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Abstract—Discovering novel molecules with targeted properties
remains a formidable challenge in materials science, often likened
to finding a needle in a haystack. Traditional experimental
approaches are slow, costly, and inefficient. In this study, we
present an inverse design framework based on a molecular
graph conditional variational autoencoder (CVAE) that enables
the generation of new molecules with user-specified optical
properties, particularly molar extinction coefficient (¢). Our
model encodes molecular graphs, derived from SMILES strings,
into a structured latent space, and then decodes them into valid
molecular structures conditioned on a target ¢ value. Trained
on a curated dataset of known molecules with corresponding
extinction coefficients, the CVAE learns to generate chemically
valid structures, as verified by RDKit. Subsequent Density
Functional Theory (DFT) simulations confirm that many of the
generated molecules exhibit the electronic structures similar to
those molecules with desired ¢ values. We have also verified the ¢
values of the generated molecules using a graph neural network
(GNN) and the synthesizability of those molecules using an open-
source module named ASKCOS. This approach demonstrates the
potential of CVAEs to accelerate molecular discovery by enabling
user-guided, property-driven molecule generation — offering a
scalable, data-driven alternative to traditional trial-and-error
synthesis.

Index Terms—Inverse machine learning, variational autoen-
coder (VAE), DFT, graph neural network (GNN), synthesizability,
quantum dye, extinction coefficient, materials design.

I. INTRODUCTION

One of the central challenges in chemistry and materials
science is the synthesis of novel molecules with targeted
functional properties [5, 45]. Success in this area would unlock
transformative advances in domains ranging from drug discov-
ery and clean energy to next-generation electronics [10, 19].
Among such molecules, quantum dyes [40] stand out for their
foundational role in technologies like organic photovoltaics
(OPVs)[14], organic light-emitting diodes (OLEDs)[15], bio-
imaging [52], and chemical sensing [47], where their perfor-
mance directly affects efficiency and functionality [33, 51].

A key figure of merit for dye molecules is the molar extinc-
tion coefficient, which measures how effectively a molecule
absorbs light at a given wavelength [28]. High extinction
coefficients are crucial for optimal light harvesting, fluores-
cence, and optical sensitivity. However, designing dyes that
simultaneously satisfy multiple constraints — such as solubility,
stability, and spectral alignment — poses a complex multi-
objective optimization problem [46].
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The vastness of chemical space, estimated to exceed 10°°
synthetically accessible small organic molecules [34], makes
exhaustive experimental screening impractical [49]. While
combinatorial chemistry and high-throughput screening (HTS)
have increased efficiency, they remain constrained by estab-
lished motifs and limited chemical intuition [8]. Moreover,
physical synthesis remain costly and time-consuming.

Density Functional Theory (DFT) offers a computational
alternative for accurate property prediction [26], but its
high computational cost limits large-scale molecular explo-
ration [7]. To address these barriers, data-driven methods lever-
aging advances in artificial intelligence and machine learning
have emerged as promising alternatives [8]. By learning from
existing molecular datasets, ML models can capture com-
plex structure-property relationships and estimate properties
of novel molecules with high accuracy. More significantly,
the rise of deep generative models has ushered in a shift
toward inverse design [13, 42], where new molecular struc-
tures are generated conditionally to meet predefined property
profiles [17, 19, 25] — offering a powerful, scalable approach
to chemical discovery.

II. RELATED WORK

In molecular design, two distinct paradigms exist: direct and
inverse design. Direct design involves constructing a molecule
from its atomic structure and composition, then computing
its properties post hoc using theoretical methods such as
quantum chemistry [53]. This process is inherently nonlinear
and computationally intensive, as properties like energy eigen-
values and wavefunctions are inferred only after a candidate
structure is specified [27, 36]. In contrast, inverse design
reverses the problem — starting from desired properties and
working backward to identify structures in chemical space that
fulfill them [42]. This approach reframes material discovery as
an optimization problem over structure-property relationships
[29] and offers a promising path to accelerate the design of
functional molecules.

