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Abstract

We study the problem of precisely swapping objects in videos, with a focus on those
interacted with by hands, given one user-provided reference object image. Despite
the great advancements that diffusion models have made in video editing recently,
these models often fall short in handling the intricacies of hand-object interactions
(HOI), failing to produce realistic edits—especially when object swapping results in
object shape or functionality changes. To bridge this gap, we present HOI-Swap, a
novel diffusion-based video editing framework trained in a self-supervised manner.
Designed in two stages, the first stage focuses on object swapping in a single frame
with HOI awareness; the model learns to adjust the interaction patterns, such as the
hand grasp, based on changes in the object’s properties. The second stage extends
the single-frame edit across the entire sequence; we achieve controllable motion
alignment with the original video by: (1) warping a new sequence from the stage-I
edited frame based on sampled motion points and (2) conditioning video generation
on the warped sequence. Comprehensive qualitative and quantitative evaluations
demonstrate that HOI-Swap significantly outperforms existing methods, delivering
high-quality video edits with realistic HOIs.'

1 Introduction

Consider a video depicting the process of a human hand picking up a kettle and moving it around
(Figure 1). What if we want to replace the hand-interacting object in this scene with another item
specified by the user—perhaps a differently-shaped kettle, a bottle, or a bowl? This capability—to
swap the in-contact object in a video with another, while aligning with the original video’s content—is
crucial for enhancing various real-world applications. Such functionality can transform entertainment,
allowing users to create novel video content without the need to re-record or engage in labor-intensive
manual editing. For example, in advertising, there may be situations where a pre-recorded video
needs to adapt to new sponsorship requirements by replacing a soda can in the video with a water
bottle. Additionally, it holds significant promise in robotics, where recent results suggest generative
models can reduce the reliance on manually collected task-specific visual data and thereby enable
large-scale robot learning [25, 58]. For example, imagine a scenario where, from just a single video
of a mug being picked up, a generative model is able to produce numerous variants of this video with
diverse objects such as bottles, bowls and kettles. This capability could greatly streamline the data
collection process, reducing the need for extensive manual data collection.

However, hands are notoriously challenging to work with in image/video editing [62, 66]. They
pose significant hurdles in manual photoshopping and often produce unsatisfactory outputs when
automated by generative models. The precise swapping of hand-interacting objects presents a unique
challenge that existing diffusion models [19, 45, 1, 56], despite their advances in video editing, fail
to address adequately. This difficulty arises from three main factors: the need for (a) HOI-aware
capabilities, (b) spatial alignment with the source context, and (c) controllable temporal alignment
with the source video’s motion patterns.

"Project webpage: https://vision.cs.utexas.edu/projects/H0I-Swap.
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Figure 1: We present HOI-Swap that seamlessly swaps the in-contact object in videos using a
reference object image, producing precise video edits with natural hand-object interactions (HOI).
Notice how the generated hand needs to adjust to the shapes of the swapped-in objects (A,B,C) and
how the reference object may require automatic re-posing to fit the video context (A).

First, consider the challenge of HOI awareness. Objects chosen for swapping often vary in their
properties from the original, resulting in changes to interaction patterns. For example, as illustrated in
Figure 2 (a), replacing the kettle from the original video with a bowl necessitates adjustments in the
hand’s grasp patterns. While many generative inpainting methods [57, 50, 36, 7, 51, 16] have been
developed to insert reference objects into specific scene regions, they are generally limited to contexts
where the objects are isolated—not in contact with a human hand or other objects—and thus lack HOI
awareness. In Figure 2 (a), the two image inpainting approaches Paint by Example (PBE) [57] and
AnyDoor [7] either merely replicate the hand pose from the original image, or produce unnaturally
occluded hands, resulting in suboptimal and unrealistic HOI patterns.

Second, consider the challenge of spatial alignment with the original video. The reference object
might appear in any arbitrary pose; for instance, in Figure 2 (b), the kettle handle is on the left in
the reference image, but for realistic interaction, the generated content needs to reposition the kettle
handle to the right, where the hand is poised to grasp it. However, current approaches do not offer
this level of control, as evidenced by the results from a hand insertion approach Affordance Diffusion
(Afford Diff) [62] in Figure 2 (b). Despite being adept at generating a hand interacting with the given
kettle, it does not ensure correct object placement to align with the hand and scene context in the
original image, lacking spatial alignment capability.

Third, consider the challenge of temporal alignment with the original video. We highlight a crucial
observation in this problem: the motion information in an HOI video sequence is closely tied to the
object’s characteristics (such as its shape and function). This means that when swapping objects, not
all motions from the source video are appropriate or transferable to the new object. For example,
Figure 2 (c) shows a hand closing a trash can, alongside an HOI-Swap edited image where the original
can is replaced with one that is differently shaped and functions differently. Ideally, the generated
content should reflect the motion of closing the lid, yet it may not replicate the exact motion from the
source video due to these differences. Conversely, Figure 1 (first row) depicts a scenario of swapping
one kettle with another. Here, the objects undergo only slight shape changes, allowing the generated
video to closely follow the source video’s motion. While there are varying degrees to which object
changes can affect the original motion, current video editing approaches [42, 12, 10, 59, 21, 6, 5, 34]
adhere to a rigid degree of motion alignment, often targeting 100%, adopting conditional signals like
optical flow or depth sequences that encode substantial object information. Consequently, they lack
the controllability to adjust the degree of motion alignment based on object changes.

To address these challenges, we introduce HOI-Swap, a video editing framework designed for precise
object edits with HOI awareness. We approach the challenge by posing it as a video inpainting task,
and propose a fully self-supervised training framework. Our innovative approach structures the editing
process into two stages. The first stage addresses HOI awareness and establishes spatial alignment,
by training an image inpainting diffusion model for object swapping in one frame. The second stage
propagates this one-frame edit across the remaining frames to achieve temporal alignment with the
source. For this, we propose to warp a video sequence from the edited frame using randomly sampled
points tracked across frames with optical flow, and train a video diffusion model that learns to fill in
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Figure 2: We highlight three challenges for the in-contact object swapping problem: (a) HOI
awareness, where the model needs to adapt to interactions, such as changing the grasp to realistically
accommodate the different shapes of the kettle vs. the bowl; (b) spatial alignment with source,
requiring the model to automatically reorient objects, such as aligning the blue kettle from the
reference image to match the hand position in the source; (c) temporal alignment with source,
necessitating controllable motion guidance capability, essential when swapping objects like a trash
can with a differently shaped and functioning reference, where not all original motions are transferable
or desirable. In (a) and (b), we compare HOI-Swap’s edited images with Paint by Example (PBE) [57],
AnyDoor [7], and Affordance Diffusion (Afford Diff) [62].

the sparse and incomplete warped sequence. Our approach thus enables controllable motion alignment
by varying the sparsity of sampled points. During inference, users can modulate this number based
on the object’s changes—sampling fewer or no points for significant shape or functional alterations,
and more points for minor changes to closely replicate the source video’s motion. HOI-Swap is
evaluated on both image and video editing tasks, consistently producing high-quality edits with
realistic HOIs. It greatly surpasses existing editing approaches in both qualitative and quantitative
evaluations, including a user study. By extending the capabilities of generative models into the largely
unexplored domain of HOI, we hope that HOI-Swap opens new avenues for research and practical
applications in this innovative field.

