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Abstract

We study the problem of learning under arbitrary distribution shift, where the learner is
trained on a labeled set from one distribution but evaluated on a different, potentially adver-
sarially generated test distribution. We focus on two frameworks: PQ learning [GKKM20],
allowing abstention on adversarially generated parts of the test distribution, and T'DS learning
[KSV24b|, permitting abstention on the entire test distribution if distribution shift is detected.
All prior known algorithms either rely on learning primitives that are computationally hard even
for simple function classes, or end up abstaining entirely even in the presence of a tiny amount
of distribution shift.

We address both these challenges for natural function classes, including intersections of
halfspaces and decision trees, and standard training distributions, including Gaussians. For
PQ learning, we give efficient learning algorithms, while for TDS learning, our algorithms can
tolerate moderate amounts of distribution shift. At the core of our approach is an improved
analysis of spectral outlier-removal techniques from learning with nasty noise. Our analysis can
(1) handle arbitrarily large fraction of outliers, which is crucial for handling arbitrary distribution
shifts, and (2) obtain stronger bounds on polynomial moments of the distribution after outlier
removal, yielding new insights into polynomial regression under distribution shifts. Lastly, our
techniques lead to novel results for tolerant testable learning [RV23], and learning with nasty
noise.
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1 Introduction

Despite the tremendous progress of machine learning, real-world deployment and use of machine
learning models has proven challenging. A major reason for this is distribution shift, which occurs
when the model is trained on one distribution D" over X’ x {£1}, while the data during deployment
comes from a different distribution D**t. In such scenarios, a model can unexpectedly make incorrect
predictions, leading to loss of reliability, as well as erosion of trust in the machine learning system
itself. Among many other critical applications, distribution shift continues to be a major challenge
in healthcare applications [ZBLT18, SS20, WOD*21, TCK*22.

Handling distribution shift when D"a® and D'*s* are allowed to be arbitrary is known to be
impossible [DLLP10|. To circumvent this impossibility, recent works [GKKM20, KK21, KSV24b,
GHMS24, KSV24a| allow the machine learning model to additionally abstain (not make a prediction)
on some or all of the inputs. These frameworks generalize standard PAC learning, requiring the
algorithm to abstain from making predictions rather than giving incorrect predictions. In this work,
we focus on two such frameworks for binary classification: R
PQ learning [GKKM20, KK21|, requiring the learning algorithm to output a selective classifier f,
which is allowed to abstain on some inputs and simultaneously satisfy: (i) e-accuracy: the probability
that f does not abstain and incorrectly classifies an input x from the test distribution D't is at
most €, and (ii) e-rejection rate: the probability that f abstains on an input x from the original
distribution D™ is at most €. In particular, this implies that f abstains on D' with probability
at most dpy (DR D) 4 ¢ ie. the probability of abstention deteriorates only in proportion to
the amount of distribution shift.

Testable Distribution Shift (TDS) [KSV24b|, allowing the classifier to abstain on the entire
distribution D't if any distribution shift is detected. If there is no distribution shift, then the
classifier is e-accurate on DS,

Prior known algorithms for both these settings have strong inherent limitations, making them
impractical for real-world scenarios. For PQ learning, all known algorithms require access to oracles
that are computationally inefficient even for the most basic concept classes and training distributions.
For example, even for the most basic class of halfspaces (linear separators) over R¢ under the
Gaussian training distribution, no PQ learning algorithm has run-time better than 24" " On the
other hand, TDS learning algorithms, while being computationally efficient, reject entire test sets
even when the test set has a tiny amount of distribution shift. For example, the algorithms of
[KSV24b], use the low-degree moment-matching approach, which can reject distributions DSt £
Dt gven when dry (DR DWst) = o(e).

1.1 Our results

In this work, we overcome both these limitations using a unified approach: spectral outlier re-
moval [DKS18] in tandem with strong polynomial approximation results in terms of Lo-sandwiching
[KSV24b]|. For PQ learning, we give the first dimension-efficient learning algorithms. For TDS
learning, we give the first tolerant TDS learners that accept test sets with moderate amount of
distribution shift in TV distance, dpy (D% D) = O(¢). We summarize our results in Table 1.



Concept class F Df,?ain PQ runtime TDS runtime

Halfspaces (realizable) N(0,1) dO(log1/e) (O (og 1/€)
Halfspaces N, 1), U ({;l;l}d) prelevia) JO1/e?)
Intersections of ¢ halfspaces  N(0,1), U ({£1}9) dOe/eh) O /e?)
Size-s decision trees U ({£1}9) dOlog(s/€)) (O log(s/e€))
Size-s depth-£ formulas U ({jzl}d) dO(Vs(log(s/€))>/2)  JO(V/5(log(s/€))*/?)

Table 1: Summary of our results for PQ learning and tolerant TDS learning. Except for the first
row, all results are for the agnostic noise model.

Application: Testable Agnostic Learning. Our techniques give new learning algorithms in
the testable agnostic learning framework of [RV23|. Testable learning does not address distribution
shift, but assumes that the training and testing distributions are the same distribution and indirectly
tests whether the training set actually satisfies certain assumptions, such as Gaussianity. Similarly
to the TDS learning algorithms of [KSV24b], all known testable agnostic learning algorithms are
based either entirely [RV23, GKK23| or partially [GKSV23, DKK'23, GKSV24] on low-degree
moment matching!, and are subsequently not tolerant to small amounts of violations of the testing
assumption in TV distance. We give the first tolerant testable learning algorithms for a number of
function classes, including Halfspaces and low-depth formulas (see Table 2 for details).

Function class Training distribution Run-time
Halfspaces Stapdard Gaussian JO01/eh)
Uniform on {+1}4
Intersections of ¢ halfspaces %ﬁiﬁiifoia{ujil?g dO /)
Size-s decision trees Uniform on {#1}¢ qOUog(s/e€)
Size-s depth-¢ formulas Uniform on {£1}¢ | dO(Vs¢ log(s/€))>*/%)

Table 2: Our results for (e)-tolerant testable agnostic learning.

Application: Learning with Nasty Noise. As a corollary of our tolerant agnostic learning
algorithms we obtain algorithms that withstand an Q(e) amount of nasty noise corruption, and
produce classifiers with an error at most €. (In this setting €2(e) fraction of both labels and examples
given to the algorithm are corrupted). The error bound of € compares favorably with the bound of
[KKM18|] under €2(¢) nasty noise, which is y/e. Compared with the results of [DKS18| in the nasty
noise setting, our results are incomparable (see relevant discussion in Section 3, Appendix D.2 for
more information).

'n fact, [GKSV24|, is partially based on a slightly more general hypercontractivity tester by [KS17]. However,
this tester will reject some distributions D" # D™ for which drv (D", D) = o(e).



1.2 Owur Techniques

To explain our technical approach, we focus of the PQ learning setting (in TDS learning setting
and testable agnostic learning setting, our approach is analogous). If the TV distance between Dt
and the training distribution D% is at most dpy(D"1, DY) then we think of the dataset as
consisting of 1—dpy (D" Dest) fraction of inliers and an dpy (D7¥", DY) fraction of outliers. In
order to accomplish PQ learning, we aim to remove a portion of the test set while (i) ensuring that
a learning algorithm based on low-degree polynomial regression [KOS08| works on the remaining
data (ii) not removing more than e fraction of the inliers.

It was known from [KSV24b| that the degree-k polynomial regression performs correctly if the
dataset satisfies the degree-k moment-matching test. Despite its power, the low-degree moment
test can reject distributions even e/d°®)-close to the reference distribution. However (i) it is not
clear how to efficiently prune the dataset, so the remaining datapoints satisfy the moment-matching
condition (ii) even if one could do this efficiently, this can require one remove a constant fraction of
inliers. To overcome this issue, we introduce the notion of low-degree spectral boundedness, which
requires that for every degree-k polynomial p the expectation Eyxp[p(x)?] does not exceed the
analogous expectation with respect to the reference distribution by more than a desired factor.
Our first key insight is that by using the notion of Ls-sandwiching polynomials [KSV24b]|, for
many settings the low-degree moment matching test can be replaced by this low-degree spectral
boundedness test.

If our dataset does not satisfy low-degree spectral boundedness, our second key insight is to
make it do so by removing outliers. As in many other algorithms based on outlier removal® (see
e.g. |[DKK'19, LRV16, HLZ20, Stel8, DK19, DV04] and references therein), our outlier-removal
algorithm repeatedly finds regions in R%, such that at least 1 — e fraction of points in them are
outliers. This way, as we remove all the points in such outlier-rich regions, we will not remove
too many inliers. Finally, we find such outlier-rich regions efficiently using a spectral approach.
Specifically, if the dataset S does not satisfy the low-degree spectral boundedness, then there is
some polynomial p for which E,.s[p(x)?] is much greater than the corresponding expectation over
the reference distribution. We infer that, for an appropriate value of 7, at least 1 — € fraction of
points in the region {x : p(x)? > 7} are outliers.

1.3 Related work

Domain Adaptation. During the last two decades, there has been a long line of works in domain
adaptation literature (see, e.g., [BDBCP06, BDBC*10, MMR09, BCK*07, DLLP10, RMH™"20,
KZ7Z24] and references therein), aiming to provide generalization bounds for the error on the test
distribution, after training using only labeled examples from the training distribution. However,
the generalization bounds provided involve distances between the training and test marginals that
typically involve enumerations over the whole concept class and no efficient algorithms for estimating
or even testing such distances directy are available.

PQ Learning. The PQ learning framework was defined by [GKKM20]|, which showed that a PQ
learner can be efficiently implemented using an oracle to a distribution-free agnostic learner. In
follow-up work by [KK21], it was shown that distribution-free PQ learning is actually equivalent

2Precisely, we aim to avoid removing more than eN outliers, where N is the size of the test dataset.
30ur notion of outlier removal is connected to the notion of sampling correctors from [CGR16]. We note that over
R? the algorithms of [CGR16] run in time 2*¥)| while ours are dimension-efficient.



to distribution-free agnostic reliable learning, which is a learning primitive known to be hard even
for the fundamental class of halfspaces (exp(€2(v/d)) time is believed to be necessary). Here, we
show how to take advantage of standard assumptions on the training marginal (e.g., Gaussianity) in
order to obtain the first dimension-efficient results for PQ learning of several fundamental concept
classes.

TDS Learning. Testable learning with distribution shift was defined recently by [KSV24b], where
dimension-efficient algorithms for several concept classes including halfspaces, halfspace intersec-
tions, decision trees and boolean formulas were provided. In this work, we give similar results for
each of these classes in the tolerant TDS learning framework. Further work by [KSV24a] provided
improved guarantees for TDS learning halfspace intersections in the realizable case. We believe that
our techniques can likely be used to provide similar improvements for tolerant TDS learning, but,
for ease of exposition, we do not include such results in this work.

Tolerant Distribution Testing: The notion of tolerance in property testing was introduced in
[PRRO6] and has been the focus of many works including [FF05, VV11, BCET19, RV20, CJKL22,
CFG*22, BH18, CP23]. However, over R? all existing tolerant distribution testing algorithms (such
as [VV11]) have run-times and sample complexities of 20(d) " which greatly exceeds our run-times.
Acknowledgements.

We thank Adam Klivans for insightful conversations and helpful references. A.V. thanks Shyam
Narayanan for helpful conversations about robust mean estimation and outlier removal.

