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Abstract

Stochastic second-order methods achieve fast local convergence in strongly convex
optimization by using noisy Hessian estimates to precondition the gradient. How-
ever, these methods typically reach superlinear convergence only when the stochas-
tic Hessian noise diminishes, increasing per-iteration costs over time. Recent work
in [1] addressed this with a Hessian averaging scheme that achieves superlinear
convergence without higher per-iteration costs. Nonetheless, the method has slow
global convergence, requiring up to Õ(κ2) iterations to reach the superlinear rate of
Õ((1/t)t/2), where κ is the problem’s condition number. In this paper, we propose
a novel stochastic Newton proximal extragradient method that improves these
bounds, achieving a faster global linear rate and reaching the same fast superlinear
rate in Õ(κ) iterations. We accomplish this by extending the Hybrid Proximal
Extragradient (HPE) framework, achieving fast global and local convergence rates
for strongly convex functions with access to a noisy Hessian oracle.

1 Introduction

In this paper, we focus on the use of second-order methods for solving the optimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is strongly convex and twice differentiable. There is an extensive literature
on second-order methods and their fast local convergence properties; e.g., [2–5]. However, these
results necessitate access to the exact Hessian, which can pose computational challenges. To address
this issue, several studies have explored scenarios where only the exact gradient can be queried,
while a stochastic estimate of the Hessian is available—similar to the setting we investigate in this
paper. This oracle model is commonly encountered in large-scale machine learning problems, as
computing the gradient is often much less expensive than computing the Hessian, and approximating
the Hessian is a more affordable approach. Specifically, consider a finite-sum minimization problem
minx∈Rd

∑n
i=1 fi(x), where n denotes the number of data points and d denotes the dimension of

the problem. To achieve a fast convergence rate, standard first-order methods need to compute one
full gradient in each iteration, resulting in a per-iteration computational cost of O(nd). In contrast,
implementing a second-order method such as damped Newton’s method involves computing the
full Hessian, which costs O(nd2). An inexact Hessian estimate can be constructed efficiently at a
cost of O(sd2), where s is the sketch size or subsampling size [1, 6]. Hence, when the number of
samples n significantly exceeds d, the per-iteration cost of stochastic second-order methods becomes
comparable to that of first-order methods. Moreover, using second-order information often reduces
the number of iterations needed to converge, thereby lowering overall computational complexity.

A common template among stochastic second-order methods is to combine a deterministic second-
order method, such as Newton’s method or cubic regularized Newton method, with techniques such
as Hessian subsampling [7–12] or Hessian sketching [4, 6, 13] that only require a noisy estimate
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Table 1: Comparison between Algorithm 1 and the stochastic Newton method in [1], in terms of how
many iterations it takes to transition to each phase, and the convergence rates achieved. We drop
constant factors as well as logarithmic dependence and 1/δ, and assume 1/poly(κ) ≤ Υ ≤ O(κ).

Methods Weights Linear phase Initial superlinear phase Final superlinear phase

T1 rate ϕ T2 rate θ
(1)
t T3 rate θ

(2)
t

Stochastic
Newton [1]

Uniform Υ2 1− κ−2 κ3 κ3

t
κ6

Υ2 Υ
√

log(t)
t

Non-uniform Υ2 1− κ−2 κ2 κ4 log(κ)+1

tlog(t)
κ2 Υ log(t)√

t

Stochastic
NPE (Ours)

Uniform Υ2

κ2 1− κ−1 κ2 κ2

t
κ4

Υ2 Υ
√

log(t)
t

Non-uniform Υ2

κ2 1− κ−1 Υ2 + κ (Υ2+κ)log(Υ
2+κ)+1

tlog(t)
Υ2 + κ Υ log(t)√

t

of the Hessian. We refer the reader to [14, 15] for recent surveys and empirical comparisons. In
terms of convergence guarantees, the majority of these works, including [4, 6, 8–11, 13], have shown
that stochastic second-order methods exhibit a global linear convergence and a local linear-quadratic
convergence, either with high probability or in expectation. The linear-quadratic behavior holds when

∥xt+1 − x∗∥ ≤ c1∥xt − x∗∥+ c2∥xt − x∗∥2, (2)

where x∗ denotes the optimal solution of Problem (1) and c1, c2 are constants depending on the
sample/sketch size at each step. In particular, the presence of the linear term in (2) implies that the
algorithm can only achieve linear convergence when the iterate is sufficiently close to the optimal
solution x∗. Consequently, as discussed in [9, 10], to achieve superlinear convergence, the coefficient
c1 = c1,t needs to gradually decrease to zero as t increases. However, since c1 is determined by the
magnitude of the stochastic noise in the Hessian estimate, this in turn demands the sample/sketch
size to increase across the iterations, leading to a blow-up of the per-iteration computational cost.

The only prior work addressing this limitation and achieving a superlinear rate for a stochastic
second-order method without requiring the stochastic Hessian noise to converge to zero is by [1]. It
uses a weighted average of all past Hessian approximations as the current Hessian estimate. This
approach reduces stochastic noise variance in the Hessian estimate, though it introduces bias to the
Hessian approximation matrix. When combined with Newton’s method, it was shown that the pro-
posed method achieves local superlinear convergence with a non-asymptotic rate of (Υ

√
log(t)/t)t

with high probability, where Υ characterizes the noise level of the stochastic Hessian oracle (see
Assumption 4). However, the method may require many iterations to achieve superlinear convergence.
Specifically, with the uniform averaging scheme, it takes Õ(κ3) iterations before the method starts
converging superlinearly and Õ(κ6/Υ2) iterations before it reaches the final superlinear rate. Here,
κ = L1/µ denotes the condition number of the function f , where L1 is the Lipschitz constant of the
gradient and µ is the strong convexity parameter. To address this, [1] proposed a weighted averaging
scheme that assigns more weight to recent Hessian estimates, improving both transition points to
Õ(Υ2 + κ2) while achieving a slightly slower superlinear rate of O(Υ log(t)/

√
t).

Our contributions. In this paper, we improve the complexity of Stochastic Newton in [1] with a
method that attains a superlinear rate in significantly fewer iterations. As shown in Table 1, our
method requires fewer iterations for linear convergence, denoted as T1, by a factor of κ2 compared to
[1]. Additionally, our method achieves a linear convergence rate of (1−O(1/κ))t, outperforming
the (1 − O(1/κ2))t rate in [1]. Thus, our method reaches the local neighborhood of the optimal
solution x∗ and transitions from linear to superlinear convergence faster. Specifically, the second
transition point, T2, is smaller by a factor of κ in both uniform and non-uniform averaging schemes
when Υ = O(

√
κ). Similarly, our method’s initial superlinear rate has a better dependence on κ,

leading to fewer iterations, T3, to enter the final superlinear phase. To achieve this result, we use the
hybrid proximal extragradient (HPE) framework [16, 17] instead of Newton’s method as the base
algorithm. The HPE framework provides a principled approach for designing second-order methods
with superior global convergence guarantees [3, 17–20]. However, [16] and subsequent works focus
on cases where f is merely convex, not leveraging strong convexity. Thus, we modify the HPE
framework to suit our setting. Specifically, we relax the error condition for computing the proximal
step in HPE, enabling a larger step size when the iterate is close to the optimal solution, crucial for
achieving the final superlinear convergence rate.
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2 Preliminaries

In this section, we formally present our assumptions.
Assumption 1. The function f is twice differentiable and µ-strongly convex.
Assumption 2. The Hessian∇2f satisfies ∥∇2f(x)−∇2f(y)∥ ≤M1.
Assumption 3. The Hessian∇2f is L2-Lipschitz, i.e., ∥∇2f(x)−∇2f(y)∥ ≤ L2∥x− y∥2.

Assumption 2 is more general than the assumption that∇f is L1-Lipschitz. In particular, if the latter
assumption holds, then M1 ≤ L1. Moreover, we define κ ≜ M1/µ as the condition number.

To simplify our notation, we denote the exact gradient∇f(x) and the exact Hessian∇2f(x) of the
objective function by g(x) and H(x), respectively. As mentioned earlier, we assume that we have
access to the exact gradient, but we only have access to a noisy estimate of the Hessian denoted by
Ĥ(x). In fact, we require a mild assumption on the Hessian noise. We define the stochastic Hessian
noise as E(x) ≜ Ĥ(x)−H(x), where it is assumed to be mean zero and sub-exponential.

Assumption 4. If we define E(x) ≜ Ĥ(x)−H(x), then E[E(x)] = 0 and E[∥E(x)∥p] ≤ p!Υp
E/2

for all integers p ≥ 2. Also, define Υ ≜ ΥE/µ to be the relative noise level.

Assumption 5. The Hessian approximation matrix is positive semi-definite, i.e., Ĥ(x) ⪰ 0, ∀x ∈ Rd.

Stochastic Hessian construction. The two most popular approaches to construct stochastic Hessian
approximations are “subsampling” and “sketching”. Hessian subsampling is designed for a finite-sum
objective of the form f(x) = 1

n

∑n
i=1 fi(x), where n is the number of samples. In each iteration,

a subset S ⊂ {1, 2, . . . , n} is drawn uniformly at random, and then the subsampled Hessian at x
is constructed as Ĥ(x) = 1

|S|
∑

i∈S∇2fi(x). In this case, if each fi is convex, then the condition
in Assumption 5 is satisfied. Moreover, if we further assume that ∥∇2fi(x)∥ ≤ cM1 for some
c > 0 and for all i, then Assumption 4 is satisfied with Υ = O(

√
cκ log(d)/|S| + cκ log(d)/|S|)

(see [1, Example 1]). The other approach is Hessian sketching, applicable when the Hessian H
can be easily factorized as H = M⊤M, where M ∈ Rn×d is the square-root Hessian matrix, and
n is the number of samples. This is the case for generalized linear models; see [1]. To form the
sketched Hessian, we draw a random sketch matrix S ∈ Rs×n with sketch size s from a distribution
D that satisfies ED[S

⊤S] = I. The sketched Hessian is then Ĥ = M⊤S⊤SM. In this case,
Assumption 5 is automatically satisfied. Moreover, for Gaussian sketch, Assumption 4 is satisfied
with Υ = O(κ(

√
d/s+ d/s)) (see [1, Example 2]).

Remark 1. The above assumptions are common in the study of stochastic second-order methods,
appearing in works on Subsampled Newton [7–10, 12], Newton Sketch [4, 6, 13], and notably, [1].
The strong convexity requirement is crucial as stochastic second-order methods have a clear advantage
over first-order methods like gradient descent when the function is strongly convex. Specifically,
stochastic second-order methods attain a superlinear convergence rate, as shown in this paper, which
is superior to the linear rate of first-order methods.

3 Stochastic Newton Proximal Extragradient

Our approach involves developing a stochastic Newton-type method grounded in the Hybrid Proximal
Extragradient (HPE) framework and its second-order variant. Therefore, before introducing our
proposed algorithm, we will provide a brief overview of the core principles of the HPE framework.
Following this, we will present our method as it applies to the specific setting addressed in this paper.

Hybrid Proximal Extragradient. Next, we first present the Hybrid Proximal Extragradient (HPE)
framework for strongly convex functions. To solve problem (1), the HPE algorithm consists of two
steps. In the first step, given xt, we find a mid-point x̂t by applying an inexact proximal point update
x̂t ≈ xt − ηt∇f(x̂t), where ηt is the step size. More precisely, we require

∥x̂t − xt + ηt∇f(x̂t)∥ ≤ α
√
γt∥x̂t − xt∥, (3)

where γt = 1+2ηtµ, µ is the strong convexity parameter, and α ∈ (0, 1) is a user-specified parameter.
Then, in the second step, we perform the extra-gradient update and compute xt+1 based on

xt+1 =
1

γt
(xt − ηt∇f(x̂t)) +

(
1− 1

γt

)
x̂t, (4)

3



The weights 1
γt

in the above convex combination are chosen to optimize the convergence rate.

Remark 2. When µ = 0, the algorithm outline above reduces to the original HPE framework studied
in [16, 18]. Our modification in (3) is inspired by [21] and allows a larger error when performing
the inexact proximal point update, which turns out to be crucial for achieving a fast superlinear
convergence rate. Moreover, the modification in (4) has been adopted in [22].

