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Abstract

We study the problem of differentially private stochastic convex optimization (DP-SCO)
with heavy-tailed gradients, where we assume a kth-moment bound on the Lipschitz constants
of sample functions rather than a uniform bound. We propose a new reduction-based approach
that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed
setting, achieving error G2 · 1√

n
+Gk · (

√
d

nε )
1− 1

k under (ε, δ)-approximate differential privacy, up
to a mild polylog( 1δ ) factor, where G2

2 and Gk
k are the 2nd and kth moment bounds on sample

Lipschitz constants, nearly-matching a lower bound of [LR23].
We further give a suite of private algorithms in the heavy-tailed setting which improve

upon our basic result under additional assumptions, including an optimal algorithm under a
known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and
an optimal linear time algorithm for smooth generalized linear models.

1 Introduction

Differentially private stochastic convex optimization (DP-SCO), where an algorithm aims to mini-
mize a population loss given samples from a distribution, is a fundamental problem in statistics and
machine learning. In this problem, given n samples from a distribution P over a sample space S,
our goal is to privately find an approximate minimizer x̂ ∈ X ⊂ Rd for the population loss

FP(x) := Es∼P [f(x; s)] ,

where f(·; s) is a convex function for all s ∈ S. The quality of an algorithm is measured by the
excess population loss of its output x̂, that is FP(x̂)−minx⋆∈X FP(x

⋆).

Extensive research efforts have been devoted to DP-SCO, resulting in important progress over the
past few years [BFTT19, FKT20, AFKT21, BGN21, ALD21, KLL21]. In an important milestone,
[BFTT19] developed optimal algorithms (in terms of the excess population loss) for DP-SCO under a
uniform Lipschitz assumption (i.e., where every f(·; s) is assumed to have the same Lipschitz bound),
and [FKT20] followed this result with efficient and optimal algorithms that run in linear time for
smooth functions. DP-SCO has also been explored in other notable settings, including developing
faster algorithms for non-smooth settings [AFKT21, KLL21, CJJ+23], different geometries imposed
on the solution space [AFKT21, BGN21, GLL+23], and different notions of privacy [ALD21].

Most existing results in DP-SCO are based on the assumption that the function f(·; s) is uniformly
G-Lipschitz for all s ∈ S. This assumption is convenient for private algorithm design because
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it allows us to straightforwardly bound the sensitivity of iterates of private algorithms, i.e., how
far a pair of iterates defined via algorithms induced by neighboring datasets drift apart. Under
the uniform Lipschitz assumption, the DP-SCO problem is relatively well-understood, as optimal
and efficient algorithms exist (sometimes requiring additional regularity assumptions) [BFTT19,
FKT20].1 State-of-the-art SCO algorithms satisfying (ε, δ)-differential privacy (Definition 1) in the
uniform Lipschitz setting result in excess population loss

GD ·

 1√
n
+

√
d log(1δ )

εn

 , (1)

whereD is the diameter of X . However, the assumption of uniformly G-Lipschitz gradients is strong,
and may be violated in real-life applications where the distribution in question has heavy tails (see
e.g. discussion in [ACG+16]). As a simple motivating example, consider mean estimation, where
each f(·; s) = 1

2 ∥· − s∥
2, so the minimizer of FP is the population mean. The uniform Lipschitz

requirement amounts to P having a bounded support, whereas an algorithm that can handle heavy
tails only posits the weaker assumuption that P has k bounded moments. As a result, existing
algorithms for DP-SCO may have overly-pessimistic performance bounds when G is large or even
unbounded, necessitating the search for new private algorithms handling heavy-tailed gradients.

Motivated by this weakness of existing DP-SCO analyses, several papers studied the problem of
DP-SCO with heavy-tailed gradients [WXDX20, ADF+21, KLZ22, LR23], formally defined in Def-
inition 4. Rather than assuming uniformly-Lipschitz gradients, this line of work builds on the
more realistic assumption that the norm of the gradients has bounded kth-moments. In particular,
[ADF+21] studied heavy-tailed private optimization for the related empirical loss, while [WXDX20]
initiated an analogous study for the population loss. More recently, [KLZ22, LR23] also proposed
algorithms to solve the heavy-tailed DP-SCO problem based on clipped stochastic gradient methods.

Despite significant progress in addressing heavy-tailed DP-SCO, it remains notably less understood
than the uniformly Lipschitz setting. As a benchmark, under a notion called ρ-concentrated dif-
ferential privacy (CDP, see Definition 3), which translates to (ε, δ)-DP for ρ ≈ ε2 log−1(1δ ), [LR23]
established that the best excess population loss achievable scales as

Ω

G2D ·
1√
n
+GkD ·

( √
d

n
√
ρ

)1− 1
k

 , (2)

where Gj
j is the jth moment bound on the Lipschitz constant of sampled functions, see Definition 4.

Note that as k →∞, the rate in (2) recovers the uniform Lipschitz rate in (1).

Unfortunately, existing works on heavy-tailed DP-SCO assume stringent conditions on problem
parameters and are suboptimal in the general case. For example, [KLZ22] requires the loss functions
to be uniformly smooth with various parameter bounds in order to guarantee optimal rates, while
the recent work [LR23] obtains a suboptimal rate scaling as2 G2D · 1√

n
+GkD · (

√
d

n
√
ρ)

1− 2
k , which is

worse than (2) by polynomial factors in the dimension for any constant k.
1One notable exception is the lack of linear-time algorithms in the non-smooth setting.
2The rate in [LR23] is stated slightly differently (see Theorem 6 in that work), as they parameterize their error

bound via G2k despite assuming only k bounded moments. However, under the assumption that G2k is finite (so the
[LR23] result is usable), the optimal rate scales as in (2) where k is replaced with 2k, leaving a polynomial gap.
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1.1 Our contributions

Motivated by the suboptimality of existing results for heavy-tailed DP-SCO, we develop the first
algorithm for this problem, which achieves the optimal rate (2) up to logarithmic factors with no
additional assumptions. Along the way, we give several simple reduction-based tools for overcoming
technical barriers encountered by prior works. To state our results (deferring a formal problem
statement to Definition 1), we assume that for some k ≥ 2 and all j ∈ [k], we have

Es∼P

[
max
x∈X
∥∇f(x; s)∥j

]
≤ Gj

j .

Our results hold in several settings and are based on different reductions, allowing us to apply
DP-SCO strategies from the uniform Lipschitz setting.

Near-optimal rates for heavy-tailed DP-SCO (Section 3). We design an algorithm for the
k-heavy-tailed DP-SCO problem, which satisfies ρ-CDP3 and attains near-optimal excess loss

G2D ·

√
log
(
1
δ

)
n

+GkD ·

(√
d log

(
1
δ

)
n
√
ρ

)1− 1
k

, (3)

with probability ≥ 1− δ. This matches the lower bounds recently proved by [KLZ22, LR23] for ρ-
concentrated DP algorithms up to polylog( 1δ ) factors, stated in (2). Standard conversions from CDP

to (ε, δ)-DP imply that our algorithm also obtains loss ≈ G2D ·
√

log(1/δ)
n +GkD · (

√
d log3(1/δ)

nε )1−
1
k

under this parameterization. We note that our bound (3) holds with high probability ≥ 1 − δ,
whereas the lower bound (2) is for an error which holds only in expectation (see Theorem 13,
[LR23]). Our lossiness in (3) is due to a natural sample-splitting strategy used to boost our failure
probability, and we conjecture that (3) may be optimal in the high-probability error bound regime.

As in [LR23], to establish our result we begin by deriving utility guarantees for a clipped stochastic
gradient descent subroutine on an empirical loss, where clipping ensures privacy but induces bias,
parameterized by a dataset-dependent quantity b2D defined in (26). We give a standard analysis
of this subroutine in Proposition 1, a variant of which (with slightly different parameterizations)
also appeared as Lemma 27, [LR23]. However, the key technical barrier encountered by the [LR23]
analysis, when converting to population risk, was bounding Eb2D over the sampled dataset, which
naïvely depends on the 2kth moment of gradients. This either incurs an overhead depending on
G2k, or in the absence of such a bound (which is not given under the problem statement), leads to
the aforementioned suboptimal rate in [LR23] losing a factor of (

√
d

n
√
ρ)

1
k in the utility. We give a

further discussion of natural strategies and barriers towards directly bounding Eb2D in Appendix C.

Where we depart from the strategy of [LR23] is in the use of a new population-level localization
framework we design (see Algorithm 2), inspired by similar localization techniques in prior work
[FKT20] (discussed in more detail in Section 1.2). This strategy allows us to use constant-success
probability bounds on the quantity bD (which also bound b2D), which are easy to achieve depending
only on Gk rather than G2k via Markov’s inequality. This bypasses the need in [LR23] for bound-
ing Eb2D. We then apply a simple geometric aggregation technique, showing that it suffices for a
constant fraction of datasets to have this desirable property for us to carry out our population-level
localization argument. We formally state our main result achieving the rate (3) as Theorem 1.

3We state the privacy guarantee of most of our results, save our algorithm in Section 5 which employs the sparse
vector technique of [DNR+09, DR14], in terms of CDP, for simpler comparison to the lower bound (2).
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Interestingly, as a straightforward corollary of our new localization framework, we achieve a tight rate
for high-probability stochastic convex optimization under a bounded-variance gradient estimator
parameterization, perhaps the most well-studied formulation of SCO. To our knowledge, this result
was only first achieved very recently by [CH24].4 However, we find it a promising proof-of-concept
that our new framework directly yields the same result. For completeness, we include a derivation
in Appendix A (see Theorem 5) as a demonstration of the utility of our framework.

Optimal rates with known Lipschitz constants (Section 4). We next consider the known
Lipschitz setting, where each sample function f(·; s) arrives with a value Ls which is an overestimate
of its Lipschitz constant, such that EL

j
s is bounded for all j ∈ [k] (see Assumption 2). As motivation,

consider the problem of learning a generalized linear model (GLM), where f(·; s) = σ(⟨·, s⟩) for a
known convex activation function σ. Typically, the Lipschitz constant for f(·; s) is simply the
Lipschitz constant of σ times ∥s∥, which can be straightforwardly calculated. Thus, for GLMs, our
known Lipschitz heavy-tailed assumption amounts to moment bounds on the distribution P.

Our second result, Theorem 2, shows a natural strategy obtains optimal rates in this known Lips-
chitz setting, eliminating logarithmic factors from Theorem 1. As mentioned previously, this result
applies to the important family of GLMs. Our algorithm is based on a straightforward reduction
to the uniformly Lipschitz setting: after simply iterating over the input samples, and replacing
samples whose Lipschitz constant exceeds a given threshold with a new dummy sample, we show
existing Lipschitz DP-SCO algorithms then obtain the optimal heavy-tailed excess population loss
(2). Despite the simplicity of this result, to the best of our knowledge, it was not previously known.

Efficient algorithms for smooth functions (Sections 5 and 6). Finally, we propose algo-
rithms with improved query efficiency for general smooth functions or smooth GLMs, with moder-
ate smoothness bounds. Our strategy is to analyze the stability of clipped-DP-SGD in the smooth
heavy-tailed setting, and use localization-based reductions to transform a stable algorithm into a
private one [FKT20]. This results in linear-time algorithms for the smooth case with near-optimal
rates. In order to prove the privacy of our smooth, heavy-tailed algorithm, we analyze a care-
ful interplay of our clipped stochastic gradient method with the sparse vector technique (SVT)
[DNR+09, DR14]. At a high level, our use of SVT comes from the fact that under clipping, smooth
gradient steps no longer enjoy the type of contraction guarantees applicable in the uniform Lips-
chitz setting (see Fact 3), so we must take care not to clip too often. The SVT is then used to
ensure privacy of our count of how many clipping operations were used. In Appendix B, we provide
a simple counterexample showing that the noncontractiveness of contractive steps, after applying
clipping, is inherent. Our general smooth heavy-tailed DP-SCO result is stated as Theorem 3.

We believe the use of SVT within an optimization algorithm to ensure privacy may be of independent
interest, as it is one of few such instances that have appeared in the private optimization literature
to our knowledge; it is inspired by a simpler application of this technique carried out in [AL24].

On the other hand, we make the simple observation that for GLMs, clipping cannot make a
contractive gradient step noncontractive, by taking advantage of the fact that the derivative of
f(x; s) = σ(⟨x, s⟩) is a multiple of s for any x ∈ X (see Lemma 14). We use this observation to

4We mention that an alternative route to obtaining a near-optimal high-probability rate was given slightly earlier
in [SZ23], but lost a polylogarithmic factor in the failure probability. We also wish to acknowledge that in an
independent and concurrent work [JST24] involving the third author, the authors slightly sharpened and generalized
the result of [SZ23], which inspired us to consider this application of our population-level localization framework.
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give a straightforward adaptation of the smooth algorithm in [FKT20] to the heavy-tailed setting,
proving Theorem 4, which attains both a linear gradient query complexity and the optimal rate (2).

1.2 Prior work

The best-known rates for heavy-tailed DP-SCO were recently achieved by [KLZ22, LR23]. As
discussed previously, their results do not provide the same optimality guarantees as our Theorem 1.
The rate achieved by [LR23] is polynomially worse than the optimal loss (2) for any constant k. On
the other hand, the work of [KLZ22] uses a different assumption on the gradients than Assumption 1,
which is arguably more nonstandard: in particular, they require that the kth-order central moments
of each coordinate ∇jf(x; s) is bounded. Moreover, their algorithms require each sample function
f(·; s) to be β-smooth, and the final rates have a strong dependence on the condition number κ = β

λ
where λ is the strong convexity parameter (see Appendix C in [LR23] for additional discussion).

Our result in the heavy-tailed setting assuming β-smoothness of sample functions, Theorem 3, is
most directly related to Theorem 15 of [LR23]. Our results and results in [LR23], respectively
require

β = O

(
Gk

D
· ε1.5

√
n

d

)
and β = O

(
Gk

D
·
(
d5

εn

) 1
18

)
,

omitting logarithmic factors in our bound for simplicity to obtain near-optimal rates. These regimes
are different and not generally comparable. However, we find it potentially useful that our upper
bound on β grows as more samples are taken, whereas the [LR23] bound degrades with larger n. It
is worth mentioning that [LR23]’s Theorem 15 shaves roughly one logarithmic factor in the error
bound from our Theorem 3. On the other hand, Theorem 3 actually requires a looser condition
than mentioned above (see (20)), which can improve its guarantees in a wider range of parameters.

