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Abstract—Discovering novel molecules with targeted properties
remains a formidable challenge in materials science, often likened
to finding a needle in a haystack. Traditional experimental
approaches are slow, costly, and inefficient. In this study, we
present an inverse design framework based on a molecular
graph conditional variational autoencoder (CVAE) that enables
the generation of new molecules with user-specified optical
properties, particularly molar extinction coefficient (ε). Our
model encodes molecular graphs, derived from SMILES strings,
into a structured latent space, and then decodes them into valid
molecular structures conditioned on a target ε value. Trained
on a curated dataset of known molecules with corresponding
extinction coefficients, the CVAE learns to generate chemically
valid structures, as verified by RDKit. Subsequent Density
Functional Theory (DFT) simulations confirm that many of the
generated molecules exhibit the electronic structures similar to
those molecules with desired ε values. We have also verified the ε

values of the generated molecules using a graph neural network
(GNN) and the synthesizability of those molecules using an open-
source module named ASKCOS. This approach demonstrates the
potential of CVAEs to accelerate molecular discovery by enabling
user-guided, property-driven molecule generation – offering a
scalable, data-driven alternative to traditional trial-and-error
synthesis.

Index Terms—Inverse machine learning, variational autoen-
coder (VAE), DFT, graph neural network (GNN), synthesizability,
quantum dye, extinction coefficient, materials design.

I. INTRODUCTION

One of the central challenges in chemistry and materials

science is the synthesis of novel molecules with targeted

functional properties [5, 45]. Success in this area would unlock

transformative advances in domains ranging from drug discov-

ery and clean energy to next-generation electronics [10, 19].

Among such molecules, quantum dyes [40] stand out for their

foundational role in technologies like organic photovoltaics

(OPVs)[14], organic light-emitting diodes (OLEDs)[15], bio-

imaging [52], and chemical sensing [47], where their perfor-

mance directly affects efficiency and functionality [33, 51].

A key figure of merit for dye molecules is the molar extinc-

tion coefficient, which measures how effectively a molecule

absorbs light at a given wavelength [28]. High extinction

coefficients are crucial for optimal light harvesting, fluores-

cence, and optical sensitivity. However, designing dyes that

simultaneously satisfy multiple constraints – such as solubility,

stability, and spectral alignment – poses a complex multi-

objective optimization problem [46].

The vastness of chemical space, estimated to exceed 1060

synthetically accessible small organic molecules [34], makes

exhaustive experimental screening impractical [49]. While

combinatorial chemistry and high-throughput screening (HTS)

have increased efficiency, they remain constrained by estab-

lished motifs and limited chemical intuition [8]. Moreover,

physical synthesis remain costly and time-consuming.

Density Functional Theory (DFT) offers a computational

alternative for accurate property prediction [26], but its

high computational cost limits large-scale molecular explo-

ration [7]. To address these barriers, data-driven methods lever-

aging advances in artificial intelligence and machine learning

have emerged as promising alternatives [8]. By learning from

existing molecular datasets, ML models can capture com-

plex structure-property relationships and estimate properties

of novel molecules with high accuracy. More significantly,

the rise of deep generative models has ushered in a shift

toward inverse design [13, 42], where new molecular struc-

tures are generated conditionally to meet predefined property

profiles [17, 19, 25] – offering a powerful, scalable approach

to chemical discovery.

II. RELATED WORK

In molecular design, two distinct paradigms exist: direct and

inverse design. Direct design involves constructing a molecule

from its atomic structure and composition, then computing

its properties post hoc using theoretical methods such as

quantum chemistry [53]. This process is inherently nonlinear

and computationally intensive, as properties like energy eigen-

values and wavefunctions are inferred only after a candidate

structure is specified [27, 36]. In contrast, inverse design

reverses the problem – starting from desired properties and

working backward to identify structures in chemical space that

fulfill them [42]. This approach reframes material discovery as

an optimization problem over structure-property relationships

[29] and offers a promising path to accelerate the design of

functional molecules.