2 Related Work

Generative Models for Image Editing Recent advances in diffusion models [19, 45] have signifi-
cantly enhanced the capabilities of image editing. Predominant models [38, 18, 2, 26, 53, 24] use fext
as guidance, which, despite its utility, often lacks the precision needed for exact control. In response,
a growing body of studies have begun to explore the use of reference images as editing guidance.
Customized approaches like Textual Inversion [11] and DreamBooth [47] are designed to generate
new images of a specific object given several of its images and a relevant text prompt. However,
these methods require extensive finetuning for each case and lack the ability to integrate the object
into another user-specified scene image. More closely related to our task, a few approaches aim to
seamlessly blend a reference object [57, 50, 36, 7, 51, 16] or person [29] into a specific region of a
target scene image. However, as demonstrated in Figure 2 and detailed in Section 4, these methods
prove inadequate, often producing images with unnatural HOISs, such as missing fingers, distorted
hands, or oddly shaped objects. These issues reveal shortcomings in current generative models, and
motivate the development of HOI-Swap.

Generative Models for Video Editing With the advent in diffusion-based text-to-image and text-
to-video generation [45, 1, 13], many efforts explore extending pretrained diffusion models for
video editing, employing zero-shot [12, 59, 42, 4, 60, 28], or one-shot-tuned learning paradigms [55,
32, 17, 67]. However, these methods require extensive video decomposition or costly per-video
fine-tuning, with processing times ranging from several minutes to multiple hours on high-end
GPUs for a single edit, which curtails their usability in practical creative tools. Another line of
work [10, 6, 34, 54, 63, 41] adopts a training-based approach, where models are trained on large-scale
datasets to enable their use as immediately effective editing tools during inference. Our work falls
into this training-based paradigm.

Similar to image editing, the majority of video editing approaches [1, 13, 12,59, 42, 4, 60, 55, 32] rely
on fext as editing guidance. Since text prompts may not accurately capture the user’s intent [67, 14, 41],
for our task, using an object image provides more precise guidance. In terms of motion guidance,



most video editing approaches [42, 12, 10, 59, 21, 6, 5, 34, 63] utilize per-frame structural signals
extracted from the source video, including depth map, optical flow, sketches, or canny edge sequences,
facilitated by well-trained spatial-control image diffusion models such as ControlNet [65], T2I-
Adapter [39] and Composer [22]. Since these structural signals inherently encode the shape of
the original object, they are unsuitable for edits involving shape changes [41, 17]. Recent works
explore shape-aware video editing, by the use of Layered Neural Atlas [32], modifying the source
video’s optical flow sequences [41], or establishing correspondence with sparse semantic points [17].
However, all these approaches overlook the impact of object changes on motion and only enforce a
fixed degree of motion alignment. In contrast, HOI-Swap introduces flexibility by allowing users to
adjust the sparsity of sampled points during inference, providing precise motion control.

Generating Hand-Object Interactions There is growing interest in generating plausible HOIs [20,
31,62,61,9, 66, 64]. Affordance Diffusion [62] inserts a synthesized hand given a single object image.
Similarly, HOIDiffusion [66] aims to create HOI images conditioned on a 3D object model along
with detailed text descriptions. Meanwhile, other approaches in the 3D domain focus on generating
realistic 3D HOI interactions from textual descriptions [9], synthesizing grasping motions [64] or
reconstructing 3D HOIs from real videos [61]. Despite these advancements, the task of accurately
swapping in-contact objects in videos remains unexplored. Our work directly addresses this gap.

3 Method

We first formulate the problem and provide an overview of the two-stage HOI-Swap in Section 3.1.
Section 3.2 and Section 3.3 detail the first and second stage of HOI-Swap, respectively.

3.1 Task Formulation and Framework Overview

Given a source video V = {Z;}¥ | consisting of N frames (where Z; represents the i-th frame), a
binary mask (bounding box) sequence { M, }¥ | that identifies the region of the source object to be
replaced in V, and an image of the reference object Z"¢/, the objective is to generate a modified video
V*, that seamlessly swaps the original object in V with Z"¢f,

We create a fully self-supervised training approach, necessitated by the impracticality of collecting
paired videos (V, V*). We pose the problem as a video inpainting task. Specifically, from the original
training video V and mask M, we derive a masked video V"™, accompanied by a set of reference
object images {Z"¢/}. During training, the model takes the masked video sequence V™ and an
image Z"¢f of the same object originating from a different random timepoint (and hence varying pose
and/or viewpoint) in the same training video to reconstruct V. During inference, the model is given a
bounding box-masked sequence combined with various object images to test its swapping capability.

As outlined in Section 1, the task presents three main challenges: HOI awareness, spatial and temporal
alignment. In response, we propose a two-stage framework that decomposes the complexity. The first
stage integrates the reference object into a single frame, targeting HOI awareness and establishing
spatial alignment initially. The second stage propagates the one-frame edit across the entire video
sequence, focusing on temporal alignment and carrying forward the spatial alignment from the
first stage. This structured approach effectively lightens the model’s generation load. In terms of
which frame to select from the input video for stage-I edits, we automate the process by adopting
an off-the-shelf hand-object detector [49] to identify frames with hand-object contact, from which
we randomly select one for editing. See Supp. C.4 for a detailed analysis. For greater applicability
and flexibility, each stage is trained separately in a self-supervised manner, using the original object
image as Z"¢f. Consequently, the stage-I model not only plays a crucial role in the video editing
pipeline but also serves as a standalone image editing tool. The full pipeline is illustrated in Figure 3.

3.2 Stage I: HOI-aware Object Swapping in One Frame

In the first stage, given a source frame Z;, a binary mask M; (where 1 indicates the object’s region
and 0 denotes the background) and a reference object image Z"¢/, the objective is to generate an
edited frame Z* where the reference object is naturally blended into the source frame. We aim for
the generated content Z* to exhibit HOI awareness and spatial alignment with Z;, ensuring that the
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Figure 3: HOI-Swap involves two stages, each trained separately in a self-supervised manner. In
stage I, an image diffusion model €y, is trained to inpaint the masked object region with a strongly
augmented version of the original object image. In stage II, one frame is selected from the video
to serve as the anchor. The remaining video is then warped using this anchor frame, several points
sampled within it, and optical flow extracted from the video. A video diffusion model €y, is trained
to reconstruct the full video sequence from the warped sequence. During inference, the stage-I model
swaps the object in one frame. This edited frame then serves as the anchor for warping a new video
sequence, which is subsequently taken as input for the stage-II model to generate the complete video.

reference object is realistically interacting with human hands and accurately positioned within the
scene context of the source frame.

Constructing paired training data Training is conducted in a self-supervised manner. Below, we
detail how we prepare pseudo data pairs for training.

» Masked frame preparation: For each frame Z;, we obtain the object’s bounding box (denoted by
M?PPe) from its segmentation mask M. To prevent the bounding box shape from influencing the
aspect ratio of the generated results, we adjust the bounding box to be square. The masked frame is
thus derived by applying the square bounding box mask to the frame, yielding Z™ = Z; © M}°*,
We then crop and center the original frame to focus on the object region, enhancing its visibility.

« Reference object preparation: We extract the object image Z” = Z; ® (1 — M), which may
be incomplete or partially obscured due to contact with hands or other objects. To address these
occlusions, we employ an off-the-shelf text-guided inpainting model [40] to fill in the missing
parts of the object, using the object’s name as the text prompt.

