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Abstract—Several researchers have used deep learning to

obtain novel feedback codes. Two such codes for AWGN channels

with passive (possibly noisy) output feedback are Deepcode which

employs a bit-by-bit rate 1/3 encoder, and Lightcode, which is

a symbol-by-symbol code inspired by the Schalkwijk-Kailath

(SK) scheme. Here, we build on prior work to interpret these

codes by 1) providing the optimal maximum a posteriori (MAP)

decoder for our simple non-linear interpretable encoder of a

single-bit, two-round code that accurately approximates both

single-bit Deepcode and Lightcode. This non-linear interpretable

coding scheme, which mimics these codes, turns out to resemble

both the functional form and performance of the Polyanskiy-

Poor-Verdu (PPV) single bit feedback scheme that minimizes

energy transmission asymptotically. 2) We extend our non-linear

interpretable code to support more than one bit and two rounds,

again providing an optimal MAP decoder. This remarkably

simple and power-efficient nonlinear scheme provides insight into

Lightcode.

I. INTRODUCTION

Analytically constructed feedback codes [1]–[6] have been
proposed over the past few decades. Among these, for passive
feedback, Schalkwijk and Kailath introduce a linear coding
scheme, known as the SK scheme, which achieves a doubly
exponential error exponent [1]. Ankireddy et al. propose a
variant of the SK scheme, the POWERBLAST scheme, in [6],
which differs from the SK scheme in the final round of
transmission. Additionally, Polyanskiy et al. introduce the
PPV scheme, a nonlinear feedback code designed for single-
bit communication, which asymptotically achieves zero error
probability with minimum energy [5]. For large message
bit lengths K (K → 100), a stop-feedback code – where
feedback is used solely to signal the end of transmission –
is sufficient [5]. For smaller K, refining the noise estimate
with output feedback proves beneficial.

Deep learning has also been applied to develop learned
error-correcting feedback codes (DL-ECFCs) [6]–[13]. These
codes shine in low forward signal-to-noise ratio (SNR)
and short block lengths over additive white Gaussian noise
(AWGN) channels with (possibly noisy) output feedback. DL-
ECFCs can be classified into two types: bit-by-bit [7]–[10],
represented by Deepcode, where one bit of the message is
transmitted at a time, and symbol-by-symbol [6], [12], [13],
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as in the current state-of-the-art Lightcode, where the entire
message of length K is mapped to a symbol for refinement.
Previous interpretations of these learned codes [6], [7], [14],
[15], show that both schemes learn the same power-efficient
non-linearity for the encoder. When forward noise pushes the
received signal in the “correct” direction (correct decoding
even without error correction), no power is wasted on a
second transmission (expressed mathematically as a non-linear
indicator function). If the noise pushes the signal in the
“wrong” direction, the scaled noise is sent in the second round.
This pattern continues in subsequent rounds, correcting only
the noises that impact decoding.

Contribution: In this work, we present an analytically
interpretable approximation of the encoder for the learned
codes, Deepcode and Lightcode. It is power-efficient and, as
yet unnoticed, resembles the functional form and performance
of the optimized power PPV scheme in single-bit, two-round
transmission. Although originally designed for noiseless feed-
back, it appears the PPV scheme is robust to noisy feedback,
achieving performance comparable to learned codes. We also
provide the corresponding MAP decoder for our nonlinear
analytical encoder approximations. While the PPV scheme
based on log-likelihood ratios (LLR) is difficult to generalize
to larger message lengths K → 2, we extend our non-linear
interpretable encoder to support larger K with a MAP decoder,
achieving performance similar to Lightcode. Unlike learned
codes with numerous parameters, our interpretable non-linear
scheme is analytically constructed.

Notation: Random variables are denoted by capital letters,
specific instances by lowercase letters, and vectors in boldface.
The notation {xi}Ni=1 represents {x1, . . . , xN}. Probability is
represented by P(·), and expectation by E(·). The symbol F2

denotes the finite field with elements 0 and 1, while Rn repre-
sents n-dimensional real vectors. The function I(x) equals 1 if
x → 0 and 0 otherwise. Q(x) is the complementary distribution
function of N (0, 1), Q(x) = 1↑

2ω

∫↓
x exp

(
↑u2

2

)
du. Given

two integers a and b with a < b, [a : b] represents a sequence
of integers [a, a+ 1, . . . , b].

