper bound on f. O

6 Improved Smoothness Bounds for Generalized Linear Models

In this section, we give an improved algorithm for heavy-tailed private SCO when the sample
functions f(x;s) are instances of a smooth generalized linear model (GLM). That is, we assume the
sample space S C R?, and that for a convex function o : R — R,

fla;s) =0 ((s,z)) . (23)
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We also assume that all f(z;s) are S-smooth. Observe that
Vf(z;s) =0'({s,z))s, (24)

so that for all x € X, V f(z;s) are all scalar multiples of the same vector s. We prove that under
this assumption, clipped gradient descent steps can only improve contraction, in contrast to Fact 16.

Lemma 14. Let 5,5’ € R and let z,2', g € R?. Assume that
Iz = s9) = (2 = $'g)|| <[]z =2/ -

Then for any C > 0, letting ¢ := sign(s) min(|s|, C) and ¢' := sign(s') min(|s'|, ), we have
[(x —tg) — (/' —t'g)|| < ||lz — 2’|

Proof. Note that the premise is impossible unless sign(s — s’) = sign((z — 2/, g)). Without loss of
generality, assume they are both nonnegative, else we can negate s, s’,g. In this case,

| —a) = (s = )g|| < o o] = (s’ =) llgl® < 2(s — &) (x — ', )

2{x — 2,
< S — S/ S <72g>
lgll
Now, observe that t —t' < s — s' and sign(t — ¢') = sign(s — &), for any value of C' > 0. Therefore,
t—t' < % as well, and we can reverse the above chain of implications. O

Note that the premise of Lemma 14 is exactly an instance of Fact 3 where V f(x) and V f(z') are
scalar multiples of the same direction, which is the case for GLMs by (24). Hence, Lemma 14 shows
the contraction property in Fact 3 is preserved after clipping gradients (again, for GLMs).

We can now directly combine Lemma 8 and our contraction results, used to analyze the stability of
Algorithm 5, with the iterative localization framework of [FKT20], Section 4.

Algorithm 8: OnePass-Clipped-DP-SGD(D, n, X, g, p)

Input: Dataset D = {s;};c,) € S", domain X C B(zg, D) for zg € &
I + [logy(n)]
n <« 2!

) 2, k-1 Bt GFDpny L
pemin(f/3. 2 1. (maE 25Dy o (Gl
for i € [I] do

NG <— 2_%, n; < 16_i77, Cz — 2ZC, g; < 27’202 . \/%
D; « first n; elements of D, D < D\ D;
%; + OnePass-Clipped-SGD(D;, C;, m;i, ni, X, xi—1)
& ~ N (04,0714)
Ti < T + &
end
Return: zy

29



Theorem 4. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
let x* := argmin .y Fp(x), and let p > 0. Further, assume that for a convex function o, the sample
functions f(x;s) satisfy (23) for all s € S C R, Finally, assume f(x;s) is B-smooth for all s € S,

where § < max( %-%, n- (n%lp)g;k1 . %) Algorithm 8 is a p-CDP algorithm which draws D ~ P™,

queries n sample gradients (using samples in D), and outputs x; € X satisfying

: i va )"
E [Fp(aj‘[) — Fp(x )] < 4G2D\/;—|- 26G D (?Z\/ﬁ) .

Proof. We begin with the privacy claim. Consider neighboring datasets D, D’, and suppose the
datasets differ on the j*" entry such that s; € D; (if the differing entry is not in U;c(D;, Algorithm 8
clearly satisfies 0-CDP). Let Z; and Z be the outputs of Line 8 when run with the same initialization
zi_1, and neighboring D;, D;. By the assumption on 3, since n; < n for all ¢ € [I], we can apply Fact 3
and Lemma 14 (recalling the characterization (24)) to show ||z; — z}|| < 2n;C; with probability 1.
Therefore, by our choice of ¢; and the first and third parts of Lemma 1, the whole algorithm is p-CDP
regardless of which D; contained the differing sample, since all other calls to OnePass-Clipped-SGD
are 0-CDP as we can couple all randomness used by the calls.