2 Preliminaries

Notation. For details on the notation, see Appendix A. We denote with x®* the vector of monomi-

als of degree k of x € R?, i.e., x®* is a vector of length d* with elements of the form x" = Hle X",
where Zie[d} r; <k, v €N, r=(r,...,7q) and k is the degree of x". A polynomial p over R? is a

function p(x) = > cna prX" = p'x®? where we abuse the notation to denote with p the vector of

coefficients of the corresponding polynomial. A polynomial p over {£1}% is defined similarly, but
all of the coefficients corresponding to monomials x” where r; > 1 for some i are zero.
Learning Setting. We consider distribution D over X and D"3" Dtst distributions over X x {£1}
such that the marginal on X of D' is D and the marginal of D't ig Dist. We also consider
some concept class F C {X — {£1}}. The learner is given access to labeled examples from D%ain
as well as unlabeled examples from D" and the goal is to produce some hypothesis with low error
on D't but is also allowed to abstain from predicting either on specific points (for PQ learning,
Def. 4.1) or even the entire distribution (for TDS learning, Def. 5.1) if distribution shift is detected.
In the realizable setting, the labels of both the training distribution and the test distribution are
generated according to some concept f* € F and the training examples are of the form (x, f*(x)),
where x ~ D. The target test error is € for some arbitrarily chosen € € (0, 1). In the agnostic setting,
the distributions D"@™ and D'*s' can be arbitrary, except from the assumption that the marginal
of Dtrain ig D%ain = D. To quantify the target error, we use parameter A = \(JF; DIrain ptest) —
min e 7 (err(f; D"") + err(f; D)), where err(f; D) = Py ) puainy # f(x)] (and similarly
for err(f; D*)). The error guarantee we can hope for is some function of ), because A encodes



the (unknown) relationship between the training and test distributions, in that A is small when
there is a concept in the class F that has low error on both training and test distributions. Error
bounds in terms of A\ are standard (and necessary) in the domain adaptation literature (see, e.g.,
[BDBCP06, BDBCT10]) as well as TDS learning (see [KSV24b]).
Properties of Distributions. We make standard assumptions about training marginal D. We
denote with Ny the standard Gaussian distribution over R? and with Unif({£1}%) the uniform dis-
tribution over the hypercube {£1}¢. A distribution D over X is k-tame if for every degree-k poly-
nomial p over X’ with Ex.p[(p(x))?] < 1 and every B greater than e* we have Pxp [(p(x))? > B] <
e=2BYEY) - And note that the Gaussian distribution, all isotropic log-concave distributions over
R9, as well as the uniform distribution over {£1}% are k-tame for all k € N (see Appendix A.4).
For a concept class F, a distribution D over X, € € (0, 1), we say that F has e-L2 sandwiching
degree k with respect to D if for any f € F, there exist polynomials pyp, plow over X with degree at
most k such that (1) prow(x) < f(x) < pup(x) for all x € X and (2) Exwp|(pup(X) — Plow(x))?] < €.
If the coefficients of pyp, plow are all absolutely bounded by B, we say that F has e-£, sandwiching
coefficient bound B.

3 Outlier Removal Procedure

The key ingredient of our approach is an outlier removal procedure which is closely related to the
corresponding procedure proposed by [DKS18] in the context of learning with nasty noise, but
ours enjoys stronger error guarantees and works even when the fraction of outliers is arbitrarily
large. The last property is important because we aim to handle arbitrary covariate shifts. Our
outlier removal procedure outputs a selector g : X — {0,1} that satisfies two main guarantees,
provided examples drawn independently from some arbitrary, unknown distribution D’: (1) for
any low-degree polynomial p, the part of the expectation of p?(x) under D’ within the selected
subset of X (i.e., Exop/[p?(x)g(x)]), is a bounded multiple of the expectation of p?(x) under the
reference distribution D and (2) the probability of rejecting a fresh sample drawn from D (i.e.,
Px~p[g(x) = 0]) is bounded by a multiple of the statistical distance between D and D’. Formally,
we prove the following theorem.

Theorem 3.1 (Outlier Removal, see Appendix E). There exists an algorithm (Algorithm 1) that,
given sample access to an arbitrary distribution D’ over X C R?, sample access to a k-tame proba-
bility distribution D over X, parameters e, ,d € (0,1) and k € N, runs in time poly(%(kzd)k log %)
and outputs a succinct poly(%(k‘d)k log %)-time-computable description of a function g : X — {0, 1}

that satisfies the following properties with probability at least 1 — 6.
(a) Ex~p [(p(x))Qg(x)] < %0 EXND[(p(x))Q], for any polynomial p with deg(p) < k.
(b) Pxplg(x) = 0] < adrv(D,D') + 5.

Remark 3.2. In Theorem 3.1, Condition (b) also implies some bound on the rejection rate over the
distribution D’ and, in particular, Px.p/[g(x) = 0] < (1 + a)dry(D,D’) +¢/2.
Remark 3.3. Our algorithm further satisfies a strengthened form of Condition (b) (with probability

at least 1 — d). For o > a/2 and any distribution D” that is 1/o-smooth w.r.t. D, (i.e. for any
measurable set T C R? we have Pr,pv[x € T] < 1 Pryuplz € T)) it is the case that

(% €
P =0] < —dpy(D", D) + =
P lg(x) =0 < L dry(D", D) + 5.



which in particular implies that Px.p[g(x) = 0] < €/2 if D’ itself is 2/a-smooth w.r.t. D.

Algorithm 1: Outlier Removal Procedure

Input: Sets Sp, Spr, each of size N, containing points in X C R? and parameters k, €, §, a
Output: A succinct description of a selector function g : X — {0,1}

Let t = (“1%), B = 4d% and A = 200Bd" ("% log(1/6))'/?

Compute monomial correlations estimate M by running Algorithm 2 on inputs Sp, k and
5/10.

SO < Sp\ {x € Spr : there is p € R with (p'x®¥)?2 > B and p Mp < 1}

fori=1,2,...,N do

Let p; € R! be the solution and p; and the value of the following quadratic program.

1 T T77
Eé?{tiﬁ Z (p x®k)2 stop Mp<1
xeS§i—1

if p; < 573(1 + A) then set iy,x =7 — 1 and exit the loop;
else let 7; be the minimum non-negative real number such that the following is true

Hlixe s ol x> )| 2 D B (B> (p]x > )+ A)

a \x~Sp

| Set St S\ {x € S (pf x®R)2 > 1)
Set g(x) to be 0 if and only if either there is p € R with (p'x®%)2 > B and p Mp<1,

or (p, x®F)2 > 7; for some i € [iyax]. Otherwise, set g(x) = 1.

The outlier removal procedure of Theorem 3.1 iteratively solves a quadratic program with

quadratic constraints (which can be solved efficiently, see Appendix E.1.1) and increases the re-
jection region by setting g(x) = 0 on each point x where the corresponding (maximum second
moment) polynomial takes large values. The procedure halts when the solution of the quadratic
program has value bounded by O(1/a) (which implies condition (a)).
Proof overview. The main idea for the analysis is that whenever the stopping criterion does not
hold, then there is a polynomial with unreasonably large second moment over the remaining part
of D’ (after the rejections). When such a polynomial p exists, there must be a threshold 7 for the
squared values of p such that D’ assigns Q(1/«) times more mass on non-rejected points x with
p?(x) > 7 compared to the reference distribution D. Such points can be safely rejected, because, in
that case, the mass of points under D rejected is multiplicatively smaller (by a factor of O(«)) than
the corresponding mass under D’ (which implies condition (b)). Note that the procedure will have
to end eventually, because in each iteration, at least one example is removed.

In order to account for errors incurred by sampling (from D and D’), it is important to provide
a bound on the number of iterations that is independent from the number of examples drawn,
because the complexity of the selector g depends on the number of iterations and we need the
desired properties of g to generalize to the actual distributions D and D’. To this end, we consider
the trace of the matrix M; = + > _oi(x¥%)(x®*)T as a potential function and we show that it
reduces by a multiplicative factor in each iteration (see Claim 5 in the Appendix).

Comparison with [DKS18]. Among all outlier removal algorithms, ours is most related to the



algorithm of [DKS18], which also removes elements in regions of the form {x : (p(x))? > 7}.
However, there are two differences. First, [DKS18] assume that the fraction of outliers is bounded,
while ours provides meaningful guarantees even in the presence of arbitrary fraction of outliers. In
particular, we can maintain low rejection rates even in the presence of large fractions of outliers
by relaxing the bound on the polynomial moments after outlier removal. This is important for
PQ learning, because we need low error guarantees even when the amount of distribution shift is
arbitrarily large. Second, even when the fraction of outliers is small, our bound on the second
moments of polynomials does not depend on the degree and the degree dependence only appears
in the runtime of the outlier removal process. This gives new insights on polynomial regression
in the presence of outliers (due to distribution shift or noise). In contrast, the moment bound
of |[DKS18| scales with the degree of the corresponding polynomial and when the degree bound
scales with the target learning error, their results become vacuous. This enables us to combine the
outlier removal process with L9 sandwiching results from TDS learning to obtain, for example, the
first dimension-efficient robust learners with nasty noise of rate 2(e) that achieve error e for the
class of intersections of halfspaces. While [DKS18] also provide robust learners for this class, they
only achieve error guarantees that scale as O(kl/ 121/ 1) for intersections of k halfspaces. The key
difference between our analysis and that of [DKS18| is that, to bound the number of iterations,
we use an appropriate potential function, while [DKS18] ensure that the number of iterations is
bounded by making sure to remove at least some fraction of points in each step. As a result, their
stopping criterion scales with the target polynomial degree.

4 Selective Classification with Arbitrary Covariate Shift

In order to provide provable learning guarantees in the presence of distribution shift, when no test
labels are available, one reasonable approach is to enable the model to abstain on certain regions
for which the training samples do not provide sufficient information. The model should not be
able to abstain frequently on samples from the training distribution, since, otherwise the provided
guarantees would be vacuous (e.g., when the model abstains always). A formal definition of this
framework was given by [GKKM20] and, in this section, we provide the first end-to-end, dimension-
efficient algorithms for learning various fundamental classes (e.g., halfspaces) in this setting.

PQ Setting. We first consider the case where the test samples are independently drawn from some
(potentially adversarial) distribution D' and the goal of the learner is to achieve low error under
D't (on points where the learner does not abstain), without abstaining frequently on fresh training
samples, as described formally in the following definition of agnostic PQ learning.

Definition 4.1 (PQ Learning [GKKM?20]). Let F be a concept class over X C R? and D a
distribution over X. The algorithm A is a PQ-learner for F with respect to D up to error -,
rejection rate 17 and probability of failure § if, upon receiving myrain labeled samples from a training
distribution D" with X-marginal D and myes; unlabeled samples from a test distribution DUest,
algorithm A outputs, w.p. at least 1 — §, a hypothesis h: X — {£1} and a selector g : X — {0,1}
such that:

(a) (accuracy) The test error is bounded as Py ) ptest [y # h(x) and g(x) = 1] <.
(b) (rejection rate) The probability of rejection is bounded as Pxp[g(x) = 0] < .

The error  and the rejection rate 7 are, in general, functions of the parameter A = \(JF; Dtrain ptest),



Adversarial Setting. Another reasonable scenario from [GKKM20| corresponds to the case where
the test examples are not independent, but are chosen adversarially as follows. The adversary re-
ceives N independent samples Sjiq from D and substitutes any number of them adversarially, forming
a new unlabeled dataset Siest which is given to the learner along with a fresh set of independent sam-
ples from D, labeled according to some hypothesis f* € F (realizable setting). The goal is to learn
a hypothesis h : X — {£1} and a set Sy C Stest such that Pyeg,., [h(x) # f*(x) and x € §y] < v
and [Siia N (Stest \ Sg)| < NN (only a small fraction of i.i.d. points can be rejected). Note that
the adversarial setting is primarily interesting in the realizable case, since there is no underlying
test distribution and for any meaningful notion learning to be possible, there needs to be some
relationship between the training and test labels. In the rest of this section, we focus on positive
results for PQ learning, but, as we argue in Appendix C.2, all of our positive results on (realizable)
PQ learning also work analogously in the adversarial setting. This is because our outlier removal
process (Theorem 3.1) also works when the examples from the distribution D’ are in fact generated
adversarially (see Theorem E.1).

4.1 PQ Learning of Halfspaces

We now give the first dimension-efficient PQ learning algorithms for the fundamental concept class
of halfspaces, in the realizable setting and with respect to the Gaussian distribution, i.e., when both
the training and the test labels are generated by some unknown halfspace and the training marginal
D is the standard Gaussian distribution Nj.

Warm-Up: Homogeneous Halfspaces. We first focus on the class F of homogeneous halfspaces,
i.e., functions f : R? — {£1} with f(x) = sign(w - x) for w € S%~!. Recent work by [KSV24b]
showed that there is a simple fully polynomial-time TDS learner for this problem. In fact, their
approach readily implies a PQ learner as well.

Proposition 4.2 (Implicit in [KSV24b]). For anye€,é € (0,1), there is an algorithm that PQ learns
the class of homogeneous halfspaces with respect to Ny in the realizable setting, up to error and
rejection rate € and probability of failure & that runs in time poly(d, %) log(1/6).