To explore the vastness of chemical space using inverse
design, researchers have employed three primary strategies:
high-throughput virtual screening (HTVS), global optimization
algorithms, and generative models [9, 43]. HTVS involves
computationally evaluating large material datasets to find can-
didates with desirable properties. For example, Jang et al.[22]



used DFT-based HTVS to predict inorganic materials, while
Afzal et al.[1] identified high-refractive-index polyimides for
optoelectronics. However, HTVS is often constrained by lim-
ited data coverage and cannot easily extrapolate to novel
compounds outside known chemical databases.

To overcome this, global optimization methods such
as Bayesian optimization (BO) [18], genetic algorithms
(GA) [12], particle swarm optimization (PSO) [50], and simu-
lated annealing have been applied to explore structure-property
landscapes more flexibly [44]. Harper et al.[20] used BO
to identify topologies for multifunctional optical materials,
while Khadilkar et al.[23] coupled PSO with self-consistent
field theory to model polymer morphology. Lee et al. [30]
proposed a two-phase GA approach that encodes molecules
with embedded strings and graphs to guide structural mutation
and crossover. These methods are versatile and capable of
generating viable candidate structures even when limited prior
knowledge exists, though they may lack the expressiveness and
scalability of data-driven techniques.

Generative models (GMs), especially deep generative archi-
tectures, have emerged as powerful tools for inverse molecular
design [42]. These models embed high-dimensional chemical
structures into low-dimensional latent spaces, enabling the
creation of novel, property-optimized molecules. For instance,
Kim et al.[24] developed a hybrid encoder-decoder model
using deep neural networks (DNNs) and recurrent neural
networks (RNNs) to reconstruct molecular structures with
desired features. Popova et al.[35] employed deep reinforce-
ment learning to generate new compounds by optimizing over
property-based reward signals. Similarly, Geng et al. [16]
applied generative adversarial networks (GANS) for the inverse
design of meta-surfaces, using pretrained simulators to predict
optical responses.

Variational autoencoders (VAEs), another widely used gen-
erative model, improve generalization by encoding molecular
structures into probabilistic latent variables. Ma et al. [32]
demonstrated this approach for meta-material design by mod-
eling the joint distribution of latent variables, structural pat-
terns, and spectral outputs. These architectures allow prop-
erty conditioning during molecule generation, making them
particularly well-suited for tasks such as designing dyes with
specific optical properties.

Together, these approaches reflect a fundamental shift in
materials discovery — from the deterministic construction of
molecules toward intelligent, data-driven exploration of chem-
ical space guided by target functionalities.

III. METHODOLOGY

The inverse molecular generation process shown in Figure 1
aims to produce molecules with a specific target extinction
coefficient (). The first step is a Molecule Generation Module,
which transforms molecular smiles obtained from the dye
design dataset into molecular graph matrices. These matrices
are fed into a variational autoencoder (VAE) together with the
target € (as a condition vector). This input is compressed into
a latent space representation by the VAE’s encoder. This latent

space and the target ¢ are then used by the VAE’s decoder to
create new molecular graph matrices, which are subsequently
transformed back into molecular structures.

These produced compounds are subsequently filtered by the
External Validation Module. Several processes are involved
in this process: 2D and 3D visualization, DFT calculations,
RDKit analysis for molecular feasibility, SCScore for syn-
thesizability evaluation, and a GNN prediction to confirm
whether the produced molecules show the expected €. The
final generated molecule set is made up of molecules that pass
each of these validation stages.

A. Data

In our dye design dataset, which comprises 8,816 molecules
and 307 molecular features, we have completed our prelim-
inary analysis and found this dataset is complete with no
missing values. Our main target feature, Epsilon (), shows
a wide dynamic range from a minimum of 9 to a maximum
value of 5.8 million. In Figure 2(a) we can observe a right
skewness of the data distribution where the mean of 55,815
is significantly higher than the median of 31,000 and the
standard deviation of 157,138. This confirms that the majority
of the molecules have lower Epsilon values. Another property,
[Fig 2(b)] total atom count, ranges from 2 to 387 atoms per
molecule, with a mean of 62 atoms and a median of 52 atoms.
This distribution also shows right skewness, even though it is
less dramatic than the Epsilon’s. Most molecules in the dataset
have a lower number of atoms, ranging from 38 to 74 atoms.