Stochastic Newton Proximal Extragradient (SNPE). The HPE method described above provides a
useful algorithmic framework, instead of a directly implementable method. The main challenge comes
from implementing the first step in (3), which involves an inexact proximal point update. Specifically,
the naive approach is to solve the implicit nonlinear equation x− xt + ηt∇f(x) = 0, which can be
as costly as solving the original problem in (1). To address this issue, [18] proposed to approximate
the gradient operator∇f(x) by its local linearization∇f(xt)+∇2f(xt)(x−xt), and then compute
x̂t by solving the linear system of equations x̂t − xt + ηt(∇f(xt) +∇2f(xt)(x̂t − xt)) = 0. This
leads to the Newton proximal extragradient method that was proposed and analyzed in [18].

However, in our setting, the exact Hessian∇2f(xt) is not available. Thus, we construct a stochastic
Hessian approximation H̃t from our noisy Hessian oracle as a surrogate of ∇2f(xt). We will
elaborate on the construction of H̃t later, but for the present discussion assume that this stochastic
Hessian approximation H̃t is already provided. Then in the first step, we will compute x̂t by

x̂t = xt − ηt(∇f(xt) + H̃t(x̂t − xt)), (5)

where we replace∇f(x̂t) by its local linear approximation∇f(xt) + H̃t(x̂t − xt). Moreover, (5) is
equivalent to solving the following linear system of equations (I+ ηtH̃t)(x− xt) = −ηt∇f(xt).
For ease of presentation, we set x̂t as the exact solution of this system, leading to

x̂t = xt − ηt(I+ ηtH̃t)
−1∇f(xt). (6)

However, we note that an inexact solution to this linear system is also sufficient for our convergence
guarantees so long as ∥(I + ηtH̃t)(x̂t − xt) + ηt∇f(xt)∥ ≤ α

2 ∥x̂t − xt∥; We refer the reader to
Appendix A.3 for details. Additionally, since we employed a linear approximation to determine the
mid-point x̂t, the condition in (3) may no longer be satisfied. Consequently, it is crucial to verify
the accuracy of our approximation after selecting x̂t. To achieve this, we implement a line-search
scheme to ensure that the step size is not large and the linear approximation error is small.

Next, we discuss constructing the stochastic Hessian approximation H̃t. A simple strategy is using
Ĥ(xt) instead of∇2f(xt), but the Hessian noise would lead to a highly inaccurate approximation of
the prox operator, ruining the superlinear convergence rate. To reduce Hessian noise, we follow [1] and
use an averaged Hessian estimate H̃(xt). We consider two schemes: (i) uniform averaging; (ii) non-
uniform averaging with general weights. In the first case, H̃t =

1
t+1

∑t
i=0 Ĥ(xt)uniformly averages

past stochastic Hessian approximations. Motivated by the central limit theorem for martingale
differences, we expect H̃t to have smaller variance than Ĥ(xt). It can be implemented online as
H̃t =

t
t+1H̃t−1 +

1
t+1Ĥ(xt), without storing past Hessian estimates. However, H̃(xt) is a biased

estimator of∇2f(xt), since it incorporates stale Hessian information. To address the bias-variance
trade-off, the second case uses non-uniform averaging to weight recent Hessian estimates more.
Given an increasing non-negative weight sequence {wt}∞t=−1 with w−1=0, the running average is:

H̃t =
wt−1

wt
H̃t−1 +

(
1− wt−1

wt

)
Ĥ(xt). (7)

Equivalently, with zi,t = wi−wi−1

wt
, H̃t can be written as

∑t
i=0 zi,tĤ(xi). We discuss uniform

averaging in Section 4 and non-uniform averaging in Section 5.

Building on the discussion thus far, we are ready to integrate all the components and present our
Stochastic Newton Proximal Extragradient (SNPE) method. The steps of SNPE are summarized in
Algorithm 1. Each iteration of our SNPE method includes two stages. In the first stage, starting with
the current point xt, we first query the noisy Hessian oracle and compute the averaged stochastic
Hessian H̃t from (7), as stated in Step 4. Then given the gradient∇f(xt), the Hessian approximation
H̃t, and an initial trial step size σt, we employ a backtracking line search to obtain ηt and x̂t, as stated
in Step 6 of Algorithm 1. Specifically, in this step, we set ηt ← σt and compute x̂t as suggested
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Algorithm 1 Stochastic NPE

1: Input: x0 ∈ Rd, weights {wt}∞t=0, line-search
parameters α, β ∈ (0, 1), initial step size σ0 > 0

2: Initialize: H̃−1 = 0 and w−1 = 0
3: for t = 0, 1, . . . do
4: Obtain a stochastic Hessian Ĥt = Ĥ(xt)

5: Compute H̃t =
wt−1

wt
H̃t−1 + (1− wt−1

wt
)Ĥt

6: (ηt, x̂t) = BLS(xt,∇f(xt), H̃t, α, β, σt)
7: Let γt = 1 + 2ηtµ and compute

xt+1 = 1
γt
(xt − ηt∇f(x̂t)) + (1− 1

γt
)x̂t

8: Set σt+1 = ηt/β
9: end for

Subroutine 1 (η, x̂) = BLS(x,g, H̃, α, β, σ)

1: Input: current iterate x ∈ Rd, gradient g ∈ Rd,
Hessian approximation H̃ ∈ Rd×d, line-search
parameters α, β∈(0,1), initial trial step size σ>0

2: Set η ← σ and x̂← x− η(I+ ηH̃)−1g
3: Set γ ← 1 + 2ηµ
4: while ∥x̂− x+ η∇f(x̂)∥ > α

√
γ∥x̂− x∥ do

5: Set η ← βη and x̂← x− η(I+ ηH̃)−1g
6: Set γ ← 1 + 2ηµ
7: end while
8: Output: η and x̂

in (6). If x̂t and its corresponding step size ηt satisfy (3), meaning the linear approximation error is
small, then the step size ηt and the mid-point x̂t are accepted and we proceed to the second stage
of SNPE. If not, we backtrack the step size ηt and try a smaller step size βηt, where β ∈ (0, 1) is a
user-specified parameter. We repeat the process until the condition in (3) is satisfied. The details of
the backtracking line search scheme are summarized in Subroutine 1. After completing the first stage
and obtaining the pair (ηt, x̂t), we proceed to the extragradient step and follow the update in (4),
as in Step 7 of Algorithm 1. Finally, before moving to the next time index, we follow a warm-start
strategy and set the next initial trial step size σt+1 as ηt/β, as shown in Step 8 of Algorithm 1.

Remark 3. Similar to the analysis in [22], we can show that the total number of line search steps after
t iterations can be bounded by 2t− 1 + log( σ0

ηt−1
). Moreover, when t is large enough, on average the

line search requires 2 steps per iteration. We defer the details to Appendix A.4.
Remark 4. Our motivation behind the choice σt+1 = ηt/β is to allow the step size to grow, which
is necessary for achieving a superlinear convergence rate. Specifically, as shown in Proposition 1
below, we require the step size ηt to go to infinity to ensure that limt→∞

∥xt+1−x∗∥
∥xt−x∗∥ = 0. Note

that this would not be possible if we simply set σt+1 = ηt, since it would automatically result in
ηt+1 ≤ σt+1 ≤ ηt. Moreover, this condition σt+1 = ηt/β is explicitly utilized in Lemmas 8 and 16
in the Appendix, where we demonstrate that ηt can be lower bounded by the minimum of σ0/β

t and
another term. We should also note that this more aggressive choice of the initial step size at each
round could potentially increase the number of backtracking steps. However, as mentioned above,
this does not cause a significant issue, since the average number of backtracking steps per iteration
can be bounded by a constant close to 2.

3.1 Key properties of SNPE

This section outlines key properties of SNPE, applied in Sections 4 and 5 to determine its convergence
rates. The first result reveals the connection between SNPE’s convergence rate and the step size ηt.
Proposition 1. Let {xt}t≥0 and {x̂t}t≥0 be the iterates generated by Algorithm 1. Then for any
t ≥ 0, we have ∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2(1 + 2ηtµ)

−1.

Proposition 1 guarantees that the distance to the optimal solution is monotonically decreasing, and it
shows a larger step size implies faster convergence. Hence, we need to provide an explicit lower bound
on the step size. This task is accomplished in the next lemma. For ease of notation, we let B be the
set of iteration indices where the line search scheme backtracks, i.e., B ≜ {t : ηt < σt}. Moreover,
we use g(x) and H(x) to denote the gradient∇f(x) and the Hessian∇2f(x), respectively.
Lemma 1. For t /∈ B, we have ηt = σt. For t ∈ B, let η̃t = ηt/β and x̃t = xt − η̃t(I +

η̃tH̃t)
−1∇f(xt). Then, ∥x̃t − xt∥ ≤ 1

β ∥x̂t − xt∥. Moreover,

ηt ≥ max

{
αβ∥x̃t − xt∥

∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥
,

2α2βµ∥x̃t − xt∥2

∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥2

}
.

As Lemma 1 demonstrates, in the first case where t /∈ B, we have ηt = σt. Moreover, since we set
σt = ηt−1/β for t ≥ 1, in this case the step size will increase by a factor of 1/β. In the second case

5



that t ∈ B, our lower bound on the step size ηt depends inversely on the normalized approximation
error Et = ∥g(x̃t)−g(xt)−H̃t(x̃t−xt)∥

∥x̃t−xt∥ . Also, note that Et involves an auxiliary iterate x̃t instead of the
actual iterate x̂t accepted by our line search. We use the first result to relate ∥x̃t − xt∥ to ∥x̂− xt∥.
To shed light on our analysis, we use the triangle inequality and decompose this error into two terms:

Et ≤
∥g(x̃t)− g(xt)−Ht(x̃t − xt)∥

∥x̃t − xt∥
+ ∥Ht − H̃t∥. (8)

The first term in (8) represents the intrinsic error from the linear approximation in the inexact proximal
update, while the second term arises from the Hessian approximation error. Using the smoothness
properties of f , we can upper bound the first term, as shown in the following lemma.
Lemma 2. Under Assumptions 2 and 3, we have

∥g(x̃t)− g(xt)−Ht(x̃t − xt)∥
∥x̃t − xt∥

≤ min

{
M1,

L2∥xt − x∗∥
2β
√
1− α2

}
. (9)

Lemma 2 shows that the linear approximation error is upper bounded by M1. Moreover, the second
upper bound is O(∥xt−x∗∥). Thus, as Algorithm 1 converges to the optimal solution x∗, the second
bound in (9) will become tighter than the first one, and the right hand side approaches zero.

To analyze the second term in (8), we isolate the noise component in our averaged Hessian estimate.
Specifically, recall H̃t =

∑t
i=0 zi,tĤi and Ĥi = Hi + Ei. Thus, we have H̃t = H̄t + Ēt, where

H̄t =
∑t

i=0 zi,tHi is the aggregated Hessian and Ēt =
∑t

i=0 zi,tEi is the aggregated Hessian noise,
and it follows from the triangle inequality that ∥Ht − H̃t∥ ≤ ∥Ht − H̄t∥+ ∥Ēt∥. We refer to the
first part, ∥Ht − H̄t∥, as the bias of our Hessian estimate, and the second part, ∥Ēt∥, as the averaged
stochastic error. There is an intrinsic trade-off between the two error terms. For the fastest error
concentration, we assign equal weights to all past stochastic Hessian noises, i.e., zi,t = 1/(t+ 1) for
all 0 ≤ i ≤ t, corresponding to the uniform averaging scheme discussed in Section 4. To eliminate
bias, we assign all weights to the most recent Hessian matrix Ht, i.e., zt,t = 1 and zi,t = 0 for all
i < t, but this incurs a large stochastic error. To balance these, we present a weighted averaging
scheme in Section 5, gradually assigning more weight to recent stochastic Hessian approximations.

4 Analysis of uniform Hessian averaging

In this section, we present the convergence analysis of the uniform Hessian averaging scheme, where
wt = t + 1. In this case, we have H̃t = 1

t+1

∑t
i=0 Ĥi. As discussed in Section 3.1, our main

task is to lower bound the step size ηt, which requires us to control the approximation error Et by
analyzing the two error terms in (8). The first term is bounded by Lemma 2, and the second term can
be bounded as ∥Ht − H̃t∥ ≤ ∥Ht − H̄t∥+ ∥Ēt∥. Next, we establish a bound on ∥Ēt∥, referred to
as the Averaged Stochastic Error, and a bound on ∥Ht − H̃t∥, referred to as the Bias Term.

Averaged stochastic error. To control the averaged Hessian noise ∥Ēt∥, we rely on the concentration
of sub-exponential martingale difference, as shown in [1].
Lemma 3 ([1, Lemma 2]). Let δ ∈ (0, 1) with d/δ ≥ e. Then with probability 1− δπ2/6, we have

∥Ēt∥ ≤ 8ΥE

√
log(d(t+1)/δ)

t+1 for any t ≥ 4 log(d/δ).

