
Multimodal Contextualized Semantic Parsing from Speech

Jordan Voas and Raymond Mooney and David Harwath
jvoas@utexas.edu and mooney@utexas.edu and harwath@utexas.edu

The University of Texas at Austin

Abstract

We introduce Semantic Parsing in Contextual
Environments (SPICE), a task designed to en-
hance artificial agents’ contextual awareness
by integrating multimodal inputs with prior
contexts. SPICE goes beyond traditional se-
mantic parsing by offering a structured, inter-
pretable framework for dynamically updating
an agent’s knowledge with new information,
mirroring the complexity of human commu-
nication. We develop the VG-SPICE dataset,
crafted to challenge agents with visual scene
graph construction from spoken conversational
exchanges, highlighting speech and visual data
integration. We also present the Audio-Vision
Dialogue Scene Parser (AViD-SP) developed
for use on VG-SPICE. These innovations aim
to improve multimodal information processing
and integration. Both the VG-SPICE dataset
and the AViD-SP model are publicly available.
1 2

1 Introduction

Imagine you are taking a guided tour of an art
museum. During the tour as you visit each piece
of art, your guide describes not only the artworks
themselves but also the history and unique features
of the galleries and building itself. Through this
dialog, you are able to construct a mental map of
the museum, whose entities and their relationships
with one another are grounded to their real-world
counterparts in the museum. We engage in this type
of iterative construction of grounded knowledge
through dialog every day, such as when teaching a
friend how to change the oil in their car or going
over a set of X-rays with our dentist. As intelligent
agents continue to become more ubiquitous and
integrated into our lives, it is increasingly important
to develop these same sorts of capabilities in them.

1https://github.com/jvoas655/VG-SPICE
2https://github.com/jvoas655/AViD-SP

Toward this goal, this work introduces Seman-
tic Parsing in Contextual Environments (SPICE),
a task designed to capture the process of itera-
tive knowledge construction through grounded lan-
guage. It emphasizes the continuous need to update
contextual states based on prior knowledge and
new information. SPICE requires agents to main-
tain their contextual state within a structured, dense
information framework that is scalable and inter-
pretable, facilitating inspection by users or integra-
tion with downstream system components. SPICE
accomplishes this by formulating updates as For-
mal Semantic Parsing, with the formal language
defining the allowable solution space of the con-
structed context.

Because the SPICE task is designed to model
real-world and embodied applications, such as
teaching a mobile robot about an environment
or assisting a doctor with medical image an-
notations, there are crucial differences between
SPICE and traditional text-based semantic parsing.
First, SPICE considers parsing language within a
grounded, multimodal context. The language in
cases like these may have ambiguities that can only
be resolved by taking into account multimodal con-
textual information, such as from vision.

Furthermore, SPICE supports linguistic input
that comes in the form of both speech and text.
In real-world embodied interactions, language is
predominantly spoken, not written. While modern
automatic speech recognition (ASR) technology is
highly accurate, it is still sensitive to environmental
noise and reverberation, and representing the input
language as both a waveform as well as a noisy
ASR transcript can improve robustness. While we
do not consider it here, the SPICE framework also
supports paralinguistic input such as facial expres-
sions, eye gaze, and hand gestures.

We present a novel dataset, VG-SPICE, derived
from the Visual Genome (Krishna et al., 2016),
an existing dataset comprised of annotated visual
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Figure 1: Example of VG-SPICE inputs as well as a plausible output to produce the correct next state context. New
information that the agent is expected to add to the context is shown in green while already known information is
noted in red. Grounding entities that have new information being added to them are noted in blue and orange. The
current context is shown as a textually prompted representation of the actual knowledge graph (discussed in Section
F).

scene graphs representing constituent entities and
relational prepositions, enhanced with additional
processing and synthetic augmentation to form a
foundational representation for SPICE tasks. VG-
SPICE simulates the conversational construction
of visual scene graphs, wherein a knowledge graph
representation of the entities and relationships con-
tained within an image must be collected from
the visual inputs and audio dialogue. This dataset,
along with an initial model trained for VG-SPICE,
sets the baseline for future efforts. Figure 1 shows
an example of a typical VG-SPICE sample. The
figure shows how potential semantic parses can be
extracted from the visual scene and spoken utter-
ance conditioned on what information is already
known about the scene.