Another notable thing to observe in our dataset is that
even though there are 8,816 total entries, there are only 4,299
unique smile strings present in the dataset. This suggests that
multiple smile strings can have different Epsilon values, which
may have occurred due to different conformational states or
variations in experimental conditions or data aggregation from
multiple sources.

The scatter plot [Fig 2(c)] describing the relation between
Epsilon and Total Atom Count shows a positive monotonic
trend as the value of the Total Atom Count increases; the
Epsilon value also increases. This aligns with the Spearman
correlation of 0.478 that shows a moderate positive rela-
tionship, and the weaker Pearson correlation value of 0.259
suggests that the trend is not strictly linear. Relation between
Epsilon and SMILES String length shows a weak positive
trend [Fig 2(d)], meaning longer SMILE strings show slightly
higher Epsilon values, but this trend is less distinct than the
total atom count one.

We have found twelve different atom kinds (B, C, N, O, F,
Si, P, S, Cl, Br, Sn, and I) and four different bond types (single,
double, triple, and aromatic) in our datasets. These compounds
also have ClogP values, which are determined via RDKit [39]
calculating methods. P is the ratio of the concentrations of a
solute in two solvents [11]. The size and molecular weight
of molecules are linked to CMR values, a crucial parameter
for determining the steric factor [3]. Molecules appropriate
for graph formation (such as SMILES lacking “+,” “-” and

) were extracted from the database for this investigation.
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Fig. 1: Working Procedure of Inverse Molecular Generation.

A 9:1 ratio was used to split the data set into training and
test sets, and the training procedure was evaluated. In order
to achieve the greatest degree of closeness between the input
and output initial graph matrices, the auto-encoder has been
trained to minimize loss. Optimizations for the user-defined
molar extinction coefficient (¢) value have been carried out
if the model can be adequately trained when each property
has a suitably large data distribution in the data set. Using
StandardScaler, the Epsilon values were normalized (zero
mean, unit variance). Both the training and test sets’ Epsilon
values were transformed after the scaler was fitted solely to
the training set. For later usage, the training set’s mean and
scale factor were stored.

Epsilon | SMILES Total Atom Count
3801.89 | clcec2eccec2el 18
5370.31 | C[Si](C)(C)clceec2eccecl2 30
5623.41 | C[SiH](C)clccec2eccecl2 27

TABLE I: Sample Training Data

B. Molecular Graph

The graph representation of molecules uses annotation and
adjustment matrices to present atoms as nodes and bonds as
edges. Each row is represented as the one-hot encoding of
atoms in the annotation matrix (N x X, where N is the
number of atoms and X is the number of types of atoms),
and the adjacency matrix (N x N) shows how each row and
column corresponding to the atoms are binding. A complete
molecular graph was created by reconstructing the original
graph matrix of the present models into the adjacency and
annotation matrices. The initial graph matrix has the structure
{M,[1+ T+ (M - B)|}, where M is the maximum number
of atoms (largest graph size), T  is the number of atom types,
and B is the number of bond types.

Next, for every atom position up to M, we create an atom
feature matrix. We generate a feature vector of size T if the
point matches an actual atom in the input molecule. Set all
other elements to zero and the element that corresponds to
the atom’s type index to one. Make a feature vector in which
the element corresponding to the specified padding atom type
(index 0) is one and all other elements are zero if the position
exceeds the actual atom count (i.e., padding). These vectors

Algorithm 1 Molecular Graph Construction from SMILES

Input: SMILES string S
Output: Flattened molecular graph feature vector f
1: Parse S to extract atom list A and bond list B
2: N < |A| {Number of atoms}
3: Define Ny, (max atoms), A; (atom types), B; (bond
types)
4: Initialize annotation matrix X € {0,1}NmexxA¢ and
adjacency tensor £ € {0, 1}VmaxXNmax* Bt with zeros
5:fori=1to N do
6: ¢« atom type of Ali]
7. X|i,:] < one-hot(t)
8
9

: end for

: for each bond (4, 7) in B do
10: b < bond type of (i,7)
11:  EJi,j,:] < one-hot(b);

E[j,i,:] + Eli,j,:] {Undirected graph}

12: end for
13: f « concatenate(flatten(X ), flatten(F))
14: return f

are then put together to create an atom feature matrix with the
shape [M, T.