To explore the vastness of chemical space using inverse

design, researchers have employed three primary strategies:

high-throughput virtual screening (HTVS), global optimization

algorithms, and generative models [9, 43]. HTVS involves

computationally evaluating large material datasets to find can-

didates with desirable properties. For example, Jang et al.[22]



used DFT-based HTVS to predict inorganic materials, while

Afzal et al.[1] identified high-refractive-index polyimides for

optoelectronics. However, HTVS is often constrained by lim-

ited data coverage and cannot easily extrapolate to novel

compounds outside known chemical databases.

To overcome this, global optimization methods such

as Bayesian optimization (BO) [18], genetic algorithms

(GA) [12], particle swarm optimization (PSO) [50], and simu-

lated annealing have been applied to explore structure-property

landscapes more flexibly [44]. Harper et al.[20] used BO

to identify topologies for multifunctional optical materials,

while Khadilkar et al.[23] coupled PSO with self-consistent

field theory to model polymer morphology. Lee et al. [30]

proposed a two-phase GA approach that encodes molecules

with embedded strings and graphs to guide structural mutation

and crossover. These methods are versatile and capable of

generating viable candidate structures even when limited prior

knowledge exists, though they may lack the expressiveness and

scalability of data-driven techniques.

Generative models (GMs), especially deep generative archi-

tectures, have emerged as powerful tools for inverse molecular

design [42]. These models embed high-dimensional chemical

structures into low-dimensional latent spaces, enabling the

creation of novel, property-optimized molecules. For instance,

Kim et al.[24] developed a hybrid encoder-decoder model

using deep neural networks (DNNs) and recurrent neural

networks (RNNs) to reconstruct molecular structures with

desired features. Popova et al.[35] employed deep reinforce-

ment learning to generate new compounds by optimizing over

property-based reward signals. Similarly, Geng et al. [16]

applied generative adversarial networks (GANs) for the inverse

design of meta-surfaces, using pretrained simulators to predict

optical responses.

Variational autoencoders (VAEs), another widely used gen-

erative model, improve generalization by encoding molecular

structures into probabilistic latent variables. Ma et al. [32]

demonstrated this approach for meta-material design by mod-

eling the joint distribution of latent variables, structural pat-

terns, and spectral outputs. These architectures allow prop-

erty conditioning during molecule generation, making them

particularly well-suited for tasks such as designing dyes with

specific optical properties.

Together, these approaches reflect a fundamental shift in

materials discovery – from the deterministic construction of

molecules toward intelligent, data-driven exploration of chem-

ical space guided by target functionalities.

III. METHODOLOGY

The inverse molecular generation process shown in Figure 1

aims to produce molecules with a specific target extinction

coefficient (ε). The first step is a Molecule Generation Module,

which transforms molecular smiles obtained from the dye

design dataset into molecular graph matrices. These matrices

are fed into a variational autoencoder (VAE) together with the

target ε (as a condition vector). This input is compressed into

a latent space representation by the VAE’s encoder. This latent

space and the target ε are then used by the VAE’s decoder to

create new molecular graph matrices, which are subsequently

transformed back into molecular structures.

These produced compounds are subsequently filtered by the

External Validation Module. Several processes are involved

in this process: 2D and 3D visualization, DFT calculations,

RDKit analysis for molecular feasibility, SCScore for syn-

thesizability evaluation, and a GNN prediction to confirm

whether the produced molecules show the expected ε. The

final generated molecule set is made up of molecules that pass

each of these validation stages.

A. Data

In our dye design dataset, which comprises 8,816 molecules

and 307 molecular features, we have completed our prelim-

inary analysis and found this dataset is complete with no

missing values. Our main target feature, Epsilon (ε), shows

a wide dynamic range from a minimum of 9 to a maximum

value of 5.8 million. In Figure 2(a) we can observe a right

skewness of the data distribution where the mean of 55,815

is significantly higher than the median of 31,000 and the

standard deviation of 157,138. This confirms that the majority

of the molecules have lower Epsilon values. Another property,

[Fig 2(b)] total atom count, ranges from 2 to 387 atoms per

molecule, with a mean of 62 atoms and a median of 52 atoms.

This distribution also shows right skewness, even though it is

less dramatic than the Epsilon’s. Most molecules in the dataset

have a lower number of atoms, ranging from 38 to 74 atoms.

Another notable thing to observe in our dataset is that

even though there are 8,816 total entries, there are only 4,299

unique smile strings present in the dataset. This suggests that

multiple smile strings can have different Epsilon values, which

may have occurred due to different conformational states or

variations in experimental conditions or data aggregation from

multiple sources.