II. SYSTEM MODEL

We consider the point-to-point AWGN channel with passive
feedback, as shown in Fig. 1. The transmitter sends a message
of length K, denoted as M = {Mi}Ki=1 ↓ FK

2 , to the receiver



using the channel N times. The code rate is defined as R =
K/N . At channel use i ↓ [1 : N ], the channel output is

Yi = Xi +Ni (1)

where Ni ↔ N (0,ω2
f ) represents independent and identically

distributed (i.i.d.) Gaussian noise, and Xi ↓ R is the transmit-
ted symbol at time i, subject to the average power constraint
1
NE

(∑N
i=1 X

2
i

)
↗ P . The receiver sends the channel outputs

to the transmitter through a feedback link in a causal manner.
We term this “output feedback”. For noiseless output feedback,
the feedback is identical to the channel outputs, Ỹi↔1 = Yi↔1.
For noisy (passive) output feedback, the received feedback
is corrupted by i.i.d. Gaussian noises, resulting in Ỹi↔1 =
Yi↔1 + Ñi↔1, for Ñi ↔ N (0,ω2

fb). We define SNRf = P
ε2
f

for the forward channel and SNRfb = P
ε2
fb

1 for the feedback
channel, respectively. We assume that the channel statistics ωf

are perfectly known at both the transmitter and receiver.

Encoder fϑ + Decoder gϖ

+

Delay

M Xi Yi M̂

Ni ↔ N (0,ω2
f )

Yi↔1Ỹi↔1

Ñi↔1 ↔ N (0,ω2
fb)

Transmitter Receiver

Fig. 1: AWGN channel with passive feedback

The encoder fϑ and decoder gϖ implicitly defined in Fig. 1
can be implemented either analytically or parameterized using
neural networks (DL-ECFCs). Existing DL-ECFCs transmit
messages in two ways: bit-by-bit or symbol-by-symbol.
Bit-by-bit: For bit-by-bit transmission [7]–[10], one bit of
information is transmitted at a time2,

Xi = fϑ
(
Mi, {Ỹj}i↔1

j=1

)
, i ↓ [1 : K] (2)

For instance, Deepcode [7] is the first bit-by-bit DL-ECFC
with a code rate 1/3. Its encoding process involves two
phases. In the first phase, each bit, modulated with BPSK and
denoted by Xi,1 = 2Mi ↑ 1 is transmitted uncoded. In the
second phase, the encoder sequentially generates two parity
bits, Xi,2 and Xi,3, using the current message bit, the feedback
from the first phase, and the delayed feedback from previous
transmissions of parity bits. The transmission is described
by Xi,k = fϑ,k

(
Mi, Ỹi,1, Ỹi↔1,2, Ỹi↔1,3

)
, where k ↓ {2, 3}.

Here, ε is parameterized by a recurrent neural network (RNN).
The longer the dependency it builds between codewords, the
better the error correction performance achieved [14], [15].

1A more precise definition would be (P +ω2
f )/ω

2
fb. However, to maintain

consistency with previous papers on DL-ECFCs, we use the current definition.
2{Ỹj}i→1

j=1 implicitly depend on the previous message bits.

Symbol-by-symbol: For symbol-by-symbol transmission [6],
[12], [13], message M ↓ FK

2 is mapped to a symbol which is
iteratively refined as:

Xi = fϑ(M, {Ỹj}i↔1
j=1), i ↓ [1 : N ]. (3)

This approach, inspired by the SK scheme [1], achieves
rate K/N which is not restricted to 1/3. Lightcode [6] is
the current state-of-the-art in symbol-by-symbol DL-ECFCs.
At channel use i, the encoder takes the message bits and
feedback from previous i ↑ 1 rounds as the input, Xi =
fϑ(M, Ỹ1, . . . , Ỹi↔1, 0, . . . , 0), where zero-padding ensures a
constant input dimension. Each transmitted symbol is nor-
malized and power-optimized to satisfy the average power
constraint and enhance performance. Lightcode employs feed-
forward feature extractors and multilayer perceptrons. The
decoder maps the received noisy codewords to the estimated
message bits M̂ = gϖ

(
{Yi}Ni=1

)
. The performance metric is

the block error rate BLER := P(M ↘= M̂).