¢ Object augmentation: Directly forming a training pair (Z; b I — 1I;) is suboptimal as it does
not reflect the variability expected in real-world applications. At test time, the reference object may
appear in any pose, orientation, or size. To bridge this gap between training and testing scenarios,
we apply strong augmentation techniques: (1) Spatially, we enhance the object’s diversity by
applying random resizing, flips, rotations, and perspective transformations; (2) Temporally, instead
of using the object i 1mage from its original frame ¢, we introduce variability by randomly selecting

an alternate frame, IO 7 from all available frames in the source video that contain the object.
Finally, for preservatlon of the reference object’s identity and structural details, we collage the

augmented reference object image I 7 onto the masked region in Z!™, producing Im

Model design We design the stage-I model as an image-conditioned latent diffusion model (LDM).
Specifically, we employ a pretrained variational autoencoder (VAE) [27] £ as used in prior work [45]
to encode a frame 7 into a latent space representation. This encoding is denoted by z = £(Z), where
T € R3XHXW ¢ RAxH/8XW/8 [T and W denote the frame’s height and width, respectively.
During the forward diffusion process, Gaussian noise is gradually added to z over T steps, producing
a sequence of noisy samples {zg, -+ , 2, - , zp}. We train a denoising network €, (o, t) that learns
to reverse the diffusion process, which is implemented as a UNet [46]. The training objective of stage



Iis summarized as:
£stagel = Ez,z’",d"”j,ew,/\/'(o,l)’t |:||6 — €9, (Zt, Zm’ dObj7 t)”%} . (1)

Our LDM is designed to take in two types of conditional signals alongside the standard z; and
t: (1) The reference object image If,b] € R3>*H*W ig encoded through DINO [3] for distinctive
object features d°® € R7%®, d°% is then taken by ¢p, as input to guide the denoising process via
cross-attention mechanisms; (2) The masked frame Z™ € R3*#*W i encoded by the same VAE to
produce 2™ = £(I™). 2™ € R**H/8xH/$ ig then concatenated channel-wise with z before being
fed into €g, .

3.3 Stage II: Controllable Motion-guided Video Generation

In stage II, given the first-stage edit Z*, source video V, and its binary mask sequence M, the
objective is to generate a new video V* that propagates the single-frame edit across the remaining
frames. For this purpose, we perform warping to transfer pixel points from the edited frame to
the remaining frames, resulting in a sparse and incomplete video sequence. We then train a video
diffusion network that learns to correct and fill in the gaps, completing the video editing process.

Constructing paired training data Training continues in a self-supervised manner. For this purpose,
we use the original frame Z; from V during training and only replace Z; with the stage-I edit Z}
during inference time. The detailed process is explained below:

* Masked frame sequence preparation. We employ the same frame masking strategy in stage I and
apply it to a sequence of frames V = {Z;}}¥ ,. To standardize the masking across the sequence,

we identify the largest bounding box M?29% from the sequence {M%*°*}Y | and mask each frame
iby I" = T; ® MU resulting in a masked frame sequence {Z}~ ;. This ensures that the
model is trained to inpaint a consistent object region across different frames.

* Conditioning frame selection. To avoid limiting the model to generating videos based on a specific
reference frame, such as the first frame as often used in existing image-to-video generative models,
we randomly select a frame Z. from V as the conditioning frame. This any-frame-conditioning
mechanism brings additional flexibility during inference (for detailed discussion, see Supp. C.4).

Controllable motion guidance Given that object swapping can result in changes to shape or
functionality, our approach is designed to be flexible and adaptable, allowing for varying degrees
of motion pattern encoding from the source video. The key idea is to control the level of motion
agreement with the source via points sampled within the masked region. Tracking a large number
of points over time captures extensive motion information from the source video, but it also reveals
much about the source object’s characteristics (e.g. shape). Conversely, using few points reduces
the motion information and object characteristics carried over, but offers the model more freedom to
generate plausible motion for the target. The latter scenario is particularly useful when only partial
motion transfer is desired due to differences between objects, as exemplified in Figure 2 (c).

To be specific, our approach involves the following steps: (1) uniformly sample % pixel points
within the original object’s region in the conditioning frame Z.. (i.e., where M%Z; equals 1), (2) track
these points using optical flow vectors computed by RAFT [52], and (3) warp a new video sequence
based on these tracked points, using Z,. as the anchor. The resulting warped sequence is denoted by
ywarp = [TWPAN | The anchor frame Z*"? is intact and serves as the basis for warping (i.e.,
Zr*P = T.). For the other frames (i # c), we overlay these points tracked from the conditioning
frame c to frame 7 onto the masked region of Z; (i.e., Z™), creating a composite image Z;"*"”. See

Figure 3 (upper right) for an illustration of this process.

We vary the sparsity level of sampled motion points,  from 0 to 100 during training, preparing
the model for a range of scenarios—from no motion guidance to full motion information. During
inference, we demonstrate that the model is capable of generating video sequences with varying
levels of motion alignment to the original video (see Section 4.2 and Supp. C.4 for further discussion).
Thus, our stage-II training goal is to take the warped yet incomplete video sequence (V**"P) as input,
then learn to fill in the gaps and smooth over discontinuities to reconstruct the full video (V).

Model design We design the stage-II model as a video LDM. The LDM architecture and training
objective closely follow those of stage I, with some adaptations for handling video sequences. We
continue to use the VAE encoder £, but now apply it to a sequence of frames }V € RN*3xHxW



to obtain the latent feature z € RN *4xH/8xW/8 e inflate the 2D UNet into a 3D UNet as the
denoising network (denoted by €, (o, t)) for generating a frame sequence. Specifically, we insert
additional temporal layers into the 2D UNet and interleave them with spatial layers, following [1, 10].
The stage-II training objective is shown below:

Estage]] = ]Ez,z“’,d“',éwj\/'(o,l),t [”6 — €p, (Zt7 Zw7 dcv t) Hg] . (2)

Our video LDM involves two conditional signals in addition to the standard z; (a noised version of
z) and diffusion time step ¢: (1) The warped video sequence VWP € RN*3*HXW 'ig processed
similarly as V, encoded by &, producing a latent feature z* € RV *4*H/8xW/8 'z i then concate-
nated channel-wise with z before being fed into the denoising network €g,. (2) The selected frame
7., besides serving as the anchor in the warping process, is also encoded by CLIP [43], yielding
d® € R7%® that provides high-level contextual guidance and is incorporated in €y, via cross-attention.
Additionally, please see Supp. C.4 for an ablation of comparing CLIP and DINO as the object encoder.

4 Experiments

To comprehensively evaluate HOI-Swap, we consider both the image editing (accomplished by the
stage-I model) and video editing (facilitated by the entire pipeline) task. We describe the experimental
setup in Section 4.1 and present editing results along with an ablation analysis in Section 4.2.