The scatter plot [Fig 2(c)] describing the relation between

Epsilon and Total Atom Count shows a positive monotonic

trend as the value of the Total Atom Count increases; the

Epsilon value also increases. This aligns with the Spearman

correlation of 0.478 that shows a moderate positive rela-

tionship, and the weaker Pearson correlation value of 0.259

suggests that the trend is not strictly linear. Relation between

Epsilon and SMILES String length shows a weak positive

trend [Fig 2(d)], meaning longer SMILE strings show slightly

higher Epsilon values, but this trend is less distinct than the

total atom count one.

We have found twelve different atom kinds (B, C, N, O, F,

Si, P, S, Cl, Br, Sn, and I) and four different bond types (single,

double, triple, and aromatic) in our datasets. These compounds

also have ClogP values, which are determined via RDKit [39]

calculating methods. P is the ratio of the concentrations of a

solute in two solvents [11]. The size and molecular weight

of molecules are linked to CMR values, a crucial parameter

for determining the steric factor [3]. Molecules appropriate

for graph formation (such as SMILES lacking “+,” “-,” and

“.”) were extracted from the database for this investigation.



Fig. 1: Working Procedure of Inverse Molecular Generation.

A 9:1 ratio was used to split the data set into training and

test sets, and the training procedure was evaluated. In order

to achieve the greatest degree of closeness between the input

and output initial graph matrices, the auto-encoder has been

trained to minimize loss. Optimizations for the user-defined

molar extinction coefficient (ε) value have been carried out

if the model can be adequately trained when each property

has a suitably large data distribution in the data set. Using

StandardScaler, the Epsilon values were normalized (zero

mean, unit variance). Both the training and test sets’ Epsilon

values were transformed after the scaler was fitted solely to

the training set. For later usage, the training set’s mean and

scale factor were stored.

Epsilon SMILES Total Atom Count

3801.89 c1ccc2ccccc2c1 18
5370.31 C[Si](C)(C)c1cccc2ccccc12 30
5623.41 C[SiH](C)c1cccc2ccccc12 27

TABLE I: Sample Training Data

B. Molecular Graph

The graph representation of molecules uses annotation and

adjustment matrices to present atoms as nodes and bonds as

edges. Each row is represented as the one-hot encoding of

atoms in the annotation matrix (N × X , where N is the

number of atoms and X is the number of types of atoms),

and the adjacency matrix (N ×N ) shows how each row and

column corresponding to the atoms are binding. A complete

molecular graph was created by reconstructing the original

graph matrix of the present models into the adjacency and

annotation matrices. The initial graph matrix has the structure

{M, [1 + T + (M · B)]}, where M is the maximum number

of atoms (largest graph size), T is the number of atom types,

and B is the number of bond types.

Next, for every atom position up to M , we create an atom

feature matrix. We generate a feature vector of size T if the

point matches an actual atom in the input molecule. Set all

other elements to zero and the element that corresponds to

the atom’s type index to one. Make a feature vector in which

the element corresponding to the specified padding atom type

(index 0) is one and all other elements are zero if the position

exceeds the actual atom count (i.e., padding). These vectors

Algorithm 1 Molecular Graph Construction from SMILES

Input: SMILES string S

Output: Flattened molecular graph feature vector f

1: Parse S to extract atom list A and bond list B

2: N ← |A| {Number of atoms}
3: Define Nmax (max atoms), At (atom types), Bt (bond

types)

4: Initialize annotation matrix X ∈ {0, 1}Nmax×At and

adjacency tensor E ∈ {0, 1}Nmax×Nmax×Bt with zeros

5: for i = 1 to N do

6: t← atom type of A[i]
7: X[i, :]← one-hot(t)
8: end for

9: for each bond (i, j) in B do

10: b← bond type of (i, j)
11: E[i, j, :]← one-hot(b);

E[j, i, :]← E[i, j, :] {Undirected graph}
12: end for

13: f ← concatenate(flatten(X), flatten(E))
14: return f

are then put together to create an atom feature matrix with the

shape [M,T ].