Finally, we briefly contextualize our population-level localization framework regarding previous
localization schemes proposed by [FKT20]. The two localization schemes in [FKT20] (see Sections
4.1 and 5.1 of that work) both follow the same strategy of gradually improving distance bounds to a
minimizer in phases. However, their implementation is qualitatively different than our Algorithm 2,
preventing their direct application in our algorithm. For instance, Section 4.1 of [FKT20] does
not use strong convexity, and therefore cannot take advantage of generalization bounds afforded
to strongly convex losses (see discussion in [SSSS09]). On the other hand, the scheme in Section
5.1 of [FKT20] serves a different purpose than Algorithm 2, aiming to reduce strongly convex
optimization to non-strongly convex optimization; our Algorithm 2, on the other hand, directly
targets non-strongly convex optimization. We view our approach as complementary to these prior
frameworks and are optimistic it will find further utility in applications.

2 Preliminaries

General notation. We use [d] to denote the set {i ∈ N | i ≤ d}. We use sign(x) ∈ {±1} to
denote the sign for x ∈ R, with sign(0) = 1. We use N (µ,Σ) to denote the multivariate normal
distribution of specified mean and covariance. We denote the all-ones and all-zeroes vectors of
dimension d by 1d and 0d. We use ∥·∥ to denote the Euclidean (ℓ2) norm. We use Id to denote the
identity matrix on Rd. We use B(C) to denote the ℓ2 ball of radius C, and for x ∈ Rd, B(x,C) is
used to denote {x′ ∈ Rd | ∥x′ − x∥ ≤ C}. For a set X ⊆ Rd, we let diam(X ) := supx,x′∈X ∥x− x′∥,
and we let ΠX (x) denote the Euclidean projection of x to X , i.e. argminx′∈X ∥x′ − x∥, which exists
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and is unique when X is compact. We use fX to denote the restriction of a function f to X , i.e.

fX (x) =

{
f(x) x ∈ X
∞ x ̸∈ X

. (4)

For x ∈ Rd, we use ΠC(x) as shorthand for ΠB(C)(x), i.e. ΠC(X) denotes the clipped vector x ·
min( C

∥x∥ , 1). We say two datasets D, D′ are neighboring if they differ in one entry, and |D| = |D′|.
We say x ∈ X is an ε-approximate minimizer to f : X → R if f(x) − infx⋆∈X f(x

⋆) ≤ ε. For two
densities µ, ν on the same probability space, and α > 1, we define the α-Rényi divergence

Dα(µ∥ν) :=
1

α− 1
log

(∫ (
µ(ω)

ν(ω)

)α

dν(ω)
)
.

For an event E on a probability space clear from context, we let IE denote the 0-1 indicator of E .
We say f : X → R is L-Lipschitz if |f(x)− f(x′)| ≤ L ∥x− x′∥ for all x, x′ ∈ X ; if f is differentiable
and convex, an equivalent characterization is ∥∇f(x)∥ ≤ L for all x ∈ X . We say f : X → R is
µ-strongly convex if f(λx′ + (1− λ)x) ≤ λf(x′) + (1− λ)f(x)− µλ(1−λ)

2 ∥x− x′∥2 for all x, x′ ∈ X .
We say differentiable f : X → R is β-smooth if for all x, x′ ∈ X , ∥∇f(x)−∇f(x′)∥ ≤ β ∥x− x′∥.
The subgradient set of a convex function f : X → R at x ∈ X is denoted ∂f(x).

Differential privacy. We begin with a definition of standard differential privacy.

Definition 1 (Differential privacy). Let ε ≥ 0, δ ∈ [0, 1]. We say a mechanism (randomized
algorithm)M : Sn → Ω satisfies (ε, δ)-differential privacy (alternatively, M is (ε, δ)-DP) if for any
neighboring D,D′ ∈ Sn, and any S ⊆ Ω, Pr [M(D) ∈ S] ≤ exp(ε) Pr [M(D′) ∈ S] + δ.

More generally, for random variables X,Y ∈ Ω satisfying Pr[X ∈ S] ≤ exp(ε) Pr[Y ∈ S] + δ for all
S ⊆ Ω, we say that X,Y are (ε, δ)-indistinguishable.

Throughout the paper, other notions of differential privacy will frequently be useful for our account-
ing of privacy loss in our algorithms. For example, we define the following variants of DP.

Definition 2 (Rényi DP). Let α > 1, ε ≥ 0. We say a mechanism M : Sn → Ω satisfies (α, ε)-
Rényi differential privacy (RDP) if for any neighboring D,D′ ∈ Sn, Dα(M(D)∥M(D′)) ≤ ε.

Definition 3 (CDP). Let ρ ≥ 0. We say a mechanism M : Sn → Ω satisfies ρ-concentrated
differential privacy (alternatively, M satisfies ρ-CDP) if for any neighboring D,D′ ∈ Sn, and any
α ≥ 1, Dα(M(D)∥M(D′)) ≤ αρ.

For an extended discussion of RDP and CDP and their properties, we refer the reader to [BS16,
Mir17, BDRS18]. We summarize the main facts about these notions we use here.

Lemma 1 ([Mir17]). RDP has the following properties.

1. (Composition): Let M1 : Sn → Ω satisfy (α, ε1)-RDP and M2 : Sn × Ω→ Ω′ satisfy (α, ε2)-
RDP for any input in Ω. Then the composition ofM2 andM1, i.e. the randomized algorithm
which takes D to M2(D,M1(D)), satisfies (α, ε1 + ε2)-RDP.

2. (RDP to DP): If M satisfies (α, ε)-RDP, it satisfies (ε+ 1
α−1 log

1
δ , δ)-DP for all δ ∈ (0, 1).

3. (Gaussian mechanism): Let f : Sn → Rd be an L-sensitive randomized function for L ≥ 0, i.e.
for any neighboring D, D′, we have ∥f(D)− f(D′)∥ ≤ L. Then for any σ > 0, the mechanism
which outputs f(D) + ξ for ξ ∼ N (0d, σ

2Id) satisfies L2

2σ2 -CDP.
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Private SCO. Throughout the paper, we study the problem of private stochastic convex opti-
mization (SCO) with heavy-tailed gradients. We first define the assumptions used in our algorithms.

Assumption 1 (k-heavy-tailed distributions). Let X ⊂ Rd be a compact, convex set. Let P be
a distribution over a sample space S, such that each s ∈ S induces a continuously-differentiable,
convex, Ls-Lipschitz loss function f(·; s) : X → R,5 where Ls := maxx∈X ∥∇f(x; s)∥ is unknown.
For k ∈ N satisfying k ≥ 2, we say P satisfies the k-heavy tailed assumption if, for a sequence of
monotonically nondecreasing {Gj}j∈[k],6 we have Es∼P [L

j
s] ≤ Gj

j <∞ for all j ∈ [k].

In Section 4, we consider a variant of Assumption 1 where we have explicit access to upper bounds
on the Lipschitz constants Ls, formalized in the following definition.

Assumption 2 (Known Lipschitz k-heavy-tailed distributions). In the setting of Assumption 1,
suppose that for each s ∈ S we know a value Ls ≥ Ls. For k ∈ N satisfying k ≥ 2, we say P satisfies
the known Lipschitz k-heavy tailed assumption if, for a sequence of monotonically nondecreasing
{Gj}j∈[k], we have Es∼P [L

j
s] ≤ G

j
j <∞ for all j ∈ [k].

Note that Assumption 2 clearly implies Assumption 1, but gives us additional access to Lipschitz
overestimates with bounded moments. Our goal is to approximately optimize a population loss over
sample functions satisfying Assumptions 1 or 2, formalized in the following.

Definition 4 (k-heavy-tailed private SCO). In the k-heavy-tailed private SCO problem, X ⊂ Rd is a
compact, convex set with diam(X ) = D. Further, P is a distribution over a sample space S satisfying
Assumption 1. Our goal is to design an algorithm which provides an approximate minimizer in
expectation to the population loss, FP(x) := Es∼P [f(x; s)], subject to satisfying differential privacy.
We say such an algorithm queries N sample gradients if it queries ∇f(x; s) for N different pairs
(x, s) ∈ X × S. If P further satisfies Assumption 2, we call the corresponding problem the known
Lipschitz k-heavy-tailed private SCO problem.

We first observe the following consequence of Assumption 1.

Lemma 2. Let P be a distribution over S satisfying Assumption 1. Then FP is G1-Lipschitz.

Proof. This follows from the derivation

max
x∈X
∥Es∼P [∇f(x; s)]∥ ≤ max

x∈X
Es∼P ∥∇f(x; s)∥ ≤ Es∼P max

x∈X
∥∇f(x; s)∥ ≤ G1.

We require the following claim which bounds the bias of clipped heavy-tailed distributions.

Fact 1 ([BD14], Lemma 3). Let k > 1 and X ∈ Rd be a random vector with E[∥X∥k] ≤ Gk. Then,

E ∥ΠC(X)−X∥ ≤ E[∥X∥ I∥X∥≥C ] ≤
Gk

(k − 1)Ck−1
.

We also use the following standard claim on geometric aggregation.
5The assumed moment bounds shows that f(·; s) has a finite Lipschitz constant, except for a probability-zero set

of s. Moreover, convex functions are differentiable almost everywhere. Therefore, if f(·; s) is Lipschitz, perturbing
its first argument by an infinitesimal Gaussian makes it differentiable at the resulting point with probability 1, and
negligibly affects the function value. For this reason, we assume for simplicity that f(·; s) is differentiable everywhere.

6This assumption is without loss of generality by Jensen’s inequality.
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Fact 2 ([KLL+23], Claim 1). Let S := {xi}i∈[k] ⊂ Rd have the property that for (unknown) z ∈ Rd,
|{i ∈ [k] | ∥xi − z∥ ≤ R}| ≥ 0.51k for some R ≥ 0. There is an algorithm Aggregate which runs in
time O(dk2) and outputs x ∈ S such that ∥x− z∥ ≤ 3R.

Finally, given a dataset D ∈ S∗ of arbitrary size, and λ ≥ 0, we use the following shorthand to
denote the regularized empirical risk minimization (ERM) objective corresponding to the dataset:

FD,λ(x) :=
1

|D|
∑
s∈D

f(x; s) +
λ

2
∥x∥2 . (5)

When λ = 0, we simply denote the function above by FD(x) :=
1
|D|
∑

s∈D f(x; s).

3 Heavy-Tailed Private SCO

In this section, we obtain near-optimal algorithms (up to a polylogarithmic factor) using a new
population-level localization framework, combined with a geometric aggregation strategy for boost-
ing weak subproblem solvers to succeed with high probability (Fact 2). Our algorithm’s main
ingredient, given in Section 3.1, is a clipped DP-SGD subroutine for privately minimizing a regular-
ized ERM subproblem, under a condition on a randomly sampled dataset which holds with constant
probability. Next, in Section 3.2 we show that our algorithm from Section 3.1 returns points near
the minimizer of a regularized loss function over the population, using generalization arguments.
Finally, we develop our population-level localization scheme in Section 3.3, and combine it with our
subproblem solver to give our overall method for heavy-tailed private SCO.

3.1 Strongly convex DP-ERM solver

We give a parameterized subroutine for minimizing a DP-ERM objective FD,λ(x) associated with a
dataset D and a regularization parameter λ ≥ 0 (recalling the definition (5)). In this section only,
for notational convenience we identify elements of D with [n] where n := |D|, so we will also write

FD,λ(x) :=
1

n

∑
i∈[n]

fi(x) +
λ

2
∥x∥2 ,

i.e. we let fi(·) := f(·; s) where s ∈ D is the element identified with i ∈ [n]. Our subroutine is a
clipped DP-SGD algorithm (Algorithm 1), which only clips the heavy-tailed portion of ∇FD,λ (i.e.
the sample gradients), and leaves both the regularization and additive noise unchanged. The utility
of Algorithm 1 is parameterized by the following function of the dataset:

bD := max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(x)−
1

n

∑
i∈[n]

ΠC(∇fi(x))

∥∥∥∥∥∥ . (6)

In other words, bD denotes the maximum bias incurred by the clipped gradient of FD when compared
to the true gradient, over points in X ; note the maximum is achieved as X is compact.

We are now ready to state our algorithm, Clipped-DP-SGD, as Algorithm 1.

We provide the following guarantee on Clipped-DP-SGD, by modifying an analysis of [LSB12].

8



Algorithm 1: Clipped-DP-SGD(D, C, λ, {ηt}t∈[T ], σ
2, T, r,X )

1 Input: Dataset D ∈ Sn, clip threshold C ∈ R≥0, regularization λ ∈ R≥0, step sizes
{ηt}t∈[T ] ⊂ R≥0, noise σ2 ∈ R≥0, iteration count T ∈ N, radius r ∈ R≥0, domain X ⊂ B(r) with
X ∋ 0d

2 x0 ← 0d

3 for 0 ≤ t < T do
4 ξt ∼ N (0d, σ

2Id)
5 ĝt ← 1

n

∑
i∈[n]ΠC(∇fi(xt))

6 xt+1 ← argminx∈Xr
{ηt ⟨ĝt + ξt, x⟩+ ηtλ

2 ∥x∥
2 + 1

2 ∥x− xt∥
2}

7 end

8 Return: x̂←
∑

0≤t<T (t+4)xt∑
0≤t<T (t+4)

Proposition 1. Let ρ ≥ 0, and x̂ be the output of Clipped-DP-SGD with ηt ← 4
λ(t+1) for all

0 ≤ t < T , σ2 ← 2C2T
n2ρ

, and T ≥ max(n, n
2ρ
d ). Clipped-DP-SGD satisfies ρ-CDP, and

E[FD,λ(x̂)− FD,λ(x
⋆)] ≤ 32C2d

λn2ρ
+
b2D
λ

+
7λr2

n
, where x⋆ := argmin

x∈X
FD,λ(x).

Proof. For the privacy claim, note that each call to Line 3 is a postprocessing of a 2C
n -sensitive

statistic of the dataset D, since neighboring databases can only change 1
n

∑
i∈[n]ΠC(∇fi(xt)) by 2C

n
in the ℓ2 norm, via the triangle inequality. Therefore, applying the first and third parts of Lemma 1
shows that after T iterations, the CDP of the mechanism is at most T · 2C2

n2σ2 ≤ ρ.