Then, using the bond type encoding dictionary, the integer
index corresponding to the bond type between each pair
of possible atom positions ¢ and j (up to M) is found,
allocating the 'no bond’ index where necessary. Following
that, a temporary matrix of shape [M, B] is produced for every
possible source atom position ¢. The relevant element in the
j-th row of this temporary matrix is set to one, while all other
elements in that row are set to zero, for each potential target
atom location j. This is done using the integer bond type
index that was previously established for the pair (¢, 7). This
temporary matrix is kept and represents all bonds that start at
point 4.

The final adjacency feature matrix, which has dimensions
[M,M x B, is created by concatenating all stored tempo-
rary matrices horizontally (along the second dimension) after
processing all source positions ¢. The final concatenated 2D
tensor is then produced by horizontally combining the length
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Fig. 2: Distribution of Dye Design Dataset

Algorithm 2 CVAE Training and Molecule Generation

Input: Dataset {(X ), ()} target condition £*
Output: Trained CVAE model (¢,0) and predicted SMILES
string S
1: Normalize graph matrices X (¥)
2: Initialize encoder ¢4 (z|X, ) and decoder pg(X|z, €) net-
works
3: for each epoch =1 to T}.x do
for each batch (X,,¢;) do

5: Compute latent mean p and log-variance o from
encoder
6: Sample z ~ N(u, o) using reparameterization trick

Reconstruct X, < py(z, ep)
Calculate reconstruction loss L. between X; and

Xp

9: Calculate KL divergence Lk, between gy (z|Xp,ep)
and N (0, 1)

10: Compute total loss L < Ly + Lxr

11: Update model parameters ¢, f by minimizing L

12:  end for

13: end for

14: Sample z ~ N(0, ) from latent prior

15: Decode X < py(z,¢*)

16: Post-process X to obtain valid molecular graph
17: Convert molecular graph X to SMILES string S
18: return Trained model (¢, #) and predicted S

indicator vector, the atom feature matrix, and the adjacency
feature matrix along the second dimension. The linear layers
of the CVAE’s encoder then processed this 2D tensor after it
had been flattened into a 1D vector.

C. Conditional Variational Autoencoder

A CVAE is the main component of the generative process.
An encoder and a decoder make up VAEs. The encoder con-
verts a distribution in a lower-dimensional latent space z from
the input data X (molecular graph matrix). A latent vector z
taken from this distribution is used by the decoder p(X|z) to
recreate the input data. The Evidence Lower Bound (ELBO)
is maximized when training VAEs. The model is dependent
on the normalized molar extinction coefficient ¢ = €,orm in
order to allow guided generation. The encoder stays ¢(z|X),
while the decoder only incorporates this condition, becoming
p(X|z,¢). A target condition ¢ and a latent vector z sampled
from the prior distribution p(z) (usually A/(0, I)) are supplied
to the decoder throughout the creation process.

A Multi-Layer Perceptron (MLP) network serves as the
encoder. Its input is the flattened graph matrix X. ReLU
activation is used in hidden layers. The latent mean p and
log-variance log o2 are generated by the output layers. It is
made up of layers that are fully connected (zg4j, — 512 —
256 — Zdim)-

Another MLP network is used as a decoder. Its input is
the concatenation of the condition vector ¢ (normalized e,
dimension 1) and the latent vector z. ReLU activation is



€ Dye# SMILES Total Energy | HOMO LUMO Gap | Predicted ¢ | SCScore
150.000 Dy CC(C)clece(N2C=CC=C3C=CC=C3C=C2)ccl -780.42819 0.12075 104,347.89 32
M*’ 1om—1 Do CCOC(=0)Clc2ccecc2C(=0)N1clcec2ooc2cl -1072.36189 0.17016 204,250.05 3.0
D3 C=S(N)(=0)clccc(N2N=C(c3ccc(0)cc3)CC2c2ccc(Clyec2)ccl -1998.97392 0.07048 275,141.50 4.1
200.000 Dy C=S(N)(=O)clccc2e(cl)-cleceecc1C1=C3C=CC(0)=CC=CC3=NC12 | -1526.12519 0.04978 162,363.89 4.3
M*’ Lom—1 Ds C=S(N)(=0)clccc(N2N=C(c3ccc(0)cc3)CC2c2ccc(F)ec2)ecl -1642.17399 0.07947 310,873.72 4.2
Dg CC1(C)CC(C=Cc2ccc(-n3ccee3)cc2)=CC(=C(C#N)C#N)C1 -1040.24235 0.12679 178,487.16 33