Next, we prove the utility claim. For simplicity, let Zg := z* and & := xg — z*, so ||| < D by
assumption. By applying Lemma 8 for all ¢ € [I] with g + x;—1 and u < Z;_, we have

E[Fp(zr) = Pp(a*)] = Y E[Fp(#:) — Fp(zi1)] + E [Fp(x1) — Fp(2r)]

1e(I]
1€i-1]l 7G> GED i
Z ( [ 2nin; 2 (k _ 1)0&—1 1 [H I IH]
i€[[] i
4D? . 2dnC?2 2 Gk D 4
< —F 91 (3 nC + 77?2 n Cllj—l> + \/ETGWC g1
m ie[I—-1] pn P
< +3 nC +77G2+ llgt Lo 2. Glr]C’7
nmn om 2 Ck—1 o s

where the second line applied Lemma 2, the third used Jensen’s inequality to bound E[||z; — Z[|]? <
E[l|lz;r — Z7]|*] and our assumption k > 2, and the last used the geometric decay of the different
parameters. Finally, by plugging in our choices of C\ 7, we have

k—1
4D* nG2  32dnC?  GKD  4D? G k=1 e N [(32d) P
— 2 k+1 (G D) -
17n+ 2 + on Ck-1 77n+ 2 e K <pn>
1—1
8 d\ °*
< GQD\/>+ 8GrD (f ) .
n n.\/p
k1
We can also check that the final summand is a low-order term, by using 1 < % (%) 2 ng
d G17]C 5GkD
244 = — 5
p n n
The conclusion follows by adjusting n, since Algorithm 8 is run with a sample count in [§,n]. O
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A High-probability stochastic convex optimization

In this section, to highlight another application of our population-level localization framework, we
show that it obtains improved high-probability guarantees for the following standard bounded-
variance estimator parameterization of SCO in the non-private setting.

Definition 6 (Stochastic convex optimization). Let X C R? be compact and convez, with diam(X) =
D. In the stochastic convex optimization (SCO) problem, there is a convex function f : X — R,
and we have query access to a stochastic oracle g : X — R satisfying, for all z € X,

Flg(@)] € 0f(2), E [llg@)|?] < 62

For a convex function ¢ : X = R, our goal in SCO is to optimize the composite function f + 1.

For instance, one can set 1 to the constant zero function to recover the non-composite variant of
SCO. We include the composite variant of Definition 6 as it is a standard extension in the SCO
literature, under the assumption that the function v is “simple.” The specific notion of simplicity
we use is that ¢ : X — R admits an efficient prozimal oracle (Definition 7).

Definition 7 (Proximal oracle). Let X C R? be compact and convex. We say O is a proximal
oracle for a convex function ¢ : X — R if for any inputs v € R%, n € R>0, O(v) returns

argmin {2177 |z —v||* + ¢(:c)} .

TeEX

In Theorem 5, we give an algorithm which uses n queries to each of g and a proximal oracle for 1,
and achieves an error bound for f + v of

log 1
O|GD- Oi5 , (25)

with probability > 1 —§. Similar rates are straightforward to derive using martingale concentration
when the estimator g is assumed to satisfy heavier tail bounds, such as a sub-Gaussian norm. To our
knowledge, the rate (25) was first attained recently by [CH24|, who also proved a matching lower
bound. Our Theorem 5 gives an alternative route to achieving this error bound. As was the case in
several recent works in the literature [HS16, DDXZ21, Lia24] who studied high-probability variants
of stochastic convex optimization, our Theorem 5 is based on using geometric aggregation techniques
within a proximal point method framework (in our case, using Fact 2 within Algorithm 2). However,
these aforementioned prior works all assume additional smoothness bounds on the function f.

We use the following standard result in the literature as a key subroutine.

Lemma 15 (Lemma 1, [ACJT21|). In the setting of Definition 6, assume 1) is A\-strongly convexz,
let x* = argmin,cy f(x)+9¢(x), and let T € N. There is an algorithm which queries the stochastic
oracle g and a prozimal oracle for v each T times, and produces T satisfying, with probability > 2,

30G
WT

|2 — 2™ <
We combine Lemma 15 with Proposition 2 to obtain the following high-probability SCO algorithm.
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Theorem 5. Consider an instance of SCO, following notation in Definition 6, let n € N, x* :=
argming y f(z) + ¢(x), and § € (0, %) There is an algorithm using n queries to g and a proximal
oracle for 1 and outputs x € X satisfying, for a universal constant Cyeo, with probability > 1 — 46,