III. RELATED WORK

We now review analytical coding schemes for the AWGN
channel with noiseless passive feedback. The SK scheme
achieves doubly exponential error decay by minimizing the
mean square error, while POWERBLAST differs from it only
in the final round. The PPV scheme uses a nonlinear coding
approach based on the log-likelihood ratio (LLR).

A. Schalkwijk-Kailath (SK) scheme
The SK scheme is a linear code designed for noiseless

output feedback [1]. Initially, the message M ↓ FK
2 is

PAM modulated and transmitted over the forward channel.
In subsequent rounds, the transmitter sends the estimation
error made by the receiver, allowing the receiver to iteratively
refine its estimate. For a fixed code rate, at low forward
SNR, messages with smaller K perform better due to the
larger distance between constellation points. Conversely, at
high SNR, messages with larger K, and thus more channel
uses N achieve better performance.

Initialization: The message M is mapped to a PAM symbol
! ↓ {±1ϑ,±3ϑ, . . . ,±(2K ↑ 1)ϑ}, where ϑ =

√
3

22K↔1

ensures the unit power constraint. The estimated message at
receiver at time i is denoted by !̂i with the error defined as
ϖi = !̂i ↑!. The mean square error is given by Di = E(ϖ2i ).

Encoding: In the first round, the transmitter sends with
power P , X1 =

≃
P!. In the subsequent rounds (i → 2),

the encoder transmits the estimation error scaled appropriately,
Xi =

√
P

Di→1
ϖi↔1 =

√
P

Di→1

(
!̂i↔1 ↑!

)
.

Decoding: At the end of round 1, the estimate of the
transmitted symbol at the receiver based on Y1 can be either
the minimum-variance unbiased estimator (MVUE), !̂1 = Y1↑

P
or the linear minimum mean square error estimator (LMMSE),
!̂1 =

↑
P

P+ε2
f
Y1. In the subsequent rounds, the receiver esti-

mates the error using the LMMSE estimator:

ϖ̂i↔1 =

√
PDi↔1

P + ω2
f

Yi, i ↓ [2 : N ] (4)



The receiver then updates its estimate as !̂i = !̂i↔1 ↑ ϖ̂i↔1.
Finally, the receiver applies a minimum distance decoder
to !̂N , mapping it to the nearest PAM constellation point.
Performance: Using the biased LMMSE at the end of round
1 improves BLER performance for finite block lengths. The
probability of error (BLER) based on the MVUE (more
tractable than with the LMMSE) for a rate of K/N is

BLERsk = 2(1↑2↔K)Q




√

3SNRf (1 + SNRf )N↔1

22K ↑ 1



 (5)

where SNRf is expressed on a linear scale.
For a code rate of K/N , the first N ↑ 1 rounds of

POWERBLAST follow the same procedure as the SK scheme.
In the final round N , instead of transmitting the estima-
tion error directly, POWERBLAST sends a discrete sym-
bol representing the error in the PAM index estimate [6]
XN =

↑
P

εu
(M̂ ↑ M), where M̂,M ↓ [1 : 2K ] denote the

PAM indices corresponding to !̂N↔1 and the true message
!, respectively, and ω2

u = E[(M̂ ↑ M)2]. POWERBLAST
demonstrates significantly better BLER performance than the
SK scheme for rates 3/6 and 3/9, as shown in [6].

B. Polyanskiy, Poor, and Verdú (PPV) scheme
The PPV scheme is state-of-the-art for transmitting a single

bit [5] over channels with noiseless output feedback. The
encoder computes the estimation error using LLR and scales
it to satisfy the power constraint.

Encoding: Specifically, for a single bit M ↓ F2, with BPSK
modulation W = 2M ↑ 1 ↓ {↑1, 1}, the encoding function
at the i-th round is defined as:

fi(W, {Yj}i↔1
j=1) =

Wdi
1 + eWSi→1

(6)

where Si↔1 = log
P
(
W=+1|{Yj}i→1

j=1

)

P
(
W=↔1|{Yj}i→1

j=1

) is the LLR, and di is

a coefficient related to the power constraint. With a constant
di, the PPV scheme has been shown to achieve zero error
probability with the minimum energy per bit as the channel
uses N ⇐ ⇒ [5]. For finite block lengths, optimizing di yields
further BLER improvement using dynamic programming [11].