TABLE II: A sample of six dyes in two categories of extinction coefficients from a total of 75 unique predicted dyes.

used in hidden layers. A Sigmoid activation is used in the
last layer to produce the reconstructed flattened graph matrix
probabilities. It is made up of layers that are also fully
connected, such as (zgim + 1) — 256 — 512 — Zgim.

The model is trained using the combined VAE loss (ELBO),
given by:

Liota = Lpce + Dxi.(q(2|X)]||p(2))

where Dygp, is the Kullback-Leibler divergence between the
encoder’s distribution ¢(z|X) and the standard normal prior
p(z), and Lycg is the Binary Cross-Entropy reconstruction loss
between the input matrix X and the decoder’s output Xecon-
The encoder uses the 1 and log o2 output to compute the KLD
term.

IV. RESULTS

For our experiments, we have used Python version 3.9.6.
The packages used include, but are not limited to, PyTorch
(2.6.0), NumPy (1.26.4), matplotlib (3.9.4), pandas (2.2.3),
RDKit (2024.9.6), scikit-learn (1.6.1), PubChemPy (1.0.4),
PySCF (2.8.0), and Pillow (11.1.0). Training was performed
on an Apple M3 Max device with 36 GB of memory.

A. Experimental Evaluation

The CVAE model was trained on our dye design dataset
using the Adam optimizer with an initial learning rate of
5e — b. Training ran for 1,200 epochs with a batch size of
64. The latent space dimension was set to 256. Molecules
were generated by sampling latent vectors z from the standard
normal prior distribution p(z) = N(0,I) and selecting a target
extinction coefficient egrger. The target value was normalized
using the mean and scale factor derived from the training data’s
Epsilon distribution:
= Etarget — €mean

Escale
The output graph matrices are obtained by feeding pairs of
(z,c¢) into the trained CVAE decoder, and the matrices are
subsequently converted back to SMILES.
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Fig. 3: 2D structures of dyes D; through D3 in Table II.
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Fig. 4: 2D structures of dyes D, through Dg in Table II.

For each of the target generations (g: 150,000 M ~tem ™1, e:

200,000 M ~tem™1), we initially created 5,000 molecules for
each run. These molecules were then evaluated by checking
the number of molecules that satisfy the target Epsilon values.
We discovered 21, 8, and 7 valid molecules for various sets of
hyperparameters, such as learning rate and maximum molecule
size (5e — b, 4e — 5, and 3e — 5 and 60, 80, and 100, respec-
tively), for the target value £ of 150,000 M ~'em ™', For the
target value £ of 200,000 M ~'em ™!, we discovered 22, 12,
and 38 valid molecules for comparable sets of hyperparameters
that meet the condition. We also checked the [UPAC names of
these predicted molecules to assess if they already exist in the
material database. We found that for e = 150,000 M ~tem ™1,
eleven molecules are already present in the database, and
for ¢ = 200,000 M ~tcm™!, thirteen molecules are already
present. We also performed DFT calculations on these two sets
of predicted molecules. The data distribution of the calculated
DFT values is given in Figure 5.

We measured the produced molecules’ total energy and
HOMO-LUMO gap in DFT calculations [6]. In this case, the
total energy value is the molecule’s total electronic energy as
determined by DFT demonstrated in Table II. It is an essential
indicator of the stability of the molecule in the gas phase at
0 Kelvin. A lower (more negative) energy typically denotes
a more stable molecule. The HOMO-LUMO gap [41] is the
energy difference between the lowest unoccupied molecular
orbital (LUMO) and the highest occupied molecular orbital
(HOMO). This gap is an important indicator of a molecule’s
kinetic stability [2], where a larger gap typically indicates
greater kinetic stability; electronic excitations [31], where it is
associated with the energy needed for the lowest electronic ex-
citation (such as light absorption); and chemical reactivity [4],
where a smaller gap typically implies higher reactivity because
less energy is needed to excite an electron.