We next prove the utility claim. For each 0 ≤ t ≤ T , denote

∆t := E [FD,λ(xt)− FD,λ(x
⋆)] , Φt := E

[
1

2
∥xt − x⋆∥2

]
, gt := ∇FD(xt),

where all expectations are only over randomness used by the algorithm, and not the randomness in
sampling D. First-order optimality applied to the definition of xt+1 implies, for all 0 ≤ t < T ,

⟨ĝt + ξt, xt − x⋆⟩+ ⟨λxt+1, xt+1 − x⋆⟩ ≤
1

2ηt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
+
ηt
2
∥ĝt + ξt∥2 .

Adding ⟨gt − ĝt − ξt, xt − x⋆⟩ to both sides and rearranging shows

FD(xt) +
λ

2
∥xt+1∥2 − FD,λ(x

⋆) +
λ

2
∥xt+1 − x⋆∥2 ≤ ⟨gt, xt − x⋆⟩+ ⟨λxt+1, xt+1 − x⋆⟩

≤ 1

2ηt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
+
ηt
2
∥ĝt + ξt∥2 + ⟨gt − ĝt − ξt, xt − x⋆⟩

≤ 1

2ηt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
+ ηtC

2 + ηt ∥ξt∥2 + bD ∥xt − x⋆∥ − ⟨ξt, xt − x⋆⟩ .

In the first line, we used strong convexity of the function λ
2 ∥x∥

2, and in the last line, we used
∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2 and the definitions of C and bD. Next, adding λ

2 (∥xt∥
2 − ∥xt+1∥2) to

9



both sides above and taking expectations over the first t iterations yields

∆t + λΦt+1 ≤
1

ηt
(Φt − Φt+1) + ηt(C

2 + σ2d) +
b2D
λ

+
λ

2
Φt +

λ

2

(
E ∥xt∥2 − E ∥xt+1∥2

)
,

where we used the Fenchel-Young inequality to bound bD ∥xt − x⋆∥ ≤
b2D
λ + λ

4 ∥xt − x
⋆∥2. Now,

plugging in our step size schedule ηt = 4
λ(t+1) , multiplying by t+ 4, and rearranging shows

(t+ 4)∆t ≤
λ(t+ 3)(t+ 4)

4
Φt −

λ(t+ 5)(t+ 4)

4
Φt+1

+
4(t+ 4)

λ(t+ 1)

(
3C2Td

n2ρ

)
+

(t+ 4)b2D
λ

+
λ(t+ 4)

2

(
E ∥xt∥2 − E ∥xt+1∥2

)
,

where we plugged in the choice of σ2 and T ≥ n2ρ
d , so C2 ≤ σ2d

2 . Summing the above for 0 ≤ t < T ,
using that all iterates and x⋆ lie in B(r), and dividing by Z :=

∑
0≤t<T (t+ 4) ≥ T 2

2 , shows

1

Z

∑
0≤t<T

(t+ 4)∆t ≤
3λΦ0

Z
+

16C2T 2d

λZn2ρ
+
b2D
λ

+
λ

2Z

∑
t∈[T ]

E ∥xt∥2

≤ 6λr2

T 2
+

32C2d

λn2ρ
+
b2D
λ

+
λr2

T
≤ 32C2d

λn2ρ
+
b2D
λ

+
7λr2

T
.

The conclusion follows from convexity of FD,λ, the definition of x̂, and T ≥ n.

For ease of use of Proposition 1, we now provide a simple bound on bD which holds with constant
probability from a dataset drawn from a distribution satisfying Assumption 1.

Lemma 3. Let D ∼ Pn, where P is a distribution over S satisfying Assumption 1. With probability
at least 4

5 , denoting bD as in (26), we have

bD ≤
5Gk

k

(k − 1)Ck−1
.

Proof. For every s ∈ S let x⋆(s) := argmaxx∈X ∥∇f(x; s)−ΠC(∇f(x; s))∥2. Then, we have

ED∼Pn [bD] = ED∼Pn

max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(x)−
1

n

∑
i∈[n]

ΠC(∇fi(x))

∥∥∥∥∥∥


≤ 1

n

∑
i∈[n]

ED∼Pn

[
max
x∈X
∥∇fi(x)−ΠC(∇fi(x))∥

]

= Es∼P [∥∇f(x⋆(s); s)−ΠC(∇f(x⋆(s); s))∥] ≤
E
[
∥∇f(x⋆(s); s)∥k

]
(k − 1)Ck−1

≤
Gk

k

(k − 1)Ck−1
.

The last line used independence of samples, used Fact 1 on the random vector ∇f(x⋆(s); s), and
applied Assumption 1 with the definition of x⋆(s). The conclusion uses Markov’s inequality.

We therefore have the following corollary of Proposition 1 and Lemma 3.

10



Corollary 1. Let D ∼ Pn, where P is a distribution over S satisfying Assumption 1, and let x⋆D,λ :=
argminx∈X FD,λ(x), following (5). If we run Clipped-DP-SGD with parameters in Proposition 1 and

C ← Gk ·
(
25n2ρ

32d

) 1
2k

,

Clipped-DP-SGD is ρ-CDP, and there is a universal constant Cerm such that with probability ≥ 3
5

over the randomness of D and Clipped-DP-SGD, x̂, the output of Clipped-DP-SGD, satisfies

∥∥x̂− x⋆D,λ

∥∥ ≤ Cerm

Gk

λ

( √
d

n
√
ρ

)1− 1
k

+
r√
n

 .

Clipped-DP-SGD queries at most max(n2, n
3ρ
d ) sample gradients (using samples in D).

Proof. Condition on the conclusion of Lemma 3, which holds with probability 4
5 . Therefore,

Markov’s inequality shows that with probability at least 3
5 , after a union bound with Lemma 3,

λ

2

∥∥x̂− x⋆D,λ

∥∥2 ≤ FD,λ(x̂)− FD,λ(x
⋆
D,λ)

≤ 160C2d

λn2ρ
+

125G2k
k

λC2(k−1)
+

7λr2

n
≤

320G2
k

λ

(
d

n2ρ

)1− 1
k

+
7λr2

n
,

where we used strong convexity in the first inequality, and plugged in our choice of C in the last. The
conclusion follows by rearranging the above display, and using

√
a2 + b2 ≤ a+ b for a, b ∈ R≥0.

3.2 Localizing regularized population loss minimizers

In this section, we use generalization arguments from the SCO literature to show how Clipped-DP-SGD
acts as an oracle which, with a constant probability of success, returns a point which is near the
minimizer of a regularized population loss. We begin with a standard helper statement.

Lemma 4. Let λ ≥ 0, let P be a distribution over S satisfying Assumption 1, let x̄ ∈ X where
X ⊂ Rd is compact and convex, and let

x⋆λ,x̄ := argmin
x∈X

{
FP(x) +

λ

2
∥x− x̄∥2

}
, where FP(x) := Es∼P [f(x; s)] . (7)

Then ∥x̄− x⋆λ,x̄∥ ≤
2G1
λ .

Proof. Let r := ∥x̄− x⋆∥. By strong convexity and the definition of x⋆λ,x̄,

λr2

2
≤ FP(x̄)− FP(x

⋆)− λ

2
∥x⋆ − x̄∥2 ≤ FP(x̄)− FP(x

⋆) ≤ G1r.

Here, we used that FP is G1-Lipschitz (Lemma 2), and rearranging yields the conclusion.

Next, we apply a result on generalization due to [LR23] to bound the expected distance between a
restricted empirical regularized minimizer and the minimizer of the population variant in (7).
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Lemma 5. Let λ ≥ 0, let D ∼ Pn where P is a distribution over S satisfying Assumption 1, and
let x̄ ∈ X where X ⊂ Rd is compact and convex. Following notation (4), (5), let

y := argmin
x∈X

{
[FD]B(x̄,r) (x) +

λ

2
∥x− x̄∥2

}
, for r :=

2G1

λ

and let x⋆λ,x̄ be defined as in (7). Then with probability ≥ 0.95 over the randomness of D ∼ Pn,∥∥y − x⋆λ,x̄∥∥2 ≤ 90G2

λ
√
n
.

Proof. For each f(x; s), define a restricted variant f̃(x; s) := fB(x̄,r)(x; s), and let F̃P := Es∼S f̃(·; s).
Similarly, define F̃D to be the restricted variant of the empirical loss FD. Because F̃P is pointwise
larger than FP and x⋆λ,x̄ ∈ B(x̄, r) by Lemma 4, it is clear that

x⋆λ,x̄ = argmin
x∈X

{
F̃P(x) +

λ

2
∥x− x̄∥2

}
,

and y is the minimizer of the empirical (restricted) variant of the above display. Moreover, each
of the regularized functions f̃(x; s) + λ

2 ∥x− x̄∥
2 has a Lipschitz constant at most λr = 2G1 larger

than its unregularized counterpart in X ∩ B(x̄, r), so these functions satisfy the moment bound in
Assumption 1 for j = 2 with a bound of 2G2

2 + 8G2
1. Now, applying Proposition 29, [LR23] yields

E

[(
F̃P(y) +

λ

2
∥y − x̄∥2

)
−
(
F̃P(x

⋆
λ,x̄) +

λ

2

∥∥x⋆λ,x̄ − x̄∥∥2)]
= E

[(
F̃D(y) +

λ

2
∥y − x̄∥2

)
−
(
F̃D(x

⋆
λ,x̄) +

λ

2

∥∥x⋆λ,x̄ − x̄∥∥2)]
+ E

[(
F̃P(y) +

λ

2
∥y − x̄∥2

)
−
(
F̃D(y) +

λ

2
∥y − x̄∥2

)]
≤ 0 +

4G2
2 + 16G2

1

λn
=

4G2
2 + 16G2

1

λn
≤ 20G2

2

λn
.

The first equality used that x⋆λ,x̄ is independent of sampling D, and the second used x̂ is the empirical
risk minimizer. The conclusion follows from Markov’s inequality and strong convexity.

Corollary 2. Let D ∼ Pn, where P is a distribution over S satisfying Assumption 1, and let x̄ ∈ X
where X ⊂ Rd is compact and convex. Let λ ≥ 0 and define x⋆λ,x̄ as in (7). There is a ρ-CDP

algorithm A which queries max(n2, n
3ρ
d ) sample gradients (using samples in D). With probability

0.55 over the randomness of A and D, A returns x̂ satisfying, for a universal constant Creg-pop,

∥∥x̂− x⋆λ,x̄∥∥ ≤ Creg-pop

Gk

λ

( √
d

n
√
ρ

)1− 1
k

+
G2

λ
√
n

 .

Proof. Condition on the conclusion of Lemma 5 holding for our dataset, which loses 0.05 in the
failure probability. Next, consider the guarantee of Corollary 1, when applied to the truncated
and shifted functions, f̃(x; s)← fB(x̄,r)(x− x̄; s), where r is set as in Lemma 5. It shows that with
probability 3

5 , ∥x̂+ x̄− y∥ = O(Gk
λ (

√
d

n
√
ρ)

1− 1
k +

√
λr√
n
) , for the point x̂ returned by the algorithm, and

y the exact minimizer of the empirical loss restricted to B(x̄, r). Therefore, the conclusion follows by
overloading x̂ ← x̂+ x̄, applying the triangle inequality with the conclusions of Corollary 1 and 2,
and taking a union bound over their failure probabilities.
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3.3 Population-level localization

In this section, we provide a generic population-level localization scheme for stochastic convex
optimization, which may be of broader interest. Our localization scheme is largely patterned off of
the analogous localization methods developed by [FKT20], but directly argues about contraction
to population-level regularized minimizers (as opposed to empirical minimizers), which makes it
compatible with our framework in Section 3.1 and 3.2, specificially the guarantees of Corollary 2.

Algorithm 2: Population-Localize(x0,P, λ, I)
1 Input: Initial point x0 ∈ X , distribution P over samples in S, for X ,S inducing a
k-heavy-tailed DP-SCO problem as in Definition 4, with a population loss FP := Es∼S [f(·; s)],
λ ≥ 0, I ∈ N

2 for i ∈ [I] do
3 λi ← λ · 32i
4 xi ← any point satisfying

∥xi − x⋆i ∥ ≤
∆4i

λi
, where x⋆i := argmin

x∈X

{
FP(x) +

λi
2
∥x− xi−1∥2

}
(8)

5 end
6 Return: xI

Proposition 2. Following notation of Algorithm 2, let x⋆ := argminx∈X FP(x). Then,

FP(xI)− FP(x
⋆) ≤ G1∆

λ8I
+

∆2

4λ
+
λD2

2
.

In particular, choosing λ to optimize this bound, we have

FP(xI)− FP(x
⋆) ≤ 2D

√
G1∆

8I
+D∆.

Proof. We denote x⋆0 := x⋆ throughout the proof. First, we expand

FP(xI)− FP(x
⋆
0) = FP(xI)− FP(x

⋆
I) + FP(x

⋆
I)− FP(x

⋆
0)

= FP(xI)− FP(x
⋆
I) +

∑
i∈[I]

FP(x
⋆
i )− FP(x

⋆
i−1).

Moreover, for each i ∈ [I], since x⋆i minimizes FP(x) +
λi
2 ∥x− xi−1∥2,

FP(x
⋆
i ) ≤ FP(x

⋆
i ) +

λi
2
∥x⋆i − xi−1∥2 ≤ FP(x

⋆
i−1) +

λi
2

∥∥x⋆i−1 − xi−1

∥∥2 .
Combining the above two displays, and using that FP is G1-Lipschitz (Lemma 2), we have

FP(xI)− FP(x
⋆) ≤ G1 ∥xI − x⋆I∥+

∑
i∈[I]

λi
2

∥∥x⋆i−1 − xi−1

∥∥2
≤ G1∆

λ8I
+
∑

i∈[I−1]

∆216i

2λi
+
λD2

2
≤ G1∆

λ8I
+

∆2

4λ
+
λD2

2
,

where we used the diameter bound assumption diam(X ) = D, as in Definition 4.
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In particular, note that Corollary 2 shows that by using n samples from P and a CDP budget of ρ,
with constant probability, we can satisfy the requirement (8) with

∆4i = O

Gk

( √
d

n
√
ρ

)1− 1
k

+
G2√
n

 .

By plugging this guarantee into the aggregation subroutine in Fact 2, we have our SCO algorithm.