4.1 Experimental Setup

Datasets Our training leverages two large-scale egocentric datasets, HOI4D [35] and Ego-
Ex04D [15], which feature abundant HOIs, making them particularly suitable for exploring this
problem. In total, the stage-I model is trained on 106.7K frames and the stage-II model uses 26.8K
2-second video clips for training. The evaluation set for image editing includes 1,250 source images,
each paired with four reference object images, resulting in a total of 5,000 edited images. The evalua-
tion set for video editing is composed of 25 source videos, also combined with four object images
each, yielding 100 unique edited videos. Note that: (1) For image editing evaluation, we include both
hand-present scenarios, which challenge the model’s HOI-aware capabilities, and non-hand-present
scenarios (20%) to evaluate its general object-swapping capability. (2) For video editing evaluation,
in addition to HOI4D videos, we include challenging in-the-wild videos from EPIC-Kitchens [8] and
third-person videos from TCN Pouring [48]—datasets not used in training—to assess the model’s
zero-shot generalization across diverse scenarios. See Supp. B.1 for complete dataset descriptions.

Baselines For image editing, our stage-I model is compared with two strong image inpainting
approaches, PBE [57] and AnyDoor [7], along with a hand-insertion approach Afford Diff [62]
in the HOI domain. For video editing, we consider the following baselines: (1) applying the best
image editing baseline to each frame of the video; (2) integrating the best image editing baseline
with AnyV2V [28], a recent video editing approach that takes one edited frame from any black-box
image editing model as conditional guidance; (3) VideoSwap [17], the state-of-the-art approach in
customized object swapping. Besides these object-image-guided approaches, we include a focused
comparison with text-guided approaches for a thorough evaluation. See Supp. C.6 for the discussion.

Evaluation HOI-Swap is evaluated through both human and automatic metrics. We conduct a
user study, involving 15 participants that assess 260 image edits and 100 video edits. Participants

Table 1: Quantitative evaluation of HOI-Swap using (1) automatic metrics: contact agreement (cont.
agr.), hand agreement (hand agr.), hand fidelity (hand fid.), subject consistency (subj. cons.), and
motion smoothness (mot. smth.)—the last two are for video only and (2) user preference rate (user
pref.) from our user study. For video editing, users were given an option to report if they found all
edits unsatisfactory, which has an average selection rate of 10.9%. All values are percentages.

tmage Eaiing | S FUT T | et | Video Baiting | S0 T O e fd, | et
PBE [57] 678 719 739 | 45 | Per-frame 8§74 953 864 648 822 0.2
AnyDoor [7] | 846 709 863|156 | AnyV2V[28] | 717 956 683 308 27.0 | 12
Afford Diff [62] | 78.6 19.5 929 | 7.6 | VideoSwap[17] | 91.8 978 879 526 819 | 12
HOI-Swap (ours) | 87.9 79.8 97.4 | 721 | HOL-Swap (ours) | 92.4 982 931 78.6 97.6 | 86.4
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Figure 4: Qualitative results of HOI-Swap. We compare HOI-Swap with image (left) and video
editing approaches (right). The reference object image is shown in the upper left corner of the source
image. For image editing, HOI-Swap demonstrates the ability to seamlessly swap in-contact objects
with HOI awareness, even in cluttered scenes. For video editing, HOI-Swap effectively propagates
the one-frame edit across the entire video sequence while accurately following the source video’s
motion, achieving the highest overall quality among all methods. We highly encourage readers to
check Supp. C.1 and the project page video for more comparisons.

are presented with four edited results, three from baselines and one from HOI-Swap (randomly
shuffled) and asked to pick the best one in terms of object identity, HOI realism, and overall
quality (for image edits), motion alignment and overall quality (for video edits). Each sample is
assessed by three different participants. For automatic evaluation, we employ several metrics across
different dimensions: (1) HOI contact agreement and hand agreement to measure spatial alignment,
following [62, 66]; (2) hand fidelity, following [37]; (3) subject consistency and motion smoothness
from VBench [23] to evaluate general video quality. See Supp. B.3 for full descriptions.

Implementation The stage-I model is trained on 512x512 resolution images for 25K steps. For
stage-II training, input video resolution is set as 14x256x256, where we sample 14 frames at an fps
of 7 and train the model for SOK steps. See Supp. B.4 for full details.

4.2 [Editing Results

Quantitative evaluation Table 1 compares the performance of HOI-Swap on both image and video
editing tasks. For image editing, the two inpainting approaches, PBE [57] and AnyDoor [7] struggle
to generate the hand correctly, as indicated by hand fidelity scores below 90%. Afford Diff [62] is
developed for the HOI context and also benefits from HOI-specific training data in HOI4D. It produces
high-fidelity hands but does not address the editing task adequately, resulting in low contact and hand
agreement with the source image. Our proposed HOI-Swap excels in both aspects, achieving superior
performance in agreement and fidelity scores. In the human evaluation, HOI-Swap is consistently
favored over the other three approaches, achieving a preference rate of 72.1%. For video editing,
HOI-Swap outperforms all competing methods across all metrics, including general video quality
metrics (subject consistency and motion smoothness) and HOI edit metrics (contact agreement, hand
agreement and hand fidelity). It significantly surpasses the three baseline approaches, winning the
user study with a selection rate of 86.4%. Recognizing the inherent challenges of the video editing
task, we included a survey question asking users if “All edits are of very low quality; none successfully
swap the object.” This response was selected at an average rate of 10.9%. See Supp. C.3 for details.

Qualitative evaluation Figure 4 shows HOI-Swap’s edited images (left) and videos (right) alongside
baseline comparisons. For image editing, HOI-Swap exhibits strong HOI-awareness, accurately
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Figure 5: Ablation study on sampled motion points, comparing no to full motion points sampling.
Left: we visualize V*%"P, used as conditional guidance for the stage-II model. Note that row 1
displays VP based on the source frame and is for illustration only, not provided to the model.
Right: HOI-Swap exhibits controllable motion alignment: with no sampled points, the generated
video diverges from the source video’s motion; with full motion points, it closely mimics the source.

adjusting hand-holding patterns based on the reference object’s properties (rows 1 and 2, with source
images from HOI4D [35]). Moreover, HOI-Swap serves as a general object-swapping tool (not limited
to HOIs) and can seamlessly swap in-contact objects in cluttered scenes (rows 3 and 4, with source
images from EgoExo4D [15]). The final row demonstrates HOI-Swap’s zero-shot generalization
capability, using source images from EPIC-Kitchens [8]. Despite the out-of-distribution samples,
HOI-Swap successfully aligns the reference mug handle with the source’s hand context, whereas
baselines like AnyDoor [7] fail to establish this connection. See Supp. C.1 for more examples.

For video editing (Figure 4 right), the source video depicts a hand rotating a toy car. The per-frame
approach struggles with temporal consistency of the object identity and produces unnatural HOI
motions. AnyV2V [28] fails to propagate the first-frame edit through subsequent frames, leading to
inconsistencies. VideoSwap [17] preserves the overall look of the source video but fails to swap the
reference object (i.e., the green toy car). In contrast, HOI-Swap delivers video edits that realistically
depict the HOI and faithfully follow the source video’s motion. Beyond this specific example, we note
that baseline methods generally perform poorly on our in-contact object swapping task across various
examples (see the project page video for more results). Despite our best efforts to reproduce their
results using the official code and adjusting hyperparameters according to the provided guidelines,
the performance of these models remained notably suboptimal. We observe similar issues with
state-of-the-art text-guided approaches (Supp. C.6). This persistent underperformance highlights a
big gap in current (otherwise quite powerful) diffusion models in their ability to accurately model the
intricacies of HOISs, indicating great opportunities for further advancements in this field.