Decoding: After N rounds, the receiver decodes the message
Ŵ using the final LLR, SN .

Performance: The BLER after N rounds can be represented
as a recursion function [11]:

BLERppv = 1↑Q


↑µN

ωN


(7)

where µi = µi↔1 +
d2
i

2ε2
f

and ω2
i = ω2

i↔1 +
d2
i

ε2
f

3. By symmetry,
it is sufficient to analyze the case where W = +1. The BLER
after N rounds can be expressed as P

(
SN < 0 | W = +1

)
.

Given W = +1, the LLR at the i-th round can be written as
Si = Si↔1 +

1
2ε2

f
d2i +

1
ε2
f
diNi, where Ni ↔ N (0,ω2

f ). Since

3In [11], there is a minor typo in the expression ω2
i = ω2

i→1 + ( di
ω2
f
)2 as

it omits the noise variance.

a linear combination of Gaussian random variables remains
Gaussian, SN ↔ N


1

2ε2
f

∑N
i=1 d

2
i ,ω

2
f

∑N
i=1(

di

ε2
f
)2


. Thus,

the BLER can be expressed as in (7).

IV. INTERPRETABLE NON-LINEAR CODES FOR
K = 1, N = 2

In this section, we consider the simplest case: transmitting
a single bit (K = 1) using the channel N = 2 times. Drawing
insights from the interpretation of Deepcode and Lightcode,
we design a very good approximation of the nonlinear encoder
and derive the corresponding decoder. Interestingly, while this
has not been explicitly observed before, this approximation
closely resembles the PPV scheme.

For K = 1, the first round of transmission is the same for
both bit-by-bit and symbol-by-symbol encoding, using BPSK
modulation Y1 = ϱ1 (2M ↑ 1) +N1, with SNR1 = ϱ2

1

ε2
f

.

A. Linear encoder and linear decoder

For finite block lengths, the linear encoder follows the
SK scheme with optimized power allocation for each round.
We first analyze the MVUE at the end of round 1. For
the i-th transmission, where i ↓ [2 : N ], the encoding is
Xi =

ϱi≃
Di→1

ϖi↔1, with power ϱ2
i , corresponding to SNRi =

ϱ2
i

ε2
f

. Consequently, the BLER in (5) becomes BLERlinear =

2(1 ↑ 2↔K)Q

√
3SNR1

∏N
i=2(1+SNRi)

22K↔1


. After N rounds, the

optimization problem involves minimizing BLER under the
average power constraint

∑N
i=1 ϱ

2
i = NP . This requires

optimizing the power coefficients ϱi, which can be solved
numerically using dynamic programming.

In this specific case, X2 = ϱ2
εf

N1, we can derive the
maximum a posterior (MAP) decoder:

y1 ↑
ϱ2ωf

ϱ2
2 + ω2

f

y2
M̂=0
↭

M̂=1

0 (8)

For single bit, the BLER reaches its minimum Q


P
ε2
f
+ 1

2



when ϱ2
1 = P +

ε2
f

2 . With optimized power allocation, the
scheme is called “Linear MVUE” if the MVUE is used, and
“Linear LMMSE” if the LMMSE is used (at round 1’s end).

B. Nonlinear encoder and decoders: interpretable schemes
and PPV similarities

The scatter plot of the encoder output in round 2 versus the
noise in round 1 shows that, for first-order error correction
of Deepcode, the second round of Lightcode, and the PPV
scheme, the transmitter sends information in the second round
only when necessary, as illustrated in Fig. 2. Notice the
visual similarity between all three functions: this suggests that
this functional form lies on the boundary of the energy /
performance (as measured by BLER). This is the first time
that the similarity of the learned schemes is compared with
that of the analytical and known PPV scheme.