The remainder of this paper is structured as fol-
lows: It begins with a detailed analysis of the
SPICE task, introduces the VG-SPICE dataset, and
presents our AViD-SP model. It then delves into
experimental results, showcasing the model’s abil-
ity to process and interpret context consistent with
the SPICE framework. Finally we outline the im-
plications and directions for future research. The
main contributions include:

• A definition of the Semantic Parsing in Con-
textual Environments (SPICE) task, highlight-
ing its challenges, scope, and significance in
enhancing human-AI communication.

• The creation of a large, machine-generated
SPICE dataset, VG-SPICE, leveraging exist-
ing machine learning models and the Visual
Genome dataset, to motivate SPICE research.

• An initial baseline model, Audio-Vision Dia-
logue Scene Parser (AViD-SP), for VG-SPICE
that integrates Language Models with Au-
dio/Visual feature extractors, establishing a
research benchmark for SPICE. As a compo-
nent of AViD-SP, we also introduce a novel
pretrained encoder adaption and multimodal
fusion method, the Grouped Multimodal At-
tention Down Sampler (GMADS) to motivate
the exploration of additional multimodal adap-
tation methods.

2 Related Work

The SPICE task intersects with research in dialogue
systems and semantic parsing. While previous ef-
forts in these areas have addressed some elements
of SPICE, none have fully encapsulated the com-
prehensive requirements of the SPICE task.

2.1 Dialogue Systems and Multimodality
Dialogue systems share similarities with SPICE
tasks, particularly in their aim to emulate human
conversational skills, including referencing prior
conversational context. However, SPICE differ-
entiates itself by necessitating multimodal interac-
tions, the utilization of structured and interpretable
knowledge representations, and the capability for
dynamic knowledge updates during conversations,
setting it apart from conventional dialogue models.

Recent advancements in dialogue systems, par-
ticularly through large language models (LLMs)
(Wei et al., 2022; Chowdhery et al., 2022; Ouyang
et al., 2022; Jiang et al., 2023; Touvron et al.,
2023a,b), have enhanced the ability to manage



complex, multi-turn conversations. This is largely
thanks to the employment of extensive context win-
dows (Dao, 2023), improving language comprehen-
sion and generation for more coherent and contex-
tually appropriate exchanges. Nevertheless, LLMs’
reliance on broad textual contexts can compromise
efficiency and interpretability in many applications.
Not only must all prior inputs be reprocessed for
future updates but the uncompressed format pre-
vents easy end-user inspection of the information
the model is tracking for future interactions.

Advances in multimodal dialogue systems, in-
corporating text, image, and audio inputs (Liu et al.,
2023; Zhu et al., 2023; Dai et al., 2023; Zhang et al.,
2023a; Maaz et al., 2023), edge closer to SPICE’s
vision of multimodal communication. Yet, these
systems cannot often distill accumulated knowl-
edge into concise, understandable formats, instead
still relying on raw dialogue histories or opaque
embeddings for prior context.

While some systems are beginning to interact
with and update external knowledge bases, these
interactions tend to be unidirectional (Cheng et al.,
2022; Wu et al., 2021) or involve knowledge stor-
age as extensive, barely processed texts (Zhong
et al., 2023; Wang et al., 2023). Dialogue State
Tracking (DST) (Balaraman et al., 2021) shares
similarities with SPICE in that agents use and up-
date their knowledge bases during dialogues. How-
ever, most DST efforts are unimodal, with lim-
ited exploration of multimodal inputs (Kottur et al.,
2021). Moreover, existing datasets and models for
DST do not align with the SPICE framework, as
they often rely on regenerating the knowledge base
with each dialogue step from all historical dialogue
inputs without offering a structured representation
of the prior context. SPICE, conversely, envisions
sequential updates based on and directly applied
to prior context, a feature not yet explored in DST.
Further, we are unaware of any DST work that has
attempted to utilize spoken audio.

2.2 Semantic Parsing
Semantic Parsing involves translating natural lan-
guage into a structured, symbolic-meaning repre-
sentation. Traditional semantic parsing research
focuses on processing individual, short-span inputs
to produce their semantic representations (Kamath
and Das, 2019). Some studies have explored se-
mantic parsing in dialogues or with contextual in-
puts, known as Semantic Parsing in Context (SPiC)
or Context Dependent Semantic Parsing (CDSP)

(Li et al., 2020). However, most CDSP research
has been aimed at database applications, where the
context is a static schema (Yu et al., 2019). While
these tasks leverage context for query execution,
they do not involve dynamic schema updates, in-
stead maintaining a static context between interac-
tions. Outside these applications, CDSP is mainly
applied in DST (Ye et al., 2021; Cheng et al., 2020;
Moradshahi et al., 2023; Heck et al., 2020), which
we have previously differentiated from SPICE.