Ablation study on motion points sparsity HOI-Swap can generate videos with different degrees of
motion alignment with the original video. Figure 5 compares the generated results when sampling no
points versus full points. Here the source video depicts a closing trash can lid action. In row 2, when
no points are sampled (resulting in no warping), the generated video does not follow the closing lid
motion but instead depicts an action of putting the lid into the bin; the visible hand motion outside
the inpainted region provides context, guiding the model to generate a plausible sequence with the
hand moving downward. Conversely, using all motion points produces videos that closely align with
the source video’s motion. See Supp. C.4 for follow-up discussion on this.

One-stage vs. two-stage design Next we verify the efficacy of our two-stage design, where we train
a one-stage model variant that takes the reference object image and the masked frame sequence as
input and outputs the edited video. Figure 6 shows both qualitative and quantitative comparisons. The
one-stage approach does not yield satisfactory results, specifically failing to preserve the reference
object’s identity. This limitation arises from the challenge of simultaneously addressing both spatial
and temporal alignment, thereby reinforcing the advantage of our two-stage design.
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Figure 6: Qualitative and quantitative comparisons between a one-stage baseline [1] and our two-stage
HOI-Swap. The one-stage model struggles with preserving the new object’s identify and fails to
generate accurate interaction patterns, yielding inferior quantitative performance.

Moreover, we present a comprehensive discussion on various design choices of HOI-Swap in
Supp. C.4 and C.5, covering aspects such as object encoder choice, object masking strategy, editing
frame selection strategy, and discussion on sampling regions.

5 Limitations and Future work

The problem of swapping in-contact objects in videos poses significant challenges. While HOI-
Swap marks an important first step towards addressing these complexities, we recognize its current
limitations. Specifically, we identify three areas for improvement: (1) generalization to new objects.
HOI-Swap capably swaps new object instances with HOI awareness (e.g., swap an unseen mug with
a differently-shaped bowl). More challenging scenarios involve presenting very different unseen
reference object images for swapping. For example, the model needs to accurately depict a hand
holding scissors, even though scissors were never part of the training dataset. This scenario requires
the model to equip “world knowledge” that extends beyond its training data, enabling it to understand
and realistically model how hands interact with a broader variety of objects. (2) generalization to
long video sequences with complex HOI. The two-stage pipeline of HOI-Swap is motivated by the
observation that HOI interactions remain stable throughout a short video clip. For instance, for a
picking up mug sequence, replacing the mug with a bowl can be reliably done in one single frame and
propagated across the remaining frames. However, for longer sequences, it is possible that an object
undergoes multiple distinct hand interactions that change dynamically over time. This complexity
necessitates the development of methods that can capture and model these varied HOI interactions
across time. (3) controllability. Our proposed controllable motion guidance allows HOI-Swap to
freely choose the degree of motion alignment with the source video in editing. One future work
direction is to enhance this controllability with spatial support, allowing the model to specify which
regions of the source video should be targeted for motion transfer. See Supp. D for more details on
HOI-Swap’s limitations and failure modes, including visual examples.

6 Conclusion

Recognizing the limitations of current diffusion models in effectively capturing HOIs, we introduce
HOI-Swap, a novel approach for swapping hand-interacting objects in videos based on one reference
object image. HOI-Swap consists of two stages: the first seamlessly integrates the reference object
into a single frame, while the second propagates this edit across the entire sequence, with controllable
motion alignment. Both qualitative and quantitative evaluations demonstrate that HOI-Swap produces
realistic video edits with accurate HOIs that align well with the source content. In all, this work
broadens the capabilities of generative models in video editing and represents the initial step towards
solutions that can adeptly handle the intricacies of complex and dynamic HOISs in videos.
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A Supplementary Video

We invite readers to view the Supp. video available at https://vision.cs.utexas.edu/
projects/HOI-Swap, which presents additional qualitative results of HOI-Swap. The video show-
cases video editing comparisons with baselines approaches, demonstrates zero-shot generalization on
EPIC-Kitchens and TCN Pouring datasets (on which the model was not trained), includes an ablation
study on varying the number of sampled motion points, and presents failure cases of HOI-Swap.

B Experimental Setup

B.1 Datasets

We adopt all available videos in HOI4D [35] due to its comprehensive per-frame object mask
annotations. We use 2,679 videos for training and hold out 292 videos for evaluation; the evaluation
videos are selected based on object instance ids to ensure that the source objects during test time
are unseen by the model. In total, the dataset offers 79.9K frames (sampled at the original 15 fps)
and 26.8K 2-second video clips for training. HOI4D features 16 object categories, ranging from
rigid objects like bowls, mugs, and kettles to articulated objects like laptops, pliers, and buckets. For
evaluation, we select 1,000 images and 17 videos from the hold-out set as the source and combine
each source with four randomly chosen reference object images.

For EgoExo04D [15], we utilize the ground truth object segmentation masks available at 1 fps for
stage-I training. Since our video model operates at 7 fps, a future enhancement could involve
interpolating these masks to scale up stage-II training with EgoExo4D videos and the corresponding
pseudo masks. We focus on 18 frequently occurring object categories where editing is relevant: bowl,
container, bottle, package, knife, pan, spoon, plate, spatula, pot, mug, cup, jar, glass, jug, kettle, and
skillet. We adopt frames belonging to these categories and follow the official split, resulting in 18.7K
training frames. For evaluation, we take 250 images from the official validation split as sources and
combine each with four randomly chosen reference object images, resulting in 1,000 edited images.
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HOI-Swap Image Human Evaluation Survey

* Notes to read before you start:
+ Image Editing Task Definiation: Given an original frame and an image of a reference object, Image Editing aims to swap the object from the original frame
with the ref object lessly, maintaining the i in frame context and overall appearance of reference object.
+ In the choices for the questions, you may see:
* Some baselines produce all-black images. Don't worry about it. This issue is not caused by your failure to load the images.
* Some baseline models may generate hands that appear 1 or fortable. We appreciate your patience.
* Some reference objects appear unnatural due to image segmentation issues, resulting in visible holes or irregularities.

¢ What is a good image edit? An example (please click the link to access the slides).

¢ Questions for you to answer.

Original frame Reference object

Q1: Which Two images preverse the identy of the reference object best? (You need to select Two choices.)

A B C D
Oo0oo

Q2: Which image the best hand-object i ion? You need to select One choice. You should consider the following two criterias for evaluation: (1) How realistic is the hand-
object interaction? (2) How well does the edited image align with the reference object's semantic (hand grasping would vary for a mug and a toy car) and original frame’s scene and hand
context?

A B C D

0oo0oo
Q3: Which image has the highest overall quality? You need to select One choice. "High quality" means seamlessly swap the object. You should consider the following three criterias for
ion: (1) Does the d object maintain the identity of the reference object image? (2) How realistic is the hand-object interaction? (3) How well does the edited image align with
the reference object's semantic (hand grasping would vary for a mug and a toy car) and original frame’s scene and hand context?
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Figure 7: Human evaluation interface for image editing part. We provide a source frame for editing
alongside an image of the reference object. Users are asked to evaluate and select their favorite edited
results based on various image editing criteria.