Both datasets (e: 150,000 M ~t‘em~™!, & 200,000
M~tem™1) show very similar average values for both total
energy and HOMO-LUMO gap. The shapes of their respective
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distributions are also comparable, which suggests that the
underlying generation process produced sets of molecules with
broadly similar energetic and electronic profiles in both cases.
A notable observation across both files is the wide energy
distribution, which means the generation process is capable
of producing diverse structures, from potentially smaller/less
stable ones (higher energy) to larger/more stable ones (lower
energy). Compared to the relatively tighter distribution around
0.11-0.12 Hartree for the HOMO-LUMO gap, this suggests
the predicted molecules might share similar characteristics
regarding chemical reactivity or suitability for applications
sensitive to electronic excitation (like organic electronics or
dyes). This strengthens our case of guided molecular genera-
tion for targeted Epsilon values.

A variety of structural modifications are displayed by
the molecules in Figures 3 and 4, which are crucial for
modulating optical characteristics. Diversity in ring systems
(fused, acyclic, macrocyclic), conjugation, and the presence
of heteroatoms for the ¢ value of 150,000 M ~tem ™! allows
us to study how the model balances structural features to
achieve the target Epsilon. Whereas the selection of molecules
for the € value of 200,000 M ~'em ™! highlights the model’s
ability to generate both planar and non-planar structures with
a variety of functional groups (thioamides, sulfonamides),
which enables a deeper understanding of the structure-property
relationships at this higher Epsilon value.

B. Validation of Predicted Dyes

We have also used a graph neural network (GNN) model to
externally validate the extinction coefficient of the predicted
molecular SMILES from the CVAE model for a given ¢
value. This GNN acts as an independent prediction scheme
where it takes a molecular SMILES as input, converts it to
a graph representation, and predicts the ¢ value. The main
purpose of using this model is to verify that the molecular
SMILES predicted by the CVAE model indeed possess the
optical property close to the target one.

The GNN model is based on graph convolutional network
architecture, which processes molecular graphs where nodes
represent the atoms and edges represent the bonds. It contains
a total of 22 dimensions of atom features, which includes one-
hot encoding for atom type (C, N, O, S, etc.). The features
of an atom consist of 22 dimensions, which include one-hot
encodings for atom type, degree, formal charge, hybridization,
aromaticity, total hydrogen count, radical electron count, ring
membership, and chirality. Bond features, involving six di-
mensions, capture bond type (single, double, triple, aromatic),
conjugation, and ring membership; however, standard GCN
convolutional layers mainly utilize node features and adja-
cency information. The network employs four GCN convo-
lutional layers, with 256 — 512 — 1,024 — 2,048 hidden
channels, increasing gradually. Additionally, BatchNorm1D
is used for normalization, and ReLL.U is used as an activation
function for each layer. Between these layers, a GNN dropout
rate of 0.25 is also used to lessen overfitting. A global mean
pool layer then combines all of the node embeddings to create



a single graph-level feature vector after graph convolutions.
This feature vector is subsequently fed to two fully connected
layers that have a higher dropout rate of 0.5, BatchNorm1D,
and ReLU. The final output layer consists of a single neuron
that uses the provided SMILES string to predict the ¢ value.

This model uses the same dataset, which includes SMILES
strings and their corresponding ¢ values, as the CVAE proce-
dure. The dataset was split into three sets: train (70%), test
(15%), and validation (15%). The ¢ values were then scaled
to a [0, 1] range using MinMaxScaller after being processed
using NumPy log. This was done since the ¢ values found in
the dataset had a wide range and a typical skewed distribution.
Training was conducted using the Adam optimizer, which has
a learning rate of 0.0005 and a weight decay of 1le — 6. With
a batch size of 32 and an early stopping mechanism with a
patience of 20 epochs, the model was trained for the maximum
of 200 epochs. An R2 score of 0.8204 was obtained when the
GNN model’s performance was evaluated on the test set. This
suggests that roughly 82% of the variance of the ¢ distribution
was captured by the GNN model. The quantitative measures
were further supported by a significant correlation between the
expected and real ¢ values, as shown in Figure 6.