Then, using the bond type encoding dictionary, the integer

index corresponding to the bond type between each pair

of possible atom positions i and j (up to M ) is found,

allocating the ’no bond’ index where necessary. Following

that, a temporary matrix of shape [M,B] is produced for every

possible source atom position i. The relevant element in the

j-th row of this temporary matrix is set to one, while all other

elements in that row are set to zero, for each potential target

atom location j. This is done using the integer bond type

index that was previously established for the pair (i, j). This

temporary matrix is kept and represents all bonds that start at

point i.

The final adjacency feature matrix, which has dimensions

[M,M × B], is created by concatenating all stored tempo-

rary matrices horizontally (along the second dimension) after

processing all source positions i. The final concatenated 2D

tensor is then produced by horizontally combining the length



(a) Epsilon Distribution

(b) Total Atom Count Distribution

(c) Total Atom Count Vs Epsilon

(d) SMILES String Length Vs Epsilon

Fig. 2: Distribution of Dye Design Dataset

Algorithm 2 CVAE Training and Molecule Generation

Input: Dataset {(X(i), ε(i))}Ni=1, target condition ε∗

Output: Trained CVAE model (φ, θ) and predicted SMILES

string S

1: Normalize graph matrices X(i)

2: Initialize encoder qφ(z|X, ε) and decoder pθ(X|z, ε) net-

works

3: for each epoch = 1 to Tmax do

4: for each batch (Xb, εb) do

5: Compute latent mean µ and log-variance σ from

encoder

6: Sample z ∼ N (µ, σ) using reparameterization trick

7: Reconstruct X̂b ← pθ(z, εb)
8: Calculate reconstruction loss Lrec between X̂b and

Xb

9: Calculate KL divergence LKL between qφ(z|Xb, εb)
and N (0, I)

10: Compute total loss L← Lrec + LKL

11: Update model parameters φ, θ by minimizing L

12: end for

13: end for

14: Sample z ∼ N (0, I) from latent prior

15: Decode X̂ ← pθ(z, ε
∗)

16: Post-process X̂ to obtain valid molecular graph

17: Convert molecular graph X̂ to SMILES string S

18: return Trained model (φ, θ) and predicted S

indicator vector, the atom feature matrix, and the adjacency

feature matrix along the second dimension. The linear layers

of the CVAE’s encoder then processed this 2D tensor after it

had been flattened into a 1D vector.

C. Conditional Variational Autoencoder

A CVAE is the main component of the generative process.

An encoder and a decoder make up VAEs. The encoder con-

verts a distribution in a lower-dimensional latent space z from

the input data X (molecular graph matrix). A latent vector z

taken from this distribution is used by the decoder p(X|z) to

recreate the input data. The Evidence Lower Bound (ELBO)

is maximized when training VAEs. The model is dependent

on the normalized molar extinction coefficient c = εnorm in

order to allow guided generation. The encoder stays q(z|X),
while the decoder only incorporates this condition, becoming

p(X|z, c). A target condition c and a latent vector z sampled

from the prior distribution p(z) (usually N (0, I)) are supplied

to the decoder throughout the creation process.

A Multi-Layer Perceptron (MLP) network serves as the

encoder. Its input is the flattened graph matrix X . ReLU

activation is used in hidden layers. The latent mean µ and

log-variance log σ2 are generated by the output layers. It is

made up of layers that are fully connected (xdim → 512 →
256→ zdim).

Another MLP network is used as a decoder. Its input is

the concatenation of the condition vector c (normalized ε,

dimension 1) and the latent vector z. ReLU activation is



ε Dye# SMILES Total Energy HOMO LUMO Gap Predicted ε SCScore

150,000

M−1cm−1

D1 CC(C)c1ccc(N2C=CC=C3C=CC=C3C=C2)cc1 -780.42819 0.12075 104,347.89 3.2
D2 CCOC(=O)C1c2ccccc2C(=O)N1c1ccc2ooc2c1 -1072.36189 0.17016 204,250.05 3.0
D3 C=S(N)(=O)c1ccc(N2N=C(c3ccc(O)cc3)CC2c2ccc(Cl)cc2)cc1 -1998.97392 0.07048 275,141.50 4.1