Additionally, we test the model’s zero-shot editing capabilities on four EPIC-Kitchen [8] videos,
which depict in-the-wild kitchen scenarios with often cluttered backgrounds, and four videos from
TCN Pouring [48], with two being egocentric and two exocentric, featuring pouring motions. This
evaluation encompasses a variety of challenging scenarios to thoroughly assess model performance.

B.2 Baselines

We implement the baselines described in Section 4.1 using their official code. Baselines including
PBE, AnyDoor and AnyV2V are adopted in a zero-shot manner. Afford Diff utilizes the same training
data source (HOI4D) as ours. We do not provide additional layout or hand orientation information to
Afford Diff. VideoSwap [17], a one-shot-tuned video editing approach, is trained on the source video
using the default setup in their official repository. AnyDoor is recognized as the best image editing
method and is integrated into the two video editing baselines, per-frame and AnyV2V.

Note that these baseline methods impose more demanding test-time requirements compared to ours.
PBE and AnyDoor both necessitate precise segmentation masks of the source object, while HOI-
Swap only requires a bounding box during inference. In addition, VideoSwap requires users to click
semantic points for every video, provide a text prompt describing the video, and train a specialized
object model using a few reference images. This extensive prepossessing limits its scalability and is a
contributing factor to the smaller size of our video evaluation set. In contrast, HOI-Swap is fast on
inference, with RAFT optical flow extraction completing in just a few seconds per video, making it
efficient and practical for real-world applications.

B.3 Evaluation

Automatic evaluation For automatic evaluation, we employ several metrics across different dimen-
sions: (1) To measure how well the generated content aligns spatially with the source image, we use
HOI contact agreement and hand agreement. Following [62, 66], we utilize the in-contact state
label provided by an off-the-shelf hand detector [49]. The HOI contact agreement score is determined
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HOI-Swap Video Human Evaluation Survey

* Notes to read before you start:
¢ Video loading may take some time. Please ensure the video has fully loaded before making your selections..
* Video Editing Task Definiation: Given an original video and an image of a reference object, Video Editing aims to swap the object from the original video with
the ref object lessly, maintaining the i 'y in scene context and overall appearance of reference object.
+ In the choices for the questions, you may see:
* Some baseline models may generate hands that appear unnatural or uncomfortable. We appreciate your patience.
* Some reference objects appear unnatural due to image segmentation issues, resulting in visible holes or irregularities.

e What is a good video edit? An example (please click the link to access the slides).
* What is a good motion alignment? An example (please click the link to access the slides).

* Questions for you to answer.

Original video Reference object A B c D
Q1: Which video has the best motion ali ? A good motion ali means the d video has the same motion with the source one. You need to select One choices.
A B C D
000D

Q2: Which video has the highest overall quality? You need to select One choice. "High quality" means seamlessly swap the object. You should consider the following three criterias for
evaluation: (1) Does the hand object interation look realistic? (2) How well does the edited video align with the reference object's semantic and original video's scene and hand context?
(3) How well does the motion in the generated video aligh with the origianl video?

A B CD
0D0OO0oo

Q3: Is the following statement true or false? "All edits are of very low quality; none successfully swap the object. I made a choice in the second question only because I was required to.”

True False
O O

Figure 8: Human evaluation interface for video editing part. We provide a source video for editing
alongside an image of the reference object. Users are asked to evaluate and select their favorite edited
videos based on various video editing criteria.

by checking if the in-contact label of the generated frame matches the source frame. Additionally,
we calculate mIOU between the generated and source hand regions using the detector’s bounding
boxes for hand agreement. (2) To evaluate how realistic the generated hand is, we follow [37] and
assess hand fidelity based on the hand detector’s confidence score. (3) To evaluate video quality, we
consider subject consistency (DINO feature similarity across frames) and motion smoothness (de-
termined by motion priors from a video frame interpolation model [33]) as proposed in VBench [23].
Note that we exclude object agreement from the automatic evaluation due to its inaccuracies. Often,
the generated hand occludes some object regions, leading to lower similarity scores compared to
simply placing the reference object in an area with no or partial hand presence. This discrepancy does
not accurately reflect HOI realism and generation quality. To ensure a comprehensive evaluation, we
incorporate questions in our user study to address this dimension.

Human evaluation We conducted a user study with 15 participants who assessed 260 image
edits and 100 video edits randomly selected from the evaluation set. The human evaluation survey
interfaces for image and video editing are shown in Figure 7 and Figure 8, respectively. Each survey
began with general guidelines on the evaluation process, followed by examples of high-quality image
or video editing results and good motion alignment for videos. For each question, participants were
presented with four edited results: three from baselines and one from HOI-Swap, randomly shuffled.
Each image or video sample was evaluated by three different participants to minimize bias.

For each image editing question, participants were asked to select the best one or two edits based on
the following three evaluation dimensions:
1. Object Identity: The ability to preserve the identity of the reference object.

2. HOI Realism: The realism of the hand-object interaction and how well the edited image
aligns with the reference object’s semantics (e.g., hand grasping varies for a mug and a toy
car) and the original frame’s scene and hand context.

3. Overall Quality: The seamlessness of the object swap, considering:
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* Does the generated object maintain the identity of the reference object image?

* How realistic is the hand-object interaction?

* How well does the edited image align with the reference object’s semantics and the
original frame’s scene and hand context?

For each video editing question, participants were asked to select the best one or two edits based on
the following two evaluation dimensions:

1. Motion Alignment: The extent to which the edit matches the motion of the source video.

2. Overall Quality: The seamlessness of the object swap, considering:

* Does the hand-object interaction look realistic?

* How well does the edited video align with the reference object’s semantics and the original
video’s scene and hand context?

* How well does the motion in the generated video align with the original video?

Recognizing the inherent challenges of the video editing task, we included a sanity check sub-question
asking users if “All edits are of very low quality; none successfully swap the object.”

B.4 Implementation

For data preprocessing, we apply several transformations to the reference object image: random
rotations with angles ranging from -90 to 90 degrees, random perspective changes, and random
horizontal flips. We crop and center the source frame using a variable ratio between 0.3 and 0.6,
determined during training to introduce variability; this ratio is defined as the size of the bounding
box relative to the image size. For stage-I training: image resolution is set as 512x512. We train
the model for a total of 25K steps with a learning rate of 1e-4 and a batch size of 8. We finetune the
entire 2D UNet for image editing. For stage-II training: input video resolution is set as 14256 x256,
where we sample 14 frames at an fps of 7. The model is trained for a total of 50K steps with a
learning rate of le-5 and a batch size of 1. We finetune the temporal layers of the 3D UNet. A
classifier-free guidance dropout rate of 0.2 is employed for all stages. Training for each stage takes
about 3 days on one §-NVIDIA-V100-32G GPU node. We set sampling points sparsity value as 50%
for all quantitative evaluations.

C Editing Results

C.1 More qualitative results

Beyond the examples shown in Figure 4 of the main paper, we provide additional qualitative image
editing results of HOI-Swap in Figures 9 and 10. HOI-Swap excels in both structured scenarios
with relatively clean backgrounds (Figure 9, source frames from HOI4D and TCN Pouring), and
challenging in-the-wild scenarios featuring cluttered backgrounds (Figure 10, source frames from
EgoExo04D and EPIC Kitchens). Compared to the baselines, HOI-Swap seamlessly integrates the
reference object into the target scene, demonstrating exceptional HOI awareness and the ability to
accurately reorient the reference object to align with the scene context. Moreover, it also performs
well in general object-swapping settings where no hand is involved, as shown in rows 3, 5, and 6 of
Figure 10. Please refer to our project page for more qualitative results of video editing.