Algorithm 3: Aggregate-ERM(x̄, λ, J, ρ, {sℓ}ℓ∈[nJ ], R)
1 Input: Regularization center x̄ ∈ X , regularization λ ∈ R≥0, sample split parameter J ∈ N,

privacy parameter ρ ∈ R≥0, samples {sℓ}ℓ∈[nJ ] ⊂ S, distance bound R ∈ R≥0

2 for j ∈ [J ] do
3 Dj ← {sℓ}(j−1)n<ℓ≤jn for all j ∈ [J ]

4 xj ← result of Corollary 2 using Dj , on loss defined by x̄, λ with privacy parameter ρ
5 end
6 x← Aggregate({xj}j∈[J ], R) (see Fact 2)
7 Return: x

Theorem 1. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
let x⋆ := argminx∈X FP(x), and let ρ ≥ 0, δ ∈ (0, 1). Algorithm 2 using Algorithm 3 in Line 5 is a
ρ-CDP algorithm which draws D ∼ Pn, queries Csco max(n2, n

3ρ
d ) sample gradients (using samples

in D) for a universal constant Csco, and outputs x ∈ X satisfying, with probability ≥ 1− δ,

FP(x)− FP(x
⋆) ≤ Csco

GkD ·

(√
d log

(
1
δ

)
n
√
ρ

)1− 1
k

+G2D ·

√
log
(
1
δ

)
n

 .

Proof. Throughout, we assume that 1
δ is at least a large enough constant (where lossiness can be

absorbed into Csco), and that n is at least a sufficiently large constant multiple of log 1
δ (because the

entire range of FP is ≤ G2D). We first handle the case where 1
δ is larger than polylog(n), deferring

the case of small 1
δ to the end of the proof. Let I, J ∈ N be chosen such that

I :=
⌊
log2

(n
J

)⌋
, J ∈

[
400 log

(
I

δ

)
, 500 log

(
I

δ

)]
,

which is achievable with I = O(log n) and J = O(log logn
δ ) = O(log 1

δ ). Let m := n
J , and assume

without loss that m is a power of 2, which we can guarantee by discarding ≤ 1
2 our samples, losing

a constant factor in the claim. For each i ∈ [I], let mi :=
m
2i

. We subdivide D into J portions, each
with m samples, and subdivide each portion into I parts each with mi samples. For j ∈ [J ] and
i ∈ [I], we denote the samples corresponding to the ith part of the jth portion by Dj

i , so⋃
i∈[I]

⋃
j∈[J ]

Dj
i ⊆ D, |D

j
i | = mi for all j ∈ [J ], Dj

i ∩ D
j′

i′ = ∅ for all (i, j) ̸= (i′, j′).

Next, we show how to implement Line 5 in Algorithm 2, for an iteration i ∈ [I], by calling Algo-
rithm 3 with appropriate parameters. Let n ← mi, ρ ← ρ, and initialize Algorithm 3 with the
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dataset ∪j∈[J ]D
j
i and R := ∆4i

λi
, where

∆ := 3Creg-pop

Gk ·

( √
d

m
√
ρ

)1− 1
k

+
G2√
m

 .

By Corollary 2, each independent run outputs xji ∈ X satisfying, with probability 0.55,

∥∥∥xji − x⋆i ∥∥∥ ≤ Creg-pop

λi

Gk ·

( √
d

mi
√
ρ

)1− 1
k

+
G2√
mi

 ≤ ∆4i

3λi
=
R

3
. (9)

Therefore, by a Chernoff bound, with probability ≥ 1 − δ
I , at least 0.51J of the copies satisfy the

above bound, so Fact 2 yields xi satisfying ∥xi − x⋆i ∥ ≤ R = ∆4i

λi
with the same probability. Union

bounding over all I iterations of Algorithm 2 yields the failure probability, and so we obtain the
claim from Proposition 2, after plugging in n = O(m log(1δ )), since the dominant term is D∆. The
privacy proof follows from the first part of Lemma 1 since for each pair of neighboring databases,
exactly one of the datasets Dj

i are neighboring, and Corollary 2 guarantees privacy of the empirical
risk minimization algorithm using that dataset; privacy for all other datasets used is immediate
from postprocessing properties of privacy. The gradient complexity comes from aggregating all of
the IJ calls to Corollary 2, where we recall the sample sizes decay geometrically.

Finally, if 1
δ is smaller than polylog(n), for the ith iteration of Algorithm 2 we instead set Ji ∈

[400 log( I
δi
), 500 log( I

δi
)] where δi := δ

2i
. Then we subdivide a consecutive batch of n

2i
samples into

Ji portions, and follow the above proof. It is straightforward to check that (9) still holds with the
new value of mi = ⌊ n

2iJi
⌋ because the 4i factor growth on the right-hand side continues to outweigh

the change in mi. The error bound follows from Proposition 2, and the privacy proof is identical.

3.4 Strongly convex heavy-tailed private SCO via localization

Finally, by following the template of standard localization reductions in the literature (see e.g.
Theorem 5.1, [FKT20] or Lemma 5.5, [KLL21]), Theorem 1 obtains an improved rate when all
sample functions are strongly convex. For completeness, we state this result below.

Corollary 3. In the setting of Theorem 1, suppose f(x; s) is µ-strongly convex for all s ∈ S. There
is an algorithm which draws D ∼ Pn, queries Csco max(n2, n

3ρ
d ) sample gradients (using samples in

D) for a universal constant Csco, and outputs x ∈ X satisfying, with probability ≥ 1− δ,

FP(x)− FP(x
⋆) ≤ Csco

G2
k

µ
·

(
d log3

(
1
δ

)
n2ρ

)1− 1
k

+
G2

2

µ
·
log
(
1
δ

)
n

 .

Proof. This is immediate from the development in Section 5.1 (and the proof of Theorem 5.1) of
[FKT20], but we mention one slight difference here. Our guarantees in Theorem 1 do not scale with
the initial distance bound to the function minimizer, and instead scale with the domain size, which
makes it less directly compatible with the standard localization framework in [FKT20]. However,
because Theorem 1 holds with high probability, we also have explicit bounds on the domain size
via function error, as seen in the proof of Theorem 5.1 in [FKT20], so we can explicitly truncate
our domain to have smaller domain without removing the minimizer. With this modification, the
claim follows directly from Theorem 5.1 in [FKT20].
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4 Optimal Algorithms in the Known Lipschitz Setting

Compared to the standard Lipschitz setting (i.e. the ∞-heavy-tailed private SCO problem), our
algorithm in Section 3 has two downsides: it pays a polylogarithmic overhead in the utility, and
it requires an extra aggregation step. In this section, assuming we are in the known Lipschitz k-
heavy-tailed setting (see Assumption 2, Definition 4), we provide a simple reduction to the standard
Lipschitz setting, resulting in optimal rates. To this end, we require some additional definitions
used throughout the section. First, we augment S with a designated element s0 ̸∈ S, and define

f(x; s0) = 0 for all x ∈ X . (10)

We also define a truncated distribution parameterized by C ≥ 0, where we use f(·; s0) in place of
sample functions with large Lipschitz overestimates, following notation of Assumption 2:

fC(x; s) :=

{
f(x; s) Ls ≤ C
f(x; s0) Ls > C

, fC(x; s0) := f(x; s0), F
C
P (x; s) := Es∼P

[
fC(x; s)

]
. (11)

We denote S0 := S ∪ {s0}, and for D ∈ Sn, the dataset DC ∈ Sn0 replaces all s ∈ D satisfying
Ls > C with s0. We additionally provide a second reduction in the known Lipschitz heavy-tailed
setting, when all sample functions are assumed to be µ-strongly convex. Because our treatments of
these cases are slightly different, we use different notation when µ = 0 and µ > 0, for convenience
of exposition. Fixing an arbitrary point x̄ ∈ X , for µ > 0, instead of using the constant 0 function
as in (10), we define a strongly convex alternative f(·; sµ), for a designated element sµ:

f(x; sµ) =
µ

2
∥x− x̄∥2, for all x ∈ X . (12)

The truncated distribution parameterized by C ≥ µD, is defined in a similar way:

fCµ (x; s) :=

{
f(x; s) Ls ≤ C
f(x; sµ) Ls > C

, fCµ (x; sµ) := f(x; sµ), F
C,µ
P (x; s) := Es∼P

[
fCµ (x; s)

]
. (13)

We denote Sµ := S ∪ {sµ}, and for D ∈ Sn, the dataset DC
µ ∈ Snµ replaces every s ∈ D such that

Ls > C with sµ. Our focus on the regime C ≥ µD
4 is motivated by the following well-known claim.

Lemma 6. Let X ⊆ Rd be compact and convex satisfying diam(X ) = D, and suppose f : X → R is
L-Lipschitz and µ-strongly convex. Then, L ≥ µD

4 .

Proof. Let x⋆ := argminx∈X f(x). By strong convexity, for all x ∈ X ,

µ

2
∥x− x⋆∥2 ≤ f(x)− f(x⋆) ≤ L ∥x− x⋆∥ .

Now, choose x such that ∥x− x⋆∥ ≥ D
2 . To see this is always possible, let x, x′ ∈ X realize

∥x− x′∥ = D; then at least one of x, x′ must have distance ≥ D
2 from x⋆ by the triangle inequality.

The conclusion follows by rearranging after using our choice of x.

In other words, if C < µD
4 then no sample function will survive the truncation in (13). Finally, we

parameterize the performance of algorithms in the standard Lipschitz setting.
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Definition 5 (Lipschitz private SCO algorithm). We say A is an L-Lipschitz private SCO algorithm
if it takes input (D, ρ,X ), where D ∈ Sn is drawn i.i.d. from P, a distribution over S where every
s ∈ S induces L-Lipschitz f(·; s) over X ⊂ Rd, A(D, ρ,X ) ∈ X , and A satisfies ρ-CDP. We denote

Err(A) := EA [FP (A(D, ρ,X ))]−min
x∈X

FP(x),

where FP(x) := Es∼Pf(x; s), and denote the number of sample gradients queried by A by N(A).
Moreover, if each Lipschitz function f(; s) is µ-strongly convex over the convex domain X , we say
A is an L-Lipschitz, µ-strongly convex private SCO algorithm, and define Err(A), N(A) as before.

With this notation in place, we state our reduction.

Algorithm 4: KnownLipReduction(D, C, µ, ρ,X ,A)
1 Input: Dataset D ∈ Sn, clip threshold C ∈ R≥0, strong convexity parameter µ ∈ R≥0, privacy

parameter ρ ∈ R>0, domain X ∈ Rd, C-Lipschitz private SCO algorithm A (if µ = 0), or
C-Lipschitz µ-strongly convex private SCO algorithm A (if µ > 0)

2 if µ = 0 then
3 Return: A(DC , ρ,X )
4 end
5 else
6 Return: A(DC

µ , ρ,X )
7 end

We begin with a simple bound relating FC
P , F

C,µ
P and FP .

Lemma 7. Let FP be defined as in Definition 4, where P satisfies Assumption 2, and define FC
P

as in (11). Then, FP − FC
P is Gk

k

(k−1)Ck−1 -Lipschitz, and FP − FC,µ
P is Gk

k

(k−1)Ck−1 +
4Gk+1

k

Ck -Lipschitz.

Proof. For s ∈ S, let π(s) := s0 if Ls > C, and otherwise let π(s) := s. For any x, x′ ∈ X , we have(
FP(x)− FC

P (x)
)
−
(
FP(x

′)− FC
P (x′)

)
= Es∼P

[
f(x; s)− f(x;π(s))− f(x′; s) + f(x′;π(s))

]
= Es∼P

[(
f(x; s)− f(x′; s)

)
ILs>C

]
≤ Es∼P

[
Ls

∥∥x− x′∥∥ ILs>C

]
≤

Gk
k

(k − 1)Ck−1

∥∥x− x′∥∥ .
In the second line, we used that π(s) = s unless Ls > C, in which case f(·;π(s)) = 0 uniformly.
The last line used the definition of Ls and Fact 1 with X ← Ls, recalling Assumption 2.

Next, we analyze FC,µ
P . Overloading π(s) := sµ if Ls > C, and letting π(s) := s otherwise,(

FP(x)− FC,µ
P (x)

)
−
(
FP(x

′)− FC,µ
P (x′)

)
= Es∼P

[
f(x; s)− f(x;π(s))− f(x′; s) + f(x′;π(s))

]
= Es∼P

[(
f(x; s)− f(x′; s) + f(x′; sµ)− f(x; sµ)

)
ILs>C

]
≤ Es∼P

[
Ls

∥∥x− x′∥∥ ILs>C

]
+ Es∼P

[
4Gk

∥∥x− x′∥∥ ILs>C

]
≤

(
Gk

k

(k − 1)Ck−1
+

4Gk+1
k

Ck

)∥∥x− x′∥∥ .
In the third line, we used that µD ≤ 4G1 ≤ 4Gk by Lemma 6 and Lemma 2 to show that f(·; sµ)
is 4Gk-Lipschitz over X . Finally, the last line used Markov’s inequality to bound E[ILs>C ].
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Using Lemma 7, we provide a straightforward analysis of Algorithm 4.

Proposition 3. Consider an instance of known-Lipschitz k-heavy-tailed private SCO (Definition 4),
and let ρ ≥ 0. If A is a C-Lipschitz private SCO algorithm (Definition 5) and µ = 0, Algorithm 4
using A is a ρ-CDP algorithm which outputs x ∈ X satisfying

E [FP(x)− FP(x
⋆)] ≤ Err(A) +

Gk
kD

(k − 1)Ck−1
, where x⋆ := argmin

x∈X
FP(x).

Further, if f(·; s) is µ-strongly convex for all s ∈ S and A is a C-Lipschitz, µ-strongly convex private
SCO algorithm for µ > 0, Algorithm 4 using A is a ρ-CDP algorithm which outputs x ∈ X satisfying

E [FP(x)− FP(x
⋆)] ≤ Err(A)

+

(
Gk

k

(k − 1)Ck−1
+

4Gk+1
k

Ck

)(
2Gk

k

µ(k − 1)Ck−1
+

8Gk+1
k

µCk
+

√
2

µ
· Err(A)

)
,

where x⋆ := argmin
x∈X

FP(x).

In either case, Algorithm 4 queries N(A) sample gradients (using samples in D).