200,000

M−1cm−1

D4 C=S(N)(=O)c1ccc2c(c1)-c1ccccc1C1=C3C=CC(O)=CC=CC3=NC12 -1526.12519 0.04978 162,363.89 4.3
D5 C=S(N)(=O)c1ccc(N2N=C(c3ccc(O)cc3)CC2c2ccc(F)cc2)cc1 -1642.17399 0.07947 310,873.72 4.2
D6 CC1(C)CC(C=Cc2ccc(-n3cccc3)cc2)=CC(=C(C#N)C#N)C1 -1040.24235 0.12679 178,487.16 3.3

TABLE II: A sample of six dyes in two categories of extinction coefficients from a total of 75 unique predicted dyes.

used in hidden layers. A Sigmoid activation is used in the

last layer to produce the reconstructed flattened graph matrix

probabilities. It is made up of layers that are also fully

connected, such as (zdim + 1)→ 256→ 512→ xdim.

The model is trained using the combined VAE loss (ELBO),

given by:

Ltotal = LBCE +DKL(q(z|X)∥p(z))

where DKL is the Kullback-Leibler divergence between the

encoder’s distribution q(z|X) and the standard normal prior

p(z), and LBCE is the Binary Cross-Entropy reconstruction loss

between the input matrix X and the decoder’s output Xrecon.

The encoder uses the µ and log σ2 output to compute the KLD

term.

IV. RESULTS

For our experiments, we have used Python version 3.9.6.

The packages used include, but are not limited to, PyTorch

(2.6.0), NumPy (1.26.4), matplotlib (3.9.4), pandas (2.2.3),

RDKit (2024.9.6), scikit-learn (1.6.1), PubChemPy (1.0.4),

PySCF (2.8.0), and Pillow (11.1.0). Training was performed

on an Apple M3 Max device with 36 GB of memory.

A. Experimental Evaluation

The CVAE model was trained on our dye design dataset

using the Adam optimizer with an initial learning rate of

5e− 5. Training ran for 1,200 epochs with a batch size of

64. The latent space dimension was set to 256. Molecules

were generated by sampling latent vectors z from the standard

normal prior distribution p(z) = N (0, I) and selecting a target

extinction coefficient εtarget. The target value was normalized

using the mean and scale factor derived from the training data’s

Epsilon distribution:

c =
εtarget − εmean

εscale

The output graph matrices are obtained by feeding pairs of

(z, c) into the trained CVAE decoder, and the matrices are

subsequently converted back to SMILES.

(a) D1 (b) D2 (c) D3

Fig. 3: 2D structures of dyes D1 through D3 in Table II.

(a) D4 (b) D5 (c) D6

Fig. 4: 2D structures of dyes D4 through D6 in Table II.

For each of the target generations (ε: 150,000 M−1cm−1, ε:

200,000 M−1cm−1), we initially created 5,000 molecules for

each run. These molecules were then evaluated by checking

the number of molecules that satisfy the target Epsilon values.

We discovered 21, 8, and 7 valid molecules for various sets of

hyperparameters, such as learning rate and maximum molecule

size (5e− 5, 4e− 5, and 3e− 5 and 60, 80, and 100, respec-

tively), for the target value ε of 150,000 M−1cm−1. For the

target value ε of 200,000 M−1cm−1, we discovered 22, 12,

and 38 valid molecules for comparable sets of hyperparameters

that meet the condition. We also checked the IUPAC names of

these predicted molecules to assess if they already exist in the

material database. We found that for ε = 150, 000 M−1cm−1,

eleven molecules are already present in the database, and

for ε = 200, 000 M−1cm−1, thirteen molecules are already

present. We also performed DFT calculations on these two sets

of predicted molecules. The data distribution of the calculated

DFT values is given in Figure 5.

We measured the produced molecules’ total energy and

HOMO-LUMO gap in DFT calculations [6]. In this case, the

total energy value is the molecule’s total electronic energy as

determined by DFT demonstrated in Table II. It is an essential

indicator of the stability of the molecule in the gas phase at

0 Kelvin. A lower (more negative) energy typically denotes

a more stable molecule. The HOMO-LUMO gap [41] is the

energy difference between the lowest unoccupied molecular

orbital (LUMO) and the highest occupied molecular orbital

(HOMO). This gap is an important indicator of a molecule’s

kinetic stability [2], where a larger gap typically indicates

greater kinetic stability; electronic excitations [31], where it is

associated with the energy needed for the lowest electronic ex-

citation (such as light absorption); and chemical reactivity [4],

where a smaller gap typically implies higher reactivity because

less energy is needed to excite an electron.