The algorithm of [KSV24b, Proposition 5.1| rejects when the probability that a randomly chosen
example x from the test marginal falls in some particular region D in R (for which there is an
efficient membership oracle) is greater than )(e). Since the training marginal is Gaussian, the ERM,
run on sufficiently many labeled training examples, outputs a hypothesis h(x) = sign(w - x) such
that |[w — w*||2 < €, where w* is the ground truth. Region D consists precisely of the points x for
which the ERM hypothesis h is not confident: there are two (potential ground truth) unit vectors
vi and vo that are both €-close to w and sign(v; - x) # sign(vs - x). Crucially, the Gaussian mass
of D is known to be poly(€’) - v/d (see, e.g., [Han14]). Therefore, for PQ learning, we may return
the classifier h along with the selector g(x) = 1{x ¢ D} and note that access to unlabeled test
examples is not neeeded to form h and g.

General Halfspaces. For the class of general halfspaces (i.e., functions of the form f(x) =
sign(w - x + 7) where w € S and 7 € R), the labeled training samples do not always provide
sufficient information to recover the unknown parameters. This is because the bias 7* of the ground
truth could take arbitrarily large positive or negative values, in which case all of the training
examples will likely have the same label and (almost) no information about the ground truth w* is
revealed. The concern in that case is that the test marginal D’ assigns a lot of mass far from the
origin in the direction of w*. By appropriately applying Theorem 3.1 to select a part of the test



marginal D’ that is sufficiently concentrated in every direction (hence even in the direction of w*),
we obtain the following PQ learning result.

Theorem 4.3 (PQ Learning of Halfspaces). For any €, € (0,1), there is an algorithm that PQ
learns the class of general halfspaces with respect to Ny in the realizc&ble setting, up to error and
rejection rate € and probability of failure § that runs in time poly(dlog(z), log(1/4)).

The first ingredient for Theorem 4.3 is a result from [KSV24b| regarding recovering the param-
eters of an unknown general halfspace provided labeled examples from the Gaussian distribution,
which was previously used for TDS learning.

Proposition 4.4 (Halfspace Parameter Recovery, Proposition 5.5 in [KSV24b|). For €, € (0,1)
and T € R, suppose that S consists of at least m = poly(d, 1/e)eO(T2) log(1/6) i.i.d. samples from
N, labeled by some halfspace of the form f*(x) = sign(w* - x + 7*), for some w* € S¥~1. Then,
with probability at least 1 =6, for W =73 \esXy/|| X (x pyes Xyll2 and T = W - x for some x from
S such that Py yesly # sign(w - x + 7)] is minimized, we have [|[W — w*[|2 <€ and [T — 7| < €.

Therefore, in the case when the bias 7* of the unknown ground truth halfspace is not too large
in absolute value, the selector can reject all points x for which there exist two halfspaces with
parameters close to w and 7 accordingly that disagree on x (similarly to the case of homogeneous
halfspaces). Once more, such a selector can be implemented efficiently via a convex program.

When the bias is large, in TDS learning, checking whether the first O(log(1/€)) moments of
the test marginal D’ match the corresponding Gaussian moments is sufficient to ensure that the
distribution is concentrated in every direction and, therefore, even in the unknown direction of w*.
In order to obtain a selective classifier for this case, we instead use Theorem 3.1 with £ = O(log(1/¢))
and ensure that the selected part of the test marginal is indeed sufficiently concentrated in every
direction as required. For more details, see Appendix C.1.1.

4.2 PQ for Classes with Low Sandwiching Degree

The outlier removal process of Theorem 3.1 enables one to fully control the ratios between the second
moment of any low-degree polynomial under the selected part of the test marginal D’ and its second
moment under the reference distribution D, since the provided bound (see condition (a)) does not
depend on the degree of the polynomial, but only on the target rejection rate. Combining our
outlier removal process with ideas from TDS learning, we provide a general result on PQ learning
classes with low Lo sandwiching degree. In particular, we require the following properties for the
hypothesis class F and the training marginal D.

Definition 4.5 (Reasonable Pairs of Classes and Distributions). We say that the pair (D, F),
where D is a distribution over X C R? and F C {X — {£1}} is (e, 6, k, m)-reasonable if (1) the
e-Lo sandwiching degree of F under D is at most k with coefficient bound B, (2) the distribution
D is k-tame and (3) if S consists of m/ i.i.d. samples from some distribution D over X x {+1}
with marginal D and m’ > m then, with probability at least 1 — § we have that for any degree-k
polynomial p with coefficient bound B it holds |Ep,., [(y — p(x))?*] — Es[(y — p(x))?]| < e

We obtain the following theorem which gives the first dimension-efficient results on PQ learning
several fundamental concept classes with respect to standard training marginals, including inter-
sections of halfspaces, decision trees and boolean formulas. The results work even in the agnostic
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setting. The algorithm runs the outlier removal process once to form the selector and runs polyno-
mial regression on the training distribution to form the output hypothesis.

Theorem 4.6 (PQ Learning via Sandwiching). For €,n,8 € (0,1), let X C R? and (D, F) be an
(Eg, g,k m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant C > 0.
Then, there is an algorithm that PQ learns F with respect to D up to error 0(2) + €, rejection rate

n and probability of failure § with sample complexity m—l—poly( (kd)*log(1/6)) and time complexity
poly (% (kd)* log(1/9)).

Proof of Theorem 4.6. The algorithm forms the selector g by applying the outlier removal process
of Theorem 3.1 with parameters a,e <— 4, § <= 6/C and k < k. Then, we run the following
box-constrained least squares problem, using at least m labeled examples Siyain from D¥a" where
t = d* and B is the value specified in Definition 4.5.

min By )8y (Y — p(x))?] s.t. p has degree at most k and coefficient bound B
P

Let p be the solution. The algorithm returns the selector g and the classifier h(x) = sign(p(x)). The
rejection rate is bounded due to condition (b) in Theorem 3.1 while the accuracy can be shown by ap-
plying condition (a) as follows, where f* € F is the concept achieving A = min e z(err(f; D) +
err(f; D*")) and pyp, Piow are the corresponding sandwiching polynomials for f* (as per Defini-
tion 4.5). We show that P ) prest[y # h(x), g(x) = 1] < O(%) +e

[y # h(x),9(x) = 1] < [y # )]+ B _[f7(x) # sign(p(x)), 9(x) = 1]

(x, y)N’Dtcst (x, y)NDtcst x~D’
<A+ oy [(f*(%) — B(%))?g(2)]

The term Eyp/ [(f*(x)—p(x))%g(z)] can be bounded as Exp/ [(f*(x)—D(x))?g(x)] < 2Exp [(f*(x)—

Plow (%X))29(2)]+2 Ex o [(Prow (X) —P(x))2g(2)] and since Dups Plow sandwich f*, we bound Eyxp/[(f*(x)—

Plow(%))?g(2)] by Expr[(Pup(X) — Plow(x))*g(2)].
By applying condition (a) from Theorem 3.1, since (piow (x) — p(x))? and (pup(x) — plow (x))? are
squares of polynomials of degree k, we have the following for some sufficiently large constant C”.

/

Dtest [y ?é h( ) ( ) 1] < A + ;(EXND[(plOW(X) - ]/Q\(X))2] + EXND[(pup(X) - plow(x))2])

The term %/ Ex~[(Pup (%) — Plow(x))?] is at most § and Q Eyx~p[(Plow(x) — D(x))?] is bounded by

O(3) +2¢/3, as Exp|(Plow (%) — P(%))?] < 2Eptrain|(Prow (X )— Y)?] + 2 Epuain[(y — P(x))?]. We have

that E'Dtrain[(plow(x) - y) ] < 2E'Dtra1n [(plow( ) f ( )) ] + 2E'Dtram[(y f ( )) ] g + O( ) due
to sandwiching and the definition of . The term Eprain [(y —p(x))?] is Z-close to Eg, .. [(y —p(x))?]

(due to Definition 4.5) and, since p is the solution of the least squares program, Eg, . [(y —p(x))?] <
S rain (4 = Plow(%))?] < Epurain [(y — prow(x))’] + F = O(F) + O(N). m

Remark 4.7. In a semi-agnostic setting where A is known, then 7 can be chosen to balance the error
and rejection rates in Theorem 4.6, obtaining bounds of O(\/X), which is known to be best-possible
in the PQ setting, even for contrived concept classes (see [GKKM20]).

By combining Theorem 4.6 with bounds on the Lo sandwiching degree of fundamental concept
classes by [KSV24b] (see Appendix A.5), we obtain the results of Table 3 for PQ) learning,.
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5 Tolerant TDS Learning

Another approach to provide provable learning guarantees with distribution shift is to enable re-
jecting the whole test distribution. The formal definition of this setting was given by [KSV24b|,
but the proposed algorithms were allowed to reject even if a miniscule amount of distribution shift
was detected. We provide the first TDS learners that are guaranteed to accept whenever the test
marginal D’ is close to the training marginal D in total variation distance (see Definition A.7).

Definition 5.1 (Tolerant TDS Learning, extension of [KSV24b]). Let F be a concept class over
X C R? and D a distribution over X. The algorithm A is a TDS-learner for F with respect to D
up to error vy (which is, in general a function of parameter \), tolerance 6 and probability of failure
§ if, upon receiving myirain labeled samples from a training distribution D" with X-marginal D
and myes; unlabeled samples from a test distribution DY, algorithm A either rejects or accepts
and outputs a hypothesis h : X — {£1} such that, with probability at least 1 — ¢, the following
hold:

(a) (soundness) Upon acceptance, the test error is bounded as Py ) prest[y # h(x)] < 7.
(b) (completeness) If dpy (D, D) < 6, then the algorithm accepts.
We first observe that tolerant TDS learning is implied by PQ learning.

Proposition 5.2 (PQ implies Tolerant TDS Learning, modification of Proposition 56 in [KSV24b]).
Suppose that there is an algorithm A that PQ learns the class F with respect to D up to error -+,
rejection rate n and failure probability 6. Then, for any €,0 € (0,1) there is an algorithm that TDS
learns F with respect to D up to error v+ n+ 0 + €, with tolerance 8 and failure probability § that
calls A once and uses O(Ei2 log(1/9)) additional samples and evaluations of the selector given by A.

The above result readily follows by two simple observations about the selector g and the hy-
pothesis h in the output of a PQ learner. In particular, we have Py prest [9(x) = 0] < Pxoplg(x) =
0] + drv(D,DF*) < n+ drv(D, D) and err(h; D) < Py prest[g(x) = 0] + Py yyptest[y #
h(x),g(x) = 1]. The TDS learner will reject if the empirical estimate of Py _ptest[g(x) = 0] is larger
than 7 + 0 + Q(e); otherwise it will output h.

Proposition 5.2 allows us to conclude that the realizable tolerant TDS learning algorithm in
Table 1 follows from the PQ learning algorithm of Theorem 4.3.

In the agnostic setting, however, the error rate of PQ learning is known to be necessarily high
(ie., (VX)) even for very simple classes (see Remark 4.7). Therefore, the corresponding TDS
learning results implied by Proposition 5.2 do not achieve the optimum error rate for the case of
TDS learning (i.e. ©(A)). Nevertheless, we are able to use, once more, our outlier removal process
directly and obtain the following analogue of Theorem 4.6 for tolerant TDS learning.

Theorem 5.3 (Tolerant TDS Learning via Sandwiching). Fore, 6,5 € (0,1), let X C R? and (D, F)
be an (%,%,k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant
C > 0. Then, there is an TDS learner F with respect to D up to error O(\) + 20 + €, tolerance 0
and probability of failure § with sample and time complexity poly (2 (kd)* log(1/6)).