Predicted Epsilon (Original Scale)

B s 10 1
Actual Epsilon (Original Scale)

Fig. 6: Actual vs Predicted ¢ value distribution.

Even though the predicted molecules demonstrate signifi-
cant structural diversity based on the targeted € value, it is
worth noting that not all of the predicted molecules can be
mapped to a corresponding IUPAC chemical name available
in the PubChem database. But this absence does not reduce
the significance of our findings and our primary objective
of utilizing the variational autoencoder’s capacity to generate
novel molecules with target properties. Rather, the absence of
PubChem records might indicate that the model can explore
uncharted chemical space. RDKit toolkit has been used to
confirm the structure and chemical validity of the produced
compounds, while DFT studies also shed light on their stability
and electronic characteristics.

C. Synthesizability of Predicted Dyes

The synthesizability of Al-predicted dye molecules is a
critical measure of their scientific validity and real-world
applicability. While AI models such as MatFlow [21, 37, 38]

can efficiently generate molecular structures with desirable
optical properties, such as high molar extinction coefficients
or tunable absorption spectra, these predictions must be
chemically plausible and experimentally achievable to im-
pact materials science meaningfully. Ensuring synthesizability
bridges the gap between in silico discovery and laboratory
implementation, enabling efficient validation, fabrication, and
integration of novel dyes into quantum sensing, photonics,
or biomedical imaging applications. Moreover, incorporating
synthesizability constraints into Al design pipelines improves
model robustness, reduces false positives, and accelerates the
path from theoretical innovation to functional materials.

ASKCOS [48] is an open-source, Al-powered software
suite for computer-aided synthesis planning (CASP), designed
to help chemists evaluate and plan synthetic pathways for
complex molecules. By integrating advanced machine learning
models trained on large-scale reaction datasets, ASKCOS per-
forms tasks such as retrosynthetic analysis, reaction condition
recommendation, and reaction outcome prediction. This makes
it particularly valuable for determining the synthetic feasibility
of predicted molecules, like novel quantum dyes, by offering
detailed, data-driven synthesis routes from commercially avail-
able starting materials.

The synthesizability of our predicted dye molecules was
assessed using the ASKCOS platform, which assigns a Syn-
thetic Complexity Score (SCScore) on a scale from 1 to 5.
The SCScore values for the six dyes shown in Figures 3 and
4 are summarized in Table II. A lower SCScore implies higher
synthesizability, and thus an ideal dye will have high ¢ and
very low SCScore.

as

a.0

SCScore
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Fig. 7: Relationship between predicted SCScore and ¢ for the
SMILES in target classes of ¢ = 150,000 M ~tem™! (blue
line) and £ = 200,000 M ~'em ™! (orange line). Likely best
predicted SMILES are in the shaded quadrant.

The association between the created molecules’ SCScore
and predicted Epsilon by the GNN for two sets of €: 150,000
and 200,000 has been demonstrated in Figure 7. The data
points for both datasets are more densely clustered at lower
Epsilon values and show notable vertical scatter, indicating
variability in SCScore for similar Epsilon predictions. The
general pattern of both datasets is that SCScore tends to



Dye# SMILES Target € | Predicted € | SCScore
D~ NS(=0)(=0)clcce(N2N=C(c3cee(0)cc3)CC2c2ccc(F)ec2)cel | 150,000 | 468,121.00 4.1
Dg clcecccccccceenceccccceccecl 150,000 2,973.95

Dg(D2) CCOC(=0)C1c2ceccc2C(=0)N1cleec2o00c2cl 150,000 | 204,250.25 3.0

D1 NS(=0)(=0)clcec(N2N=C(c3cce(0)ee3)CC2c2cce(F)ec2)eel | 200,000 | 468,121.00 4.1

D11 N=C1C=CC=CC=CC=CC=CC=CC=CC=c2ccccc2=CC=Cl1 200,000 7,013.13

Do CCOC(=0)C1c2cceec2C(=0)N1cleccecl 200,000 | 442,541.93 2.4

TABLE III: Dyes with red bold fonts reflect highest predicted es, and orange fonts mean lowest SCScores.