Both datasets (ε: 150,000 M−1cm−1, ε: 200,000

M−1cm−1) show very similar average values for both total

energy and HOMO-LUMO gap. The shapes of their respective



(a) Total Energy Distribution (ε: 200,000)

(b) Total Energy Distribution (ε: 150,000)

(c) HOMO-LUMO Gap Distribution (ε: 200,000)

(d) HOMO-LUMO Gap Distribution (ε: 150,000)

Fig. 5: Distribution of Total Energy and HOMO-LUMO Gap

for ε = 200, 000 M−1cm−1 and ε = 150, 000 M−1cm−1.

distributions are also comparable, which suggests that the

underlying generation process produced sets of molecules with

broadly similar energetic and electronic profiles in both cases.

A notable observation across both files is the wide energy

distribution, which means the generation process is capable

of producing diverse structures, from potentially smaller/less

stable ones (higher energy) to larger/more stable ones (lower

energy). Compared to the relatively tighter distribution around

0.11-0.12 Hartree for the HOMO-LUMO gap, this suggests

the predicted molecules might share similar characteristics

regarding chemical reactivity or suitability for applications

sensitive to electronic excitation (like organic electronics or

dyes). This strengthens our case of guided molecular genera-

tion for targeted Epsilon values.

A variety of structural modifications are displayed by

the molecules in Figures 3 and 4, which are crucial for

modulating optical characteristics. Diversity in ring systems

(fused, acyclic, macrocyclic), conjugation, and the presence

of heteroatoms for the ε value of 150,000 M−1cm−1 allows

us to study how the model balances structural features to

achieve the target Epsilon. Whereas the selection of molecules

for the ε value of 200,000 M−1cm−1 highlights the model’s

ability to generate both planar and non-planar structures with

a variety of functional groups (thioamides, sulfonamides),

which enables a deeper understanding of the structure-property

relationships at this higher Epsilon value.

B. Validation of Predicted Dyes

We have also used a graph neural network (GNN) model to

externally validate the extinction coefficient of the predicted

molecular SMILES from the CVAE model for a given ε

value. This GNN acts as an independent prediction scheme

where it takes a molecular SMILES as input, converts it to

a graph representation, and predicts the ε value. The main

purpose of using this model is to verify that the molecular

SMILES predicted by the CVAE model indeed possess the

optical property close to the target one.

The GNN model is based on graph convolutional network

architecture, which processes molecular graphs where nodes

represent the atoms and edges represent the bonds. It contains

a total of 22 dimensions of atom features, which includes one-

hot encoding for atom type (C, N, O, S, etc.). The features

of an atom consist of 22 dimensions, which include one-hot

encodings for atom type, degree, formal charge, hybridization,

aromaticity, total hydrogen count, radical electron count, ring

membership, and chirality. Bond features, involving six di-

mensions, capture bond type (single, double, triple, aromatic),

conjugation, and ring membership; however, standard GCN

convolutional layers mainly utilize node features and adja-

cency information. The network employs four GCN convo-

lutional layers, with 256 → 512 → 1, 024 → 2, 048 hidden

channels, increasing gradually. Additionally, BatchNorm1D
is used for normalization, and ReLU is used as an activation

function for each layer. Between these layers, a GNN dropout

rate of 0.25 is also used to lessen overfitting. A global mean

pool layer then combines all of the node embeddings to create



a single graph-level feature vector after graph convolutions.

This feature vector is subsequently fed to two fully connected

layers that have a higher dropout rate of 0.5, BatchNorm1D,

and ReLU. The final output layer consists of a single neuron

that uses the provided SMILES string to predict the ε value.

This model uses the same dataset, which includes SMILES

strings and their corresponding ε values, as the CVAE proce-

dure. The dataset was split into three sets: train (70%), test

(15%), and validation (15%). The ε values were then scaled

to a [0, 1] range using MinMaxScaller after being processed

using NumPy log. This was done since the ε values found in

the dataset had a wide range and a typical skewed distribution.