Furthermore, (via Remark 3.3) we show that our tolerant TDS learning algorithm will with high
probability be guaranteed to accept a distribution D’ that is 1/2-smooth with respect to D.
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For the full proof, see Appendix C.3. As a corollary of Theorem 5.3, we obtain the results of
Table 3 for tolerant TDS learning.
Limitations, Broader Impacts, and Future Work. Our current results hold only for a limited
class of training marginal distributions (e.g., standard Gaussian or uniform over the hypercube). We
leave it as an interesting open question to relax these distributional assumptions, as well as expand
the completeness criterion for our tolerant TDS learning algorithms to accept when the test marginal
is close to any distribution among the members of some wide class of well-behaved distributions
(i.e., satisfy the universality condition as defined by [GKSV23|). Additionally, we would like to point
out that rejecting to predict on certain distributions may lead to unfair or biased predictions if the
distributions overlap significantly with the minority groups.
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A Extended Preliminaries

A.1 Notation

We use x, w, v to denote vectors in the d-dimensional Euclidean space R?. For some distribution D
and a function f, we denote with Exp[f(x)] the expectation of the random variable f(x) when x is
drawn from D. For a set of points X, we use a similar notation for the empirical expectations over
X, ie., Exox[f(x)] = ITI\ > xex f(x). In our paper, X C R? will either be R% or the hypercube
{#1}¢. We denote with N the set of natural numbers N = {0,1,2,...}. The expression x - w or
x| w denotes the inner product between two vectors, i.e., X - w = > iy xjw; (where z; is the value
of the i-th coordinate of x).

A.2 Polynomials

Throughout this work, we will refer to polynomials whose degree is at most k as “degree-k polyno-
mials” for brevity. We will identify every degree-k polynomial p with the vector of its coefficients.
Furthermore, for a vector x in R% we will denote x®* the vector whose entries correspond to the
values of all monomials of degree at most k evaluated on x. Both the vector corresponding to
a degree-k polynomial and the vector x®* have dimension m, where m is the number of distinct
monomials on R? of degree at most k. Note that m < d* and that with this notation in hand we
have p(x) = p - (x®F) = pTx®k,

A.3 Learning theory

We will usually consider function classes over R? taking values in {#1} or in {0,1}. Consider the
following definitions:

Definition A.1. A halfspace over R? is a function mapping x in R? to sign(w - x + ) for some w
in S™! and 6 in R.

Definition A.2. A degree-k polynomial threshold function (PTF) over R? is a function mapping
x in R? to sign(p(x)) for some degree-k polynomial p.

Definition A.3. The OR of a collection of function classes F1V- - -V F,,, is defined as the collection of
functions f defined as f(x) = f1(x)V- -V fin(x) for each f; belonging to F; respectively. Analogously,
the AND of the collection of function classes Fy A - -+ A Fpy, is defined as the collection of functions
f defined as f(x) = fi(x) A+ A f(x) for each f; belonging to F; respectively.

The following facts about VC dimensions of various classes are standard:

Fact A.4. The VC dimension of halfspaces over R? is at most d + 1, and the VC dimensions of
degree-k polynomial threshold functions is at most d* + 1.

Fact A.5 (e.g. [VDVWO09| and references therein.). Let {F1,--- ,Fmn} be a collection of function
classes each of which has a VC dimension of V. Then, the VC dimension of F1 V -+ V Fp and
FiL A AN Fp are at most O(Vmlogm).

We will also need the standard uniform convergence bound for function classes of bounded VC
dimension.
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Fact A.6. Let F be a function class over RY taking values in {£1} with VC dimension at most V,
let D be a distribution over RY x {1}, and let S C R? x {41} be composed of N i.i.d. examples
from D. Then, with probability at least 1 — § we have

Vleg N
owp (| X 15600l - B 1060~y | </ 1og 5

fer (x,9)€S

A

The same statement also true if F is taking values in {0,1} and D be a distribution over R? x {0,1}.

A.4 Properties of Distributions

We denote with D, D’ distributions over X C R%. For two distributions D, D’, the total variation
distance between them is defined as follows.

Definition A.7. Let D, D’ be distributions over X C R? (for some o-algebra B C Pow(R%)). Then,
the total variation distance between D and D’ is

drv(D,D')=sup| P [x€ A]— P [x€ 4]
AeBl x~D x~D’

We define the family of tame distributions as follows.

Definition A.8. A distribution D over X is k-tame if for every degree-k polynomial p over X’ with
1
Ex~p[(p(x))?] <1 and every B greater than e?* we have Pyp[(p(x))? > B] < e HB*),

It is known that the standard Gaussian distribution, any log-concave distribution, as well as the
uniform distribution over the hypercube {£1}¢ are tame (see [DKS18| and references therein).

Fact A.9. Let D be either the standard Gaussian distribution N or the uniform distribution over
{+1}9, then, then D is k-tame for any k € N.

Fact A.10. Let D be a log-concave distribution over R, then D is k-tame for any k € N.

A.5 Sandwiching Polynomials

We provide a formal definition of the Lo sandwiching property which is key in order to be able to
apply our outlier removal process many of for our main learning applications.

Definition A.11 (L2 Sandwiching). For a concept class F, a distribution D over X, € € (0, 1),
we say that F has e-L9 sandwiching degree k with respect to D if for any f € F, there exist
polynomials pyp, plow over X with degree at most k such that (1) piow(x) < f(x) < pup(x) for
all x € X and (2) Exp[(Pup(X) — Plow(x))?] < €. If the coefficients of pup, plow are all absolutely
bounded by B, we say that F has e-L9 sandwiching coefficient bound B.

In order to obtain our learning results, in addition to Lo sandwiching, we use some further
properties of the marginal distribution (see Definition 4.5). The following proposition from [KSV24b]
shows that these properties are true for the Gaussian distribution as well as the uniform distribution
over the hypercube {£1}%.
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Proposition A.12 (Appendix D in [KSV24b|). Let D be either Ny or Unif({£1}¢) and let F be
some concept class with €-Lo sandwiching degree k with respect to D. Then, F €-Lo sandwiching
coefficient bound B = d°%) and (D, F) is (e, 6, k, m)-reasonable, where m = O(%)(dk)o(k).

Finally, we list a number of fundamental concept classes that are known to admit low-degree Lo
sandwiching approximators.

Lemma A.13 (Decision Trees, Lemma 34 in [KSV24b|). Let D be the uniform distribution over
the hypercube X = {:I:l}d, For s € N, let F be the class of Decision Trees of size s. Then, for any
€ > 0 the e-Lo sandwiching degree of F is at most k = O(log(s/e)).

Lemma A.14 (Boolean Formulas, Theorem 6 in [OS03| and Lemma 35 in [KSV24b]). Let D be
the uniform distribution over the hypercube X = {:I:l}d. For s, € N, let F be the class of Boolean
formulas of size at most s, depth at most £. Then, for any € > 0 the e-Lo sandwiching degree of F
is at most k = (C'log(s/€))?/2\/s, for some sufficiently large universal constant C' > 0.

Lemma A.15 (Intersections and Decision Trees of Halfspaces, Lemma 37 in [KSV24b]). Let D be
either the uniform distribution over the hypercube X = {:I:l}d or the Gaussian Ny over X = R%.
For £ € N, let also F be the class of intersections of £ halfspaces on X. Then, for any € > 0 the

€-Lo sandwiching degree of F is at most k = O(f—g). For Decision Trees of halfspaces of size s and

depth £, the bound is k = 5(8?6).

A.6 Other Learning Settings

Our approach provides new results even for standard learning scenarios (without distribution shift).
In particular, we provide the first tolerant testable learning algorithms. In the testable learning
setting, there is no distribution shift, but rather, the learner receives labeled examples from some
distribution Dyy over X x {1} and is asked to either reject, or accept and output a hypothesis with
low error on Dyy. The target error is opt + €, where opt = mingc r err(f; Dyy). In order to obtain
efficient learners, we allow for the algorithm to reject if it detects that the marginal distribution D’
of Dxy on X is not equal to some given target distribution D which is known to be well-behaved.
The tester is, once more, allowed to reject even when D’ and D differ by a tiny amount. We are
interested in tolerant testable learning, where the tester-learner is required to accept when D’ is
moderately close to D and provide the first upper bounds for the problem.

Definition A.16 (Tolerant Testable Learning, extension of [RV23]). Let F be a concept class over
X C R% and D a distribution over X. The algorithm A is a tester-learner for F with respect
to D up to error 7, tolerance 6 and probability of failure § if, upon receiving m labeled samples
from a distribution Dyy with X-marginal D’ algorithm A either rejects or accepts and outputs a
hypothesis h : X — {£1} such that, w.p. at least 1 — §, the following hold:

(a) (soundness) Upon acceptance, the error is bounded as Py ) p ., [y # h(x)] < opt + 7.
(b) (completeness) If dpy (D, D’) < 6, then the algorithm accepts.
The optimum error opt is defined as opt = minye 7 P(x y)~py,, [y # f(X)].

Finally, we give a definition for the model of learning with nasty noise (proposed by [BEKO02]).
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Definition A.17 (Learning with Nasty Noise [BEK02]). Let F be a concept class over X C RY
and D a distribution over X'. The algorithm A is a learner for F with respect to D, robust under
nasty noise with rate n € (0, 1), up to error  and probability of failure § if the following hold. If the
algorithm A receives a set of N labeled samples S that are formed by some adversary who first draws
N ii.d. labeled samples Sjq from D, labeled by some concept f* € F and then corrupts at most nN
(arbitrarily chosen) elements of Sjiq and substitutes them by 9N arbitrary points of X x {1}, then
A outputs w.p. at least 1 — ¢ some hypothesis h : X — {£1} such that Pyxp[f*(x) # h(x)] < 7.
The error 7y is a function of the noise rate 7.

B Additional Tools

B.1 Miscellaneous lemmas

In this section we present two technical lemmas used for the design and analysis of our filtering algo-
rithm. The following lemma allows one to efficiently estimate the moments of a k-time distribution
and is used for the algorithms of Theorem E.1 and Theorem E.2.

Algorithm 2: Monomial Correlations Matrix Estimation

Input: Set S of size N, containing points in X' C R?, parameter 6 and parameter k € N
Output: A matrix M '
Partition Sp into VN /E)arts (Sg)) ie[VN] each of size V/N.
Compute the matrix M; =E__ ) [(x2F)(x®F) T] for each i € [V/N].
~Op

Let M = M; for some i such that the number of indices j € [v/N] with

0.01M; =X M; =< 0.99M; is at least 0.8\/N, if such an index i € [\/N] exists.
Otherwise, let M = M.

Lemma B.1. For some sufficiently large absolute constant C, the following holds. There is an algo-
rithm (Algorithm 2) that takes a parameter § in (0,1), a positive integer k and N > C ((kd)¥ log 1/5)0
i.i.d. examples from a k-tame distribution D over R%. The algorithm runs in time poly(N) and
with probability at least 1 — § the outputs an m X m symmetric positive-semidefinite matrizc M that
for every degree-k polynomial p satisfies

2 B [0 <5 Mp< 1o E [(p(x))7]
Proof. The run-time bound of poly(/V) is immediate. We now argue that the algorithm succeeds
with probability at least 1 — & when the absolute constant C' is large enough. The matrix M
is symmetric positive-semidefinite because each matrix M; = Ex.g, [(x®k)(x®k)T] is symmetric
positive-semidefinite by construction.

Let M denote the matrix Ex.p [(x®%)(x¥*)T]. Clearly Eg,[M;] = M, and we will use the
second moment method to bound the deviation, but first we observe that with probability 1 for
every polynomial p in the nullspace of M we also have p’ Eg,[M;]Jp = 0. Indeed, this is the
case because p! Mp = Ex.p(p(x))? means that p(x)? = 0 almost surely for x ~ D. Thus, with
probability 1 this holds for a collection of basis elements for the nullspace of M, and consequently
for the entire nullspace of M.
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Now, we bound the deviation between M and M; for polynomials p for which p” Mp > 0. Let m/
be such that m —m’ is the dimension of the nullspace of M. Then there is a collection {ry,--- , 7y}
of degree-k polynomials that satisfy

1 ifj=y

E |ri(x)ri(x)] =

XND[ )y (x)] {0 otherwise.