f@) + (@) = f(@") = ¢(2") < Cseo - GD -

Proof. Assume without loss of generality that % is a sufficiently large constant (else we can adjust
the constant factor Cye,), and that n is sufficiently larger than log% (else the result holds because
the range of the function is bounded by GD). We instantiate Proposition 2 with Fp < f + 1,
I <+ 3logyn, and in each phase i € [I] of Algorithm 2, we let n; := 2. In the remainder of the
proof, we describe how to implement (8) in the i*® phase, where Fp < f 4 4, splitting into cases.
If % is bounded by polylog(n) and n is sufficiently large, suppose that n is a power of 4, else we
can use fewer queries and lose a constant factor in the guarantee. Then we can use a batch of n;
consecutive queries, divided into 48log( 1) portions where §; := %. We then use Lemma 15 on
each portion of queries, with f < f and ¢ < ¥ + L — xi— 1H ; it is straightforward to see that
Definition 7 generalizes to give a proximal oracle for this new ¢. A Chernoff bound shows that at
least 3 of the portions will return a point satisfying the bound in Lemma 15 except with probability

d;, SO Fact 2 returns us a point at distance at most )?\Oﬁ from x7, where

n; n
T—o 2 -o—" |,
(logé) (2’(log§+i))

(accounting for rounding error). Therefore, (8) holds with

A:CSCO‘G' log%’
2 \/ n

for sufficiently large Cyco. Proposition 2 then implies that Algorithm 2 outputs = satisfying

* * A C’sco log% log%
£(@) + (@) — Jo") — 0(a) < 26D\ 2o + 5 -GD-\/TSC’SCO-GD~ B

where we use that G; < G by Jensen’s inequality and our second moment bound in Definition 6.
The failure probability follows from a union bound because we ensured that Zie[ 1 0; < 4.

Finally, if % is larger than polylog(n), then we let I, J € N be chosen such that

1= [togs ()] 7 = asto 5.

which is achievable with I = O(logn) and J = O(log log") = O(log }). Let m := 2, and assume
without loss that m is a power of 2, which we can guarantee by discarding < % our queries, losing a
constant factor in the error bound. The remainder of the proof follows identically to the first part
of this proof, where we union bound over I phases, the i*® of which uses J batches of ¢ unused

queries. Again we may apply Lemma 15 and Fact 2 with T' = so (8) holds with

227

A = % .G - log%
2 n '
except with probablhty . The conclusion then follows from Proposition 2. O
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B Non-contraction of truncated contractive steps

In this section, we demonstrate that a natural conjecture related to the performance of clipped
private gradient algorithms in the smooth setting is false. We state this below as Conjecture 1.
To motivate it, suppose v is the difference between a current pair of coupled iterates of a private
gradient algorithm instantiated on neighboring datasets, and suppose the differing sample function
has already been encountered. If we take a coupled gradient step in a sufficiently smooth function,
Fact 3 shows that the step is a contraction. However, to preserve privacy in the heavy-tailed
setting, it is natural to ask whether such a contractive step remains contractive after the gradients
are clipped, i.e. the statement of Conjecture 1 (which gives the freedom for C' to be lower bounded).

Conjecture 1. Let ||v]|, < C for a sufficiently large constant C, and let |[v — (g — h)|| < ||v||. Let
g =Ti(g9) and b’ =T (h).2 Then, |v— (¢ —R)|| < C.

We strongly refute Conjecture 1, by disproving it for any C' > 0. We remark that Lemma 16 does
not necessarily rule out this approach to designing heavy-tailed DP-SCO algorithms in the smooth
regime, but demonstrates an obstacle if additional structure of gradients is not exploited.

Lemma 16. Conjecture 1 is false for any choice of C > 0.

Proof. We give a 2-dimensional counterexample. Let

_C 1 2CQT+11 V201
U:(0>’92<0>’h: oyacs | = V201G

C+1 C+1
:=h'
Observe that
—(C+ 1)+ & o5 o6
v—(g—h)= ( C\V2C+1 = C\/;gﬁ =C \/2(er+1 :
C+1 C+1 C+1
It is easy to verify |[v — (g — h)|| = C at this point. Moreover,
V2C+1
C+1
For C' > 0, the first coordinate of this vector is already less than —C. O

C Non-decay of empirical squared bias

In this section, we present an obstacle towards a natural approach to improving the logarithmic
terms in our algorithm in Section 3. We follow the notation of Section 3.1, i.e. for samples {i =
Si}ie[n] ~ P", we define sample functions f; = f(-;s;), and let

bp = ma 1 3 Vi) - % 3 e(V (). (26)

A basic bottleneck with known approaches following SCO-to-ERM reductions is that they require a
strongly convex ERM solver as a primitive, due to known barriers to generalization in SCO without

8By scale-invariance of the claim, the assumption that the truncation threshold is 1 is without loss of generality.
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strong convexity (see e.g. discussion in [SSSSS09]). This poses an issue in the heavy-tailed setting,
because standard analyses of strongly convex clipped SGD (see e.g. our Proposition 1) appear to
suffer a dependence on b% in the utility bound, which upon taking expectations requires bounding