Training was conducted using the Adam optimizer, which has

a learning rate of 0.0005 and a weight decay of 1e− 6. With

a batch size of 32 and an early stopping mechanism with a

patience of 20 epochs, the model was trained for the maximum

of 200 epochs. An R2 score of 0.8204 was obtained when the

GNN model’s performance was evaluated on the test set. This

suggests that roughly 82% of the variance of the ε distribution

was captured by the GNN model. The quantitative measures

were further supported by a significant correlation between the

expected and real ε values, as shown in Figure 6.

Fig. 6: Actual vs Predicted ε value distribution.

Even though the predicted molecules demonstrate signifi-

cant structural diversity based on the targeted ε value, it is

worth noting that not all of the predicted molecules can be

mapped to a corresponding IUPAC chemical name available

in the PubChem database. But this absence does not reduce

the significance of our findings and our primary objective

of utilizing the variational autoencoder’s capacity to generate

novel molecules with target properties. Rather, the absence of

PubChem records might indicate that the model can explore

uncharted chemical space. RDKit toolkit has been used to

confirm the structure and chemical validity of the produced

compounds, while DFT studies also shed light on their stability

and electronic characteristics.

C. Synthesizability of Predicted Dyes

The synthesizability of AI-predicted dye molecules is a

critical measure of their scientific validity and real-world

applicability. While AI models such as MatFlow [21, 37, 38]

can efficiently generate molecular structures with desirable

optical properties, such as high molar extinction coefficients

or tunable absorption spectra, these predictions must be

chemically plausible and experimentally achievable to im-

pact materials science meaningfully. Ensuring synthesizability

bridges the gap between in silico discovery and laboratory

implementation, enabling efficient validation, fabrication, and

integration of novel dyes into quantum sensing, photonics,

or biomedical imaging applications. Moreover, incorporating

synthesizability constraints into AI design pipelines improves

model robustness, reduces false positives, and accelerates the

path from theoretical innovation to functional materials.

ASKCOS [48] is an open-source, AI-powered software

suite for computer-aided synthesis planning (CASP), designed

to help chemists evaluate and plan synthetic pathways for

complex molecules. By integrating advanced machine learning

models trained on large-scale reaction datasets, ASKCOS per-

forms tasks such as retrosynthetic analysis, reaction condition

recommendation, and reaction outcome prediction. This makes

it particularly valuable for determining the synthetic feasibility

of predicted molecules, like novel quantum dyes, by offering

detailed, data-driven synthesis routes from commercially avail-

able starting materials.

The synthesizability of our predicted dye molecules was

assessed using the ASKCOS platform, which assigns a Syn-

thetic Complexity Score (SCScore) on a scale from 1 to 5.

The SCScore values for the six dyes shown in Figures 3 and

4 are summarized in Table II. A lower SCScore implies higher

synthesizability, and thus an ideal dye will have high ε and

very low SCScore.

Fig. 7: Relationship between predicted SCScore and ε for the

SMILES in target classes of ε = 150, 000 M−1cm−1 (blue

line) and ε = 200, 000 M−1cm−1 (orange line). Likely best

predicted SMILES are in the shaded quadrant.

The association between the created molecules’ SCScore

and predicted Epsilon by the GNN for two sets of ε: 150,000

and 200,000 has been demonstrated in Figure 7. The data

points for both datasets are more densely clustered at lower

Epsilon values and show notable vertical scatter, indicating

variability in SCScore for similar Epsilon predictions. The

general pattern of both datasets is that SCScore tends to



Dye# SMILES Target ε Predicted ε SCScore

D7 NS(=O)(=O)c1ccc(N2N=C(c3ccc(O)cc3)CC2c2ccc(F)cc2)cc1 150,000 468,121.00 4.1
D8 c1ccccccccccccncccccccccccc1 150,000 2,973.95 1.0

D9(D2) CCOC(=O)C1c2ccccc2C(=O)N1c1ccc2ooc2c1 150,000 204,250.25 3.0

D10 NS(=O)(=O)c1ccc(N2N=C(c3ccc(O)cc3)CC2c2ccc(F)cc2)cc1 200,000 468,121.00 4.1
D11 N=C1C=CC=CC=CC=CC=CC=CC=CC=c2ccccc2=CC=C1 200,000 7,013.13 1.9

D12 CCOC(=O)C1c2ccccc2C(=O)N1c1ccccc1 200,000 442,541.93 2.4

TABLE III: Dyes with red bold fonts reflect highest predicted εs, and orange fonts mean lowest SCScores.