Furthermore, semantic parsing has traditionally
been limited to textual inputs and unimodal ap-
plications. It has been extended to visual modal-
ities, notably in automated Scene Graph Genera-
tion (SGG) tasks (Zhang et al., 2023b; Abdelsalam
et al., 2022; Zareian et al., 2020). Although there
has been exploration into using spoken audio for
semantic parsing (Tomasello et al., 2022; Coucke
et al., 2018; Lugosch et al., 2019; Sen and Groves,
2021), these efforts have been constrained by fo-
cusing on simple intent and slot prediction tasks,
and have not incorporated contextual updates or
complex semantic outputs.

As such, we believe SPICE to be considerably
distinct from any works that have come previously.
While individual components of SPICE’s frame-
work have been studied, such as semantic pars-
ing from audio, context, or multimodal inputs, no
work has utilized all of these at once. Additionally,
SPICE goes beyond most semantic parsing and dia-
logue works, even those operating on some form of
knowledge representation, by tasking the agent to
produce continual updates to said knowledge graph
and to maintain them in an interpretable format.

3 Task Definition

Semantic Parsing in Contextual Environments
(SPICE) is defined as follows. Consider a model
agent, denoted as a, designed to maintain and up-
date a world state across interaction timesteps. Let
Ci represent this world state during the ith turn.
For interpretability and downstream use Ci is rep-
resented as a formal knowledge graph (Chen et al.,
2020). This state represents the accumulated con-
text from prior interactions. Initially, Ci can be set
to a default or empty state.

During each interaction turn, the agent encoun-
ters a set of new inputs, referred to as informa-
tion inputs Fm

i , with m indicating the diversity of
modalities the agent is processing. The agent’s
goal is to construct a formal semantic parse, Pi =



Dataset #Scenes #Nodes #Predicates Avg. Size
Visual Genome (Krishna et al., 2016) 108077 76,340 - -
VG80K (Zhang et al., 2019) 104832 53304 29086 19.02
VG150 (Xu et al., 2017) 105414 150 50 6.98
Ours 22346 2032 282 19.64

Table 1: Comparison of our Visual Genome curation statistics to other works. Further details are in Section D.

a(Fm
i , Ci). This parse is formulated by integrating

the prior context Ci with the new information in-
puts Fm

i . With the aid of an execution function e,
this results in an updated context Ci+1 = e(Pi, Ci).

This newly formed context Ci+1 should repre-
sent all task essential information, both from pre-
vious context Ci and the most recent interaction
round, for future rounds. Ci+1 is expected to align
with a reference context, denoted as Ĉi+1, which
represents the ideal post-interaction state.

4 Dataset

This section introduces VG-SPICE, a novel dataset
for SPICE tasks, providing a structured benchmark
for model training and evaluation. To our knowl-
edge, VG-SPICE is the first of its kind and is de-
rived from the Visual Genome dataset (Krishna
et al., 2016) to simulate a “tour guide” providing
sequential descriptions of aspects of the environ-
ment. In these scenarios, the tour guide describes a
visual scene with sequential utterances, each intro-
ducing new elements to the scene. These descrip-
tions, combined with a pre-established world state
of the scene, mimic the accumulation of world state
information through successive interactions.

VG-SPICE utilizes the Visual Genome’s 108k
images with human-annotated scene graphs for en-
tity identification via bounding boxes, originally
detected using an object identification model. The
graphs include named nodes, optional attributes,
and directed edges for relational predicates.

The dataset is constructed by extracting sub-
graphs from scene graphs as the initial context, Ci,
sampled from empty to nearly complete. These are
then augmented by reintegrating a portion of the
omitted graph to form the updated context, Ci+1.
Before extracting our samples, the Visual Genome
data underwent preprocessing to enhance dataset
quality (Section D and summary results shown in
Table 1). The dataset allows flexible model imple-
mentation with semantic parses (Pi) and parsing
functions (e) not predefined, allowing flexibility in
modeling implementation. Our model’s semantic

parse format is discussed in Section G.
For each context pair (Ci, Ci+1), features from