Lemma 3 shows that, with high probability, the norm of averaged Hessian noise ∥Ēt∥ approaches zero
at the rate of Õ(ΥE/

√
t). As discussed in Section 4.1, this error eventually becomes the dominant

factor in the approximation error Et and determines the final superlinear rate of our algorithm.
Remark 5. Our subsequent results are conditioned on the event that the bound on ∥Ēt∥ stated in
Lemma 3 is satisfied for all t ≥ 4 log(d/δ). Thus, to avoid redundancy, we will omit the “with high
probability” qualification in the following discussion.

Bias. We proceed to establish an upper bound on ∥Ht−H̄t∥. The proof can be found in Appendix B.1.

Lemma 4. If H̃t =
1

t+1

∑t
i=0 Ĥi, then ∥Ht − H̄t∥ ≤ 1

t+1

∑t
i=0 ∥Ht −Hi∥. Moreover, for any

i ≥ 0, we have ∥Ht −Hi∥ ≤ max{M1, 2L2∥xi − x∗∥}.

6



The analysis of the bias term is more complicated. Specifically, to obtain the best result, we break
the sum in Lemma 4 into two parts, 1

t

∑I−1
i=0 ∥Ht −Hi∥ and 1

t

∑t
i=I ∥Ht −Hi∥, where I is an

integer to be specified later. The first part corresponds to the bias from stale Hessian information and
converges to zero at O(M1I/t), as shown by the first bound in Lemma 4. The second part is the bias
from recent Hessian information when the iterates are near the optimal solution x∗. Using the second
bound in Lemma 4, we show this part contributes less to the total bias and is dominated by the first
part. Thus, we can conclude that ∥Ht − H̄t∥ = O(M1I

t+1 ).

Based on the previous discussions, it is evident that the terms contributing to the upper bound of Et all
converge to zero, albeit at different rates. Furthermore, the linear approximation error and bias term
display distinct global and local convergence patterns, depending on the distance ∥xt − x∗∥. Hence,
this necessitates a multi-phase convergence analysis, which we undertake in the following section.

4.1 Convergence analysis

Similar to [1], we consider four convergence phases with three transitions points T1, T2, and T3,
whose expressions will be specified later. Due to space limitations, in the following we provide an
overview of the four phases and relegate the details to Appendix B.

Warm-up phase 0 ≤ t < T1. At the beginning of the algorithm, the averaged Hessian estimate is
dominated by stochastic noise and provides little useful information for convergence. Thus, there
are generally no guarantees on the convergence rate for 0 ≤ t < T1. However, due to the line search
scheme, Proposition 1 ensures that the distance to x∗ is non-increasing, i.e., ∥xt+1−x∗∥ ≤ ∥xt−x∗∥
for all t ≥ 0. During the warm-up phase, the averaged Hessian noise ∥Ēt∥, which contributes most to
the approximation error Et, is gradually suppressed. Once the averaged Hessian noise is sufficiently
concentrated, Algorithm 1 transitions to the linear convergence phase, denoted by T1.

Linear convergence phase T1 ≤ t < T2. After T1 iterations, Algorithm 1 starts converging linearly
to the optimal solution x∗. Moreover, during this phase, all the three errors discussed in Section 3.1
continue to decrease. Specifically, Lemma 2 shows the linear approximation error is bounded by
O(∥xt − x∗∥), which converges to zero at a linear rate. Furthermore, Lemma 3 implies that the
averaged Hessian error ∥Ēt∥ diminishes at a rate of Õ(ΥE√

t
). Finally, regarding the bias term, it can

be shown ∥Ht − H̄t∥ = O(M1I
t ) following the discussions after Lemma 4. Thus, once all the three

errors are sufficiently small, Algorithm 1 moves to the superlinear phase, denoted by T2.

Superlinear phases T2 ≤ t < T3 and T3 ≤ t < T4. After T2 iterations, Algorithm 1 converges at
a superlinear rate. Moreover, the superlinear rate is determined by the averaged noise ∥Ēt∥, which
decays at the rate of Õ(ΥE√

t
), and the bias of our averaged Hessian estimate H̃t, which decays at the

rate of O(M1I
t ). Hence, as the number of iterations t increases, the averaged noise will dominate and

the algorithm transitions from the initial superlinear rate to the final superlinear rate.

We summarize our convergence guarantees in the following theorem and the proofs are in Appendix B.

Theorem 1. Suppose Assumptions 1-5 hold and the weights for Hessian averaging in SNPE are
uniform, and define C := 1

2β
√
1−α2

+ 5. Then, the followings hold:

(a) Warm-up phase: If 0 ≤ t < T1, then ∥xt+1 − x∗∥ ≤ ∥xt − x∗∥, where T1 = Õ(Υ
2

κ2 ).

(b) Linear convergence phase: If T1 ≤ t < T2, then ∥xt+1−x∗∥2 ≤ ∥xt−x∗∥2(1+ 2αβ
3κ )−1,

where T2 = Õ(max{Υ
2

κ + κ2,Υ2}) = Õ(Υ2 + κ2).

(c) Initial superlinear phase: For T2 ≤ t < T3, we have ∥xt+1 − x∗∥ ≤ Cρ
(1)
t ∥xt − x∗∥,

where ρ(1)t = 6κI
α
√
2β(t+1)

= Õ
(

Υ2/κ+κ2

t

)
with I defined in (28) and T3 = Õ( (Υ

2/κ+κ2)2

Υ2 ).

(d) Final superlinear phase: Finally, for t ≥ T3, we have ∥xt+1 − x∗∥ ≤ Cρ
(2)
t ∥xt − x∗∥,

where ρ
(2)
t = 8

√
2Υ

α
√
β

√
log(d(t+1)/δ)

t+1 = O
(
Υ
√

log(t)
t

)
.

Comparison with [1]. As shown in Table 1, our method in Algorithm 1 with uniform averaging
achieves the same final superlinear convergence rate as the stochastic Newton method in [1]. However,
it transitions to the linear and superlinear phases much earlier. Specifically, the initial transition point
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T1 is improved by a factor of κ2, and our linear rate in Lemma 6 is faster. This reduces the iterations
needed to reach the local neighborhood, cutting the time to reach T2 and T3 by factors of κ and κ2.

5 Analysis of weighted Hessian averaging

Previously, we showed Algorithm 1 with uniform averaging eventually achieves superlinear conver-
gence. However, as per Theorem 1, it requires Õ( κ4

Υ2 ) iterations to reach this rate. To achieve a faster
transition, we follow [1] and use Hessian averaging with a general weight sequence {wt}. We show
this method also outperforms the stochastic Newton method in [1]. Specifically, we set wt = w(t) for
all integer t ≥ 0, where w(·) : R→ R satisfies certain regularity conditions as in [1, Assumption 3].
Assumption 6. (i) w(·) is twice differentiable; (ii) w(−1) = 0, w(t) > 0, ∀t ≥ 0; (iii) w′(−1) ≥ 0;

(iv) w′′(t) ≥ 0, ∀t ≥ −1; (v) max
{

w(t+1)
w(t) , w′(t+1)

w′(t)

}
≤ Ψ, ∀t ≥ 0 for some Ψ ≥ 1.

Choosing w(t) = tp for any p ≥ 1 satisfies Assumption 6. Additionally, as discussed in [1], a suitable
choice is w(t) = (t + 1)log(t+4), allowing us to achieve the optimal transition to the superlinear
rate. Since the analysis in this section closely resembles that in Section 4 on uniform averaging, we
will only present the final result here for brevity. The four stages of convergence are detailed in the
following theorem, with intermediate lemmas and proofs in the appendix. To simplify our bounds,
we report results for non-uniform averaging with w(t) = (t+ 1)log(t+4).
Theorem 2. Suppose Assumptions 1-5 hold and the weights for Hessian averaging in SNPE are
defined as w(t) = (t+ 1)log(t+4), and define C ′ := ( 1

10β
√

2(1−α2)
+ 1√

2
). Then, the following hold:

(a) Warm-up phase: If 0 ≤ t < U1, then ∥xt+1 − x∗∥ ≤ ∥xt − x∗∥, where U1 = Õ(Υ
2

κ2 ).

(b) Linear convergence phase: If U1 ≤ t < U2, then ∥xt+1−x∗∥2 ≤ ∥xt−x∗∥2(1+ 2αβ
3κ )−1,

where U2 = Õ(max{Υ
2

κ2 + κ,Υ2}) = Õ(Υ2 + κ).

(c) Initial superlinear phase: If U2 ≤ t < U3, then ∥xt+1 − x∗∥ ≤ C ′θ
(1)
t ∥xt − x∗∥, where

θ
(1)
t = 5κw(J )

α
√
2βw(t)

= Õ
(
κ(Υ2+κ)log(Υ

2+κ)
/tlog t

)
with J defined in (49) and U3=Õ(Υ2+κ).

(d) Final superlinear phase: Finally, if t ≥ U3, then ∥xt+1 − x∗∥ ≤ C ′θ
(2)
t ∥xt − x∗∥, where

θ
(2)
t = 8

√
2Υ

α
√
β

√
w′(t) log(d t+1

δ )

w(t) =O
(

Υ log(t)√
t

)
.

In the weighted averaging case, similar to the uniform averaging scenario, we observe four distinct
phases of convergence. The warm-up phase for SNPE, during which the distance to the optimal
solution does not increase, has the same duration as in the uniform averaging case but is shorter
than the warm-up phase for the stochastic Newton method in [1] by a factor of 1/κ2. The linear
convergence rates of both uniform and weighted Hessian averaging methods are 1− κ−1, improving
over the 1− κ−2 rate achieved by the stochastic Newton method in [1]. The number of iterations to
reach the initial superlinear phase is Õ(Υ2+κ), smaller than the Õ(κ2) needed for uniform averaging
in SNPE when we focus on the regime where Υ = O(

√
κ). The non-uniform averaging method in [1]

requires κ2 iterations to achieve the initial superlinear phase, whereas the non-uniform SNPE achieves
an initial superlinear rate ofO(κlog(κ)+1/t)t, improving over the rate ofO(κ4 log(κ)+1/tlog(t))t in [1].
Finally, while the ultimate superlinear rates in all cases are comparable at approximately Õ((1/

√
t)t),

the non-uniform version of SNPE requires Õ(Υ2 + κ) iterations to attain this fast rate, whereas [1]’s
non-uniform version requires Õ(κ2) iterations, which is less favorable.
Remark 6. As discussed in [1, Example 1], with a subsampling size of s, we have Υ = Õ(κ/s) for
subsampled Newton. This implies that when s = Ω̃(

√
κ), we achieve Υ = O(

√
κ).

6 Discussion and complexity comparison

In this section, we compare the complexity of our method with accelerated gradient descent (AGD),
damped Newton, and stochastic Newton [1] methods. The iteration complexities of these methods
are summarized in Table 2, which we use to establish their overall complexities. Note that since
both stochastic Newton and our proposed SNPE method achieve superlinear convergence, their
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Table 2: Comparisons in terms of overall iteration complexity to find an ϵ-accurate solution.
Methods AGD Damped Newton Stochastic Newton [1] SNPE (Ours)

Iteration O(
√
κ log(1/ϵ)) O(κ2+log log(1/ϵ)) O(Υ2+κ2+ log(1/ϵ)

log log(1/ϵ)
) O(Υ2+κ+ log(1/ϵ)

log log(1/ϵ)
)

complexities depend on the target accuracy ϵ in the form O( log(1/ϵ)
log log(1/ϵ) ), which is provably better

than the complexity of AGD by at least a factor of log log(ϵ−1). Further details are provided in
Appendix D.1. To better compare them, we focus on the finite-sum problem with n functions:
minx∈Rd

∑n
i=1 fi(x). Let ϵ be the target accuracy, κ the condition number, and Υ the noise level

in Assumption 4. In this case, computing the exact gradient and Hessian costs O(nd) and O(nd2),
respectively. Thus, the per-iteration cost for AGD is O(nd). Each iteration of damped Newton’s
method requires computing the full Hessian and solving a linear system, resulting in a total per-
iteration cost of O(nd2 + d3). For both stochastic Newton in [1] and our SNPE method, the
per-iteration cost depends on how the stochastic Hessian is constructed. For example, Subsampled
Newton constructs the Hessian estimate with a cost of O(sd2), where s denotes the sample size.
Newton Sketch has a similar computation cost (see [6]). Additionally, it takes O(nd) to compute the
full gradient and O(d3) to solve the linear system. Since the sample/sketch size s is typically chosen
as s = O(d), the total per-iteration cost is O(nd+ d3).