Proof. For the first utility claim, letting x⋆,C := argminx∈X F
C
P (x), we have

E [FP(x)− FP(x
⋆)] = E

[
FC
P (x)− FC

P (x⋆)
]
+ E

[(
FP(x)− FC

P (x)
)
−
(
FP(x

⋆)− FC
P (x⋆)

)]
≤ E

[
FC
P (x)− FC

P (x⋆,C)
]
+

Gk
k

(k − 1)Ck−1
E [∥x− x⋆∥]

≤ Err(A) +
Gk

kD

(k − 1)Ck−1
,

(14)

where the first inequality used the definition of x⋆,C and Lemma 7, and the second used the definition
of Err and diam(X ) = D. For the second claim, we first have

E
[µ
2

∥∥x− x⋆,C∥∥2] ≤ Err(A)

by the definition of Err(A) and µ-strong convexity of FC,µ
P , so that E[

∥∥x− x⋆,C∥∥] ≤ ( 2µErr(A))
1/2

by Jensen’s inequality. Moreover, we also have

µ

2

∥∥x⋆,C − x⋆∥∥2 ≤ FP(x
⋆,C)− FP(x

⋆)

≤
(
FP(x

⋆,C)− FC
P (x⋆,C)

)
−
(
FP(x

⋆)− FC
P (x⋆)

)
≤

(
Gk

k

(k − 1)Ck−1
+

4Gk+1
k

Ck

)∥∥x⋆,C − x⋆∥∥ ,
where we use optimality of x⋆,C in the second inequality, and Lemma 7 in the third. Combining,

E ∥x− x⋆∥ ≤ 2

µ
·

(
Gk

k

(k − 1)Ck−1
+

4Gk+1
k

Ck

)
+

√
2

µ
· Err(A),

and then the claim follows by substituting this bound into (14).
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We can use any existing optimal algorithms for DP-SCO to instantiate our reduction. In particular,
we can use the algorithm of [FKT20], denoted by ALip, which has the following guarantees. For
simplicity of exposition, we focus on the case where our functions do not possess additional regularity
properties e.g. smoothness, and we also focus on the simplest ALip which attains the optimal utility
bound. Because of the generality of our reduction, however, improvements can be made by using
more structured or faster subroutines as ALip, such as the smooth DP-SCO algorithms of [FKT20] or
the Lipschitz DP-SCO algorithms of e.g. [AFKT21, KLL21, CJJ+23], which are more query-efficient,
sometimes at the cost of logarithmic factors in the utility (in the case of [CJJ+23]).

Proposition 4. Let P be a distribution over S such that f(·; s) is L-Lipschitz and convex for all
s ∈ S. There exists a constant CLip such that given D ∼ Sn, the algorithm ALip is ρ-CDP and
outputs xpriv such that, for a universal constant CLip, letting x⋆ := argminx∈X FP(x),

E[FP(xpriv)− FP(x
⋆)] ≤ CLip ·

(
G2D√
n

+
LD
√
d

n
√
ρ

)
,

and ALip queries ≤ CLipmax(n2, n
3ρ
d ) sample gradients (using samples in D), where G2 is defined

as in Assumption 1. Moreover, if f(·; s) is µ-strongly convex for all s ∈ S, then

E[FP(xpriv)− FP(x
⋆)] ≤ CLip ·

(
G2

2

µn
+

L2d

µn2ρ

)
,

and ALip queries ≤ CLipmax(n2, n
3ρ
d ) sample gradients (using samples in D).

Proof. This follows from developments in [FKT20], but we briefly explain any discrepancies. The
µ = 0 case applies Theorem 4.8 in [FKT20], where for simplicity we consider the full-batch variant
which does not subsample.7 Moreover, Theorem 4.8 in [FKT20] is stated with a dependence on L
rather than G2 on the n−1/2 term, but inspecting the proof shows it only uses a second moment
bound. The µ > 0 case follows from Theorem 5.1 of [FKT20], using Theorem 4.8 as a subroutine.

We are now ready to present our main result in this section, using our reduction with ALip.

Theorem 2. Consider an instance of known-Lipschitz k-heavy-tailed private SCO (Definition 4), let
ρ ≥ 0, and let x⋆ := argminx∈X FP(x). Algorithm 4 with C ← Gk(

n
√
ρ√
d
)
1
k using ALip in Proposition 4

is a ρ-CDP algorithm which outputs x ∈ X satisfying, for a universal constant CHT,

E [FP(x)− FP(x
⋆)] ≤ CHT

G2D√
n

+GkD ·

( √
d

n
√
ρ

)1− 1
k

 ,

querying ≤ CHT max(n2, n
3ρ
d ) sample gradients (using samples in D). Further, if f(·; s) is µ-strongly

convex for all s ∈ S, Algorithm 4 with C ← Gk(
n2ρ
d )

1
2k using ALip in Proposition 4 is a ρ-CDP

algorithm which outputs x ∈ X satisfying

E [FP(x)− FP(x
⋆)] ≤ CHT

(
G2

2

µn
+
G2

k

µ
·
(

d

n2ρ

)1− 1
k

)
,

querying ≤ CHT max(n2, n
3ρ
d ) sample gradients (using samples in D).

7The subsampled variant only satisfies a weaker variant of CDP called truncated CDP, with an upside of using n
times fewer sample gradient queries, but this is less comparable to the lower bounds in [LR23].
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Proof. Throughout the proof, assume without loss of generality that d ≤ n2ρ, as otherwise all
stated bounds are vacuous since the additive function value range over X is at most G1D ≤

4G2
1

µ by
Lemma 6 and Lemma 2. This also implies that C ≥ Gk in either case.

In the µ = 0 case, Proposition 3 and the guarantees of ALip in Proposition 4 imply that

E [FP(x̂)− FP(x
⋆)] ≤ Err(ALip) +

Gk
kD

Ck−1

≤ CLip ·

(
G2D√
n

+
CD
√
d

n
√
ρ

)
+
Gk

kD

Ck−1

≤ (CLip + 2)

G2D√
n

+GkD ·

( √
d

n
√
ρ

)1− 1
k

 ,

where the last inequality follows from our choice of C. Next, we consider µ > 0. Proposition 3 and
the guarantees of ALip in Proposition 4 for this case imply that, assuming CLip ≥ 2 without loss,

E [FP(x̂)− FP(x
⋆)] ≤ Err(ALip) +

5Gk
k

Ck−1

(√
2Err(n, d, ρ, C,D)

µ
+

10Gk
k

µCk−1

)

≤ CLip ·

(
G2

2

µn
+

C2d

µn2ρ
+

5Gk
k

Ck−1

(
G2

µ
√
n
+

C
√
d

µn
√
ρ
+

10Gk
k

µCk−1

))

≤ (CLip + 61) ·

(
G2

2

µn
+
G2

k

µ
·
(

d

n2ρ

)1− 1
k

)
,

where we used C ≥ Gk to simplify bounds, and applied our choice of C.

5 Fast Algorithms for Smooth Functions

In this section, we develop a linear-time algorithm for the smooth setting where we additionally
assume f(·; s) is β-smooth for all s ∈ S. Our algorithm attains nearly-optimal rates for a sufficiently
small value of β, and is based on the localization framework of [FKT20]. To apply this framework,
we show that a variant of clipped DP-SGD (see Algorithm 5) is stable in the heavy-tailed setting
with high probability. We then ensure that stability holds for any input dataset (not necessarily
sampled from a distribution P ), by using the sparse vector technique [DR14] to verify that the
number of clipped gradients is not too large. In Section 5.1, we provide some standard preliminary
results from the literature. We use these results in Section 5.2, where we state our algorithm in full
as Algorithm 7 and analyze it in Theorem 3, the main result of this section.

5.1 Helper tools

First, we state a standard bound on the contractivity of smooth gradient descent iterations.

Fact 3 (Lemma 3.7, [HRS16]). Let f : X → R be β-smooth, and let η ≤ 2
β . Then for any x, x′ ∈ X ,∥∥(x− x′)− η(∇f(x)−∇f(x′))∥∥ ≤ ∥∥x− x′∥∥ .

Next, we provide a standard utility bound on a one-pass SGD algorithm using clipped gradients.
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Algorithm 5: OnePass-Clipped-SGD(D, C, η, T,X , x0)
1 Input: Dataset D = {st}t∈[T ] ∈ ST , clip threshold C ∈ R≥0, step size η ∈ R≥0, iteration count
T ∈ N, domain X ⊂ B(x0, D) for x0 ∈ X

2 for 0 ≤ t < T do
3 xt+1 ← argminx∈X {η ⟨ΠC(∇f(xt; st+1)), x⟩+ 1

2 ∥x− xt∥
2}

4 end
5 Return: x̂← 1

T

∑
0≤t<T xt

Lemma 8. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
and let u ∈ X be independent of D. Assuming D ∼ PT i.i.d., Algorithm 5 outputs x̂ ∈ X satisfying

E [FP(x̂)− FP(u)] ≤
∥x0 − u∥2

2ηT
+
ηG2

2

2
+

Gk
kD

(k − 1)Ck−1
.

Proof. To simplify notation, let gt := ∇f(xt; st+1) for all 0 ≤ t < T , and let ĝt := TC(gt). Because
st+1 ∼ P is independent of xt, we have that Egt = ∇FP(xt). Therefore, in iteration t,

FP(xt)− FP(u) = E [⟨gt, xt − u⟩]
≤ E [⟨ĝt, xt − u⟩+ ∥gt − ĝt∥D]

≤ E

[
1

2
∥xt − u∥2 −

1

2
∥xt+1 − u∥2 +

ηG2
2

2

]
+

Gk
kD

(k − 1)Ck−1
,

(15)

where all expectations are conditional on the first t iterations of the algorithm, and taken over the
randomness of st+1. In the third line, we used the first-order optimality condition on xt+1, applied
Fact 1 to bound E ∥gt − ĝt∥, and used

E ∥ĝt∥2 ≤ E ∥gt∥2 ≤ G2
2. (16)

Summing across all iterations and dividing by T yields the result upon iterating expectations.

We also note the following straightforward generalization of Lemma 8 to the case of randomized
clipping thresholds, which is used in our later development.

Corollary 4. For C, Ĉ ≥ 0 and g ∈ Rd, define the operation

ΠC,Ĉ(g) :=

{
ΠC(g) ∥g∥ ≥ Ĉ
g else

.

If Algorithm 5 is run with ΠC(∇f(xt; st+1)) replaced by ΠC,Ĉt
(∇f(xt; st+1)) where Ĉt is independent

of st+1 and satisfies Ĉt ≥ C
2 for all 0 ≤ t < T , then following notation in Lemma 8,

E [FP(x̂)− FP(u)] ≤
∥x0 − u∥2

2ηT
+ 2ηG2

2 +
Gk

kD

(k − 1)(C2 )
k−1

.

Proof. For a fixed iteration 0 ≤ t < T , the calculation (16) changes in two ways. First, in place
of the variance bound (16) (which used ∥ĝt∥ ≤ ∥gt∥ deterministically), when using the modified
clipping operators we require the modified deterministic bound

∥ĝt∥ ≤ 2 ∥gt∥ ,
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which follows because ∥ĝt∥ ̸= ∥gt∥ (which implies C = ∥ĝt∥) only if ∥gt∥ ≥ C
2 . Moreover, in place of

the bias bound E ∥gt − ĝt∥ ≤
Gk

k

(k−1)Ck−1 which followed from Fact 1, we instead have

E
∥∥∥ΠC,Ĉt

(gt)− gt
∥∥∥ = E

[∣∣∣∣ C∥gt∥ − 1

∣∣∣∣ ∥gt∥ I∥gt∥≥max(Ĉt,C)

]
≤ E

[
∥gt∥ I∥gt∥≥C

2

]
≤

Gk
k

(k − 1)(C2 )
k−1

.

The conclusion follows by adjusting these constants appropriately in Lemma 8.

Next, for R, τ ≥ 0, we let BLap(R, τ ) denote the bounded Laplace distribution with scale parameter
R and truncation threshold τ be defined as the conditional distribution of ξ ∼ Lap(R) on the event
|ξ| ≤ τ (recall that Lap(R) has a density function ∝ exp(− 1

R |ξ|)). It is a standard calculation that

Pr
ξ∼Lap(R)

[
|ξ| ≤ R log

(
1

δ

)]
= 1− δ, (17)

so that the total variation distance between Lap(R) and BLap(R,R log(1δ )) is δ. We hence have the
following bounded generalization of the privacy given by the Laplace mechanism.

Lemma 9. Let ε, δ ∈ (0, 1). If S(D) ∈ R is a ∆-sensitive statistic of the dataset D, i.e. for
neighboring datasets D,D′ we have that |S(D)−S(D′)| ≤ ∆, then the bounded Laplace mechanism
which outputs S(D) + ξ where ξ ∼ BLap(∆ε , τ) for any τ ≥ ∆

ε log(4δ ) satisfies (ε, δ)-DP.

Proof. For notational simplicity, let A denote the Laplace mechanism (which samples ξ ∼ Lap(∆ε )
instead of BLap(∆ε , τ)), let A denote the bounded Laplace mechanism, and let E ⊆ R be an event
in the outcome space. By standard guarantees on (ε, 0)-DP of A (e.g. Theorem 3.6, [DR14]),

Pr
[
A(D) ∈ E

]
≤ Pr [A(D) ∈ E ] + δ

4

≤ exp(ε) Pr
[
A(D′) ∈ E

]
+
δ

4
≤ exp(ε) Pr

[
A(D′) ∈ E

]
+ δ,

(18)

for any neighboring datasets, where we used exp(ε) ≤ 3 and that the total variation distance between
(A(D),A(D)) and (A(D′),A(D′)) are bounded by δ

4 by (17).

We also use the sparse vector technique (SVT) [DR14], which has been used recently in private
optimization in the user-level setting [AL24]. Given an input dataset D = {si}i∈[n] ∈ Sn, SVT takes
a stream of queries q1, q2, . . . , qT : D → R in an online manner. We assume each qi is ∆-sensitive,
i.e. |qi(D) − qi(D′)| ≤ ∆ for neighboring datasets D,D′ ∈ Sn. One notable difference is that our
SVT algorithm will use the bounded Laplace mechanism rather than the Laplace mechanism, but
this distinction is handled similarly to Lemma 9. We provide a guarantee on this variant of SVT in
Lemma 10, and pseudocode is provided as Algorithm 6.