Fig. 2: Encoder output in round 2, X2 (Deepcode: parity bit Xi,2)
versus the forward noise in round 1, N1 (Deepcode: phase 1 noise
Ni,1) under forward SNR 0 dB and noiseless feedback, assuming
K = 1. “Deepcode 1st order” means Deepcode interpretable model
without outliers, as discussed in previous work [14], [15]. We
approximate this shape using two linear segments, where the knee
point ω1 depends on the forward SNR.

For all schemes, when M = 0 and the noise N1 is negative
(or M = 1 and N1 is positive), binary detection success-
fully decodes the message, and no additional information is
required. Otherwise, the transmitter sends the scaled version
of the noise. This nonlinear structure is power-efficient, as
it avoids wasting power on unnecessary information, thus
improving performance.

As initially observed in [7] and made more explicit in [14]
we can use a piecewise linear approximation of the transmitted
symbol in the second round, modeled as follows

X2 =


ϱ2
εz
(N1 ↑ ς1)I (N1 ↑ ς1) if M = 0

ϱ2
εz
(N1 + ς1)I (↑N1 ↑ ς1) if M = 1

(9)

by varying the knee point ς1, for ω2
z =

∫↓
0 z2 1≃

2ωε2
f

e
↔ (z+ω1)2

2ε2
f dz.

The MAP decoder may be easily derived and is expressed
in (10), where ϱ1 → ς1 is required. ς1 can take either positive
or negative values. We refer to this as “Nonlinear MVUE”. We
sample over ϱ1 and ς1 to get the minimum BLER numerically.

Experiment: Fig. 3 illustrates the BLER performance of
various feedback codes across different forward SNRs. The
results show that POWERBLAST performs poorly in this
region, where there is no advantage of high effective SNR
over previous N↑1 rounds. Moreover, the learned Lightcode,
the analytical optimized PPV, and Nonlinear MVUE have
nearly identical performance. Lightcode, trained for this block
length, minimizes cross entropy at this specified rate. Both
the PPV and the interpretable Nonlinear MVUE schemes
provide accurate analytical approximations of this learned
scheme. Interestingly, for K = 1, N = 2, Lightcode offers

no improvement over PPV, indicating that while PPV scheme
is asymptotically power-efficient, it appears to do so at finite
block length N as well. Our experiments show that as the
forward SNR increases, more power is allocated to round 1.
This supports the intuition that at high SNR, corrections via
feedback (in the second time slot) are needed only for large
noise values, making it more efficient to allocate power to
uncoded transmission in the first slot.

For noisy feedback, the noise estimation at the en-
coder is corrupted by feedback noises. For instance,
the nonlinear encoder is expressed as ϱ2

εz
(N1 + Ñ1 ⇑

ς1)I
(
±(N1 + Ñ1)↑ ς1

)
. In the PPV scheme, the LLR at

the encoder is expressed as S̃i↔1 = log
P
(
W=+1|{Ỹj}i→1

j=1

)

P
(
W=↔1|{Ỹj}i→1

j=1

) .

In contrast, the decoder retains its original form, as it has
no information about the feedback noise. While there are
claims that learned codes handle feedback noise better than
analytical codes, our work here appears to refute this: Fig.
4 demonstrates that despite the mismatch induced by noisy
feedback, both the PPV scheme and our Nonlinear MVUE
interpretation remain robust, matching Lightcode performance.
Lower feedback SNR shifts knee points ς1 to more negative
values (we adjust the knee points to the forward and feedback
SNR values), causing earlier noise transmission (for small
forward noise values) – consistent with the pattern observed
in our previous Deepcode interpretation [14]. In contrast,
the linear scheme, which relies heavily on accurate noise
estimation, is highly sensitive to feedback noise.

V. INTERPRETABLE NON-LINEAR CODES FOR
K → 2, N = 2

We now generalize the interpretable nonlinear encoding
schemes for the message lengths K → 2 based on insights
gained from Lightcode [6] and present the corresponding MAP
decoders. While extending the PPV scheme based on LLR to
K → 2 is not immediately obvious to us, our simple nonlinear
scheme, which saves power on boundary messages, can be
easily extended to mimic Lightcode performance.

The message M ↓ FK
2 is mapped to PAM symbols

{!1, . . . ,!T }, where T = 2K . The boundary symbols are
!1 = ↑(T ↑ 1)ϑ and !T = (T ↑ 1)ϑ.