• Compared to AGD, SNPE achieves better iteration complexity. Specifically, when the noise level
Υ and target accuracy ϵ are relatively small (Υ = O(

√
κ) and log 1

ϵ = Ω(
√
κ)), SNPE converges

in fewer iterations. Additionally, when n ≥ d2 (indicating many samples), the per-iteration costs
of both methods are O(nd), giving our method a better overall complexity.

• Compared to damped Newton’s method, our method’s iteration complexity depends better on the
condition number κ, while damped Newton’s depends better on ϵ. However, when n ≥ d2, the
per-iteration cost of damped Newton is O(nd2), significantly more than our method’s O(nd).

• Compared to the stochastic Newton method in [1], the per-iteration costs of both methods are
similar. However, Table 2 shows that our iteration complexity is strictly better. Specifically,
when the noise level is relatively small compared to the condition number, i.e., Υ = O(

√
κ), the

complexity of SNPE improves by an additional factor of κ over the stochastic Newton method.

7 Numerical experiments

While our focus is on improving theoretical guarantees, we also provide simple experiments to
showcase our method’s improvements. All simulations are implemented on a Windows PC with
an AMD processor and 16GB Memory. We consider minimizing the regularized log-sum-exp
objective f(x) = ρ log(

∑n
i=1 exp(

a⊤
i x−bi

ρ )) + λ
2 ∥x∥

2, a common test function for second-order
methods [23, 24] due to its high ill-conditioning. Here, λ > 0 is a regularization parameter, ρ > 0
is a smoothing parameter, and the entries of the vectors a1, . . . , an ∈ Rd and b ∈ Rd are randomly
generated from the standard normal distribution and the uniform distribution over [0, 1], respectively.
In our experiments, the regularization parameter λ is 10−3, the dimension d is 500, and the number
of samples n is chosen from 50,000, 10,000, and 150,000, respectively.

We compare our SNPE method with the stochastic Newton method in [1], using both uniform
Hessian averaging (Section 4) and weighted averaging (Section 5). In addition, we evaluate it against
accelerated gradient descent (AGD), damped Newton’s method, and Newton Proximal Extragradient
(NPE), which corresponds to our SNPE method with the exact Hessian. For the stochastic Hessian
estimate, we use a subsampling strategy with a subsampling size of s = 500. Empirically, we found
that the extragradient step (Line 7 in Algorithm 1) tends to slow down convergence. To address this,
we consider a variant of our method without the extragradient step, modifying Line 7 to xk+1 = x̂k.
In Figure 3 of the Appendix, we further explore the effect of the extragradient step. We also note that
similar observations were made in [19], where the simple iteration xt+1 = xt − ηt(I+ ηtHt)

−1gt

outperformed “accelerated” second-order methods. From Figures 1 and 2, we have the following
observations:
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Figure 1: Iteration complexity comparison for minimizing log-sum-exp on a synthetic dataset.
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Figure 2: Runtime comparison for minimizing log-sum-exp on a synthetic dataset.

Comparison with stochastic Newton. In all cases, our SNPE method outperforms stochastic Newton
in both the number of iterations and runtime, due to the problem’s highly ill-conditioned nature and
our method’s better dependence on the condition number.

Comparison with AGD. From Figure 1, we observe that our SNPE method, with either uniform or
weighted averaging, requires far fewer iterations to converge than AGD due to the use of second-order
information. Consequently, while SNPE has a higher per-iteration cost than AGD, it converges faster
overall in terms of runtime, as demonstrated in Figure 2.

Comparison with the damped Newton’s method and NPE. As expected, since both damped
Newton and NPE use exact Hessian, Figure 1 shows that they exhibit superlinear convergence and
converge in fewer iterations than the other algorithms. However, since the exact Hessian matrix is
expensive to compute, they incur a high per-iteration computational cost and overall take more time
than our proposed SNPE method to converge (see Figure 2). Moreover, the gap between these two
methods and SNPE widens as the number of samples n increases, demonstrating the advantage of
our method in the large data regime.

8 Conclusions and limitations

We introduced a stochastic variant of the Newton Proximal Extragradient method (SNPE) for min-
imizing a strongly convex and smooth function with access to a noisy Hessian. Our contributions
include establishing convergence guarantees under two Hessian averaging schemes: uniform and
non-uniform. We characterized the computational complexity in both cases and demonstrated that
SNPE outperforms the best-known results for the considered problem. A limitation of our theory is
the assumption of strong convexity. Extending the theory to the convex setting would make it more
general. This extension is left for future work due to space limitations.
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Appendix

A Missing proofs in Section 3

A.1 Proof of Proposition 1

In this section, we prove Proposition 1. In fact, using the same proof, we can also show an additional
result that upper bounds ∥xt− x̂t∥, which will useful in the proof of Lemma 2. Therefore, we present
the full version below for completeness.
Proposition 2 (Full version of Proposition 1). Let {xt}t≥0 and {x̂t}t≥0 be the iterates generated
by Algorithm 1. Then for any t ≥ 0, we have ∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2(1 + 2ηkµ)

−1 and
∥xt − x̂t∥ ≤ 1√

1−α2
∥xt − x∗∥.

Proof. Our proof is inspired by the approach in [22, Proposition 1]. For any x ∈ Rd, we first write
ηt⟨∇f(x̂t), x̂t − x⟩ = ⟨x̂t − xt + ηt∇f(x̂t), x̂t − x⟩+ ⟨xt − x̂t, x̂t − x⟩. (10)

To begin with, we bound the first term in (10) by
⟨x̂t − xt + ηt∇f(x̂t), x̂t − x⟩ ≤ ∥x̂t − xt + ηt∇f(x̂t)∥∥x̂t − x∥

≤ α
√
1 + 2ηtµ∥x̂t − xt∥∥x̂t − x∥

≤ α2

2
∥x̂t − xt∥2 +

1 + 2ηtµ

2
∥x̂t − x∥2, (11)

where the first inequality is due to Cauchy-Schwarz inequality, the second inequality is due to the
condition in (3), and the last inequality is due to Young’s inequality. Moreover, for the second term in
(10), we use the three-point equality to get

⟨xt − x̂t, x̂t − x⟩ = 1

2
∥xt − x∥2 − 1

2
∥xt − x̂t∥2 −

1

2
∥x̂t − x∥2. (12)

By combining (10), (11) and (12), we obtain that

ηt⟨∇f(x̂t), x̂t − x⟩ ≤ 1

2
∥xt − x∥2 − 1− α2

2
∥xt − x̂t∥2 + ηtµ∥x̂t − x∥2. (13)

Moreover, it follows from the update rule in (4) that ηt∇f(x̂t) = xt − xt+1 + 2ηtµ(x̂t − xt+1).
This implies that, for any x ∈ Rd,

ηt⟨∇f(x̂t),xt+1 − x⟩ (14)
= ⟨xt − xt+1,xt+1 − x⟩+ 2ηtµ⟨x̂t − xt+1,xt+1 − x⟩

=
∥xt − x∥2

2
− ∥xt − xt+1∥2

2
− 1 + 2ηtµ

2
∥xt+1 − x∥2 + ηtµ∥x̂t − x∥2 − ηtµ∥x̂t − xt+1∥2,

(15)
where we applied the three-point equality twice in the last equality. Thus, by combining (13) with
x = xt+1 and (15) with x = x∗, we get

ηt⟨∇f(x̂t), x̂t − x∗⟩
= ηt⟨∇f(x̂t),xt+1 − x∗⟩+ ηt⟨∇f(x̂t), x̂t − xt+1⟩

≤ ∥xt − x∗∥2

2
−
❳❳❳❳❳❳❳
∥xt − xt+1∥2

2
− 1 + 2ηtµ

2
∥xt+1 − x∗∥2 + ηtµ∥x̂t − x∗∥2 −

❤❤❤❤❤❤❤❤ηtµ∥x̂t − xt+1∥2

+
❳❳❳❳❳❳❳
∥xt − xt+1∥2

2
− 1− α2

2
∥xt − x̂t∥2 +

❤❤❤❤❤❤❤❤ηtµ∥x̂t − xt+1∥2.
(16)

Since∇f(x∗) = 0 and f is µ-strongly convex, we further have
⟨∇f(x̂t), x̂t − x∗⟩ = ⟨∇f(x̂t)−∇f(x∗), x̂t − x∗⟩ ≥ µ∥x̂t − x∗∥2. (17)

Combining (16) and (17) and rearranging the terms, we obtain that
1 + 2ηtµ

2
∥xt+1 − x∗∥2 ≤ 1

2
∥xt − x∗∥2 − 1− α2

2
∥xt − x̂t∥2. (18)

Since α < 1, the last term in (18) is negative and we immediately obtain that ∥xt+1 − x∗∥2 ≤ ∥xt −
x∗∥2(1 + 2ηtµ)

−1 . Moreover, since 1+2ηtµ
2 ∥xt+1 − x∗∥2 ≥ 0, it follows that 1−α2

2 ∥xt − x̂t∥2 ≤
1
2∥xt − x∗∥2, which leads to ∥xt − x̂t∥ ≤ 1√

1−α2
∥xt − x∗∥. The proof is complete.
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A.2 Proof of Lemma 1

Recall that in our backtracking line search scheme in Algorithm 1, the step size ηt starts from σt and
keeps backtracking until the condition in (3) is satisfied. Hence, by the definition of B, it immediately
follows that ηt = σt if t /∈ B. Moreover, if t ∈ B, then the step size η̃t = ηt/β and the corresponding
iterate x̃t must have failed the condition in (3) (Otherwise, our line search scheme would have
accepted the step size η̃t instead). This implies that

∥x̃t − xt + η̃t∇f(x̃t)∥ > α
√
1 + 2η̃tµ∥x̃t − xt∥. (19)

Since x̃t = xt − η̃t(I+ η̃tH̃t)
−1∇f(xt), we have

x̃t − xt + η̃tH̃t(x̃t − xt) = −η̃t∇f(xt) ⇔ x̃t − xt = −η̃t
(
∇f(xt) + H̃t(x̃t − xt)

)
.

and hence the left-hand side in (19) equals to η̃t∥∇f(x̃t) − ∇f(xt) − H̃t(x̃t − xt)∥. Thus, we
obtain from (19) that

η̃t >
α
√
1 + 2η̃tµ∥x̃t − xt∥

∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥
, (20)

By substituting ηt = βη̃t, we further have

ηt >
αβ
√
1 + 2ηtµ/β∥x̃t − xt∥

∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥
.

Using the fact that 1 + 2ηtµ/β ≥ 1, we get

ηt >
αβ∥x̃t − xt∥

∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥
. (21)

Moreover, using the fact that 1 + 2ηtµ/β ≥ 2ηtµ/β, we can also conclude that

ηt >
αβ
√

2ηtµ/β∥x̃t − xt∥
∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥

⇒ ηt >
2α2βµ∥x̃t − xt∥2

∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥2
.

(22)
By combining (21) and (22), we obtain the lower bound in Lemma 1.

Finally, when H̃t ⪰ 0, it holds that I + η̃tH̃t ⪰ I + ηtH̃t ⪰ 0 and thus (I + ηtH̃t)
−1 ⪰

(I + η̃tH̃t)
−1 ⪰ 0. This further implies that ∥(I + ηtH̃t)

−1∇f(xt)∥ ≥ ∥(I + η̃tH̃t)
−1∇f(xt)∥.

Hence, we can conclude that

∥x̃t − xt∥ = η̃t∥(I+ η̃tH̃t)
−1∇f(xt)∥ ≤

ηt
β
∥(I+ ηtH̃t)

−1∇f(xt)∥ ≤
1

β
∥x̂t − xt∥.

This completes the proof.

A.3 Extension to inexact linear solving

In this section, we extend our convergence results to the case where the linear system in (6) is solved
inexactly, i.e., we find x̂t such that

∥(I+ ηtH̃t)(x̂t − xt) + ηt∇f(xt)∥ ≤
α

2
∥x̂t − xt∥. (23)

In this case, since the proof of Proposition 2 does not rely on the update rule in (6), Proposition 2
continues to hold. However, we need to modify the proof of Lemma 1 and replace it by the following
lemma. We note that the two results differ only by an absolute constant.

Lemma 5 (Extension to Lemma 1). For t /∈ B, we have ηt = σt. For t ∈ B, let η̃t = ηt/β and x̃t

be the corresponding iterate rejected by our line search scheme. Then, ∥x̃t − xt∥ ≤ 3
β ∥x̂t − xt∥.