(Such collection necessarily exists via the Gram-Schmidt process.) Overall, we have for any polyno-

mial p

2 2
paip= B 06)? = 3 (B peanal) = Y (B o]} »

x~D x~D
Therefore, denoting {eq,- -+ , e, } the m basis vectors in R™ we have
[ Ex~p[p(x)ri(x)] ]
Ex~p[p(x)r2(x)]
MY2p = |y plp(ox)r ()] M7 D e | =D i (B.1)
0 7j=1 7
- 0 -

(Where M~1/2p is defined to be the Moore-Penrose pseudo-inverse of M/2 if M is singular). We
now bound the expected Frobenius norm:

Bfr- a2 J=p | 3 (o (1w ) )| =
' " Ligre{ - m)
5 (B 0ors 0 B o) = o Y Ve 0or () (52

3,3’ J1,52€{1,--,m'}

From the k-tameness of distribution D, and the fact that Exp[(rj(x))?] = 1 we see that
Varep(r; (x)rj (x) < E_[(r;(x)r;(x))?] =/ P [rj(x)r(x))? > B*| 2B dB <
X~ 0
2% + / T B9 4 — 0(kOW). (B.3)
o2k

Thus, combining Equation B.2 and Equation B.3 and recalling that M is an m x m matrix with
m < dF we get a bound for the expected spectral norm of M — M;:

E|

o < g -]

O(k)
Wi (dk)

e
VN
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Recalling that N > C ((k‘d)k log1/ 5) C, we see that for a sufficiently large absolute constant C' we can
use the Chebyshev’s inequality to conclude that with probability at least 0.9 we have | M — M;||, <
1073, which implies that

(1-10"%)M; = M = (1+107%) M;.

Recalling that 4 is in {1, - -, VN } and using the standard Hoeffding’s inequality, we see that when
C is sufficiently large, with probability at least 1 — 4, the above holds for at least 0.95 fraction of
indices 4. Call such indices good. For any pair of values i; and is of good indices we will have

M 1+1073
My, < ——— < M; ————
T (1-10"3) "1 -10"3

Thus, the algorithm will will successfully terminate and output a value M;,. Since 100]\4 =M, =

%%M for at least 0.8 fraction of values of 7, this has to hold for at least one good index i (because

at least 0.95 fraction of all indices are good). Thus,

99 99 101 101 M
1-1073 M — M, <My R —M; X — —————,
( )100 D= 100 %~ 100 100 (1 —10-3)
which implies the correctness of the algorithm. O

The following lemma allows one to show that as long as a distribution D’ is filtered using a
low-VC-dimension function f, the moments of the resulting filtered dataset approximate well the
moments of the distribution one obtains by filtering the distribution D’ using f.

Lemma B.2. Let D be a probability distribution over R% and let F be a function class over
R¢ taking values in {0,1}, such that for every f in F we have f(x) = 0 for all x such that

. max( )<1(p(x))2 > B. Let D' be a probability distribution over R% and S be collection of N i.i.d.
Pt Exop p(x)<
samples from D', then with probability at least 1 — § we have

~ x)(p(x))?] — <) (n(x)2
ferF, p o?ltllle)gree kst | N Z [f( )(p( )) ] E [f( )(p( )) ]
Ex~p(p(x))?<1

x~S

log N . 1\Y*
2k i
o) (\/B (Vd ~ log 5)

Proof. Let p be a polynomial of degree k s.t: Ex.p(p(x))? < 1 and let f be a function in F. We

recall that whenever f(x) # 0 we have . max( ( (x))? < B and we let A be a positive real
p: Ex~D P(X
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number, to be chosen later. We then have via the triangle inequality

E_[f@)p@)?] -~ E [f(2)(p()?]

z~S x~D’
B/A

At

<

@) Lja<p@<grnal = B [F@) @) Liape)<@+val

IINES[ ( (JA y+1)AD] —
- B [(f( =0 (b€ (50,6+0a] )| | @)

The function that maps x to 1 if and only if f(x) = 1 and p(x)? € (A, (j + 1)A] is a logical AND
of a function in F and two polynomial threshold functions of degree at most 2k. Thus, by Fact A.5
the VC dimension of these functions is at most O(d** + V) < O(d?* - V). Therefore, we can use
Fact A.6 together with the inequality above to conclude that with probability at least 1 — §

E\/Vd%logNlo 1>
A N &5/

z~S

B/A

A+BY

wp E_[/0(00)?) - E [f60(p)?]| <A+0(

feF, p of degree k s.t: x~S x~D’
Ex~p(p(x))*<1

Finally, taking A to minimize the expression above, we recover our proposition. O

C Certified Learning with Distribution Shift, Omitted Details

C.1 PQ Setting
C.1.1 General Halfspaces
We now prove Theorem 4.3, which is restated here for convenience.

Theorem C.1 (PQ Learning of Halfspaces). For any €, € (0,1), there is an algorithm that PQ
learns the class of general halfspaces with respect to Ny in the realzzable setting, up to error and
rejection rate € and probability of failure § that runs in time poly(dlog( ,log(1/9)).

Proof. The algorithm does the following for sufficiently large universal constants Cy,Co, C3 > 1.
1. Compute the values Prxy)ws,,yn [y = 1] and Prc s [y = —1].

2. If either of these values is at most €“2/C1, then let g be the selector of Theorem 3.1 with
inputs €, k = C3log(1/e), o = €/2 and access to samples from D and D’ and h the constant
hypothesis for the value in {—1,1} with which the labels are most frequently consistent.

3. Otherwise, let w and 7 be as in Proposition 4.4 from some sufficiently large labeled sample
from the training distribution. Let h(x) = sign(w -x+7) and for W = {(w,7) : ||[w — w2 <
(e/d)2 /Oy, |T—7] < (¢/d)®? /C1}, let g(x) (where g : R — {0,1}) be 0 if and only if there are
(W1, 71), (W2, 72) € W such that sign(wy-x+71) # sign(wa-x+72) (which can be implemented
via a linear program with quadratic constraints).
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4. Return (g, h).

Note that when step 3 is activated, then, with high probability, we have that the bias 7* of the
ground truth is 7% = O(y/log(1/€)) and, therefore, the samples required to apply Proposition 4.4 is
polynomial in 1/e. From Lemma 5.7 in [KSV24b|, we then have that the selector g has Gaussian
rejection rate €, as desired. The accuracy guarantee for the case of step 3 is given by the guarantee
of Proposition 4.4 combined with the fact that, with high probability, h agrees with the ground
truth anywhere outside the disagreement region (i.e., for all x such that g(x) = 1).

When step 2 is activated, then the rejection rate is bounded by Theorem 3.1 and the accuracy
guarantee is implied by the fact that 7% > /Calog(1/€)/C (for some universal constant C' > 1)

and the following reasoning, where we suppose, without loss of generality that h(x) = 1.
P b)) #sign(w™ x4+ 77),g(x) =1] < P [l #sign(w” x+77), g(x) =1]
XN'D.tXcst Dtcst

< Bl x> g0 = 1)

Ey . mst[(w*-x)zkg(x)]
é DX (T*)2k
_ 400 (2C3log(1/0))"
= e (Goloa(1/)JCFF

where we used Markov’s inequality and the guarantee from Theorem 3.1. Suppose that Cs is

sufficiently larger than C3 and Cj is sufficiently large. Then we have that % (1/2)F <

€3, which gives that Pyoptest [h(x) # sign(w* - x + 7%),g(x) = 1] < 4003 /e < ¢ for sufficiently
large Cs. O

In the proof of Theorem 4.3, we use Proposition 4.4. However, the original version of Proposi-
tion 4.4 worked for constant probability of failure. We show the following general lemma which can
be used to amplify the probability of success in logarithmic number of rounds.

Lemma C.2 (Parameter Recovery Success Probability Amplification). Let X' be a vector space

and || - || some norm. For some w* € X and € € (0,1), suppose that an algorithm A outputs with

probability at least 0.9 some w € X with |w* —w|| < e. Then, for any § € (0,1), if we run

.A for T = O(log(1/6)) independent rounds receiving outputs W = {w',w? ... . wl'}, and take
= arg Minwew Y _wicp [|W — W'||, then we have ||[W — w*|| < 5¢, with probabzlzty at least 1 — 6.

Proof. Let W be the subset of W corresponding to w such that |lw—w*|| <e let W =W\ Wg
and note that due to a standard Hoeffding bound, [Wg| > 3L, with probability at least 1 — 4§, for
T = Clog(1/6), where C is a sufficiently large universal constant.

Say that ||[w —w*| = a. Then, by the triangle inequality, ||Ww —w'|| > |w — w*|| — ||[w* —w'|| >
a — ¢ for any w' € W and we have the following

= Iw-wi= > [w-w|+ > [¢-w|

w/'eW w'eWa w/eWp
> Walla—o)+ > |[Ww—w|
w'eWp
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Let w € Wg. We have |w —w/|| < |[|[w —w| + [|[w—w| < ||lw—w*|+ [[w*— W[+ |w—-w] <
€+ a+ ||[w—w|, for any w € W. Therefore, in total, we have

A= Y wwl= Y wewl+ Y w

w/'eW w/'eWg w'eWp
<2 Wl + (e+ )W+ Y [[W—w|

w/'eWp
By the definition of w, we have that A-A < 0. With probability at least 1 — §, we have

0>A—A>|Wgl(a—3€) — (a+e)(T — [Wgl)

3T T
o De
>T(= ——
- (2 2 )
Therefore, a < 5e, which concludes the proof. O

C.2 Adversarial Setting

Our results on realizable PQ learning extend to the following related model, where the evaluation set
is formed by some adversary. In the following definition, we consider each element of the considered
sets to be a separate object (even if the corresponding value is the same with some other element
of the set).

Definition C.3 (Tranductive Learning [GKKM20]). Let F be a concept class over X C R? and D
a distribution over X'. The algorithm A is a transductive learner for F with respect to D, up to
error vy, rejection rate 1 and probability of failure § if the following hold. If the algorithm A has
access to labeled examples from the distribution D labeled by some concept f* € F and receives N
unlabeled samples S that are formed by some adversary who first draws N i.i.d. unlabeled samples
Siiq from D and then corrupts any number of elements of Sjq and substitutes them by the same
number of arbitrary points of X', then A outputs w.p. at least 1 — 9 some set Sg; and h : X — {£1}
such that:

(a) (accuracy) The error after filtering is bounded as Z(X,y)ESﬁlt 1{y # h(x)} < yN.
(b) (rejection rate) The rejection rate of i.i.d. examples is #{x : x € Sjig N (S \ Sar)} < nN.
In particular, we have #{x:x € S\ S} < 2nN.

Our proofs of Theorems 4.3 and 4.6 generalize in this setting exactly analogously, with the only
difference being the use of Theorem E.1 in place of Theorem 3.1 for the outlier removal process.
The learning phase is not different, since the learner has sample access to clean examples from the
labeled training distribution.

For the proof of Theorem 4.3, we either run the outlier removal process to filter the evaluation
dataset in order to ensure that it is concentrated in every direction (in the case when almost all
the training examples have the same label) or, if the training examples are indeed informative, we
reject only the examples that fall inside the disagreement region. The arguments hold analogously.
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For the proof of Theorem 4.6, we filter the evaluation dataset by using degree k outlier removal
(see Theorem E.1) and run polynomial regression on the training distribution to find a hypothesis
that has low error on the remaining points of the evaluation dataset. Once more, the analysis is
analogous to the one for PQ learning.

C.3 Tolerant TDS Learning

We now prove Theorem 5.3, which we restate for convenience.

Theorem C.4 (Tolerant TDS Learning via Sandwiching). Fore, 8,6 € (0,1), let X C R? and (D, F)
be an (%,%,k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal constant
C > 0. Then, there is an TDS learner F with respect to D up to error O(\) + 20 + €, tolerance 0
and probability of failure § with sample complezity m + poly(L(kd)*log(1/8)) and time complexity

poly ("2 (kd)" log(1/9)).

Note that the notion of tolerance in property testing was introduced in [PRR06] and has been
the focus of many works including [FF05, VV11, BCET19, RV20, CJKL22, CFG*22, BH18, CP23].
However, over R? all existing tolerant distribution testing algorithms (such as [VV11]) have run-
times and sample complexities of 224 which greatly exceeds our run-times.

Proof of Theorem 5.3. The algorithm first runs the outlier removal process of Theorem 3.1 with
parameters « < 1, € «+ €/C, 6 «+ 0/C and k «+ k, to receive the selector g : X — {0,1}.
Using a large enough sample from the test marginal D5, the algorithm estimates the quantity
Pyptest [9(x) = 0] and rejects if the estimated value is larger than 26 + % Otherwise, it runs
the following box-constrained least squares problem, using at least m labeled examples Styain from
Dtrain where ¢t = d* and B is the value specified in Definition 4.5.

nllgn E(xvy)'\'sbrain [(y - p(x))2]

s.t. p has degree at most k£ and coeflicient bound B

Let p be the minimizer of the above program. The algorithm accepts and returns classifier h(x) =
sign(p(x)).