C.2 Detailed quantitative results

Table | of the main paper reports video editing results when videos are split based on object instances.
In addition, we conduct experiments with two splitting ways: (1) across different subjects, and (2)
across different actions. The results are reported in Table 2. HOI-Swap consistently outperforms
baseline approaches across different data splitting settings, demonstrating its effectiveness.

Furthermore, we provide a breakdown of video editing results in Table 3, separating results from
in-domain videos (HOI4D) and out-of-domain videos (EPIC-Kitchens & TCN Pouring). We observe
that the performance gain of HOI-Swap is higher for in-domain videos than out-of-domain videos.
Future work could explore extending HOI-Swap’s generalization capabilities.
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Figure 9: Qualitative image editing results of HOI-Swap on structured scenarios, with source images
from HOI4D and TCN Pouring.
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AnyDoor Afford Diff HOI-Swap
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Figure 10: Qualitative image editing results of HOI-Swap on challenging in-the-wild scenarios, with
source images from EgoExo4D and EPIC-Kitchens.
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Table 2: Video editing results with splitting by subject and action (Table 1 in the main paper reports
results with splitting by object instances).

split by subject split by action
Method subj. mot.p c}:)nt. : hand hand subj. mot. b cgnt. hand hand
cons. smth. agr. agr. fid. cons. smth. agr. agr. fid.
Per-frame [8] 85.6 95.2 73.6 63.3 62.9 84.5 94.7 82.8 57.6 71.0
AnyV2V [29] 67.2 95.3 68.2 27.7 10.0 69.8 94.7 74.6 30.6 19.9
VideoSwap [18] 88.0 97.4 71.8 29.6 69.0 87.2 97.1 87.7 39.8 79.4
HOI-Swap (ours) 90.0 98.2 80.4 844 90.3 89.6 97.8 93.3 77.4 94.6
Table 3: Video editing results breakdown: in-domain videos (left) and out-of-domain videos (right).
Method . In-domain videos . Out-of-domain videos
subj. mot. cont. hand hand | user | subj. mot. cont. hand hand | user
cons. smth. agr. agr.  fid. | pref. | cons. smth. agr. agr.  fid. | pref.
Per-frame [8] 858 947 813 615 784 | 03 | 91.0 964 973 719 902 | 0.0
AnyV2V [29] 73.1 955 709 332 270 | 1.7 | 688 957 627 256 269 | 0.0
VideoSwap [18] | 90.5 975 823 389 748 | 04 | 944 981 99.6 815 97.1 | 25
HOI-Swap (ours) | 91.3 98.0 899 79.0 96.6 | 82.7 | 947 98.6 99.8 77.8 99.5 | 70.2

C.3 User study analysis

Table 4 provides the breakdown of the evaluation dimensions for our HOI-Swap vs. baseline models
on both image and video editing tasks. In terms of all metrics for both image and video editing, our
HOI-Swap’s editing results are consistently preferred by humans. Note that an exception is in object
identity, where our HOI-Swap does not surpass Afford Diff. This is because Afford Diff focuses on

synthesizing hands on fixed objects, directly copying and pasting the object image from the given
reference object image.

Table 4: Breakdown of user study evaluation metrics. For image editing, we consider metrics
including object identity, HOI realism, and overall quality. For video editing, we consider metrics
including motion alignment and overall quality. Each value represents the frequency (expressed as a
percentage) with which participants prefer that model considering a particular evaluation dimension.
Standard deviations are calculated across participants to illustrate preference variability. For video
editing, users were given an additional option to indicate if they found all edits unsatisfactory, which
has an average rate of 10.9%. Note that our HOI-Swap does not surpass Afford Diff in the ability to
preserve object identity. This is because Afford Diff focuses on synthesizing hands on fixed objects
so the model will directly copy and paste the object image from the given reference object image.

tmageBdiing | 080 Gm quiy | VieoBdine | R ey
PBE [57] 1.94+2.0 11.4+£7.1 4.5+2.1 Per-frame 0.24+0.8 0.2+0.8
AnyDoor [7] 403+ 11.1 127+ 7.3 15.6 £ 6.5 | AnyV2V [28] 1.6+2.8 1.2+2.7
Afford Diff [62] | 86.2 +13.2 5.1+4.3 7.6+6.8 VideoSwap [17] 28+34 1.2+ 2.0
HOI-Swap (ours) | 70.1+6.8 71.5+ 9.1 72.1 4 10.8 | HOI-Swap (ours) | 84.5 + 10.3 86.4 + 8.6

C.4 Ablation study

DINO vs. CLIP encoder Stage I and stage II of our pipeline employ the DINO and CLIP encoders,
respectively, to align with their specific objectives. Stage I, focused on swapping the reference
object within a single frame, benefits from the DINO encoder due to its enhanced ability to capture
“objectness” compared with the CLIP encoder. The main emphasis of stage II is to transfer motion
from the source video, and a CLIP encoder is adopted to provide scene context for generating the
video. We additionally conduct experiments to explore the possibility of using a DINO encoder for
stage II. As reported in Table 5, the two encoder variants perform similarly.

Ground truth vs. estimated object masks While it is generally assumed that users will provide
the ground truth bounding box or segmentation mask of the object they wish to replace during
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Figure 11: We compare generated results using different frames as the stage-I edit frame. Selecting
the HOI contact frame (frame 7 in this example) for editing yields the best results.

Table 5: Video editing results: comparison of DINO and CLIP encoders for stage II. The two object
encoders yield similar performance.

Video Editing subject motion contact hand hanFl
consistency smoothness agreement agreement fidelity

HOI-Swap (DINO encoder) 91.2 98.1 88.9 79.9 96.2

HOI-Swap (CLIP encoder) 91.4 98.0 89.9 79.0 96.6

inference [57, 7], we acknowledge the potential of incorporating automatic segmentation methods
to reduce user effort. Following this, we applied SAM-2 [44] to identify bounding boxes on test
videos as an alternative to manually providing ground truth. This method requires just a single click
inside the object in the initial frame, followed by SAM-2 automatically tracking the target object. The
quantitative comparisons are presented in Table 6. While there is some degradation across three HOI
metrics, we believe this feature is valuable for downstream applications as it greatly eases the input
requirements and improves user convenience. Note that the baseline approaches have more stringent
input requirements than HOI-Swap, e.g. need precise object segmentation masks or additional text
prompts. Even with the use of automatically generated masks, HOI-Swap demonstrates its great
advantages over the baselines.

Table 6: Video editing results: comparison of using ground truth object bounding boxes vs. SAM-2
estimated ones as model input.