Moreover,

ηt ≥ max

{
αβ∥x̃t − xt∥

2∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥
,

α2βµ∥x̃t − xt∥2

2∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥2

}
.
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Proof. We follow a similar argument as in the proof of Lemma 1. If t /∈ B, it immediately follows
that ηt = σt. Further, if t ∈ B, then η̃t and the corresponding iterate x̃t must fail to satisfy the
condition in (3). This implies that

∥x̃t − xt + η̃t∇f(x̃t)∥ > α
√
1 + 2η̃tµ∥x̃t − xt∥. (24)

Moreover, by our inexactness condition in (23), x̃t satisfies

∥(I+ η̃tH̃t)(x̃t − xt) + η̃t∇f(xt)∥ ≤
α

2
∥x̃t − xt∥.

Hence, by using triangle inequality, we have

η̃t∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥

=
∥∥∥(x̃t − xt + η̃t∇f(x̃t))−

(
(I+ η̃tH̃t)(x̃t − xt) + η̃t∇f(xt)

)∥∥∥
≥ ∥x̃t − xt + η̃t∇f(x̃t)∥ − ∥(I+ η̃tH̃t)(x̃t − xt) + η̃t∇f(xt)∥

≥ α

2

√
1 + 2η̃tµ∥x̃t − xt∥.

Thus, we obtain that

η̃t >
α
√
1 + 2η̃tµ∥x̃t − xt∥

2∥∇f(x̃t)−∇f(xt)− H̃t(x̃t − xt)∥
,

Combining this with (20), we observe that these two bounds differ only by a constant factor of 2.
Hence, the rest of the proof for the lower bound follows similarly as in Lemma 1.

Next, we prove the inequality ∥x̃t − xt∥ ≤ 1
β ∥x̂t − xt∥. Define x̂∗

t = xt − ηt(I+ ηtH̃t)
−1∇f(xt)

and x̃∗
t = xt − η̃t(I+ η̃tH̃t)

−1∇f(xt), i.e, they are the exact solutions to the corresponding linear
systems. By the argument in the proof of Lemma 1, we have ∥x̃∗

t − xt∥ ≤ 1
β ∥x̂

∗
t − xt∥. In the

following, we first prove that

1

2
∥x̂t − xt∥ ≤ ∥x̂∗

t − xt∥ ≤
3

2
∥x̂t − xt∥ and

1

2
∥x̃t − xt∥ ≤ ∥x̃∗

t − xt∥ ≤
3

2
∥x̃t − xt∥. (25)

It suffices to prove the first set of inequalities, since the second one follows similarly. To see this,
note that the condition in (23) can be rewritten as

∥(I+ ηtH̃t)(x̂t − x̂∗
t )∥ ≤

α

2
∥x̂t − xt∥.

Since H̃t ⪰ 0, this further implies that ∥x̂t − x̂∗
t ∥ ≤ ∥(I+ ηtH̃t)(x̂t − x̂∗

t )∥ ≤ α
2 ∥x̂t − xt∥. Hence,

by the triangle inequality, we obtain that

∥x̂∗
t − xt∥ ≤ ∥x̂∗

t − x̂t∥+ ∥x̂t − xt∥ ≤
(
1 +

α

2

)
∥x̂t − xt∥ ≤

3

2
∥x̂t − xt∥,

∥x̂∗
t − xt∥ ≥ ∥x̂∗

t − x̂t∥ − ∥x̂t − xt∥ ≥
(
1− α

2

)
∥x̂t − xt∥ ≥

1

2
∥x̂t − xt∥,

which lead to (25). Finally, we conclude that ∥x̃t−xt∥ ≤ 2∥x̃∗
t −xt∥ ≤ 2

β ∥x̂
∗
t −xt∥ ≤ 3

β ∥x̂t−xt∥.
This completes the proof.

A.4 The total complexity of line search

Let lt denote the number of line search steps in iteration t. We first note that ηt = σtβ
lt−1 by our

line search subroutine, which implies lt = log1/β(σt/ηt) + 1. Moreover, recall that σt = ηt−1/β
for t ≥ 1. Hence, the total number of line search steps after t iterations can be bounded by (cf. [22,
Lemma 22]):

t−1∑
i=0

li =
t−1∑
i=0

[
log1/β

(
σi

ηi

)
+ 1

]
= 2t− 1 + log

(
σ0

ηt−1

)
.

Moreover, it can be shown that ηt−1 ≥ αβ/(3M1) when t = Ω̃(Υ2/κ2) in both the uniform
averaging and the non-uniform averaging cases (cf. Corollaries 2 and 3). This implies that the total
number of line search steps can be bounded by 2t− 1 + log(3M1σ0/αβ).

15



A.5 Proof of Lemma 2

Recall that we use g(x) and H(x) to denote the gradient∇f(x) and the Hessian∇2f(x), respectively.
We first consider the inequality in (9). By the fundamental theorem of calculus, we can write

∇f(x̃t)−∇f(xt) =

∫ 1

0

∇2f(xt + τ(x̃t − xt))(x̃t − xt) dτ.

Therefore, we can further use the triangle inequality to get

∥∇f(x̃t)−∇f(xt)−∇2f(xt)(x̃t − xt)∥

=

∥∥∥∥∫ 1

0

(
∇2f(xt + τ(x̃t − xt))−∇2f(xt)

)
(x̃t − xt) dτ

∥∥∥∥
≤
∫ 1

0

∥∥(∇2f(xt + τ(x̃t − xt))−∇2f(xt)
)
(x̃t − xt)

∥∥ dτ

≤
∫ 1

0

∥∥∇2f(xt + τ(x̃t − xt))−∇2f(xt)
∥∥ ∥x̃t − xt∥ dτ. (26)

Moreover, we have
∥∥∇2f(xt + τ(x̃t − xt))−∇2f(xt)

∥∥ ≤M1 for any τ ∈ [0, 1] by Assumption 2.

Together with (26), this further implies that ∥∇f(x̃t)−∇f(xt)−∇2f(xt)(x̃t−xt)∥
∥x̃t−xt∥ ≤M1, which proves

the first bound in (9).

Next, we consider the second bound in (9). By Assumption 3, it follows from standard arguments
that ∥∇f(x̃t)−∇f(xt)−∇2f(xt)(x̃t − xt)∥ ≤ L2

2 ∥x̃t − xt∥2 (e.g., see [25, Lemma 1.2.4]). This
leads to

∥∇f(x̃t)−∇f(xt)−∇2f(xt)(x̃t − xt)∥
∥x̃t − xt∥

≤ L2∥x̃t − xt∥
2

≤ L2∥x̂t − xt∥
2β

≤ L2∥xt − x∗∥
2β
√
1− α2

,

where we used ∥x̃t − xt∥ ≤ 1
β ∥x̂t − xt∥ from Lemma 1 and ∥x̂t − xt∥ ≤ 1√

1−α2
∥xt − x∗∥ from

Proposition 2. This completes the proof.

B Missing Proofs in Section 4

B.1 Proof of Lemma 4

Recall that in the case of uniform averaging, we have H̄t =
1

t+1

∑t
i=0 Hi. Hence, it follows from

Jensen’s inequality that ∥H̄t −Ht∥ ≤ 1
t+1

∑t
i=0 ∥Hi −Ht∥. To prove the second claim, note that

Assumption 2 directly implies ∥Hi −Ht∥ ≤ M1. Moreover, we can use Assumption 3 and the
triangle inequality to bound ∥Ht−Hi∥ ≤ L2∥xt−xi∥ ≤ L2(∥xt−x∗∥+ ∥xi−x∗∥). Since i ≤ t
and ∥xt − x∗∥ is non-increasing in t by Proposition 1, we further have ∥xt − x∗∥ ≤ ∥xi − x∗∥,
which proves ∥Ht −Hi∥ ≤ 2L2∥xi − x∗∥.

B.2 Proof of Theorem 1

Warm-up phase. To determine the transition point T1, recall that both the linear approximation
error and the bias term can be bounded by M1 according to Lemmas 2 and 4. Since Lemma 3 shows
that ∥Ēt∥ = Õ(ΥE/

√
t), we will have ∥Ēt∥ ≤ M1 when t = Ω̃(Υ2

E/M
2
1 ) = Ω̃(Υ2/κ2). More

specifically, the transition point is given by

T1 = max
{256Υ2

κ2
log

8dΥ

κδ
, 4 log

d

δ
, log 1

β

αβ

3M1σ0

}
, (27)

where δ ∈ (0, 1) satisfies d/δ ≥ e, α, β ∈ (0, 1) are line-search parameters, and σ0 is the initial step
size.

Linear convergence phase. In the following lemma, we prove the linear convergence of Algorithm 1
with uniform averaging.
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Lemma 6. Assume that β ≤ 1/2 and recall the definition of T1 in (27). For any t ≥ T1, we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2
(
1 +

2αβ

3κ

)−1

,

where κ ≜ M1/µ is the condition number.

Proof. See Appendix B.3.

Now we discuss the transition point T2. At a high level, the algorithm transitions to the superlinear
phase if all three errors discussed in Section 3.1 are reduced from O(M) to O(µ). For this to
happen, first the iterate xt needs to reach a local neighborhood satisfying ∥xt − x∗∥ = O(µ/L2).
As a corollary of Lemma 6, this holds at most after an additional Õ(κ) iterations. Specifically, let
ν ∈ (0, 1) be a parameter and define

I = T1 + 2
(
1 +

3κ

2αβ

)
log

L2D

νµ
, (28)

where D = ∥x0 − x∗∥ is the initial distance to the optimal solution. Then Lemma 6 implies that
we have ∥xt − x∗∥ ≤ νµ/L2 for all t ≥ I. Moreover, Lemma 3 implies that the averaged Hessian
noise satisfies ∥Ēt∥ = O(µ) when t = Ω̃(Υ2

E/µ
2) = Ω̃(Υ2). Finally, regarding the bias term,

following the discussions after Lemma 4, it can be shown that ∥Ht − H̄t∥ = O
(

M1I
t+1

)
. Thus,

∥Ht − H̄t∥ = O(µ) when t = Ω(κI). Combining all pieces together, we formally define the second
transition point by

T2 = max

{
256Υ2

ν2
log

8dΥ

δν
,
κI
ν
− 1

}
. (29)

Since I = Õ(T1+κ) = Õ(Υ2/κ2+κ), we note that T2 = Õ(max{Υ2,Υ2/κ+κ2}) = Õ(Υ2+κ2).

Superlinear phase. In the following theorem, we show that after T2 iterations, Algorithm 1 with
uniform averaging converges at a superlinear rate. See Appendix B.4 for proof.

Theorem 3. Let ν ∈ (0, 1) be a parameter satisfying
(

5

2αβ
√

(1−α2)β
+ 25

α
√
2β

)
ν ≤ 1. and recall

the definition of T2 in (29). Then for any t ≥ T2,

∥xt+1 − x∗∥ ≤
(

1

2β
√
1− α2

+ 5

)
ρt∥xt − x∗∥,

where

ρt =
4Υ

α
√
β

√
log(d(t+ 1)/δ)

t+ 1
+

3κI
2α
√
β(t+ 1)

. (30)

In Theorem 3, we observe that the rate ρt in (30) goes to zero as the number of iterations t increases,
and thus it implies that the iterates converge to x∗ superlinearly. Moreover, the rate ρt consists of two
terms. The first term comes from the averaged noise ∥Ēt∥, which decays at the rate of Õ(Υ/

√
t).

In addition, the second term is due to the bias of our averaged Hessian estimate H̃t, which decays
at the rate of O(κI/t). Hence, when t is sufficiently large, the averaged noise will dominate and
the superlinear rate settles for the slower rate of Õ(Υ/

√
t). Specifically, the algorithm transitions

from the initial superlinear rate to the final superlinear rate when the two terms in (30) are balanced.
Hence, we define the third transition point T3 as the root of

64(T3 + 1) log(d(T3 + 1)/δ) =
9κ2I2

Υ2
.

Since I = Õ(Υ2/κ2 + κ), T3 = Õ((Υ2/κ + κ2)2/Υ2). We summarize our discussions in the
following corollary.
Corollary 1. For T2 ≤ t ≤ T3 − 1, we have

∥xt+1 − x∗∥ ≤
(

1

2β
√
1− α2

+ 5

)
ρ
(1)
t ∥xt − x∗∥,
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where ρ
(1)
t = 6κI

α
√
2β(t+1)

. Moreover, for t ≥ T3, we have

∥xt+1 − x∗∥ ≤
(

1

2β
√
1− α2

+ 5

)
ρ
(2)
t ∥xt − x∗∥,

where ρ
(2)
t = 8

√
2Υ

α
√
β

√
log(d(t+1)/δ)

t+1 .