Lemma 10. Let δ, ε ∈ (0, 1) and suppose

R ≥ 6∆

ε

√
c log

(
5

δ

)
, τ ≥ R log

(
10T

δ

)
(19)

Algorithm 6 outputs a sequence of answers {ai ∈ {⊥,⊤}}i∈[k] for some k ∈ [T ], and is (ε, δ)-DP.
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Algorithm 6: SVT(D, {qi}i∈[T ], c, L,R, τ )

1 Input: Dataset D = {st}t∈[n] ∈ Sn, ∆-sensitive queries {qi : Sn → R}i∈[T ], count threshold
c ∈ N, query threshold L ∈ R, scale parameter R ∈ R≥0, truncation threshold τ ∈ R≥0

2 i← 1, count← 0
3 b← L+ ξ for ξ ∼ BLap(R, τ )
4 while i ∈ [T ] and count < c do
5 ξ ∼ BLap(2R, 2τ)
6 if qi(D) + ξ < b then
7 Output: ai ← ⊥
8 i← i+ 1

9 end
10 else
11 Output: ai ← ⊤
12 i← i+ 1, count← count + 1
13 b← L+ ξ for ξ ∼ BLap(R, τ )
14 end
15 end
16 Halt

Proof. The proof is analogous to Lemma 9. Let A denote SVT run with Laplace noise in place of
bounded Laplace noise (i.e. τ = ∞), and let A denote SVT run with bounded Laplace noise. We
first claim that A is (ε, δ5)-DP, which is immediate from Theorem 3.23 and Theorem 3.20 in [DR14].

Next, by a union bound on all of the ≤ 2T random variables sampled, the total variation distance
between (A(D),A(D)) for any dataset D is bounded by δ

5 . Then, for neighboring datasets D,D′

and some event E in the outcome space, repeating the calculation (18),

Pr
[
A(D) ∈ E

]
≤ Pr [A(D) ∈ E ] + δ

5

≤ exp(ε) Pr
[
A(D′) ∈ E

]
+
δ

5
+
δ

5
≤ exp(ε) Pr

[
A(D′) ∈ E

]
+ δ.

5.2 Algorithm statement and analysis

In this section, we present the full details of our algorithm (see Algorithm 7) and prove its corre-
sponding guarantees, separating out the privacy analysis and utility analysis.
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Algorithm 7: Localized-Clipped-DP-SGD(D, x0, η, c, ε, δ)
1 Input: Dataset D ∈ Sn, initial point x0 ∈ X , step size η ∈ R>0, parameters C, c, ω ∈ R>0,

privacy parameters (ε, δ) ∈ R2
>0

2 I ← ⌊log2 n⌋, n← 2I

3 for i ∈ [I] do
4 ni ← n

2i
, ηi ← η

4i
, ωi ← ω · 6Cηiβ

5 Ĉ ← C + BLap(ωi, ωi log(
30ni
δ )), ĉi ← c+ BLap(3ε ,

c
2), count← 0

6 xi,1 ← xi−1

7 for j ∈ [ni] do
8 si,j ← (

∑
i′∈[i] ni′ + j)th element of D

9 νi,j ∼ BLap(2ωi, 2ωi log(
30ni
δ ))

10 if ∥∇f(xi,j ; si,j)∥+ νi,j ≥ Ĉ then
11 count← count + 1
12 gi,j ← ΠC(∇f(xi,j ; si,j))
13 Ĉ ← C + BLap(ωi, ωi log(

30ni
δ ))

14 end
15 else
16 gi,j ← ∇f(xi,j ; si,j)
17 end
18 if count ≥ ĉi then
19 Return: ⊥
20 end
21 xi,j+1 ← ΠX (xi,j − ηigi,j)
22 end
23 xi ← 1

ni

∑
j∈[ni]

xi,j

24 xi ← xi + ζi, where ζi ∼ N (0, σ2i Id) with σi =
30Cηi

√
log(3/δ)

ε

25 end
26 Return: xI

The following theorem summarizes the guarantees of Algorithm 7.

Theorem 3. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
and let x⋆ := argminx∈X FP(x), and ε, δ ∈ (0, 1). Algorithm 7 run with parameters

η ← min

√ 4

n
· D
G2

,
DI

Gkn
·

(
n2ε2

14400d log2(15nδ )

) k−1
2k

 ,

C ← 2

(
Gk

kDInε
2

14400dη log2(15nδ )

) 1
k+1

, c←
240
√
d log(15nδ )

ε
, ω ← 18

ε

√
2c log

(
15

δ

)
,

is (ε, δ)-DP and outputs xI that satisfies, for a universal constant Csmooth,

E [FP(xk)− FP(x
⋆)] ≤ Csmooth

G2D√
n

+GkD ·


√
d log3(nδ )

nε

1− 1
k

 ,
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assuming f(·; s) is β-smooth for all s ∈ S, where

β ≤ ε1.5

24000η
√
d log2(30nδ )

= Θ

max

G2

D
·
√
nε1.5√

d log2(nδ )
,
Gk

D
· ε1.5n√

d log(n) log2(nδ )
·

(
d log2(nδ )

n2ε2

) k−1
2k

 .

(20)

We now proceed to prove Theorem 3.

Privacy proof overview. We first overview the structure of our privacy proof. Consider two
neighboring datasets D,D′ that differ on a single sample si,j0 ̸= s′i,j0 . The core argument used to
prove privacy is controlling the total number of times when gradients are clipped, so we introduce
the variable “count.” Note that we have ∥xi,j0+1 − x′i,j0+1∥ = O(Cη) due to the clip operation. If
no clip ever happened afterward, then we know ∥xi,ni − x′i,ni

∥ ≤ ∥xi,j0+1 − x′i,j0+1∥ = O(Cη) due
to our smoothness assumption (see Fact 3), which means the algorithm is private. When count is
not too large, we can still bound the sensitivity between ∥xi,ni − x′i,ni

∥ by O(Cη). However, when
the value of count is larger, there is a risk that the sensitivity of xi,ni is not bounded as before, and
hence we halt the algorithm when count exceeds some appropriate cutoff point ĉi.

One subtle difference between our algorithm and standard uses of SVT is that we add Laplace
noise to the cutoff point c to obtain a randomized cutoff ĉi. This is because the sensitivity of the
count increment at the jth0 iteration of phase i is bounded by one, even though ∥∇f(xi,j0 ; si,j0)∥ −
∥∇f(x′i,j0 ; s

′
i,j0

)∥ can be arbitrarily large. The guarantees of the bounded Laplace mechanism imply
that the noise added in ĉi hence suffices to privatize count.

In summary, we can control the sensitivity between ∥xi,j − x′i,j∥ for all j due to the termination
condition in Line 18 and our use of bounded Laplace noise, and hence can control the sensitivity of
the query for ∥∇f(xi,j ; si,j)∥− ∥∇f(x′i,j ; s′i,j)∥ for all j ̸= j0. By adding Laplace noise on the cutoff
c, we handle the issue of the sensitivity of the jth0 query ∥∇f(xi,j0 ; si,j0)∥ being unbounded. If the
algorithm succeeds and returns xk, we know the sensitivity ∥xi,ni −x′i,ni

∥ is O(Cηi) and the privacy
guarantee follows from the Gaussian mechanism. If the algorithm fails and outputs ⊥, the privacy
guarantee follows from the bounded Laplace noise on the cutoff point and the guarantees of SVT.

Privacy proof. We now provide our formal privacy analysis following this overview. To fix
notation in the remainder of the privacy proof, we consider running Algorithm 7 on two neighboring
datasets D,D′ that differ on a single sample si,j0 ̸= s′i,j0 , for some i ∈ [I]. By standard postprocessing
properties of differential privacy, it suffices to argue that the ith phase (i.e. the run of the loop in
Lines 3 to 25 corresponding to this value of i) is private, so we fix i ∈ [I] in the following discussion.

We let {xi,j}j∈[ni] and {x′i,j}j∈[ni] be the iterates of the ith phase of Algorithm 7 using D and D′,
and we let Yi,j and Y ′

i,j be the respective 0-1 indicator variables that count increases by 1 in iteration
j. We also let countj and count′j denote the values of count at the end of the jth iteration, and
abusing notation we let ĉi, ĉ′i be the values of ĉi in the ith phase when using D or D′ respectively.
Finally, we denote xi := 1

ni

∑
j∈[ni]

xi,j and let x′i denote the average iterate using D′ similarly.

We first bound the sensitivity between the iterates {xi,j}j∈[ni] and {x′i,j}j∈[ni] in the following lemma,
assuming countj and countj′ are bounded. The proof is deferred to Appendix D.

25



Lemma 11. Let t ∈ [ni], and suppose that 192ηiβc ≤ 1 and C ≥ 8ωi log(
30ni
δ ). If countt < ĉi,

count′t < ĉ′i, and Yi,j = Y ′
i,j for all j < t with j ̸= j0, then

∥xi,t − x′i,t∥ ≤ 6Cηi.

Using this bound on the sensitivity, we are now ready to prove privacy of the algorithm.

Lemma 12. Algorithm 7 is (ε, δ)-DP if it is run with parameters satisfying

C ≥ 8ωi log

(
30ni
δ

)
, c ≥ 6

ε
log

(
12

δ

)
, ω ≥ 18

ε

√
2c log

(
15

δ

)
, 192ηiβc ≤ 1.

Proof. Recall our assumption that D and D′ only differ in si,j0 , the jth0 sample used in the ith phase
of the algorithm. The privacy of all phases of the algorithm other than phase i is immediate from
postprocessing properties of DP, so it suffices to argue that phase i is (ε, δ)-DP. Note also that the
conditions of Lemma 11 are met after reparameterizing δ ← δ

4 . We split our privacy argument into
two cases, depending on whether the algorithm terminates on Line 18 or Line 26.

Termination on Line 18. We begin with the case where the algorithm outputs ⊥. We introduce some
simplifying notation. For iterations S ⊆ [ni], define WS := {Yi,j}j∈S to be the 0-1 indicator variables
for whether count incremented on iterations j ∈ S (when run on D), and define [W ]S :=

∑
j∈S Yi,j

to be their sum. Similarly, define W ′
S and [W ′]S for when the algorithm is run on D′. Observe that

the algorithm outputs ⊥ iff the following event occurs:

Yi,j0 + [W ][ni]\{j0} ≥ ĉi ⇐⇒ (Yi,j0 − ĉi) + [W ][ni]\[j0] ≥ −[W ][j0−1].

The right-hand side −[W ][j0−1] is independent of whether the dataset used was D or D′, so it suffices
to argue about the privacy loss of the random variables Yi,j0 − ĉi and W[ni]\[j0] as a function of the
dataset used. First, Yi,j0 − c is clearly a 1-sensitive statistic, so Lemma 9 implies Yi,j0 − ĉi is ( ε3 ,

δ
3)-

indistinguishable as a function of the dataset used. Next, conditioning on the value of Yi,j0 − ĉi,
the random variable W[ni]\[j0] is an instance of Algorithm 6 run with a fixed threshold ĉi − Yi,j0 −
[W ][j0−1] ≤ 2c, where we rename the output variables {⊥,⊤} to {0, 1}. Moreover, Lemma 11 and
smoothness of each sample function implies that the sensitivity of each query ∥∇f(·; si,j)∥ is bounded
by ∆ := 6Cηiβ. Therefore, Lemma 10 shows that W[ni]\[j0] is ( ε3 ,

δ
3)-indistinguishable, where we

note that we adjusted constants appropriately in ω and the failure probabilities everywhere. By
basic composition of DP, this implies Yi,j0 − ĉi + [W ][ni]\[j0] (a postprocessing of Yi,j0 − ĉi and
W[ni]\[j0] | Yi,j0 − ĉi) is (2ε3 ,

2δ
3 )-DP, as required.

Termination on Line 26. Finally, we argue about the privacy when the algorithm does not terminate
on Line 18. As before, the sensitivity of x̄i is bounded by 6Cηi via Lemma 11 and the triangle
inequality, conditioned on a (2ε3 ,

2δ
3 )-indistinguishable event (i.e. the values of Yi,j0−ĉi and W[ni]\[j0] |

Yi,j0 − ĉi). Then xi is ( ε3 ,
δ
3)-indistinguishable by standard bounds on the Gaussian mechanism

(Theorem A.1, [DR14]), which completes the proof upon applying basic composition.

Utility proof. The utility proof follows the standard analysis of localized SGD algorithms and a
specialized analysis of clipped SGD (Corollary 4). We first state a utility guarantee in each phase.
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Lemma 13. Following notation in Algorithm 7, fix i ∈ [I], and suppose D ∼ Pn i.i.d. where P
satisfies Assumption 1. For any x ∈ X , if C ≥ 8ωi log(

30ni
δ ) and c

4 ≥ max(n · (2Gk
C )k, 6 log(n)),

E[FP(xi)− FP(x)] ≤
∥x− xi−1∥2

2ηini
+ 2ηiG

2
2 +

Gk
kD

(k − 1)(C2 )
k−1

+
G2D

n2
.

Proof. By Markov’s inequality, Es∼P [ILs>
C
2
] ≤ (2Gk

C )k, so the total number of expected samples

with Ls >
C
2 is at most c

4 . Hence by applying a Chernoff bound,

Pr
D∼Pn


∑
s∈D

ILs>
C
2
≤ c

2︸ ︷︷ ︸
:=E

 ≥ 1− 1

n2
.

Conditional on E , the algorithm will not halt (i.e., return ⊥) and is running one-pass clipped-SGD
(Algorithm 5) using the modified clipping operation defined in the precondition in Corollary 4.
Then, the statement follows from Corollary 4 as follows: letting Ec denote the complement of E ,

E[FP(xi)− FP(x)] = E[FP(xi)− FP(x) | E ] Pr[E ] + E[FP(xi)− FP(x) | Ec] Pr[Ec]

≤ ∥x− xi−1∥2

2ηini
+ 2ηiG

2
2 +

Gk
kD

(k − 1)(C2 )
k−1

+ E[FP(xi)− FP(x) | Ec] Pr[Ec]

≤ ∥x− xi−1∥2

2ηini
+ 2ηiG

2
2 +

Gk
kD

(k − 1)(C2 )
k−1

+G2DPr[Ec]

≤∥x− xi−1∥2

2ηini
+ 2ηiG

2
2 +

Gk
kD

(k − 1)(C2 )
k−1

+
G2D

n2
,

where we used that FP is G1 ≤ G2-Lipschitz by Lemma 2.

Combining our privacy and utility guarantees, we are ready to prove this section’s main theorem.