Soundness follows from the observation that Py ,)ptest[y # h(x)] < Pypgst [g9(x) = 0] +
P(x y)~prest [y # h(x),g(x) = 1] and the properties of g according to Theorem 3.1, via an analysis
which is analogous to the one used for Theorem 4.6, but with the difference that, since the parameter
a of the outlier removal process was chosen to be 1, the value P(y ) ptest[y # h(x),g(x) = 1] is
bounded by O(A+ &) (instead of O(%)) The term Py _presc[g(x) = 0], when the test has accepted,
is bounded by 26 + €/2.

For completeness, we assume that dpy (D, DE™) < 6 and observe that due to condition (b),
Py piest[9(x) = 0] < Pxoplg(x) = 0] + drv(D, D) < 2d1v (D, DE™) + & < 20 + &. Therefore,
the tester will accept with high probability. Furthermore, via Remark 3.3 our tolerant TDS learning
algorithm will also with high probability accept any distribution D’ that is 1/2-smooth with respect
to D. O
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D Applications to Other Learning Settings

Our techniques provide new results in other classical settings as well. In particular, we discuss appli-
cations on tolerant testable learning as well as robust learning. In total, our results for polynomial
regression can be summarized in Table 3.

Concept class F Training Marginal D Run-time

Standard Gaussian d6 (5 /02)

1 Intersections of ¢ halfspaces Uniform on {1}

: Standard Gaussian O(4446 /o2
2 Functions of ¢ halfspaces Uniform on {+1}4 d
3 Decision trees of size s Uniform on {:I:l}d O log(s/a))
5¢
4 Formulas of size s, depth ¢ Uniform on {£1}¢ dv/sOlog(s/0)) =

Table 3: Our learning results parameterized by o, which captures the required precision of the
Lo-sandwiching approximators in each of the settings: (1) agnostic PQ learning with error O(%) +e
and rejection rate 7, where o = en, (2) agnostic #-tolerant TDS learning with error O(\) + 26 + ¢,
where o = ¢, (3) f-tolerant testable learning with excess error 20 + ¢, where o = €? and (4) robust
learning with nasty noise of rate 7 up to error 41 + €, where o = €2. The probability of failure in
each of the cases is some considered constant and 7,6,¢ € (0,1).

D.1 Classical Testable learning

The following theorem gives the first dimension-efficient algorithms for tolerant testable learning
(see Definition A.16) for various important concept classes.

Theorem D.1 (Tolerant Testable Learning via Sandwiching). For €,0,6 € (0,1), let X C R¢
and (D, F) be an (%, %, k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal
constant C > 0. Then, there is a tester-learner for F with respect to D up to error opt + 260 + ¢,
tolerance 8 and probability of failure § with sample complexity m + poly(%(k‘d)k log(1/6)) and time
complexity poly(Z(kd)*log(1/6)), where opt = miner err(f).

Our plan is to once more make use of the outlier removal Theorem 3.1. In this case, is suffices
to run tests on the marginal distribution that certify the existence of a low-degree polynomial
approximator for the unknown ground truth concept (achieving optimum error), due to the following
classical result from [KKMS08| (which has been used for non-tolerant testable learning in [GKK23]).

Proposition D.2 (£ regression guarantee, [KKMSO08|). Let F be a concept class over X where
X C R? and Dyy be any distribution over X x {£1} where the X-marginal of Dyy is D'. For
e € (0,1) and k € N, suppose that for any f € F there is some polynomial p over X of degree at
most k such that Exp/[|f(x) — p(x)|] < €. Then, there is an algorithm (L1 polynomial regression)
that, upon receiving a number of i.i.d. samples from Dyxy, outputs with probability at least 1—4 some
hypothesis h : X — {£1} with Py ) p .y, [y # M(z)] < opt+ O(e), where opt = minye F err(f; Dry).
The algorithm uses poly(d¥, )log(1/8) time and samples.
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The tester of Theorem D.1 does the following for some sufficiently large universal constant C > 1.

1. Runs the outlier removal of Theorem 3.1 with parameters o < 1, € « ¢/C, 0 + §/C to
receive a selector g with the guarantees specified in Theorem 3.1.

2. Estimates, using unlabeled samples form Dyy, the value of Py [g(x) = 0] and rejects if the
estimated value is greater than 26 + 2¢/C.

3. Otherwise, the tester accepts and runs the algorithm of Proposition D.2 with fresh samples
from the distribution Dyy that corresponds to the conditioning of Dyy to g(x) = 1, with
parameters € < ¢/C and k < k.

Without loss of generality, we have that 20 + ¢ < 1/2 (otherwise, we may output a random
hypothesis). This implies that the runtime does not change asymptotically by conditioning on
g(x) = 1 (which can be done through rejection sampling).

For completeness, we observe that, by condition (b), Pxwplg(x) = 0] < drv(D,D’') + &
and hence Pxpr[g(x) = 0] < 2drv(D,D’) + §. By a standard Hoeffding bound, we have that
the estimated value for Py.p/[g ( ) = 0] (obtained using unlabeled samples from the marginal D’ of
Dyy) is at most 2dy (D, D’) —|— < and the tester will, with high probability accept if drv(D,D’) < 6.

For soundness, we want to ShOW that, upon acceptance, for any f € F, there is a polynomial
p of degree k such that EfoDHf( X) — (X)H < O(§&)- Then, by Proposition D.2, we have that
the output h satisfies err(h; Dyy) < min e err(f; ny) + O(e/C). Moreover we would also have
err(h; Dxy) < Pypr[g(x) = 0] + Pypr[g(x) = 1]err(h; Day), by the law of total probability. The
second term of the sum can be bounded as Pyp[g(x) = 1]err(h; Dyy) < minjer Prop[g(x) =
UP(x,y)~Dry [y # h(x)|g(x) = 1] + O(¢/C) = opt + O(¢/C). Overall, the bound on err(h; Dxy)
would then be opt + 26 + €, because after acceptance, Py.p/[g(x) = 0] is bounded, with high
probability, by 20 + O(¢/C).

It remains to show the polynomial approximation bound. Let f be some element of F and
Pup, Plow the corresponding %-£2 sandwiching polynomials. If D is the X-marginal of D xy, we have
the following, by applying the sandwiching property, Jensen’s inequality and the definition of D.

(Eppllf (%) = pow(®)[])* < (B,

EXND[( p(X) — Prow(x

Exp [(Pup (%) — Plow (x))*9(x)]
Pxpr[g(x) = 1]

By applying condition (a), as well as the fact that Pxpr[g(x) = 1] > Q(1) (since Pxpr[g(x) = 0]),
we have

(Expllf (%) = prow(3)[])* < O(1) - Exp[(pup (%) — prow(x))?] < O(¢?/C)
Therefore, indeed, E__5[|f(%x) — plow(X)|] < €, which concludes the proof of Theorem D.1.

D.2 Robust Learning

We also provide the following result for learning with nasty noise (see Definition A.17). While
there are algorithms for learning in the nasty noise model that are more efficient than the one we
analyze here (see [DKS18|), we achieve an error bound that is close to the optimal: we only incur
a multiplicative factor of 2 from the information theoretically optimal bound of 27, where 7 is the
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noise rate (see Definition A.17). For intersections of halfspaces, for instance, to the best of our
knowledge, all prior known dimension-efficient algorithms incurred an error of Q(,/n) for learning
under nasty noise of rate n (see [KKM18, DKS18|).

Theorem D.3 (Learning with Nasty Noise via Sandwiching). For e,n,6 € (0,1), let X C R¢
and (D, F) be an (%, %, k,m)-reasonable pair (Definition 4.5) for some sufficiently large universal
constant C > 0. Then, there is a robust learner for F under nasty noise of rate n with respect to
D up to error 4n + € and probability of failure & with sample complexity m + poly(L(kd)* log(1/6))
and time complezity poly (2 (kd)* log(1/9)).
Proof. We follow a very similar approach as the one for Theorem D.1. The main differences are two.
First, instead of the outlier removal of Theorem 3.1, we apply the outlier removal of Theorem E.1,
which works in the adversarial setting. Second, in the nasty noise setting, we assume that the noise
rate is bounded and hence we do not need to run any tests in order to obtain the desired guarantees.

Recall that in this setting, the learner receives a sample S of size N with S = Siig U Sadv \ Srem,
where Sjiq is an i.i.d. labeled sample drawn from D and labeled by some f* € F, |Saqv| = |Srem| <
NN, where Sy is an arbitrary subset of Sjiq and S,qy is an arbitrary sample of size Syenm (i-e., the
adversary removes the samples in Syen and substitutes them with adversarial samples Suqy ).

The algorithm runs the outlier removal of Theorem E.1 on S with parameters a < 1, € < ¢/C,
d < §/C and k < k to receive a filtered set of samples Sg); such that |Siq \ Shie| < [Saav| +€N/C <
nN +¢eN/C and also + > xSan (p(x))? < 200 Exp[(p(x))?] for any polynomial p of degree at most
k. Then, it runs polynomial regression of degree k with coefficient bound B (given by Definition 4.5)
over the set Sgy; and outputs h(x) = sign(p(x)) where p is the output of the polynomial regression
routine (of Proposition D.2).

We aim to bound Py.p[f*(x) # h(x)]. By uniform convergence, we have a bound of the form

]PXND[f*(X) # h(X)] < P(X,y)NSiid [y # h(X)] + 6/C( < ]P(x,y)NS[y # h(X)] +n+ 6/C' We further

bound the quantity Pey)sly # h(x)] < Pocy)nsly # h(x), (x.3) € gl + 25 < Pcyosly #
h(x), (x,y) € Sxt] + 2n.

We may apply Proposition D.2 to show that P ,ygly # h(X), (X,y) € Sai] < n+ O(e/C), as
long as the following is true for some polynomial of degree at most k.

v 310 - pl < 0(/C)

(xvy)esﬁlt

Due to the sandwiching property, this is true for the sandwiching polynomial pyoy for f* (which
exists since f* € F — see Definition 4.5). To show this, we may follow an analogous approach as
the one for Theorem D.1. O

E Outlier Removal Procedure

We now give the proofs of our outlier removal theorem in the adversarial, as well as the PQ setting.

E.1 Outlier Removal in the Adversarial Setting

We present our outlier removal result in the adversarial setting:
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Theorem E.1. There exists an algorithm that satisfies the following specifications for some suffi-
ciently large absolute constant C'. The algorithm A is given parameters €,c,d in (0,1], a positive

C
integer k, and a pair of size-N sets Sp and Spr of points in R, where N > C (M log %) . The

€
algorithm A then accepts a subset Sqccepr C Spr, Tejects a subset Speject = Spr \ Saccept and runs in
time poly(N).
Let the set Sp in RY of size N be sampled i.i.d. from a k-tame probability distribution D, and
let Spr be generated by:

1. Sampling a size-N i.i.d. set Scieqn from D.

2. Adversary corrupting an arbitrary subset of elements in Scjean. Formally, Spr = Suncorrupted U
Sadversarial; Where Sypcorrupted %5 an adversarially chosen subset of Sciean and Sqdversarial 5 @
set of adversarially chosen points in R of size N — |Suncorrupted|-

Then, with probability at least 1 — 0, the algorithm A given the sets Sp and Spr will accept a set
Saccept © Spr satisfying the following two properties:

e Degree-k spectral %O-boundedness: For every polynomial p of degree at most k satisfying

E [(p(x)*] <1,

it 1s the case that 1 900
Z 2
— < —
N p(x) T«

xESaccept
o (o, ¢/2)-validity: The set Sreject N Suncorrupted has a size of at most a|Sadversariall + 5N
We describe our algorithm for Theorem E.1 (restating Algorithm 1):
1. Input Sets Spr and Sp of size N in R?, parameters €, 6 in (0, 1).