(a) D7, D10: ε = 468, 121.00,
SCScore = 4.1.

(b) D12: ε = 442, 541.93, SC-
Score = 2.4.

Fig. 8: 2D structures of molecules with the highest predicted

ε and SCScores in each target extinction coefficient category.

increase with higher predictions ε before the trends diverge and

plateau or even slightly decrease at higher ε values. The Pear-

son correlation (r = 0.446, p = 0.00348) for the ε: 150,000

data points shows a moderately positive linear relationship

that is statistically significant. This suggests that although

the general trend is curved, there is a definite underlying

tendency for SCScore to increase with Epsilon. The ε: 200,000

data points, on the other hand, have a weaker positive linear

correlation (r = 0.330) that is not statistically significant at

the traditional 0.05 level (p = 0.057). This suggests that any

linear trend is less clear and strong for this group, which is

visually reflected in its flatter curve at higher ε values and then

slightly declining curve at a wider confidence interval.

V. DISCUSSION

Majority of the predicted dyes exhibited moderate complex-

ity scores. Among the 41 and 34 unique SMILES predicted by

MatFlow respectively for target extinction coefficients 150,000

M−1cm−1 and 200,000 M−1cm−1, dyes D7 – D10 scoring

the highest predicted extinction coefficients and SCScores are

shown in Table III.

Among the predicted dye candidates, several noteworthy

observations emerged. Structurally identical dyes D7 and

D10 were independently predicted under both target extinc-

tion coefficient categories. Interestingly, the median predicted

extinction coefficients for the two target classes – 150,000

and 200,000 M−1cm−1 – were 16,230.09 and 88,297.20

M−1cm−1 respectively, reflecting the model’s capacity to

explore a range of absorption properties. Corresponding SC-

Scores of 3.2 and 3.5 suggest moderate synthetic feasibility.

Dyes D8 and D11 stand out for their very low SCScores

(indicative of high synthesizability), making them attractive

from a synthetic standpoint. However, their low predicted

extinction coefficients place them below the desired threshold,

rendering them suboptimal for applications demanding high

optical density.

Conversely, D7 (or equivalently D10) emerges as a com-

pelling candidate. Despite a slightly elevated SCScore of 4.1,

it boasts an exceptionally high predicted molar extinction coef-

ficient of 468,121 M−1cm−1, making it a strong contender for

experimental synthesis in high-performance dye applications.

For applications where a target ε value near 150,000

M−1cm−1 is sufficient, D9 (also listed as D2 in Table II)

offers an excellent balance, with a predicted ε near the design

goal and a low SCScore of 3.0.

Ultimately, the standout candidate is D12. With a remark-

ably low SCScore of 2.4 and a predicted ε of 442,541.93

M−1cm−1, it combines high synthesizability with outstanding

optical performance, making it the most promising molecule

for laboratory validation among those studied.

VI. CONCLUSION AND FUTURE WORKS

In this study, we developed and validated a graph-based

CVAE for the inverse design of molecules with targeted molar

extinction coefficients (ε). Our model successfully generated

novel compounds clustered around user-defined ε values, as

confirmed through comparison with the IUPAC database,

DFT calculations, and synthesis feasibility assessment via

ASKCOS. Additionally, a separate GNN model provided

further validation of predicted optical properties. Importantly,

the model demonstrated generalizability beyond ε, showing

potential to design molecules for other target properties as

well. This framework represents a significant step toward

accelerated, property-driven discovery of functional molecules

such as quantum dyes, surpassing the limitations of traditional

screening methods.

Future work will focus on scaling the model to support

larger molecular graphs (>400 nodes), refining CVAE archi-

tecture and hyperparameters, and enhancing molecular rep-

resentations to optimize for multi-objective property profiles.

Experimental validation will ensure practical chemical appli-

cability. We also envision building a web-based e-Lab platform

where materials scientists can upload custom datasets, define

design goals, and interactively generate candidate molecules

using trained inverse design models – bringing AI-assisted

molecular discovery closer to real-world deployment.
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