B.3 Proof of Lemma 6

We divide the proof of Lemma 6 into the following three steps. First, in Lemma 7, we provide a lower
bound on the the step size ηt in those iterations where our line search scheme backtracks the step
size, i.e., t ∈ B. Building on Lemma 7, we use induction in Lemma 8 to prove a lower bound for all
t ≥ 0. This allows us to establish ηt = Ω(1/M1) for all t ≥ T1 in Corollary 2, from which Lemma 6
immediately follows.

To simplify the notation, we define the function

ϕ(t) = 8ΥE

√
log(d(t+ 1)/δ)

t+ 1
. (31)

Then Lemma 3 can be equivalently written as ∥Ēt∥ ≤ ϕ(t) for all t ≥ 4 log(d/δ). We are now ready
to state our first lemma.
Lemma 7. If t ∈ B, then we have ηt ≥ αβ/(2M1 + ϕ(t)).

Proof. If t ∈ B, by Lemma 1 we can lower bound the step size ηt by

ηt ≥
αβ∥x̃t − xt∥

∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥
=

αβ

Et
, (32)

where Et ≜ ∥g(x̃t)−g(xt)−H̃t(x̃t−xt)∥
∥x̃t−xt∥ is the normalized approximation error. Moreover, as outlined

in Section 3.1, we can apply the triangle inequality to upper bound Et. Specifically, we have

Et ≤
∥g(x̃t)− g(xt)−Ht(x̃t − xt)∥

∥x̃t − xt∥
+ ∥Ht − H̄t∥+ ∥Ēt∥. (33)

By (9) in Lemma 2, the first term in (33) is upper bounded by M1. Moreover, it also follows
from Lemma 4 that ∥Ht − H̄t∥ ≤ 1

t+1

∑t
i=0 ∥Ht −Hi∥ ≤ M1. Hence, we further obtain Et ≤

2M1 + ∥Ēt∥ ≤ 2M1 + ϕ(t). Combining this with (32), we obtain the desired result.

Lemma 7 provides a lower bound on the step size ηt, but only for the case where t ∈ B. In the next
lemma, we further use induction to show a lower bound for the step sizes in all iterations.
Lemma 8. Assume that β ≤ 1

2 . For any t ≥ 0, we have

ηt ≥ min

{
αβ

2M1 + ϕ(t)
,
σ0

βt

}
(34)

Proof. We prove this lemma by induction. For the base case t = 0, we consider two subcases. If
0 ∈ B, then by Lemma 7 we obtain that η0 ≥ αβ

2M1+ϕ(0) . Otherwise, if 0 /∈ B, we have η0 = σ0. In
both cases, we observe that (34) is satisfied for the base case t = 0.

Now assume that (34) is satisfied for t = s where s ≥ 0. For t = s + 1, we again distinguish two
subcases. If s + 1 ∈ B, then by Lemma 7 we obtain that ηs+1 ≥ αβ

2M1+ϕ(s+1) , which implies that
(34) is satisfied. Otherwise, if s+ 1 /∈ B, then we have

ηs+1 = σs+1 =
ηs
β
≥ 1

β
min

{
αβ

2M1 + ϕ(s)
,
σ0

βs

}
= min

{
α

2M1 + ϕ(s)
,

σ0

βs+1

}
, (35)

where we used the induction hypothesis in the last inequality. Furthermore, note that ϕ(s)/ϕ(s+1) ≤√
s+2
s+1 ≤ 2 ≤ 1

β , which implies that ϕ(s) ≤ ϕ(s+ 1)/β. Hence, we have

α

2M1 + ϕ(s)
≥ αβ

2βM1 + ϕ(s+ 1)
≥ αβ

2M1 + ϕ(s+ 1)
.
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Therefore, (35) implies that ηs+1 ≥ min
{

αβ
2M1+ϕ(s+1) ,

σ0

βs+1

}
and thus (34) also holds in this

subcase. This completes the induction and we conclude that (34) holds for all t ≥ 0.

As a corollary of Lemma 8, we obtain the following lower bound on ηt for t ≥ T1.
Corollary 2. Recall the definition of T1 in (27). For any t ≥ T1, we have ηt ≥ αβ/(3M1).

Proof. As shown in [1, Lemma 2], we have ϕ(t) ≤ M1 when t ≥ max
{
256Υ2

κ2 log 8dΥ
κδ , 4 log d

δ

}
.

Moreover, we have σ0

βt ≥ αβ
3M1

when t ≥ log 1
β

αβ
3M1σ0

. Hence, by Lemma 8 we conclude that

ηt ≥ αβ
3M1

when t ≥ T1.

Now we are ready to prove Lemma 6.

Proof of Lemma 6. By Proposition 1, we have ∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2(1 + 2ηtµ)
−1. By using

Corollary 2, we obtain that ∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2(1 + 2αβµ/(3M1))
−1 = ∥xt − x∗∥2(1 +

2αβ/(3κ))−1.

B.4 Proof of Theorem 3

In this section, we present the proof of Theorem 3. The proof consists of four steps. To begin with, in
Lemma 9 we show that the iterate xt stays in a local neighborhood of x∗ when t ≥ I, where I is
defined in (28). Next, we use this result in Lemma 10 to upper bound 1√

µηt
in those iterations where

our line search scheme backtracks the step size, i.e., t ∈ B. Then we use induction in Lemma 11 to
prove an upper bound for all t ≥ 0. Furthermore, we again use induction in Lemma 12 to establish an
improved upper bound on 1√

µηt
when t ≥ T2, where T2 is defined in (29). After proving Lemma 12,

Theorem 3 then follows from Proposition 1.
Lemma 9. We have ∥xt − x∗∥ ≤ νµ/L2 for all t ≥ I, where I is given in (28).

Proof. By applying Lemma 6, we have ∥xT1+u − x∗∥2 ≤ ∥xT1
− x∗∥2

(
1 + 2αβ

3κ

)−u

. Moreover,
since ∥xt − x∗∥ is non-increasing in t, we have ∥xT1

− x∗∥ ≤ ∥x0 − x∗∥ = D. Thus, we have

∥xT1+u − x∗∥ ≤ νµ

L2
⇐ D2

(
1 +

2αβ

3κ

)−u

≤ ν2µ2

L2
2

⇐ u ≥ 2
(
1 +

3κ

2αβ

)
log

(
L2D

νµ

)
.

This completes the proof.

Note that by Proposition 1, we have ∥xt+1−x∗∥2 ≤ ∥xt−x∗∥2(1+2ηtµ)
−1 ≤ ∥xt−x∗∥2/(2ηtµ),

which further implies that

∥xt+1 − x∗∥ ≤ ∥xt − x∗∥√
2ηtµ

. (36)

Hence, to characterize the convergence rate of our method, it is sufficient to upper bound the quantity
1/
√
2ηtµ. We achieve this goal in the subsequent lemmas.

Lemma 10. If t ∈ B and t ≥ I, then

1√
2ηtµ

≤ L2∥xt − x∗∥
4αβ

√
(1− α2)βµ

+
∥Ēt∥

2α
√
βµ

+
3κI

2α
√
β(t+ 1)

. (37)

Moreover, it also holds that

1√
2ηtµ

≤ ν

4αβ
√
(1− α2)β

+
ϕ(t)

2α
√
βµ

+
3κI

2α
√
β(t+ 1)

. (38)

Proof. By using the second bound in Lemma 1, we obtain that

1√
2ηtµ

≤ ∥g(x̃t)− g(xt)− H̃t(x̃t − xt)∥
2α
√
βµ∥x̃t − xt∥

=
Et

2α
√
βµ

. (39)

19



Furthermore, by combining (33) and (9) in Lemma 2, we further have

Et ≤
L2∥xt − x∗∥
2β
√
1− α2

+ ∥Ht − H̄t∥+ ∥Ēt∥. (40)

It remains to bound the bias term ∥Ht − H̄t∥. By Lemma 4, we have

∥Ht − H̄t∥ ≤
1

t+ 1

t∑
i=0

∥Ht −Hi∥ =
1

t+ 1

I−1∑
i=0

∥Ht −Hi∥+
1

t+ 1

t∑
i=I
∥Ht −Hi∥.

For i = 0, 1 . . . , I−1, we use the first upper bound on ∥Ht−Hi∥ in Lemma 4 to bound ∥Ht−Hi∥ ≤
M1, and thus

∑I−1
i=0 ∥Ht −Hi∥ ≤ M1I. Moreover, for i = I, I + 1, . . . , t, we use the second

upper bound in Lemma 4 to get ∥Ht −Hi∥ ≤ 2L2∥xi − x∗∥. Moreover, note that xi converges
linearly to x∗ when i ≥ I by Lemma 6. Hence, we further have

1

t+ 1

t∑
i=I
∥Ht −Hi∥ ≤

2L2

t+ 1

t∑
i=I
∥xi − x∗∥ ≤ 2L2∥xI − x∗∥

t+ 1

∞∑
i=0

(
1 +

2αβ

3κ

)−i/2

≤ 4νµ

t+ 1

(
1 +

3κ

2αβ

)
.

(41)

In the last inequality, we used the fact that ∥xI − x∗∥ ≤ νµ/L2 and
∑∞

i=0(1 + ϕ)−i/2 = 1/(1 −
(1 + ϕ)−1/2) = (1 + ϕ)1/2/((1 + ϕ)1/2 − 1) = (1 + ϕ)1/2((1 + ϕ)1/2 + 1)/ϕ ≤ 2(1 + 1/ϕ),
where ϕ = 2αβ/(3κ). Moreover, since I ≥ 2

(
1 + 3κ

2αβ

)
and ν ≤ 1, from (41) we further have

1
t+1

∑t
i=I ∥Ht −Hi∥ ≤ 2µI

t+1 . Combining the above inequalities, we arrive at

∥Ht − H̄t∥ ≤
M1I
t+ 1

+
2µI
t+ 1

≤ 3M1I
t+ 1

. (42)

Combining (39), (40), and (42) leads to the first result in (37). Finally, (38) follows from the fact that
∥Ēt∥ ≤ ϕ(t) and ∥xt − x∗∥ ≤ νµ/L2 for all t ≥ I.

Lemma 11. Assume that β ≤ 1/2. For any t ≥ I, we have

1√
2ηtµ

≤ ν

4αβ
√
(1− α2)β

+
ϕ(t)

2α
√
βµ

+
3κI

2α
√
β(t+ 1)

=
ν

4αβ
√
(1− α2)β

+ ρt, (43)

where ρt is defined in (30).

Proof. We shall use induction to prove Lemma 11. For t = I, note that by Corollary 2, we have
ηI ≥ αβ/(3M1). Thus, this implies that

1√
2ηIµ

≤
√
3κ√
2αβ

≤ 3κI
2α
√
β(I + 1)

,

where we used the fact that κ ≥ 1, α < 1, β ≤ 1/2 and I ≥ 4. This proves the base case where
t = I.

Now assume that (43) holds for t = s, where s ≥ I. For t = s+ 1, we distinguish two subcases. If
s+ 1 ∈ B, then by Lemma 10 we obtain that (43) is satisfied for t = s+ 1. Otherwise, if s+ 1 /∈ B,
then we have ηs+1 = σs+1 = ηs/β. Hence, by using the induction hypothesis, we have

1√
2ηs+1µ

=

√
β√

2ηsµ
≤ ν

4αβ
√
(1− α2)β

+

√
βϕ(s)

2α
√
βµ

+
3
√
βκI

2α
√
β(s+ 1)

.

Since β ≤ 1/2 and I ≥ 2, we have (s + 2)/(s + 1) ≤ (I + 2)/(I + 1) ≤ 1.4 ≤ 1/
√
β and

ϕ(s) ≤ ϕ(s+ 1)/
√
β. Thus, we further have

1√
2ηs+1µ

≤ ν

4αβ
√
(1− α2)β

+
ϕ(s+ 1)

2α
√
βµ

+
3κI

2α
√
β(s+ 2)

.

This shows that (43) also holds in this subcase. This completes the induction and we conclude that
(43) holds for all t ≥ I.
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Before proving Lemma 12, recall the definition of ϕ in (31) and first define

I ′ = sup
t
{t : ϕ(t) ≥ νµ} and T ′

2 = max

{
I ′, κI

ν
− 1

}
. (44)

Note that we have ϕ(t) ≤ νµ when t ≥ 256Υ2

ν2 log 8dΥ
δν . Hence, by the definition of (29), it holds that

T2 ≥ T ′
2 .