Proof of Theorem 3. For simplicity, let x̄0 := x⋆ and ζ0 := x0 − x⋆, so ∥ζ0∥ ≤ D by assumption.
Also, suppose that n is a power of 2, as the adjustment on Line 2 only affects n (and hence the
guarantees) by constant factors. The privacy claim follows immediately from Lemma 12 assuming
its preconditions are met, which we verify at the end of the proof. By applying Lemma 13 in each
phase i ∈ [I] to x← xi, assuming its preconditions are met, we have

E [FP(xI)− FP(x
⋆)] ≤

∑
i∈[I]

E
[
∥ζi−1∥2

]
2ηini

+ 2ηiG
2
2 +

Gk
kD

(C2 )
k−1

+
G2DI

n2
+ E [FP(xk)− FP(x̄k)]

≤ 4D2

ηn
+
ηG2

2

2
+

Gk
kDI

(C2 )
k−1

+
G2D√
n

+G2σI
√
d

+
∑

i∈[I−1]

(
3600C2dηi log(

3
δ )

niε2
+
ηiG

2
2

2

)
.
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In the first inequality, we used G1 ≤ G2-Lipschitzness of FP by Lemma 2, and in the second
inequality, we pulled out the i = 1 term and adjusted indices, and bounded I ≤ n and used Jensen’s
inequality to bound (E ∥ζI∥)2 ≤ E ∥ζI∥2 = σ2Id. Now using that ηi

ni
and ηi are geometrically decaying

sequences, we continue bounding the above display using our choice of C:

E [FP(xI)− FP(x
⋆)] ≤ 4D2

ηn
+ ηG2

2 +
14400(C2 )

2dη log(3δ )

nε2
+

Gk
kDI

(C2 )
k−1

+
G2D√
n

+G2σI
√
d

≤ 4D2

ηn
+ ηG2

2 + 2(Aη)
k−1
k+1

(
Gk

kDI
) 2

k+1
+
G2D√
n

+G2σI
√
d,

for A :=
14400d log2(15nδ )

nε2
, C = 2

(
Gk

kDI

Aη

) 1
k+1

.

Next, plugging in our choice of

η = min


√

4

n
· D
G2︸ ︷︷ ︸

:=η1

,
DI

Gkn
·
( n
A

) k−1
2k︸ ︷︷ ︸

:=η2

 , (21)

we have the claimed utility bound upon simplifying, and using that G2σI
√
d is a low-order term.

We now verify our parameters satisfy the conditions in Lemma 12 and Lemma 13, which concludes
the proof. First, it is straightforward to check that both sets of conditions are implied by

96ηβc√
ε

log

(
30n

δ

)
≤ 1, c ≥ 4n ·

(
2Gk

C

)k

, and c ≥ 26

ε
log

(
15n

δ

)
, (22)

given that we chose ω = 18
ε

√
2c log(15δ ) ≤

c√
ε
. Indeed, C ≥ 8ωi log(

30ni
δ ) ⇐= 2ηβω log(30nδ ) ≤ 1

which is subsumed by the first condition in (22). Clearly, c ≥ 26
ε log(15nδ ), giving the third condition

in (22). Next, a direct computation with the definition of η2 in (21) yields

c = 2
√
An = 4n ·

√
A

n
= 4n ·

(
Gk ·

(
Aη2

Gk
kDI

) 1
k+1

)k

.

Now because C depends inversely on η ≤ η2 defined in (21), the second condition in (22) holds:

c = 4n ·

(
Gk ·

(
Aη2

Gk
kDI

) 1
k+1

)k

≥ 4n ·

(
Gk ·

(
Aη

Gk
kDI

) 1
k+1

)k

= 4n ·
(
2Gk

C

)k

.

Finally, the first condition in (22) now follows from our upper bound on β.

6 Improved Smoothness Bounds for Generalized Linear Models

In this section, we give an improved algorithm for heavy-tailed private SCO when the sample
functions f(x; s) are instances of a smooth generalized linear model (GLM). That is, we assume the
sample space S ⊆ Rd, and that for a convex function σ : R→ R,

f(x; s) = σ (⟨s, x⟩) . (23)
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We also assume that all f(x; s) are β-smooth. Observe that

∇f(x; s) = σ′(⟨s, x⟩)s, (24)

so that for all x ∈ X , ∇f(x; s) are all scalar multiples of the same vector s. We prove that under
this assumption, clipped gradient descent steps can only improve contraction, in contrast to Fact 16.

Lemma 14. Let s, s′ ∈ R and let x, x′, g ∈ Rd. Assume that∥∥(x− sg)− (x′ − s′g)
∥∥ ≤ ∥∥x− x′∥∥ .

Then for any C ≥ 0, letting t := sign(s)min(|s|, C) and t′ := sign(s′)min(|s′|, C), we have∥∥(x− tg)− (x′ − t′g)
∥∥ ≤ ∥∥x− x′∥∥ .

Proof. Note that the premise is impossible unless sign(s − s′) = sign(⟨x− x′, g⟩). Without loss of
generality, assume they are both nonnegative, else we can negate s, s′, g. In this case,∥∥(x− x′)− (s− s′)g

∥∥ ≤ ∥∥x− x′∥∥ ⇐⇒ (s′ − s)2 ∥g∥2 ≤ 2(s− s′)
〈
x− x′, g

〉
⇐⇒ s− s′ ≤ 2 ⟨x− x′, g⟩

∥g∥2
.

Now, observe that t− t′ ≤ s− s′ and sign(t− t′) = sign(s− s′), for any value of C ≥ 0. Therefore,
t− t′ ≤ 2⟨v,g⟩

∥g∥2 as well, and we can reverse the above chain of implications.

Note that the premise of Lemma 14 is exactly an instance of Fact 3 where ∇f(x) and ∇f(x′) are
scalar multiples of the same direction, which is the case for GLMs by (24). Hence, Lemma 14 shows
the contraction property in Fact 3 is preserved after clipping gradients (again, for GLMs).

We can now directly combine Lemma 8 and our contraction results, used to analyze the stability of
Algorithm 5, with the iterative localization framework of [FKT20], Section 4.

Algorithm 8: OnePass-Clipped-DP-SGD(D, n,X , x0, ρ)
1 Input: Dataset D = {si}i∈[n] ∈ Sn, domain X ⊂ B(x0, D) for x0 ∈ X
2 I ← ⌊log2(n)⌋
3 n← 2I

4 η ← min(
√

8
n ·

D
G2
, 1n · (

n2ρ
32d )

k−1
2k · 2

k+1
2k D
Gk

), C ← (
Gk

kDρn
32ηd )

1
k+1

5 for i ∈ [I] do
6 ni ← 2−in, ηi ← 16−iη, Ci ← 2iC, σi ← 2ηiCi ·

√
2
ρ

7 Di ← first ni elements of D, D ← D \ Di

8 x̄i ← OnePass-Clipped-SGD(Di, Ci, ηi, ni,X , xi−1)
9 ξi ∼ N (0d, σ

2
i Id)

10 xi ← x̄i + ξi
11 end
12 Return: xI
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Theorem 4. Consider an instance of k-heavy-tailed private SCO, following notation in Definition 4,
let x⋆ := argminx∈X FP(x), and let ρ ≥ 0. Further, assume that for a convex function σ, the sample
functions f(x; s) satisfy (23) for all s ∈ S ⊆ Rd. Finally, assume f(x; s) is β-smooth for all s ∈ S,
where β ≤ max(

√
n
2 ·

G2
D , n · ( d

n2ρ
)
k−1
2k · Gk

D ). Algorithm 8 is a ρ-CDP algorithm which draws D ∼ Pn,
queries n sample gradients (using samples in D), and outputs xI ∈ X satisfying

E [FP(xI)− FP(x
⋆)] ≤ 4G2D

√
1

n
+ 26GkD

( √
d

n
√
ρ

)1− 1
k

.

Proof. We begin with the privacy claim. Consider neighboring datasets D, D′, and suppose the
datasets differ on the jth entry such that sj ∈ Di (if the differing entry is not in ∪i∈[I]Di, Algorithm 8
clearly satisfies 0-CDP). Let x̄i and x̄′i be the outputs of Line 8 when run with the same initialization
xi−1, and neighboringDi, D′

i. By the assumption on β, since ηi ≤ η for all i ∈ [I], we can apply Fact 3
and Lemma 14 (recalling the characterization (24)) to show ∥x̄i − x̄′i∥ ≤ 2ηiCi with probability 1.
Therefore, by our choice of σi and the first and third parts of Lemma 1, the whole algorithm is ρ-CDP
regardless of which Di contained the differing sample, since all other calls to OnePass-Clipped-SGD
are 0-CDP as we can couple all randomness used by the calls.

Next, we prove the utility claim. For simplicity, let x̄0 := x⋆ and ξ0 := x0 − x⋆, so ∥ξ0∥ ≤ D by
assumption. By applying Lemma 8 for all i ∈ [I] with x0 ← xi−1 and u← x̄i−1, we have

E [FP(xI)− FP(x
⋆)] =

∑
i∈[I]

E [FP(x̄i)− FP(x̄i−1)] + E [FP(xI)− FP(x̄I)]

≤
∑
i∈[I]

(
E

[
∥ξi−1∥2

2ηini

]
+
ηiG

2
2

2
+

Gk
kD

(k − 1)Ck−1
i

)
+G1E [∥xI − x̄I∥]

≤ 4D2

ηn
+
∑

i∈[I−1]

2−i

(
32dηC2

ρn
+
ηG2

2

2
+
Gk

kD

Ck−1

)
+

√
8d

ρ
G1ηC · 8−I

≤ 4D2

ηn
+

32dηC2

ρn
+
ηG2

2

2
+
Gk

kD

Ck−1
+ 24

√
d

ρ
· G1ηC

n3
,

where the second line applied Lemma 2, the third used Jensen’s inequality to bound E[∥xI − x̄I∥]2 ≤
E[∥xI − x̄I∥2] and our assumption k ≥ 2, and the last used the geometric decay of the different
parameters. Finally, by plugging in our choices of C, η, we have

4D2

ηn
+
ηG2

2

2
+

32dηC2

ρn
+
Gk

kD

Ck−1
=

4D2

ηn
+
ηG2

2

2
+ 2η

k−1
k+1

(
Gk

kD
) 2

k+1

(
32d

ρn

) k−1
k+1

≤ G2D

√
8

n
+ 8GkD

( √
d

n
√
ρ

)1− 1
k

.

We can also check that the final summand is a low-order term, by using η ≤ 1
n · (

n2ρ
32d )

k−1
2k · 2

k+1
2k D
Gk

:

24

√
d

ρ
· G1ηC

n3
≤ 5GkD

n2
.

The conclusion follows by adjusting n, since Algorithm 8 is run with a sample count in [n2 , n].
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A High-probability stochastic convex optimization

In this section, to highlight another application of our population-level localization framework, we
show that it obtains improved high-probability guarantees for the following standard bounded-
variance estimator parameterization of SCO in the non-private setting.

Definition 6 (Stochastic convex optimization). Let X ⊂ Rd be compact and convex, with diam(X ) =
D. In the stochastic convex optimization (SCO) problem, there is a convex function f : X → R,
and we have query access to a stochastic oracle g : X → Rd satisfying, for all x ∈ X ,

E [g(x)] ∈ ∂f(x), E
[
∥g(x)∥2

]
≤ G2.

For a convex function ψ : X → R, our goal in SCO is to optimize the composite function f + ψ.

For instance, one can set ψ to the constant zero function to recover the non-composite variant of
SCO. We include the composite variant of Definition 6 as it is a standard extension in the SCO
literature, under the assumption that the function ψ is “simple.” The specific notion of simplicity
we use is that ψ : X → R admits an efficient proximal oracle (Definition 7).

Definition 7 (Proximal oracle). Let X ⊂ Rd be compact and convex. We say O is a proximal
oracle for a convex function ψ : X → R if for any inputs v ∈ Rd, η ∈ R≥0, O(v) returns

argmin
x∈X

{
1

2η
∥x− v∥2 + ψ(x)

}
.

In Theorem 5, we give an algorithm which uses n queries to each of g and a proximal oracle for ψ,
and achieves an error bound for f + ψ of

O

GD ·
√

log 1
δ

n

 , (25)

with probability ≥ 1− δ. Similar rates are straightforward to derive using martingale concentration
when the estimator g is assumed to satisfy heavier tail bounds, such as a sub-Gaussian norm. To our
knowledge, the rate (25) was first attained recently by [CH24], who also proved a matching lower
bound. Our Theorem 5 gives an alternative route to achieving this error bound. As was the case in
several recent works in the literature [HS16, DDXZ21, Lia24] who studied high-probability variants
of stochastic convex optimization, our Theorem 5 is based on using geometric aggregation techniques
within a proximal point method framework (in our case, using Fact 2 within Algorithm 2). However,
these aforementioned prior works all assume additional smoothness bounds on the function f .

We use the following standard result in the literature as a key subroutine.

Lemma 15 (Lemma 1, [ACJ+21]). In the setting of Definition 6, assume ψ is λ-strongly convex,
let x⋆ := argminx∈X f(x)+ψ(x), and let T ∈ N. There is an algorithm which queries the stochastic
oracle g and a proximal oracle for ψ each T times, and produces x̄ satisfying, with probability ≥ 4

5 ,

∥x̄− x⋆∥ ≤ 30G

λ
√
T
.

We combine Lemma 15 with Proposition 2 to obtain the following high-probability SCO algorithm.
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Theorem 5. Consider an instance of SCO, following notation in Definition 6, let n ∈ N, x⋆ :=
argminx∈X f(x) + ψ(x), and δ ∈ (0, 12). There is an algorithm using n queries to g and a proximal
oracle for ψ and outputs x ∈ X satisfying, for a universal constant Csco, with probability ≥ 1− δ,

f(x) + ψ(x)− f(x⋆)− ψ(x⋆) ≤ Csco ·GD ·

√
log 1

δ

n
.

Proof. Assume without loss of generality that 1
δ is a sufficiently large constant (else we can adjust

the constant factor Csco), and that n is sufficiently larger than log 1
δ (else the result holds because

the range of the function is bounded by GD). We instantiate Proposition 2 with FP ← f + ψ,
I ← 1

2 log2 n, and in each phase i ∈ [I] of Algorithm 2, we let ni := n
2i

. In the remainder of the
proof, we describe how to implement (8) in the ith phase, where FP ← f + ψ, splitting into cases.