Video Editing supject motion contact hand hanq
consistency smoothness agreement agreement fidelity
Prior best 90.5 97.5 82.4 61.5 78.4
HOI-Swap (SAM-2 bbox) 91.2 98.0 87.8 73.9 91.8
HOI-Swap (GT bbox) 91.4 98.0 89.9 79.0 96.6

Masking strategy In stage I, we mask the source frame with a square bounding box, as opposed
to using the source object’s segmentation mask as in [57]. This masking strategy not only directs
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Figure 12: Comparison of two masking strategies. The stage-I model using a segmentation mask
(row 2) only learns to fill the missing region without HOI awareness. In contrast, a square bounding
box (row 3) also masks the hand-object interaction regions, requiring the model to reconstruct these
interactions; this enables our stage-I model to effectively learn diverse HOI patterns from data.

the model to fill the predefined masked area but also to generate plausible hand-object interactions
aligning with the source frame’s hand position and the reference object. To demonstrate this point,
we experimented with a variant of the stage I model that uses the original object’s segmentation mask
instead. As illustrated in Figure 12, this variant struggles with grasp changes when the reference and
source objects differ, thereby reinforcing the effectiveness of our chosen approach.

Editing frame selection One question naturally arising from our two-stage editing pipeline is
determining which frame from the video sequence to edit. Recall that our training strategy (Sec-
tion 3.3) prepares the stage-II model to be any-frame-conditioned, bringing maximum inference
flexibility. Here, our key insight is to choose a hand-object contact frame for editing due to two main
advantages: (1) Hand-object contact frames are particularly challenging as they require generating
correct interaction patterns (e.g. grasps) compared with non-contact frames; prioritizing them ensures
that the model can handle the most complex scenarios. (2) Hand-object contact frames offer the most
comprehensive scene context for the stage-I model, aiding in spatial alignment.

To illustrate, in Figure 11, we compare video editing results when choosing the 1st, 4th and 7th frames
in a sequence of picking up a mug. First, it is evident that the 7th frame is the most challenging to
edit since it requires precise handling of the grasp region, while the 1st and 4th frame involve no
or little hand interaction. Next, while single-frame edits for the 1st and 4th frame look reasonable
(successfully swapping the mug), the lack of hand context in these frames leads to incorrect orientation
of the mug handle. Consequently, this causes failures or imperfections in generating the subsequent
frames 10 and 13, where the hand is unrealistically holding the mug.

Motion points sparsity Following the discussion in Section 4.2 of the main paper, we present a
comprehensive analysis of the impact of sampled point sparsity. Figure 13 illustrates two swapping
cases, involving the motion of closing a trash can lid. For the left video, the two trash cans differ
greatly in shape and closing mechanism. Using all points confuses the model, resulting in an incorrect
lid-closing motion. Conversely, using no points generates a different motion of putting down the trash
can rather than closing the lid. In this example, using 50% of the points yields the most plausible edit.
For the right video, as discussed in the main paper, due to the similarities between the two objects,
replicating the full motion by adopting 100% points is effective. In all, HOI-Swap allows users
to flexibly decide the extent of motion transfer when generating content, accommodating different
scenarios and object characteristics.

23



0% points
0% points

|2} j2}
E £
o o
Q o
g S
n 0

100% points
100% points

Figure 13: Ablation study of sampled motion points sparsity. The left figure illustrates a scenario
where only partial motion transfer is desired, due to differences between the original and new object.
The right figure showcases a scenario where full motion transfer is beneficial, owing to the similarities
between the objects. We invite readers to view these examples in our project page.

C.5 Discussion on sampling region

As described in Section 3.3, we perform uniform sampling of points within the bounding box region.
When the new object differs greatly in shape from the original, sampled points might incorrectly
capture motion—background points could be assigned foreground motion, and vice versa. A direct
solution to mitigate this mismatch is to reduce the sampling density. Nevertheless, we find that
HOI-Swap demonstrates considerable robustness even when a large number of points are sampled,
adeptly managing potential discrepancies within the warped sequence V**"P. As shown in Figure 14,
with 50% points sampled, the visualized V**"? reflects the original object’s shape to a certain extent,
yet the model effectively distinguishes between background and the foreground object, recognizing
the object as a whole and thereby generating plausible videos.

We identify two potential reasons for the model’s effectiveness. First, our training strategy helps
enhance the model’s capability to discern between foreground and background elements, since we
intentionally sample points within the bounding box region rather than solely within the object’s
segmentation mask. Consequently, the model is trained with a mix of in-object points and background
points, preparing it to handle background points that may be sampled outside the new object region
during inference. Additionally, the relative constancy of background and clear distinction between
foreground and background contributes to the model’s robustness, allowing it to recognize the object
as a whole and accurately move it even when some regions inaccurately carry motion.
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Figure 14: HOI-Swap demonstrates remarkable robustness, when object shapes differ greatly, leading
to motion mismatches of sampled points. Even with a large sampled points density (50%), it
effectively handles the flawed warped sequences V*"*"P and produces high-quality video edits.
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Figure 15: Comparison of HOI-Swap with text-guided diffusion models: Pika [30], Runway [10],
and Rerender-a-video (Rerender) [59]. To evaluate these latest models on the object swapping task,
we describe the reference object in text and prompt the models to replace the original object in the
video. These approaches are unable to alter the shape of the bowl and fail to swap the original bowl
with a kettle as required.

C.6 Comparison with text-guided editing approaches

To understand how the latest text-guided diffusion models perform on this task, we provide qualitative
comparison of HOI-Swap with three models: Pika [30], Runway [10], and Rerender A Video [59].
We adopt the text prompt: “change the object in the video to a kettle while keeping background and
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Figure 16: Failure cases of HOI-Swap. Left: stage-I failure, Right: stage-II failure.

motion the same”, which proved most effective compared to more complex prompts. As shown in
Figure 15, these approaches edit the video in a way that preserves the original object shape, failing to
generate the new object or adapt the HOI patterns. These results underscore the unique capabilities
of HOI-Swap.

D Limitations

One area for improvement stems from the sampling region discussion in Section C.5, with sampled
points potentially carrying wrong motion when object shape changes, particularly when a large
number of points are sampled. To further refine our model’s performance, a future direction is
to explore fine-grained spatial control in motion alignment. Specifically, concentrated sampling
could provide the model with the precise ability to modulate specific regions of an object. These
enhancements are anticipated to augment the model’s adaptability and accuracy in editing complex
HOI sequences.

Another direction is the development of an automated method to determine the sparsity of motion
points based on the object swapping scenario and the motion complexity in the original video.
This would allow the model to autonomously decide the extent of motion transfer necessary when
generating new content.

In addition, we present failure cases in Figure 16. The left example shows a stage-I failure, where
HOI-Swap fails to achieve accurate spatial alignment. The right example illustrates a stage-II failure,
where noise in the warped sequence impedes model’s understanding of the reference object, leading
to wrong motion patterns.

Finally, we emphasize that the problem of swapping in-contact objects in videos poses significant
challenges, particularly with complex HOI sequences. We recognize the limitations of HOI-Swap in
its current stage and view this work as an initial step towards resolving these challenges. Looking
ahead, we aim to incorporate more precise spatial and motion controls, and expand HOI-Swap’s
capabilities to handle longer video sequences with more intricate HOIs.

E Societal Impact

This project aims to equip the community with a powerful tool for swapping customized objects
into videos, particularly improving the realism of hand-object interactions. However, there is a
potential risk that malicious users could misuse this technology to produce deceptive videos involving
real-world individuals, potentially misleading viewers. This issue is not exclusive to our approach
but is a common concern across various video editing and generating modeling techniques. To
mitigate such risks, one possible solution is to introduce subtle noise perturbations to published
images to disrupt the customization process. Furthermore, implementing invisible watermarking in
the generated videos could help prevent misuse and ensure proper attribution of the content.
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