Lemma 12. Recall the definition of ρt in (30). For any t ≥ T ′
2 , we have

L2∥xt − x∗∥
2α
√
βµ

≤ ρt and
1√
2µηt

≤
(

1

2β
√
1− α2

+ 5

)
ρt. (45)

Proof. By Lemma 10, if t ∈ B, then

1
√
µηt
≤ L2∥xt − x∗∥

2αβ
√

2(1− α2)βµ
+ ρt.

We shall prove (45) by induction. First consider the base case where t = T ′
2 , where T ′

2 is defined
in (44). To begin with, we will show that ν

2α
√
β
≤ ρT ′

2
≤ 5ν

2α
√
β

. Since T ′
2 is the maximum of

I ′ and κI
ν , we have either T ′

2 = I ′ or T ′
2 = κI

ν − 1. In the former case, we can lower bound
ρT ′

2
≥ 1

2α
√
βµ

ϕ(I ′) ≥ ν
2α

√
β

. In the latter case, we can lower bound ρT ′
2
≥ 3κI

2α
√
β(T ′

2+1)
= 3ν

2α
√
β

.
Combining both cases leads to the lower bound on ρT ′

2
. Furthermore, note that both two terms in ρt

are a decreasing function in terms of t, and hence we have

ρT ′
2
≤ 1

2α
√
βµ

ϕ(I ′) + 3κI
2α
√
β(κI/ν)

≤ 2

2α
√
βµ

ϕ(I ′ + 1) +
3ν

2α
√
β
≤ 5ν

2α
√
β
.

This proves the upper bound on ρT ′
2

.

Now we return to the proof in the base case where t = T ′
2 . since ∥xT ′

2
− x∗∥ ≤ νµ/L2 by Lemma 9,

we obtain that
L2∥xT ′

2
−x∗∥

2α
√
βµ

≤ ν
2α

√
β
≤ ρT ′

2
. Moreover, by Lemma 11, we have

1√
2ηT ′

2
µ
≤ ν

4αβ
√
(1− α2)β

+ ρ(T ′
2 ) ≤

ν

4αβ
√
(1− α2)β

+
5ν

2α
√
β
≤
(

1

2β
√
1− α2

+ 5

)
ρT ′

2
.

This shows that (45) holds for t = T ′
2 .

Now assume that (45) holds for t = s ≥ T ′
2 . For t = s+ 1, by using the induction hypothesis and

(36), we obtain that

L2∥xs+1 − x∗∥
2α
√
βµ

≤ L2∥xs − x∗∥
2α
√
βµ
√
2ηsµ

≤ 1√
2

(
1

2β
√
1− α2

+ 5

)
ρ2s.

Moreover, since ρs/2 ≤ ρs+1, it suffices to show that 1√
2

(
1

2β
√
1−α2

+ 5
)
ρ2s ≤ ρs/2, which is

equivalent to
√
2
(

1
2β

√
1−α2

+ 5
)
ρs ≤ 1. Furthermore, since ρs is non-increasing, we further have

√
2

(
1

2β
√
1− α2

+ 5

)
ρs ≤

√
2

(
1

2β
√
1− α2

+ 5

)
ρT ′

2
≤
√
2

(
1

2β
√
1− α2

+ 5

)
5ν

2α
√
β
≤ 1,

where we used the condition on ν stated in Theorem 3 in the last inequality. This proves the first
inequality in (45).

To prove the second inequality in (45) for t = s+ 1, we distinguish two subcases. If s+ 1 ∈ B, then
by Lemma 10, we have

1√
2ηs+1µ

≤ L2∥xs+1 − x∗∥
4αβ

√
(1− α2)βµ

+
∥Ēs+1∥
2α
√
βµ

+
3κI

2α
√
β(s+ 1)

≤ 1

2β
√
1− α2

ρs+1 + ρs+1

≤
(

1

2β
√
1− α2

+ 5

)
ρs+1.
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Otherwise, if s+ 1 /∈ B, then we have ηs+1 = ηs/β and hence

1√
2ηs+1µ

=

√
β√

2ηsµ
≤
(

1

2β
√
1− α2

+ 5

)√
βρs.

Since T ′
2 ≥ I ≥ 2 and β ≤ 1/2, we have ρs/ρs+1 ≤ (I + 2)/(I + 1) ≤ 1.4 ≤ 1/

√
β. Thus, we

also proved that 1√
µηs+1

≤
(

1
2β

√
1−α2

+ 5
)
ρs+1. This completes the induction.

Proof of Theorem 3. It immediately follows from (36) and Lemma 12.

C Missing Proofs in Section 5

In this section, we will present the formal version of Theorem 2. Our proof largely mirrors the
developments in Section 4.

C.1 Approximation error analysis

Averaged stochastic error. Similar to Lemma 3, we can use tools from concentration inequalities to
prove the following upper bound on the averaged stochastic error.

Lemma 13 ([1, Lemma 6]). Let δ ∈ (0, 1) with d/δ ≥ e. Then with probability 1− δπ2/6, we have,
for any t ≥ 0,

∥Ēt∥ ≤ 8ΨΥE max

{√
log
(d(t+ 1)

δ

)w′(t)

w(t)
, log

(d(t+ 1)

δ

)w′(t)

w(t)

}
. (46)

C.2 Convergence analysis

Warm-up phase. Similar to the case of uniform averaging, we can only ensure that the distance
to x∗ is monotonically non-increasing by Proposition 1 during this phase. Moreover, Algorithm 1
transitions to the linear phase when ∥Ēt∥ ≤M1. Specifically, the transition point U1 is given by

U1 = sup
t

{
t ≥ log 1

β

αβ

3M1σ0
: log

(d(t+ 1)

δ

)w′(t)

w(t)
≥
(
1 ∧ κ

8Υ

)2}
+ 1. (47)

When w(t) = (t + 1)log(t+4), we have w′(t)/w(t) = O (log(t)/t). Thus, we conclude that U1 =

Õ(Υ2/κ2).

Linear convergence phase. In the following lemma, we prove the linear convergence of Algorithm 1
with weighted averaging.

Lemma 14. Assume that β ≤ 1/Ψ2 and recall the definition of U1 in (47). For any t ≥ U1, we have

∥xt+1 − x∗∥2 ≤ ∥xt − x∗∥2
(
1 +

2αβ

3κ

)−1

,

where κ ≜ M1/µ is the condition number.

Proof. See Appendix C.3.

Superlinear convergence phase. Define

J ′=sup
t

{
t : log

(d(t+ 1)

δ

)w′(t)

w(t)
≥
(
1 ∧ 1

8Υ

)2}
+ 1. (48)

Moreover, let ν ∈ (0, 1) be a parameter and define

J = max

{
U1 + 2

(
1 +

2κ

αβ

)
log

L2D

νµ
,J ′

2

}
. (49)
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Finally, let
U2 = sup

t

{
t : w(t) ≤ w(J )κ

ν

}
. (50)

When w(t) = (t + 1)log(t+4), we remark that J ′ = Õ(Υ2) and thus J = Õ(κ + Υ2). Moreover,
similar to the derivation in [1], it can be shown that U2 = O(J ) = Õ(κ+Υ2).
Theorem 4. Let ν ∈ (0, 1) be a parameter satisfying(

1

2αβ
√
(1− α2)β

+
5

α
√
β

)
ν ≤ 1

Ψ
, (51)

and recall the definition of U2 in (50). For any t ≥ U2, we have

∥xt+1 − x∗∥ ≤

(
1

10β
√

2(1− α2)
+

1√
2

)
θt∥xt − x∗∥,

where

θt =
8ΨΥE

α
√
2βµ

√
log
(d(t+ 1)

δ

)w′(t)

w(t)
+

5κw(J )
α
√
2βw(t)

. (52)

Proof. See Appendix C.4.

C.3 Proof of Lemma 14

To simplify the notation, define the function

ϕ(t) = 8ΨΥE max

{√
log
(d(t+ 1)

δ

)w′(t)

w(t)
, log

(d(t+ 1)

δ

)w′(t)

w(t)

}
.

Then we can rewrite (46) as ∥Ēt∥ ≤ ϕ(t) for all t ≥ 0. Similar to Lemma 7, we have the following
result.
Lemma 15. If t ∈ B, then we have ηt ≥ αβ/(2M1 + ∥Ēt∥) ≥ αβ/(2M1 + ϕ(t)).
Lemma 16. Assume that β ≤ 1/Ψ. For any t ≥ 0, we have

ηt ≥ min

{
αβ

2M1 + ϕ(t)
,
σ0

βt

}
(53)

Proof. We prove this lemma by induction. For t = 0, we distinguish two subcases. If 0 ∈ B, then by
Lemma 7 we obtain that η0 ≥ αβ

2M1+ϕ(0) . Otherwise, if 0 /∈ B, we have η0 = σ0. In both cases, we
observe that (53) is satisfied for the base case t = 0.

Now assume that (53) is satisfied for t = s. For t = s + 1, we again distinguish two subcases. If
s+1 ∈ B, then by Lemma 15 we obtain that ηs+1 ≥ αβ

2M1+ϕ(s+1) , which implies that (53) is satisfied.
Otherwise, if s+ 1 /∈ B, then we have

ηs+1 = σs+1 =
ηs
β
≥ 1

β
min

{
αβ

M1 + ϕ(s)
,
σ0

βs

}
= min

{
α

M1 + ϕ(s)
,

σ0

βs+1

}
, (54)

where we used the induction hypothesis in the last inequality. Furthermore, note that

ϕ(s)

ϕ(s+ 1)
≤ w′(s)w(s+ 1)

w′(s+ 1)w(s)
≤ Ψ ≤ 1

β
,

and hence
α

M1 + ϕ(s)
≥ αβ

βM1 + ϕ(s+ 1)
≥ αβ

M1 + ϕ(s+ 1)
.

Therefore, (54) implies that ηs+1 ≥ min
{

αβ
M1+ϕ(s+1) ,

σ0

βs+1

}
and thus (53) also holds in this case.

This completes the induction and we conclude that (53) holds for all t ≥ 0.
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Corollary 3. Recall the definition of U1 in (47). For any t ≥ U1, we have ηt ≥ αβ/(3M1).

Proof. By definition, we have U1 ≥ log 1
β

αβ
3M1σ0

, and thus σ0

βU1
≥ αβ

3M1
. Moreover, we also have

ϕ(t) ≤M1. Hence, by Lemma 8 we conclude that ηt ≥ αβ
3M1

when t ≥ U1.

Now we are ready to prove Lemma 14.

Proof of Lemma 14. It follows from Proposition 1 and Corollary 3.

C.4 Proof of Theorem 4

Lemma 17. We have ∥Ēt∥ ≤ νµ and ∥xt − x∗∥ ≤ νµ/L2 for all t ≥ J .

Proof. This follows from Lemmas 13 and 14.

Lemma 18. If t ∈ B and t ≥ J , then

1
√
µηt
≤ L2∥xt − x∗∥

2αβ
√
2(1− α2)βµ

+
∥Ēt∥

α
√
2βµ

+
κw(J − 1)

α
√
2βw(t)

+
2ν

α
√
2β

(55)

and also
1
√
µηt
≤ ν

2αβ
√

2(1− α2)β
+

3ν

α
√
2β

+
κw(J − 1)

α
√
2βw(t)

. (56)

Proof. Similar to the proof in Lemma 10, note that

1
√
µηt
≤ L2∥xt − x∗∥

2αβ
√
2(1− α2)βµ

+
∥Ht − H̄t∥
α
√
2βµ

+
∥Ēt∥

α
√
2βµ

.

For the second term, note that

H̄t =
t∑

i=0

zi,tHi, where zi,t =
w(i)− w(i− 1)

w(t)
.

Hence, by Jensen’s inequality, we have

∥Ht − H̄t∥ ≤
t∑

i=0

zi,t∥Ht −Hi∥ =
J−1∑
i=0

zi,t∥Ht −Hi∥+
t∑

i=J
zi,t∥Ht −Hi∥.

When 0 ≤ i ≤ J − 1, we use Assumption 2 to bound ∥Ht −Hi∥ ≤M1 and thus

J−1∑
i=0

zi,t∥Ht −Hi∥ ≤M1

J−1∑
i=0

w(i)− w(i− 1)

w(t)
= M1

w(J − 1)

w(t)
.

Moreover, for J ≤ i ≤ t, we use Assumption 3 to get

∥Ht −Hi∥ ≤ L2∥xt − xi∥ ≤ L2 (∥xt − x∗∥+ ∥xi − x∗∥) ≤ 2L2∥xi − x∗∥ ≤ 2νµ.