Encoding: In the first round, we send the PAM symbol
X1 = ϱ1!j , where j ↓ [1 : T ]. In the second round, for
!1 (!T ), negative (positive) noise favors correct decoding so
no power is allocated in these cases. However, for symbols
in the middle, both positive and negative noise can affect the
decoding results, requiring correction. The encoding function
is defined as X2 = ϱ2

εz
φ, where ω2

z = E
(
φ2

)
. φ is given by:

φ =






(N1 ↑ ς1)I (N1 ↑ ς1) if j = 1

N1 if j ↓ [2 : T ↑ 1]

(N1 + ς1)I (↑N1 ↑ ς1) if j = T

(11)

where ς1 < ϱ1(T ↑ 1)ϑ.



ϱ2
2

ω2
z

(y1 ↑ ϱ1 + ς1)↑ 4ϱ1 ↑
4ϱ1(ϱ1 ↑ ς1)

y1 ↑ ϱ1 + ς1
↑ 2ϱ2

ωz
y2

M̂=0
↭

M̂=1

0 if y1 ↗ ς1 ↑ ϱ1,

y1 ↑
ωzϱ2(ϱ1 ↑ ς1)

ϱ1ω2
z + ϱ2

2(ϱ1 ↑ ς1)
y2

M̂=0
↭

M̂=1

0 if ς1 ↑ ϱ1 < y1 < ϱ1 ↑ ς1,

ϱ2
2

ω2
z

(y1 + ϱ1 ↑ ς1) + 4ϱ1 ↑
4ϱ1(ϱ1 ↑ ς1)

y1 + ϱ1 ↑ ς1
↑ 2ϱ2

ωz
y2

M̂=0
↭

M̂=1

0 if y1 → ϱ1 ↑ ς1 (10)

Fig. 3: BLER performance across different feedback schemes versus
forward SNR with noiseless feedback, assuming K = 1.

Fig. 4: BLER performance versus feedback SNR with fixed forward
SNR= 0 dB, assuming K = 1.

Decoding: In the following let X|Y denote the distribution
of random variable X conditioned on random variable Y . The
estimated symbol by the MAP decoder (with same prior) is
given by:

!̂ = argmax
!j

P
(
!j | Y1, Y2

)
(12)

where Y1 | !j ↔ N
(
ϱ1!j ,ω2

f

)
. For j ↓ [2 : T ↑ 1], the

random variable Y2 | (Y1,!j) ↔ N
(

ϱ2
εz
(Y1 ↑ ϱ1!j),ω2

f

)
.

At the boundaries j = 1 or j = T , the classification depends

on the value of Y1. If j ↓ {1, T},

Y2 | (Y1,!j) ↔






N
(
0,ω2

f

)
, if Y1

j=1
↭

j=T
ϱ1!j

j=1
±

j=T
ς1

N


ϱ2
εz
(Y1 ↑ ϱ1!j

j=1
⇑

j=T
ς1)


,ω2

f ), o.w.

We conduct experiments with K = 2, 3, shown in Fig.
5. The interpretable nonlinear MVUE achieves BLER perfor-
mance comparable to LightCode but uses only 2 analytically
optimized parameters, compared to the 6736 trained param-
eters required by LightCode, which may increase for larger
K. Deep-learned codes aim to conserve power for necessary
transmissions; our interpretable schemes does the same but in
a much simpler fashion. This shows the power of interpreting
learned DL-ECFCs: they may be used to derive simple non-
linear analytical schemes which achieve similar performance.

Fig. 5: BLER for K → 2 with noiseless feedback.

VI. CONCLUSION

We present a simple nonlinear, power-efficient, interpretable
approximation of two learned feedback codes, Deepcode and
Lightcode, for two-rounds of transmission and derive the
corresponding MAP decoder. Our interpretable encoder, Deep-
code, and Lightcode all resemble the optimized PPV scheme
when K = 1 bit is sent over 2 rounds. We extend our simple
piecewise linear scheme to K → 2 bits over 2 rounds with an
explicit MAP decoder whose performance again mimics that
of the learned feedback code, Lightcode. Future work will
explore the second order error correction of Deepcode and the
third round of Lightcode, which also resemble the functional
form and performance of the PPV scheme.
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