Ci and modified features for Ci+1 are structured
into natural language prompts. These prompts
are processed by the Llama 2 70B LLM (Touvron
et al., 2023a) to generate plausible sentences that
describe the difference between Ci and Ci+1. We
then synthesize spoken versions of these sentences
via the Tortoise-TTS-V2 (Betker, 2022) text-to-
speech (TTS) synthesis system. We configure the
TTS model to randomly sample speaker charac-
teristics from its pretrained latent space, and use
the built-in “high_quality” setup for other gener-
ation settings. Before TTS conversion filtering is
performed on the textual utterances to remove com-
mon recurrent terms indicative of new information
(eg., "there now is a" versus "there is a"). The audio
recordings and visual images are the multimodal
inputs Fm

i of VG-SPICE, emphasizing spoken au-
dio for practicality in real-world applications and
necessitating addressing the challenges of semantic
parsing from audio such as speaker diversity and
noise robustness. The presence of both textual and
spoken audio representations for the update utter-
ances allows VG-SPICE to be utilized for semantic
parsing evaluations in either modality.

VG-SPICE includes over 131k SPICE update
samples from 20k unique scenes, with 2.5% allo-
cated to each of the validation and test sets, en-
suring distinct scenes across splits. We perform
noise augmentation on the input speech using the
CHiME5 dataset (Barker et al., 2018) to simu-
late realistic noise conditions, with performance
evaluated at various Signal to Noise Ratios (SNR).
VG-SPICE samples and summary statistics are pre-
sented in Figure 1 and Table 2, respectively.

4.1 Challenge Subset

In addition to the standard test set, we augment VG-
SPICE with an additional Challenge Subset, VG-
SPICE-C. Although this subset is small, spanning
only 50 individual visual scenes, it provides distinct
capabilities not present in the primary VG-SPICE



Statistic Value
# Samples 131362
# Unique Scenes 22346
Hours of Audio 10.56
Avg. Words per Utterance 71.83
Avg. Nodes Added 1.27
Avg. Attributes Added 0.93
Avg. Edges Added 0.60

Table 2: Summary statistics for our VG-SPICE dataset.

test dataset, as detailed below.
Broad Visual Representation: To sample the

Challenge Subset, we used a representation-based
process to promote diverse image types. We ob-
tained the CLIP3 representations for each image in
the original VG-SPICE test split. Using KMeans
clustering, the dataset was partitioned into 50 dis-
tinct groupings of visual representations, with a
single sample taken from each cluster.

Manual Scene Graph Quality Enhancements:
Despite automated generation processes in VG-
SPICE aiming to improve scene graph quality, per-
sistent issues remain. To ensure a clean and reliable
testing subset, manual scene graph improvements
were made to ensure the final scene graph for each
image was accurate. This involved removing incor-
rect, low-quality, or duplicate scene features and
enhancing the scene graphs to achieve far greater
density than originally present in VG-SPICE or Vi-
sual Genome, particularly for Edges and Attributes.

Coherent Iterative Updates: To improve sam-
ple diversity, VG-SPICE was generated in an iter-
atively incoherent fashion, meaning samples for a
single update cannot be used to coherently evaluate
end-to-end SPICE evaluations. For the Challenge
Subset, we manually annotated each of the 50 sam-
pled scenes with five individual utterances, each
adding novel information while referring to previ-
ously mentioned details. These utterances are of
greater diversity and quality (due to manual annota-
tion rather than LLM production) and can be used
sequentially to evaluate scene graph generation er-
rors over multiple interaction rounds.

OOD and Real Speech: To enhance the eval-
uative capabilities of the Challenge Set, we pro-
vide speech samples for the utterances from two
sources: Tortoise-TTS as used for the remainder
of VG-SPICE (with three random voice samples
per utterance) as well as manual recordings of the

3openai/clip-vit-base-patch32 from Huggingface

spoken utterances by a individual human annotator.
This Challenge Subset offers a rigorous evalu-

ation framework for models, promoting advance-
ments in handling diverse visual representations,
maintaining high-quality scene graphs, performing
coherent iterative updates, and managing out-of-
domain and real-world speech scenarios.

5 AViD-SP Model

To address the challenges of VG-SPICE, our ap-
proach utilizes a range of pretrained models, specif-
ically fine-tuned to enhance SPICE-focused seman-
tic parsing capabilities. Figure 2 illustrates our
model architecture, termed Audio-Vision Dialogue
Scene Parser (AViD-SP). At the core of our frame-
work lies the pretrained Llama 2 7B model (Tou-
vron et al., 2023b). Despite deploying its smallest
variant, the extensive pretraining endows our model
with robust functional abilities, particularly bene-
ficial for processing the diverse semantic parses
inherent to VG-SPICE. However, Llama 2, trained
on textual data, lacks inherent support for the mul-
timodal inputs typical in VG-SPICE.