Thus,
∑t

i=J zi,t∥Ht −Hi∥ ≤ 2νµ
∑t

i=I zi,t ≤ 2νµ.

Combining the above inequalities, we arrive at

∥Ht − H̄t∥ ≤M1
w(J − 1)

w(t)
+ 2νµ.

This leads to the first result in (55). To show (56), we note that ∥Ēt∥ ≤ ϕ(t) and ∥xt−x∗∥ ≤ νµ/L2

for all t ≥ J .

Lemma 19. Assume that β ≤ 1/Ψ2. For any t ≥ J , we have

1
√
µηt
≤ ν

2αβ
√
2(1− α2)β

+
3ν

α
√
2β

+

√
2κw(J )

α
√
βw(t)

. (57)
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Proof. We shall use induction to prove Lemma 19. For t = J , note that by Corollary 3, we have
ηJ ≥ αβ/(3M1). Thus, this implies that

1
√
µηJ

≤
√
2κ√
αβ
≤
√
2κ

α
√
β
,

where we used κ ≥ 1, α, β < 1 and I ≥ 2. This proves the base case where t = J .

Now assume that (57) holds for t = s, where s ≥ J . For t = s + 1, we distinguish two cases. If
s+ 1 ∈ B, then by Lemma 18 we obtain that (57) is satisfied for t = s+ 1. Otherwise, if s+ 1 /∈ B,
then we have ηs+1 = σs+1 = ηs/β. Hence, by using the induction hypothesis, we have

1
√
µηs+1

=

√
β

√
µηs
≤ ν

2αβ
√
2(1− α2)β

+
3ν

α
√
2β

+

√
2βκw(J )
α
√
βw(s)

.

Since β ≤ 1/Ψ2, we have w(s+ 1)/w(s) ≤ Ψ ≤ 1/
√
β. Thus, we further have

1
√
µηs+1

≤ ν

2αβ
√

2(1− α2)β
+

3ν

α
√
2β

+

√
2κw(J )

α
√
βw(s+ 1)

.

This shows that (57) also holds in this case.

Recall that w(U2) = w(J )κν . Then by Lemma 19, for t ≥ U2 we have

1
√
µηt
≤ ν

2αβ
√
2(1− α2)β

+
3ν

α
√
2β

+

√
2κw(J )

α
√
βw(U2)

≤ ν

2αβ
√

2(1− α2)β
+

3ν

α
√
2β

+

√
2ν

α
√
β

=
ν

2αβ
√

2(1− α2)β
+

5ν

α
√
2β

.

We will choose ν such that (
1

2αβ
√
(1− α2)β

+
5

α
√
β

)
ν ≤ 1

Ψ
. (58)

Therefore, this further implies that ∥xt+1 − x∗∥ ≤ ∥xt − x∗∥/(2Ψ) for t ≥ U2.

Lemma 20. If t ∈ B and t ≥ U2, then

1
√
µηt
≤ L2∥xt − x∗∥

2αβ
√
2(1− α2)βµ

+
ϕ(t)

α
√
2βµ

+
5κw(J )

α
√
2βw(t)

. (59)

Proof. Recall that we have

1
√
µηt
≤ L2∥xt − x∗∥

2αβ
√
2(1− α2)βµ

+
∥Ht − H̄t∥
α
√
2βµ

+
∥Ēt∥

α
√
2βµ

.

For the second term, we can write

∥Ht−H̄t∥ ≤
t∑

i=0

zi,t∥Ht−Hi∥ =
J−1∑
i=0

zi,t∥Ht−Hi∥+
U2∑
i=J

zi,t∥Ht−Hi∥+
t∑

i=U2+1

zi,t∥Ht−Hi∥.

For the first part,
∑J−1

i=0 zi,t∥Ht −Hi∥ ≤M1
w(J−1)
w(t) ≤M1

w(J )
w(t) . For the second part,

U2∑
i=J

zi,t∥Ht −Hi∥ ≤ 2νµ

U2∑
i=J

zi,t ≤ 2νµ
w(U2)
w(t)

= 2M1
w(J )
w(t)

,
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where we used the fact that w(U2) = w(J )κν . For the third part,

t∑
i=U2+1

zi,t∥Ht −Hi∥ ≤
t∑

i=U2+1

2L2
w(i)− w(i− 1)

w(t)
∥xi − x∗∥

≤
t−U2∑
j=1

2L2
w(U2 + j)− w(U2 + j − 1)

w(t)

∥xU2
− x∗∥

(2Ψ)j

≤
t−U2∑
j=1

2L2
w(U2 + j)

w(t)

∥xU2 − x∗∥
(2Ψ)j

≤
t−U2∑
j=1

2νµ
w(U2)
w(t)

w(U2 + j)

w(U2)(2Ψ)j

≤ 2νµ
w(U2)
w(t)

t∑
j=1

w(U2 + j)

w(U2)(2Ψ)j

≤ 2νµ
w(U2)
w(t)

t∑
j=1

1

2j

≤ 2νµ
w(U2)
w(t)

=
2M1w(J )

w(t)
.

Therefore, we conclude that

∥Ht − H̄t∥ ≤
3M1w(J )

w(t)
+

2M1w(J )
w(t)

=
5M1w(J )

w(t)
.

This completes the proof.

Lemma 21. Recall the definition of θt in (52). For any t ≥ 0, we have

5L2∥xU2+t − x∗∥
α
√
2βµ

≤ θt and
1

√
µηU2+t

≤
(

1

10β
√
1− α2

+ 1

)
θt, (60)

Proof. Note that by Proposition 1, we have

∥xU2+t+1 − x∗∥ ≤ ∥xU2+t − x∗∥(1 + 2ηU2+tµ)
−1/2 ≤ ∥xU2+t − x∗∥√

2ηU2+tµ
.

By Lemma 18, if U2 + t ∈ B, then

1
√
µηU2+t

≤ L2∥xU2+t − x∗∥
2αβ

√
2(1− α2)βµ

+ θt.

We will prove (60) by induction. First consider the base case t = 0. We note that θ0 ≥ 5κw(J )

α
√
2βw(U2)

=

5ν
α
√
2β

. On the other hand, since ∥xU2
− x∗∥ ≤ νµ/L2, we obtain that 5L2∥xU2

−x∗∥
α
√
2βµ

≤ 5ν
α
√
2β
≤ θ0.

Moreover, by Lemma 19, we have

1
√
µηU2

≤ ν

2αβ
√
2(1− α2)β

+
3ν

α
√
2β

+

√
2κw(J )

α
√
βw(U2)

≤ ν

2αβ
√
2(1− α2)β

+
5ν

α
√
2β

≤
(

1

10β
√
1− α2

+ 1

)
θ0.

This shows that (60) holds for t = 0.

Now assume that (60) holds for t = s ≥ 0. For t = s + 1, by using the induction hypothesis, we
obtain

5L2∥xU2+s+1 − x∗∥
α
√
2βµ

≤ 5L2∥xU2+s − x∗∥
α
√
2βµ
√
2ηU2+sµ

≤ 1√
2

(
1

10β
√
1− α2

+ 1

)
θ2s .
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Note that θs/Ψ ≤ θs+1. Thus, it suffices to show that 1√
2

(
1

10β
√
1−α2

+ 1
)
θ2s ≤ θs/Ψ, which

is equivalent to Ψ√
2

(
1

10β
√
1−α2

+ 1
)
θs ≤ 1. Furthermore, note that θs is non-increasing and

θ0 ≤ ν
α
√
2β

+ 5ν
α
√
2β

= 6ν
α
√
2β

. Thus, we only need to require

Ψ√
2

(
1

10β
√
1− α2

+ 1

)
6ν

α
√
2β
≤ 1 ⇔

(
3

10αβ
√

(1− α2)β
+

3

α
√
β

)
ν ≤ 1

Ψ
,

which is satisfied due to (51). This proves the first inequality in (60).

To prove the second inequality in (60) for t = s+ 1, we distinguish two cases. If s+ 1 ∈ B, then by
Lemma 20, we have

1
√
µηU2+s+1

≤ L2∥xU2+s+1 − x∗∥
2αβ

√
2(1− α2)βµ

+
∥ĒU2+s+1∥
α
√
2βµ

+
5κw(J )

α
√
2βw(U2 + s+ 1)

≤ 1

10β
√
1− α2

θs+1 + θs+1 ≤
(

1

10β
√
1− α2

+ 1

)
θs+1.

Otherwise, if s+ 1 /∈ B, then we have ηU2+s+1 = ηU2+s/β and hence

1
√
µηU2+s+1

=

√
β

√
µηU2+s

≤
(

1

10β
√
1− α2

+ 1

)√
βθs.

Since θs/Ψ ≤ θs+1 and
√
β ≤ 1/Ψ, this implies that 1√

µηT2+s+1
≤
(

1
10β

√
1−α2

+ 1
)
θs+1. This

completes the induction.

Proof of Theorem 4. By Proposition 1, we have

∥xT2+t+1 − x∗∥ ≤ ∥xT2+t − x∗∥(1 + 2ηT2+tµ)
−1/2 ≤ ∥xT2+t − x∗∥√

2ηT2+tµ
.

The rest follows from Lemma 21.

D Additional discussions

D.1 Iteration complexity of SNPE

Note that for t ≥ U3 = Õ(Υ2 + κ), we have ∥xt+1 − x∗∥ = Õ( Υ√
t
)∥xt − x∗∥ by Theorem 2. By

unrolling the inequality, this implies that

∥xt+1 − x∗∥ ≤ ∥xU3
− x∗∥Õ

(
t∏

s=U3

Υ√
s

)
≤ ∥x0 − x∗∥Õ

(
t∏

s=U3

Υ√
s

)
.

Further, for t ≥ 2U3, we can upper bound Υ√
s

as follows: (i) Υ√
s
≤ Υ√

U3
≤ 1 for any s ∈ [U3, t/2],

(ii) Υ√
s
≤ Υ√

t/2
for any s ∈ [t/2, t]. Thus, we have

t∏
s=U3

Υ√
s
≤

t∏
s=t/2

Υ√
s
≤

(
Υ√
t/2

) t
2

.

To derive a complexity bound, we upper bound the required number of iterations t such that(
Υ√
t/2

) t
2

= ϵ. Taking the logarithm of both sides and with some algebraic manipulation, we

obtain
t

2Υ2
log

t

2Υ2
=

2

Υ2
log

1

ϵ
.
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Figure 3: The effect of the extragradient step in stochastic NPE.

Using the Lambert W function1, the solution can be expressed as log t
2Υ2 = W ( 2

Υ2 log
1
ϵ ) ⇒ t =

2Υ2eW ( 2
Υ2 log 1

ϵ ). Finally, by applying the bound eW (x) ≤ 2x+1
1+log(x+1) for any x ≥ 0, we conclude

that t = O
(

log(ϵ−1)
log(Υ−2 log(ϵ−1))

)
. Note that in the above derivation, we ignore the additional logarithmic

factor log(t) in our superlinear convergence rate. However, a more careful analysis will show that it
does not affect the final complexity bound. We also refer the reader to a similar derivation in [22,
Appendix D.2], where the authors provide the same complexity bound for a similar convergence rate
of (1 +O(

√
t))−t.

D.2 The effect of the extragradient step

In Figure 3, we test the effect of the extragradient step in our proposed SNPE method. We observe
that in all cases, the variant without an extragradient step outperforms the original version, suggesting
that the extragradient step may not be beneficial for minimization problems. Nevertheless, the SNPE
method with the extragradient step, which is the one analyzed in our paper, still outperforms the
stochastic Newton method in [1].

1https://en.wikipedia.org/wiki/Lambert_W_function
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction of the paper, we claim that we can improve the
complexity of the stochastic Newton method presented in [1], and this is exactly what we
demonstrate. This improvement is achieved by introducing a novel stochastic variant of the
Newton HPE framework, as promised in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 8, we explicitly mentioned the limitation of our paper. Specifically,
we noted that our theory assumes strong convexity. Extending the theory to the convex
setting would make it more general. This extension is left for future work due to space
limitations. We also highlighted in the introduction of our paper that we focus solely on the
setting where the Hessian oracle is noisy, and the gradient can be queried without error.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All the theorems, formulas, and proofs in the paper are numbered and cross-
referenced. All assumptions for each presented result are clearly stated or referenced in the
statements of the lemmas, propositions, or theorems. The proofs of all results are presented
in the supplemental material. High-level ideas of the proofs are included in the main text
whenever possible.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental results and the implementation details are included in
Section 7.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and data are attached in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We explained how we performed the experiments and included the implemen-
tation details in Section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are reported in Section 7.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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