2

1 1
2 () — = .
Ep~prbp = Epupr |max||— > Vfi(x) =~ (Vi) |- (27)
i€[n] 1€[n]
Recall from Lemma 3 that it is straightforward to bound Ebp < Cf—&, due to Fact 1. Bounding

[EbZD is more problematic; in [LR23|, requiring this bound resulted in a dependence on Goj as
opposed to Gy, (see the proof of Theorem 31), which we avoid (up to a polylogarithmic overhead)
via our population-level localization strategy. We now present an alternative strategy to bound
(27), avoiding a Ggj dependence. Observe that, by using (a + b+ ¢)? < 3(a? + b + ¢?),

2

1
2
~Pn < ~Pn i
Ep~pnbp < 3Ep~p rmnea% ng Vfi(x) — VFp(x)

1€[n]
=Ty
+ 3max ||VFp(x) — Esop [Ho(V f(x; 5))]”2
TEX P (28)
=T

2

+3Eppn |max |57 TMo(Vfi(a)) — Evup[lo(V £ (15 5)]

1€[n]

=13

We focus on 717, as T3 can be bounded by similar means (as truncation can only improve moment

2k 2
bounds), and Ty < % via Fact 1. Hence, if we can show that T} = O(%) under the moment
bound assumption in Assumption 1, we can avoid the logarithmic factors lost by our population
localization approach. We suggest the following conjecture as an abstraction of this bound.

Conjecture 2. Let P be a distribution over S. For each v € X, let g(x;s) € R be a random
vector, indexed by s ~ S, satisfying Esup[g(z;s)] = 0g and Esup[sup,ex 9(z;5)|1?] < 1. Finally
for S ~P" and x € X, let g(x;5) =13 _cg(x;s). Then,

Es~pn [Sup 9(33;5)2] =0 <1> :

TeX n

Note that the bound in Conjecture 2 exactly corresponds to T3 in (28), after rescaling all sample
gradients by G%, and centering them by subtracting VFp(x). Hence, if Conjecture 2 is true, it
would yield the following desirable bound in (28):

G3 Gk
2 _ 2 k
Ep~pnbp = O < - + = 1)Ck_1> .

Moreover, it is simple to prove a bound of O(1) on the right-hand side of Conjecture 2, and as
n — oo it is reasonable to suppose g(x;S) — 04 for all x € X. Nonetheless, we refute Conjecture 2
in full generality with a simple 1-dimensional example.
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Lemma 17. Conjecture 2 is false.

Proof. Let S = [0,1] and let P be the uniform distribution over S. Let & index a set of random
g(z;-) : [0,1] — [0, 1] which are nonzero at finitely many points s € S.” Then E,_pg(x;s) = 0 for
all z € X, and g(x;5)2 <1 for all z € X, s € S. However, for any finite set S € [0,1]", we have

sup g(z; 8)% = 1.
reX

O

While Lemma 17 does not rule out the approach suggested in (28) (or other approaches) to improve
the analysis of strongly convex ERM solvers in heavy-tailed settings, it presents an obstacle to
applying the natural decomposition strategy in (28). To overcome Lemma 17, one must either use
more structure about the index set X' or the iterates encountered by the algorithm, or consider a
different decomposition strategy for bounding the squared empirical bias.

D Proof of Lemma 11

In this section, we prove Lemma 11. We first require the following standard fact (see e.g. [Sch14]).

Fact 4. Let X C R? be a convex set. Then for any x,y € R?, we have

My (2) = x(y)| < [l —yl].

We now set up some notation. Let {1; : X = X'} i) and {¢; : X — X} be two sequences of
operations. We say that an operation pair (1, ¢) is contractive if for any two points z,y € X,

[(2) = o)l < llz =yl

We say an operation pair (¢, ¢) is (C, {)-contractive if for any z,y where ||z — y|| < C, we have

[¥(z) = o)l < [z —yll +¢.
Let 99 (x) = ; 01pj_10...0%91(x), and define ¢’ similarly, for all j € [T7.
We prove Lemma 11 as a consequence of the following more general result.

Lemma 18. Let zg = x € X, and consider two sequences of operations {1; : X — X}jem and

{1%- 1 X — X} satisfying the following conditions, for ¢ := L%J

1. For at least T — c — 1 indices j € [T], (1, ¢;5) is contractive.

2. At most one operation pair, (¥, ), is (0o, C')-contractive.

3. For at most ¢ indices j € [T], (1, ¢;) is (2C,()-contractive.
Then for all j € [T], we have that ||¢ (zo) — ¢ (yo)|| < 2C.