2. M « ESTIMATE-MOMENTS (Sp, k,6/10). (See Lemma B.1 for further info).

3. By« 2% and Ag + 200/ d2k 18N 150 1

£ Sfhierea = S\ {ximax, o (0(x))? > Bo}.
5. While max ry7 o) (% erséltmd (p(x))2) > 50 (14 Ay By).
(a) p; « arg max, orycq (% ersé“ered (p(x))2>

(b) Set 7; to be the smallest value of 7 subject to:

> 10 < P [By > (pi(x))* > 7] + A0>

N{X € Slz’lltered : (pi(x))2 > T}

(6% x~Sp

(C) Sizi—lzired — Siélltered \ {X : (pi(x))2 > Ti}
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(d) i+i+1
6. Output (Saccepta Sreject) = (Sfiiltered7 Spr \Séltered)‘

Note that the procedure ESTIMATE-MOMENTS produces a good spectral approximation for
the degree-k moment matrix of D. Formally, Lemma B.1 says that the matrix M is symmetric
positive-semidefinite and with probability at least 1 — ¢§/10 it is the case that every degree-k poly-
nomial p satisfies.

1—90 E [(p(x)*] < p"Mp < % E [(0(x))*): (E.1)

E.1.1 Efficient implementation

We now explain how to execute certain steps of our algorithm in polynomial time:

e The quantity max .riz, Sl(p(x))2 equals to the largest eigenvalue of the matrix
(M)—1/2 ((X®d)(x®d)T> (M)—1/27

which can be computed in polynomial time in the dimension m of the matrix. (Note that if
the matrix M is not full-rank, then the above is still true if long as (]\/4\ )_1/ 2 is replaced by
the Moore—Penrose pseudo-inverse of (]\/4\ )1/ 2 which again can be computed efficiently. Also
note that we used the fact that the matrix M is symmetric.)

e The quantity max ry (% erséuered (p(x))2) equals to the largest eigenvalue of the

matrix

1

(M)~1/? ST EEHT ) (M),

T
xesﬁltcrcd

which can be computed in polynomial time in the dimension m of the matrix. (Again, if
the matrix M is not full-rank, then the above is still true if long as (]\/4\ )_1/ 2 is replaced by
the Moore—Penrose pseudo-inverse of (]\/4\ )1/2. Also note that we again used the fact that the
matrix M is symmetric.)

e The polynomial p; < arg Max, . rir,< <% erséltered (p(x))2> can be computed by taking

the leading eigenvector of (]\/4\)_1/2 (% ZXGSER d(x@)d)(x‘g)d)T) (]\/4\)_1/2 and multiplying this

vector by (]\/4\ )~1/2 (again, one takes the Moore-Penrose pseudo-inverse if M is not full-rank).

e The value of 7; can be computed in time poly(N) by considering all the candidate values 7
of the form (p;(x))? for all elements x in Sk, .4, and setting 7; to be the smallest candidate
that satisfies the condition in the algorithm.

Note that to prove the run-time bound of poly(V) for the algorithm as a whole we will need to
bound the total number of iterations in the main while loop, which is done in Section E.1.3.
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E.1.2 Correctness analysis

We now proceed to proving first the correctness of the algorithm in Section E.1.2. Then, in Section
E.1.3 we show the required run-time bound.

In this section we show that with probability at least 1 — § the algorithm A satisfies the two
correctness guarantees in Theorem E.1. We begin by arguing that with probability at least 1 — §
the sets Sp and Sgjean are well-behaved.

Claim 1. Let the set S be formed of N i.i.d. samples from a k-tame distribution D, where N >
c
C (kd)* log & and C' is a sufficiently large absolute constant. Also, let By = 4% Then with
)

€ €
probability at least 1 — 6/10 the set S satisfies the following properties for any polynomial p over RY
of degree at most k and any pair of values of 7,170 in R :

{xeS: m>(p(x)* > 7} 2 d?*log N . 1
— > < e _
N x?p['fg > (p(x))* > m1]| < 100 N log 5 (1)
1 243k 3e
—|94xeS: max P (x))? > HS— 2
N ‘{ p’ of degree k: EXND[(p’(x))2]§1( ( )) € 4 ( )
LE [0 - Lppp<n) <2 E [(p(x))7] 3)

Proof. Since (p(x))? is a polynomial of degree at most 2k, the every function of the form {1, >(px))2>r)
is an AND of two degree-2k polynomial threshold functions. Since degree-2k polynomial threshold
functions have a VC dimension of at most d2* + 1, we can use Fact A.5 and Fact A.6 to conclude
that property (1) holds with probability at least 1 — ¢/30.

Now, we show that property (2) is likely to be satisfied. Then there is a collection {ry, - 7/}
of degree-k polynomials that satisfy

E_[r;(x)ry ()] = {1 ity =7

x~D 0 otherwise.

(Such collection necessarily exists via the Gram-Schmidt process.) We let M denote the matrix
Eyop(x2?)(x®) T, Additionally, we consider a basis {g1,- - , gm_m} for the nullspace of M. Now,
for x sampled from D we have:

e For a specific index j, we have Exp[(rj(x)?] = 1 and therefore by Markov’s inequality we
have "
2d €
2
En {“‘J‘(X)) = 7} == 5
e Each g; has Ex.p[(gj(x)?] = 0, and therefore Pxp[g;(x) = 0] = 1.

By union bound, all the events above take place for x sampled from D with probability at least

1 —mgzx > 1— 5. Via the standard Hoeflding bound, with probability at least 1 — d the events
above take place for at least § + 4/ 2—]\(,) log ? fraction of elements x in S. Since {r;} are orthonormal

with respect to M, every degree-k polynomial p’ satisfying Ex.p[(p/(x))?] < 1 can be decomposed
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as p/ = Z;’ZO o + Z?:om/ Bigi, where each «; is in [—1,1]. Therefore if the events above take
place for a point x, then

=0 2
—_—
m—m
/ 2
max X = max o 7» _|_ 0. (x <
o of degree k: (p( )) a1, €= 1,1] Z AR} Z: /Bzgz( ) ~
Ex~p|(p (x))?]<1 Bi,By_seR | =0 i=0

V2 k 2 3k
Mo~ !

S Gl | < 2 2 )
=0

from which Property (2) follows.
Finally, we remark that Property (3) holds with probability at least 1 — /30 as a consequence
of the more general Lemma B.2. O

Now, we proceed to argue that if all the properties in Claim 1 and Equation E.1 hold then
the algorithm A will satisfy the (a,€/2)-validity property. In other words, we show that the set
Saccept N Suncorrupted has a size of at most a|5adversarial| + %N The set Saccept N Suncorrupted consists
of two components:

e The elements in {x € Suncorrupted : MaAXp of degree r(p(x))? > Bo}, whose number is upper-
pT Mp<1
bounded by 2¢N/3 for the following reason. Equation E.1 implies that whenever p” Mp holds,

we also have Exp[(p(x))?] < 10/9 and since Suncorrupted is assumed to satisfy Claim 1, for

< 10 2d

at least 1 — 2¢/3 fraction of elements x in Syncorrupted We have (p(x ))? , which is less

than By.

e The elements in |J; ((Sﬁltered \ S{’iﬁired) Suncorrupted), the number of which is bounded by
2To‘|‘SYEJI(jl‘,ersarial| by the following claim.

Claim 2. Suppose the sets Sp and S jean Satisfy the properties in Claim 1. Then, for each iteration
i of the main loop of the algorithm, it is the case that

2a‘

‘(Sﬁltered \ ﬁltered) N Suncorrupted (Sﬁltered \ ﬁltered) N Sadversarial .

Proof. Since the set Suncorrupted 15 @ subset of the set Sciean, We have

|(Séltered \ Siz"i—liired) n Suncorrupted‘ < |(Sfiiltered \ Séﬁired) N Sclean| (EB)

Also, based on how the algorithm chooses the set Sié—li;ired and the parameter 7;, we have:

gi gitl 1 '
| ﬁltered}[ filtered! __ N {X c Slzﬂtered: (pi(X))2 > Ti} >

10 log N

1
— | P [By> (pi(x)? > 7] + 2004/ d 2T log < | .
. <XNSD[ 0 > (pi(x))” > 7i] + 200 N 0g5>
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but since Sp and Scjean satisfy Property 1 in Claim 1, we also have

logN 1
< B [Bo>(p(x) >+ 2004/ d2t 22 1og .
XS N %5

Combining the preceding two inequalities yields

%{Xesclean: BOZ( ( )) >TZ}

Sﬁltered \ Si?-ﬂtired {X € Sclean : Bo > (pi(x))2 > Ti} .

We argue that every X in (Shjoreq \ Shfiered) N Sclean satisfies Bo > (pi(x))? > 7;. Indeed, if x belongs

t0 Shiiereqs it also belongs to SPy.. .4 and therefore (pi(x))? < BO((pZ)T]\/J\(pZ)) < By. It also has to
be that (p;(x))? > 7; because of how Sifl . is defined inside the algorithm. Thus, we have

7 i+1
Sﬁltered \ Sﬁltered

10
> — o ‘(Sﬁltered \ Sﬁltered) N Sclean

: ) i+1 : tatAy : 7 i+1 7 i+1
Since Sﬁltered \ Sﬁltered is the dlSJOlIlt union of (Sﬁltered \ Sﬁltered) n Sclean and Sﬁltered \ Sﬁltered) N

Sadversarial We further conclude that

10 . .
> (1) | Shure \ Sie) 1 St

i i+1
' (S filtered \ Sﬁltered) N Sadversarial

Finally, recalling that Suncorrupted 15 contained in Sgjean, We conclude the proposition. O

Overall, the above claim concludes the proof of (a,€)-validity. Now we proceed to proving the
spectral %—boundedness.

Claim 3. Suppose the algorithm terminates and produces a partition (Sqccepts Sreject) and the matriz

M satisfies Equation E.1. Also, suppose that C exceeds a certain absolute constant. Then, for every
polynomial p of degree at most k satisfying

E [(p(x)?] <1,

x~D
it 18 the case that ] 100
D (E4)
«Q
Xesacc&pt

Proof. Since the matrix M satisfies Equation E.1, we have pT]\/i p < 11/10 and since the main while
loop of the algorithm has terminated, for the final value i,,,x of 7 it is the case that

1 2 11 50 logN o 1
¥ > ((x)? < <5 <1+200 d?*F——log = By |

T
xesﬁltcrcd

C
Substituting By = *2— and N > C <(kd) log 6) , we see that the inequality above yields Equation

E.4 when C exceeds a large enough absolute constant. O
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E.1.3 Run-time analysis

We now prove the run-time bound of poly(NN). Since each step of the algorithm takes time
poly(Nd*/e) = poly(N) (see Section E.1.1), in order to obtain a required run-time bound, it is
enough to show that the number of iterations of the main while loop is at most N. We argue this
via the following claim:

Claim 4. Suppose the sets Sp and S jean satisfy the properties in Claim 1 and the matriz M satisfies

Equation E.1. Then, for every i < imax, we have % Y oxegitl (pi(x))? < %? (1 + 200\/d2klmgTN log% . 4d:)k>

filtered

Indeed, since in i-th loop of the algorithm we have

1 5 _ 50 logN . 1 4d%
= ; | 1+2004/d*—=—1log — - ——

xesi’%ltcrcd
the claim above implies that necessarily Sié—li;ired # Skiiereq» Which means that |Sil;i—li£ire gl < 1Skiereal —1-
Therefore the total number of iterations imax is upper-bounded by N. Now, we prove Claim 4.