S (O

(@) D7,D10: € = 468,121.00, (b) D12: € = 442,541.93, SC-
SCScore = 4.1. Score = 2.4.

Fig. 8: 2D structures of molecules with the highest predicted
€ and SCScores in each target extinction coefficient category.

increase with higher predictions € before the trends diverge and
plateau or even slightly decrease at higher ¢ values. The Pear-
son correlation (r = 0.446, p = 0.00348) for the : 150,000
data points shows a moderately positive linear relationship
that is statistically significant. This suggests that although
the general trend is curved, there is a definite underlying
tendency for SCScore to increase with Epsilon. The : 200,000
data points, on the other hand, have a weaker positive linear
correlation (r = 0.330) that is not statistically significant at
the traditional 0.05 level (p = 0.057). This suggests that any
linear trend is less clear and strong for this group, which is
visually reflected in its flatter curve at higher € values and then
slightly declining curve at a wider confidence interval.

V. DISCUSSION

Majority of the predicted dyes exhibited moderate complex-
ity scores. Among the 41 and 34 unique SMILES predicted by
MatFlow respectively for target extinction coefficients 150,000
M~tem~! and 200,000 M~ tem™!, dyes Dy — D scoring
the highest predicted extinction coefficients and SCScores are
shown in Table III.

Among the predicted dye candidates, several noteworthy
observations emerged. Structurally identical dyes D and
Do were independently predicted under both target extinc-
tion coefficient categories. Interestingly, the median predicted
extinction coefficients for the two target classes — 150,000
and 200,000 M~tem~! — were 16,230.09 and 88,297.20
M~'em™! respectively, reflecting the model’s capacity to
explore a range of absorption properties. Corresponding SC-
Scores of 3.2 and 3.5 suggest moderate synthetic feasibility.

Dyes Dg and D;; stand out for their very low SCScores
(indicative of high synthesizability), making them attractive
from a synthetic standpoint. However, their low predicted
extinction coefficients place them below the desired threshold,

rendering them suboptimal for applications demanding high
optical density.

Conversely, D7 (or equivalently D;g) emerges as a com-
pelling candidate. Despite a slightly elevated SCScore of 4.1,
it boasts an exceptionally high predicted molar extinction coef-
ficient of 468,121 M ~!em ™!, making it a strong contender for
experimental synthesis in high-performance dye applications.

For applications where a target £ value near 150,000
M~1em™! is sufficient, Do (also listed as Dy in Table II)
offers an excellent balance, with a predicted € near the design
goal and a low SCScore of 3.0.

Ultimately, the standout candidate is D;5. With a remark-
ably low SCScore of 2.4 and a predicted ¢ of 442,541.93
M~—'em™1, it combines high synthesizability with outstanding
optical performance, making it the most promising molecule
for laboratory validation among those studied.

VI. CONCLUSION AND FUTURE WORKS

In this study, we developed and validated a graph-based
CVAE for the inverse design of molecules with targeted molar
extinction coefficients (¢). Our model successfully generated
novel compounds clustered around user-defined ¢ values, as
confirmed through comparison with the IUPAC database,
DFT calculations, and synthesis feasibility assessment via
ASKCOS. Additionally, a separate GNN model provided
further validation of predicted optical properties. Importantly,
the model demonstrated generalizability beyond &, showing
potential to design molecules for other target properties as
well. This framework represents a significant step toward
accelerated, property-driven discovery of functional molecules
such as quantum dyes, surpassing the limitations of traditional
screening methods.

Future work will focus on scaling the model to support
larger molecular graphs (>400 nodes), refining CVAE archi-
tecture and hyperparameters, and enhancing molecular rep-
resentations to optimize for multi-objective property profiles.
Experimental validation will ensure practical chemical appli-
cability. We also envision building a web-based e-Lab platform
where materials scientists can upload custom datasets, define
design goals, and interactively generate candidate molecules
using trained inverse design models — bringing Al-assisted
molecular discovery closer to real-world deployment.
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