If 1
δ is bounded by polylog(n) and n is sufficiently large, suppose that n is a power of 4, else we

can use fewer queries and lose a constant factor in the guarantee. Then we can use a batch of ni
consecutive queries, divided into 48 log( 1

δi
) portions, where δi := δ

2i
. We then use Lemma 15 on

each portion of queries, with f ← f and ψ ← ψ + λi
2 ∥· − xi−1∥2; it is straightforward to see that

Definition 7 generalizes to give a proximal oracle for this new ψ. A Chernoff bound shows that at
least 3

5 of the portions will return a point satisfying the bound in Lemma 15 except with probability
δi, so Fact 2 returns us a point at distance at most 90G

λ
√
T

from x⋆i , where

T = Ω

(
ni

log 1
δi

)
= Ω

(
n

2i
(
log 1

δ + i
)) ,

(accounting for rounding error). Therefore, (8) holds with

∆ =
Csco

2
·G ·

√
log 1

δ

n
,

for sufficiently large Csco. Proposition 2 then implies that Algorithm 2 outputs x satisfying

f(x) + ψ(x)− f(x⋆)− ψ(x⋆) ≤ 2GD ·
√

∆

n1.5
+
Csco

2
·GD ·

√
log 1

δ

n
≤ Csco ·GD ·

√
log 1

δ

n
,

where we use that G1 ≤ G by Jensen’s inequality and our second moment bound in Definition 6.
The failure probability follows from a union bound because we ensured that

∑
i∈[I] δi ≤ δ.

Finally, if 1
δ is larger than polylog(n), then we let I, J ∈ N be chosen such that

I :=
⌊
log2

(n
J

)⌋
, J ≥ 48 log

(
I

δ

)
,

which is achievable with I = O(log n) and J = O(log logn
δ ) = O(log 1

δ ). Let m := n
J , and assume

without loss that m is a power of 2, which we can guarantee by discarding ≤ 1
2 our queries, losing a

constant factor in the error bound. The remainder of the proof follows identically to the first part
of this proof, where we union bound over I phases, the ith of which uses J batches of m

2i
unused

queries. Again we may apply Lemma 15 and Fact 2 with T = m
2i

, so (8) holds with

∆ =
Csco

2
·G ·

√
log 1

δ

n
,

except with probability δ
I . The conclusion then follows from Proposition 2.
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B Non-contraction of truncated contractive steps

In this section, we demonstrate that a natural conjecture related to the performance of clipped
private gradient algorithms in the smooth setting is false. We state this below as Conjecture 1.
To motivate it, suppose v is the difference between a current pair of coupled iterates of a private
gradient algorithm instantiated on neighboring datasets, and suppose the differing sample function
has already been encountered. If we take a coupled gradient step in a sufficiently smooth function,
Fact 3 shows that the step is a contraction. However, to preserve privacy in the heavy-tailed
setting, it is natural to ask whether such a contractive step remains contractive after the gradients
are clipped, i.e. the statement of Conjecture 1 (which gives the freedom for C to be lower bounded).

Conjecture 1. Let ∥v∥2 ≤ C for a sufficiently large constant C, and let ∥v − (g − h)∥ ≤ ∥v∥. Let
g′ = Π1(g) and h′ = Π1(h).8 Then, ∥v − (g′ − h′)∥ ≤ C.

We strongly refute Conjecture 1, by disproving it for any C ≥ 0. We remark that Lemma 16 does
not necessarily rule out this approach to designing heavy-tailed DP-SCO algorithms in the smooth
regime, but demonstrates an obstacle if additional structure of gradients is not exploited.

Lemma 16. Conjecture 1 is false for any choice of C ≥ 0.

Proof. We give a 2-dimensional counterexample. Let

v =

(
−C
0

)
, g =

(
1
0

)
, h =

(
2C+1
C+1

C
√
2C+1

C+1

)
=
√
2C + 1

(√
2C+1
C+1
C

C+1

)
︸ ︷︷ ︸

:=h′

.

Observe that

v − (g − h) =

(
−(C + 1) + 2C+1

C+1
C
√
2C+1

C+1

)
=

(
−C2

C+1
C
√
2C+1

C+1

)
= C

(
−C
C+1√
2C+1
C+1

)
.

It is easy to verify ∥v − (g − h)∥ = C at this point. Moreover,

v − (g′ − h′) =

(
−(C + 1) +

√
2C+1
C+1

C
C+1

)
.

For C ≥ 0, the first coordinate of this vector is already less than −C.

C Non-decay of empirical squared bias

In this section, we present an obstacle towards a natural approach to improving the logarithmic
terms in our algorithm in Section 3. We follow the notation of Section 3.1, i.e. for samples {i ≡
si}i∈[n] ∼ Pn, we define sample functions fi ≡ f(·; si), and let

bD := max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(x)−
1

n

∑
i∈[n]

ΠC(∇fi(x))

∥∥∥∥∥∥ . (26)

A basic bottleneck with known approaches following SCO-to-ERM reductions is that they require a
strongly convex ERM solver as a primitive, due to known barriers to generalization in SCO without

8By scale-invariance of the claim, the assumption that the truncation threshold is 1 is without loss of generality.
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strong convexity (see e.g. discussion in [SSSSS09]). This poses an issue in the heavy-tailed setting,
because standard analyses of strongly convex clipped SGD (see e.g. our Proposition 1) appear to
suffer a dependence on b2D in the utility bound, which upon taking expectations requires bounding

ED∼Pnb2D = ED∼Pn

max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(x)−
1

n

∑
i∈[n]

ΠC(∇fi(x))

∥∥∥∥∥∥
2 . (27)

Recall from Lemma 3 that it is straightforward to bound EbD ≤
Gk

k

Ck−1 , due to Fact 1. Bounding
Eb2D is more problematic; in [LR23], requiring this bound resulted in a dependence on G2k as
opposed to Gk (see the proof of Theorem 31), which we avoid (up to a polylogarithmic overhead)
via our population-level localization strategy. We now present an alternative strategy to bound
(27), avoiding a G2k dependence. Observe that, by using (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

ED∼Pnb2D ≤ 3ED∼Pn

max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

∇fi(x)−∇FP(x)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=T1

+ 3max
x∈X
∥∇FP(x)− Es∼P [ΠC(∇f(x; s))]∥2︸ ︷︷ ︸

:=T2

+ 3ED∼Pn

max
x∈X

∥∥∥∥∥∥ 1n
∑
i∈[n]

ΠC(∇fi(x))− Es∼P [ΠC(∇f(x; s))]

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=T3

.

(28)

We focus on T1, as T3 can be bounded by similar means (as truncation can only improve moment
bounds), and T2 ≤

G2k
k

C2(k−1) via Fact 1. Hence, if we can show that T1 = O(
G2

2
n ) under the moment

bound assumption in Assumption 1, we can avoid the logarithmic factors lost by our population
localization approach. We suggest the following conjecture as an abstraction of this bound.

Conjecture 2. Let P be a distribution over S. For each x ∈ X , let g(x; s) ∈ Rd be a random
vector, indexed by s ∼ S, satisfying Es∼P [g(x; s)] = 0d and Es∼P [supx∈X ∥g(x; s)∥2] ≤ 1. Finally
for S ∼ Pn and x ∈ X , let g(x;S) := 1

n

∑
s∈S g(x; s). Then,

ES∼Pn

[
sup
x∈X

g(x;S)2
]
= O

(
1

n

)
.

Note that the bound in Conjecture 2 exactly corresponds to T1 in (28), after rescaling all sample
gradients by 1

G2
, and centering them by subtracting ∇FP(x). Hence, if Conjecture 2 is true, it

would yield the following desirable bound in (28):

ED∼Pnb2D = O

(
G2

2

n
+

Gk
k

(k − 1)Ck−1

)
.

Moreover, it is simple to prove a bound of O(1) on the right-hand side of Conjecture 2, and as
n→∞ it is reasonable to suppose g(x;S)→ 0d for all x ∈ X . Nonetheless, we refute Conjecture 2
in full generality with a simple 1-dimensional example.
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Lemma 17. Conjecture 2 is false.

Proof. Let S = [0, 1] and let P be the uniform distribution over S. Let X index a set of random
g(x; ·) : [0, 1] → [0, 1] which are nonzero at finitely many points s ∈ S.9 Then Es∼Pg(x; s) = 0 for
all x ∈ X , and g(x; s)2 ≤ 1 for all x ∈ X , s ∈ S. However, for any finite set S ∈ [0, 1]n, we have

sup
x∈X

g(x;S)2 = 1.

While Lemma 17 does not rule out the approach suggested in (28) (or other approaches) to improve
the analysis of strongly convex ERM solvers in heavy-tailed settings, it presents an obstacle to
applying the natural decomposition strategy in (28). To overcome Lemma 17, one must either use
more structure about the index set X or the iterates encountered by the algorithm, or consider a
different decomposition strategy for bounding the squared empirical bias.

D Proof of Lemma 11

In this section, we prove Lemma 11. We first require the following standard fact (see e.g. [Sch14]).

Fact 4. Let X ⊆ Rd be a convex set. Then for any x, y ∈ Rd, we have

∥ΠX (x)−ΠX (y)∥ ≤ ∥x− y∥.

We now set up some notation. Let {ψj : X → X}j∈[T ] and {ϕj : X → X}j∈[T ] be two sequences of
operations. We say that an operation pair (ψ, ϕ) is contractive if for any two points x, y ∈ X ,

∥ψ(x)− ϕ(y)∥ ≤ ∥x− y∥.

We say an operation pair (ψ, ϕ) is (C, ζ)-contractive if for any x, y where ∥x− y∥ ≤ C, we have

∥ψ(x)− ϕ(y)∥ ≤ ∥x− y∥+ ζ.

Let ψj(x) = ψj ◦ ψj−1 ◦ . . . ◦ ψ1(x), and define ϕj similarly, for all j ∈ [T ].

We prove Lemma 11 as a consequence of the following more general result.

Lemma 18. Let x0 = x′0 ∈ X , and consider two sequences of operations {ψj : X → X}j∈[T ] and
{ψ′

j : X → X}j∈[T ] satisfying the following conditions, for c := ⌊Cζ ⌋.

1. For at least T − c− 1 indices j ∈ [T ], (ψj , ϕj) is contractive.

2. At most one operation pair, (ψk, ψk), is (∞, C)-contractive.

3. For at most c indices j ∈ [T ], (ψj , ϕj) is (2C, ζ)-contractive.

Then for all j ∈ [T ], we have that ∥ψj(x0)− ϕj(y0)∥ ≤ 2C.
9We note there is a bijection between X and any convex subset X ′ of Rd containing a ball with nonzero radius. To

see this, it is well-known that there is a bijection from [0, 1] to R≥0, and we can simply construct a bijection between
R≥0 and X by mapping the interval [i− 1, i] to [0, 1]2i (where the first i coordinates specify the nonzero points, and
the next i coordinates specify their values) for all i ∈ N. Finally, it is well-known there is a bijection between [0, 1]
and Rd, and we can construct a bijection between X ′ and Rd by considering each 1-dimensional projection separately.
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Proof. Define ∆j := ∥ψj(x0) − ϕj(x′0)∥ for all j ∈ [T ]. Let aj ≤ c be the total number of (2C, ζ)-
contractive operation pairs (ψi, ϕi) where i ≤ j, and let bj be the 0-1 indicator variable for k ≤ j.
We use induction to show that ∆j ≤ ajζ + bjC. When j = 1, the claim holds. Now if the claim
holds for j − 1, then ∆j−1 ≤ aj−1ζ + bj−1C ≤ 2C. Hence, by definition,

∆j ≤ ∆j−1 + (aj − aj−1)ζ + (bj − bj−1)C = ajζ + bjC,

which completes our induction. This also implies ∆T ≤ 2C as claimed.

Proof of Lemma 11. Throughout the following proof, note that ĉi ≤ 2c deterministically (due to
our use of BLap(3ε , c) noise), and under the stated parameter bounds,

Ĉ ∈
[
7C

8
,
9C

8

]
and |νi,j | ≤

C

4
for all j ∈ [ni].

Let {gi,j = ΠC(∇f(xi,j ; si,j))}j∈[ni] and {g′i,j = ΠC(∇f(x′i,j ; s′i,j))} be the two truncated gradient
sequences in the ith phase corresponding to the two datasets, and let {xi,j}j∈[ni] and {x′i,j}j∈[ni] be
the corresponding iterate sequences. We set the operation sequences ψj(x) := ΠX (x − ηigi,j) and
ϕj(x) := ΠX (x− ηig′i,j). We bound the contractivity of these operation pairs and apply Lemma 18.

First, note that because countt, count′t < ĉi ≤ 2c, the operation pair (ψj , ϕj) is an identical un-
truncated gradient mapping for at least t− 2c− 1 indices j ∈ [t]. Because we assume each sample
function f(·; s) is β-smooth, it follows that for these indices j ∈ [t], the operation pair (ψj , ϕj) is
contractive, by applying Fact 3, Fact 4, and ηiβ ≤ 1.

Next, recall the assumption that the datasets D, D′ differ in the jth0 sample only. Because ∥gi,j0∥ ≤
9C
8 +C

4 ≤
11C
8 by assumption, and similarly ∥g′i,j0∥ ≤

11C
8 , it follows that the operation pair (ψj0 , ϕj0)

is (∞, 3Cηi)-contractive by applying the triangle inequality and Fact 4.

For all remaining indices j ∈ [t], countt and count′t both incremented (under the assumption that
Yi,j = Y ′

i,j for these indices). We claim that (ψj , ϕj) is (6ηiC, 12η
2
iCβ)-contractive for these itera-

tions. To see this, we bound∥∥ψj(xi,j)− ϕj(x′i,j)
∥∥ ≤ ∥∥(xi,j − ηigi,j)− (x′i,j − ηig′i,j)

∥∥
≤
∥∥(xi,j − ηi∇f(xi,j ; si,j))− (x′i,j − ηi∇f(x′i,j ; si,j))

∥∥
+ ηi

∥∥∇f(xi,j ; si,j)−∇f(x′i,j ; si,j)∥∥+ ηi
∥∥gi,j − g′i,j∥∥

≤
∥∥xi,j − x′i,j∥∥+ 12η2iCβ.

The first line used Fact 4, the second used the triangle inequality, and the last used Fact 3, Fact 4,
and the fact that ∥∇f(xi,j ; si,j)−∇f(x′i,j ; si,j)∥ ≤ 6ηiCβ by smoothness, when ∥xi,j − x′i,j∥ ≤ 6Cηi.

Finally, it suffices to apply Lemma 18 with C ← 3Cηi, ζ ← 12η2iCβ, and c ← 2c, which we can
check meets the conditions of Lemma 18 under the stated parameter bounds.
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