9We note there is a bijection between X and any convex subset X’ of R? containing a ball with nonzero radius. To
see this, it is well-known that there is a bijection from [0, 1] to R>o, and we can simply construct a bijection between
R>o and X by mapping the interval [i — 1,4] to [0,1]?* (where the first i coordinates specify the nonzero points, and
the next ¢ coordinates specify their values) for all 4 € N. Finally, it is well-known there is a bijection between [0, 1]
and R?, and we can construct a bijection between X’ and R? by considering each 1-dimensional projection separately.
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Proof. Define Aj := |17 (z0) — ¢’ (zf)|| for all j € [T]. Let a; < ¢ be the total number of (2C, ()-
contractive operation pairs (1;, ¢;) where ¢ < j, and let b; be the 0-1 indicator variable for k£ < j.
We use induction to show that A; < a;¢ + b;C. When j = 1, the claim holds. Now if the claim
holds for j — 1, then A;_; < aj_1( +b;—1C < 2C. Hence, by definition,

A <A+ (aj — ajfl)C + (bj — bjfl)C = a;¢ + b;C,
which completes our induction. This also implies Ay < 2C' as claimed. O

Proof of Lemma 11. Throughout the following proof, note that ¢; < 2¢ deterministically (due to
our use of BLap(%, ¢) noise), and under the stated parameter bounds,

A 7C 9C

] and |v; ;| < % for all j € [n;].

Let {gij = Uc(Vf(ij;8i5))}jem and {g;; = He(V (2] ;s;;))} be the two truncated gradient
sequences in the i*" phase corresponding to the two datasets, and let {z;;}c[n,) and {2} ;Yiem) be
the corresponding iterate sequences. We set the operation sequences v;(x) := Ilx(x — 1;9; ;) and
¢j(z) := Iy (z —mg; ;). We bound the contractivity of these operation pairs and apply Lemma 18.

First, note that because count;, count; < ¢ < 2c, the operation pair (¢;,¢;) is an identical un-
truncated gradient mapping for at least ¢ — 2¢ — 1 indices j € [t]. Because we assume each sample
function f(-;s) is S-smooth, it follows that for these indices j € [t], the operation pair (v;, ¢;) is
contractive, by applying Fact 3, Fact 4, and n;8 < 1.

Next, recall the assumption that the datasets D, D' differ in the j{" sample only. Because || Gijoll <
%—i—% < % by assumption, and similarly [|g; ; [| < %, it follows that the operation pair (¢}, , ¢j,)
is (00, 3Cn;)-contractive by applying the triangle inequality and Fact 4.

For all remaining indices j € [t], count; and count} both incremented (under the assumption that
Yij =Y/, for these indices). We claim that (¢, ¢;) is (6n;C, 12n2CB)-contractive for these itera-
tions. To see this, we bound

[05(ig) = &3 )| < [[(@ig —migig) — (5 —migi )|
< |[(ig = mVf(wigssig) — (@i —mV f (53 505))||
+ i va(ﬂﬁz',j; Sij) — Vf(x;,ﬁ Sz',j)H + i Hgi,j - QZ,JH
< ||wiy — af 4| + 1207 CB.
The first line used Fact 4, the second used the triangle inequality, and the last used Fact 3, Fact 4,
and the fact that |V f(zi ;3 si.5) — Vf(2] ; 8:,7)|| < 6n;CJ by smoothness, when [|z; ; — ;|| < 6Cn;.

Finally, it suffices to apply Lemma 18 with C' < 3C'n;, ¢ < 12772205, and ¢ < 2¢, which we can
check meets the conditions of Lemma 18 under the stated parameter bounds. O

39



	Introduction
	Our contributions
	Prior work

	Preliminaries
	Heavy-Tailed Private SCO
	Strongly convex DP-ERM solver
	Localizing regularized population loss minimizers
	Population-level localization
	Strongly convex heavy-tailed private SCO via localization

	Optimal Algorithms in the Known Lipschitz Setting
	Fast Algorithms for Smooth Functions
	Helper tools
	Algorithm statement and analysis

	Improved Smoothness Bounds for Generalized Linear Models
	References
	High-probability stochastic convex optimization
	Non-contraction of truncated contractive steps
	Non-decay of empirical squared bias
	Proof of Lemma 11