Proof of Claim 4. Since every element x of Siéﬂired satisfies (p;(x))? < 7; and the set Sigﬂired is a
subset of Sgy;.eq We have

o0

% > (Pz'(l’))2=/_0%

41 2
{.’L’ € Sf%‘l—ltcered : (pl(x)) > T}
xesé;lrtlred =

/Ti 1 dr < /Ti 1
— T < —
7=0 N 7=0 N

Now, recall that 7; is the smallest value of 7 subject to:

10 2 | o log N 1
> > (p: 297 .
>~ <x~]P;‘D [Bo > (pi(x))” > 7] + 2004/ d N log 5

Therefore, for all values of 7 smaller than 7; we have

10 logN 1
— | P [By> (pi(x))? 2 2k log <
< <x~sD[ 0 2 (pi(x))” > 7] + 2001/ d** —-— log 5>,

which combined with Equation E.5 implies

dr =

{.’L’ € Siéi—lzired : (pl(x))2 > T} {‘r € Slzﬂtered : (pl(x))2 > T} dr. (E5)

{X € Slz’lltered : (pi(x))2 > T}

N

{X € Séltered : (pi(X))2 > T}

N

5 Y )P s

xesé‘lﬁircd
10 log N 1 0
— 2 2= 1log = | 7; P [By > (p; 2 dr | =
- (( 004/ N og5>7+/T:0mNSD[ 0> (pi(x))” > 7] T)
log N 1 9
((200\/% ~ log5> it E [pi(@) -1x<Bo]> (E.6)
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Additionally, since Sp is assumed to satisfy property (3) in Claim 1, and M is assumed to satisfy
Equation E.1, we have

E [(pi(x)? Lpme<n,) <2 E [(pi(x))?] < (E.7)

x~Sp x~D 5

Combining Equation E.6 and Equation E.7 we get

1 o 10 | o log N 1 11
N g (pi(x))” < " <<200 d N log 5) T + 5)

i+1
xesﬁltcrcd

Recall that Sfii—liired is a subseﬁ\ of Sgltered and therefore for every element x of Sfii—liired it is the
case that (p;(x))? < B - (p;)"M(p;) < B, which combinded with the definition of 7; implies that

7 <B= @. Substituting this above allows us to conclude the claim. O

E.2 Outlier Removal in the PQ setting
We restate Theorem 3.1:

Theorem E.2. There exists an algorithm that, given sample access to an arbitrary distribution D’

over RY, sample access to a k-tame probability distribution D over R?, parameters e, o, 8 in (0,1),
(kd)*

€

€

k
and a positive integer k, runs in time poly < log %) and outputs a succinct poly <(kd) log %)-

time-computable description of a function g : R — {0,1} that satisfies the following properties with
probability at least 1 —§:

e Degree-k spectral %O-boundedness: For every polynomial p of degree at most k it is the

case that
200 2]

xiED' [(p(x))29(x)] < o xFD[(p(X))

o (a,€)-validity: we have

P [g(x) = 0] < a distpy(D/, D) + <,
x~D 2

which in particular implies that Py .pr[g(x) = 0] < (1 + «)distry(D’, D) + €/2.

We also restate Algorithm 1 as follows:

. C
1. Draw sets Sp and Spr of N = C' <(kdsz log %) samples from distributions D and D’ respec-

tively, where C' is a sufficiently large absolute constant.

2. Run the algorithm of Theorem E.1 on the input Spr. Set imax to be the number of iterations
of the main loop in the algorithm of Theorem E.1, and store the polynomials {p;}, values {7;}
computed at each iteration of the main loop, as well as the matrix M.

3. Output the function g : R — {0,1} that does the following given an input x in R%:
(a) If max, of degree k(P(x))? > Bo, then g(x) is defined to be 0. (See Section E.1.1 to see

pT Mp<1
how to compute this quantity in time poly(N).)
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(b) If for some i it is the case that (p;(x))? is greater than 7;, then g(x) is defined to be 0.
(c) Otherwise, g(x) is defined to be 1.

It is immediate from Theorem E.1 that the algorithm above runs in time poly w log %) with

probability at least 1 — . Furthermore, we also see that the function g can be described using

k
poly <(kd2 B log %) bits and can be computed using this description on a given input x in time

poly (@ log %)

We need the following claim bounding the number of iterations in the algorithm of Theorem
E.1, proof of which is deferred until the end of this section. We remark that for Theorem E.1 we
bounded the total number of iterations by N, but in this section we will need a bound that depends
only on d, k and € and not on N.

Claim 5. If the set Sp satisfies the condition of Claim 1, then the number of iterations imax of the
main while loop in the algorithm of Theorem E.1 satisfies imax = O (k:dk log(Bod)) .

We now proceed to use Claim 5 to argue the spectral %O—boundedness and («, €/2)-validity. As
the first step, we show the following:

Observation E.3. There exists a function class G with a VC dimension of at most O (imax d*F10g(imax )),
such that all possible values of the function g belong to G.

Proof. The function g is necessarily a logical AND of at most i,x + 1 functions, one of which is the
function indicator of a ball in R% and the other iyax are logical OR-s of pairs of degree-2k polynomial
threshold functions. Combining this with Fact A.5 and Fact A.4 yields the observation. O

We start with arguing the (a,€/2)-validity, as well as the stronger condition of Remark 3.3
(implied by Equation E.9):

Claim 6. With probability at least 1 — §/2 over the choice of the sets Sp and Spr, we have

P lg(x) = 0] < adistry(D', D) + g (E.8)

Furthermore, for o > «/2 and any distribution D" that is 1/o-smooth w.r.t. D, (i.e. for any
measurable set T C R? we have Pryprlz € T] < L Pryopla € T)) it is the case that

P [9(x) =0] < % drv(D",D') + g (E.9)

x~D

Proof. With probability at least 1 — §/4 the set Sp satisfies the condition of Claim 1. Assuming
this, we have:

Lolox) =01} P [(mi(x)” 2 7] <
fo}”% [(i(3))? > 73] + imax <200\/W> . (E.10)
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where the last step used the premise that Sp satisfies the condition of Claim 1. Recalling that by Ob-
servation E.3 the function g belongs to a function class with VC dimension of O (iyax dO k) log(imax )),
and combining this with Fact A.6, we see that with probability at least 1 — 6/4

imax A2%) 10g (imax ) Jog N = 1
= > — — _
P lgx) =0] 2 x};@ [9(x) =0] - O (\/ N log 5

Recalling the definition of g, we see that for x in Sps, we have g(x) = 0 when for some iteration i,
the point z is in the set {x € Sk .oq @ (Pi(x))? > 7}, we conclude that

=0] >
P lg(x) = 0] 2
Tmax 7 . R 2 . ] O(k) )
> [{% € Shierea * Pi(¥)* > 7} \/ZmaXd 108 (imax ) log IV log + (E.11)
2 N N 4

Now, we recall that for every iteration ¢ we have:

10 2 log N 1
> - B . 2k Z
2 — <XQP’SD[(pZ(x)) > 7i] + 2004 [d* == log < |

{X € Si%ltered : (pi(x))2 > Ti}

N

and therefore:

— x~Sp
7
a [v=1 , , d?klog N 1
1—0 <i:EO N {X S Sflﬂtered : (pz(X))z > Ti} > + 2002max T log g (E12)

Thus, combining Equation E.10, Equation E.11 and Equation E.12 we get:

@ O(F) 1o
P lox) = 0] < < (xyp,[g<x>=0]) +o<imax \/%1@ (E13)

x~D

<distrv (D', D)+Px~p[g(x)=0]

(kd)*

C
We now the bound on 4,y from Claim 5, and recall that N = C ( . B log %) . Overall, we see

that for sufficiently large absolute constant C' the error term above is upper-bounded by €/10, so

X?D[g(x) =0] < 1% (distTv(D’, D) + XE”D[Q(X) = 0]> - % (E.14)

Rearranging the inequality above and recalling that o < 1, we conclude that Equation E.8 holds.
Finally, we prodeed to argue Equation E.9. For o > a/2 suppose that the distribution D" is 1/0-

smooth w.r.t. D, (ie. for any measurable set 7' C R? we have Pr,pr[z € T] < L Pr, plz € T)).
Then, from Equation E.13 we have

o d°k)log N = 1
= < — = ) _— = 1. .
Bl =0 < (Be=0) <0 ( i [ 210N g 5) (B.15)
————
s Sdistry (D", D) P prlg(x)=0) <c/10

for constant C sufficiently large.
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Rearranging the inequality above and recalling that o < 1 and o > «/2, we conclude that Equation
E.9 holds.
O

Now, we argue the spectral iﬂ—boundedness. Recall that with probability at least §/20 the

matrix M satisfies Equation E.1, which we will henceforth assume. Also recall that Claim 3 says
that for every polynomial p of degree at most k satisfying Exp[(p(x))?] < 1, the set Saccept given
by the algorithm in Theorem E.1 satisfies % Y oxe Saccept p(x)? < %. By inspecting the definition of
the function g, we see that for x in Spr we have g(x) = 1 if an only if « is in Saccept. Therefore,

100
E 2 < —
p of dgglfgg k s.t: |:XNSD/ [g(X)p(X) ]:| -

Ex~p[(p(x))?]<1

- (E.16)

In order to conclude the the spectral %O-boundedness condition we need to be able to conclude
that the equation above is likely to generalize, i.e. it approximately holds when one replaces the
expectation w.r.t. Spr with the expectation w.r.t. the distribution D’. To show this, we first recall
that via Observation E.3 the function g belongs to a function class G with a VC dimension of at most

O (imax d?* 10g(imax )). We also see that g(x) = 0 for all x satisfying max (p(x))? > 108y,
P Exp|(p(x))?)]<1

because the matrix M satisfies Equation E.1 and therefore if Ex~p[(p(x))?)] < 1 and (p(x))? > 10By,
then also (v/0.9p)T M (1/0.9p) < 1 and v/0.9p(x) > By, which implies that g(x) = 0 by the definition
of g. We show in Lemma B.2 that with probability at least 1 — 6/20 such function classes satisfy

¥e6 5 2 @02 - E [f@r)]| <

p of degree k s.t: Eponr(p(2))?<1 ~Spr

, (E.17)

QImr

— log N . 1\
@ < BO <imax d2k log(imax) d2k% log S) ) < 1 <

where the penultimate inequality above is achieved by substituting the bound iy, = O (k‘dk log Bod)

k C
from Claim 5 into the expression above, substituting By = @, recalling that N = C <@ log%

and taking C' to be a sufficiently large absolute constant. Combining Equation E.17 with Equation
E.16 we conclude that with probability at least 1 — §/20 it is the case that

101
< —

2
p of dgéli}gk 5.t xiE’D' [(p(x)) g(x)] - a’

Ex~pl(p(x))?] <1

Overall, with probability at least 1 — § the function g satisfies spectral %O—boundedness, (a, €)-
validity, as well as the required run-time bound.
Finally, we come back to Claim 5, proving which concludes this section.

Proof of Claim 5. Let i be an iteration such that ¢ < iyax. Since the while loop did not terminate
on step ¢, we have

> i) > (B.18)

i
xesﬁltcrcd
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At the same time, Claim 4 implies that

=Y o< (.19)

i+1
xeSﬁltcrcd

Let m < d* denote the dimension of the vector space of degree-k polynomials. For values of i
between 0 and i, and for values of j between 1 and m,let the collection of polynomials {R;} and
non-negative real values {)\;} be defined as

R;: arg max % Z [(R(x))?] )\3'2% Z [(R;(X))2] (E.20)

R of degree k s.t:
Vi’ <j: (R;'_,)TMR:O
RTMR<1

i T
xesﬁltcrcd xesﬁltcrcd

In particular?, we have p; = Ri. We will use the quantity ¢; := > =1 )\3 as a potential function,
for which we have:

Yi — Pi+1 =
1 - 7 2 1 7 2 1 2
LYY ®erzs Y ®eP=s Y mbor=
I=1 2€8E erea \Shherea XE Sk ered \Shiltered XES]1erea \Shiltered
D) D) =P = 1)
XESf iered Stteered

Where in the end we substituted Equation E.19. Since ! equals to % Y xe S e [(pz(x))2:| and has
a value of at least 100/« by Equation E.18, the inequality above allows us to conclude

LAy i ., 08 ; 0.9
BT DR SP VI S = <1 - ﬂ o (E:22)
j=1 j=1 j

We now combine the inequality above with the following two observations:

e We have
100
Pimax—1 > — > 1
«

because the algorithm did not terminate in the (iy,ax — 1)-th iteration, and therefore Equation
E.18 holds.

e We have

%z S (RI)? < Bom,
J=1 eSﬁltered

where the last inequality follows from the fact that every element x in SJ.. .4 satisfies

max (p(x))? < By.
p of degree k: pT Mp<1

4Speaking precisely, there might be multiple choices for the collection of the polynomials {R;} In this case, still,
we can choose these polynomials without loss of generality in such a way that p; = Rj.
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Overall, the two bounds above, together with Equation E.22 allow us to conclude that:
imax < O (dk 10g(Bom)> =0 (kdk lOg(BQd)) s

where the last step follows by substituting the definitions of m and e.
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