To accommodate diverse inputs, we extend tech-
niques from prior studies (Rubenstein et al., 2023;
Gong et al., 2023; Lin et al., 2023) by projecting
embeddings from pretrained modality-specific fea-
ture extractors. This approach has been proven
to enable text-based LLMs to process informa-
tion across various modalities. Directly integrating
these projected embeddings into the LLM’s con-
text window, however, introduces significant com-
putational overhead due to their typically extensive
context lengths. While previous research often em-
ployed pooling methods (Gong et al., 2023) to con-
dense embeddings by modality, this strategy incom-
pletely addresses the challenges of merging varied
modality embeddings for LLM use. For instance,
audio embeddings offer finer temporal granularity
than textual embeddings, and the reverse is often
true for vision embeddings, complicating the ad-
justment of downsampling factors. Moreover, even
with optimized downsampling, pooled embeddings
must preserve their original sequential order and
are restricted to information from solely the pooled
segments. Many applications could benefit from
capabilities to establish downsampled features en-
compassing both local and global contexts and to
rearrange these features to an extent.

To surmount these challenges, we introduce a
novel Grouped Modality Attention Down Sam-



pler (GMADS) module. This module initially
projects embeddings from non-textual modalities
into a unified, fixed-dimensional space. We form
a set of modality groupings, one for each input
modality (audio and visual with VG-SPICE), and a
cross-modality grouping derived from concatenat-
ing all modality embeddings, each prefixed with a
modality-specific token. A series of self-attention
layers processes each embedding sequence and
downsamples the outputs by a factor of S through
mean pooling. These values are then concatenated
with the mean-pooled pre-self-attention embed-
dings along the embedding dimension, akin to a
skip connection. A final projection adjusts the out-
puts to match the dimensionality of the Llama 2
7B decoder, and all embedding sequences are con-
catenated. This process yields an embedding out-
put that is effectively downsampled by a factor
of S/2. All weights in the GMADS module are
shared across the groups, substantially reducing
the parameter count. Additionally, we employ a
self-supervised representation learning objective
on the embeddings from the downsampled cross-
modality group outputs by upsampling them to
their original size and then processing them through
a secondary set of self-attention layers. The recon-
structed cross-modality embeddings are then seg-
mented by modality, with per-modality projections
striving to restore them to their original input size.
We apply a contrastive reconstruction loss objec-
tive as outlined in Eq. 1, using the corresponding
ground truth embedding as an anchor and all other
embeddings in the batch as contrastive samples.

ℓn,Contrast =
∑B∗K

j=1 log
exp(sim(zi,zj)/τ)∑B∗K

k=1
[k ̸=i] exp(sim(zi,zk)/τ)

(1)

In this equation zi denotes the reconstructed in-
put embedding, K represents the length of each
sequence, B denotes the batch size, and τ is a tun-
able temperature hyperparameter.

We also observed that non-textual modality in-
puts tended to collapse when combined with sim-
pler textual inputs, such as prior context or ASR
transcripts. To counter this, we include an addi-
tional orthogonality loss, designed to encourage
maximal dissimilarity among aligned embeddings
in each batch sequence. This methodology is simi-
lar to previous efforts to promote distinct class em-
beddings (Ranasinghe et al., 2021), but in our case,
we treat each embedding as a distinct class sample.
However, given the nature of these embedding se-

quences, some level of similarity is expected, and
entirely dissimilar values (cosine similarity less
than zero) are not feasible. Thus, we modify Eq.
2 to include a slight margin allowing for minimal
similarity. Below, ei represents a single GMADS
output embedding (pre-output projection) within a
batch of B sequences, each of length K.

ℓOrtho =
2
∑B∗K−1

i=1

∑B∗K
j=i+1 max(

ei∗ej
∥ei∥∗∥ej∥

−h,0))

B∗K∗(B∗K−1)
(2)

The GMADS module attempts to provide several
advantages over the direct use of raw modality em-
beddings with the LLM decoder or mean pooling.
Firstly, GMADS operates at reduced dimensional
scales compared to the pretrained LLM, which sig-
nificantly lowers memory requirements, requiring
the much larger decoder to process shorter (reduced
to only 2/S the size) input sequences. Moreover,
the modality inputs do not necessitate autoregres-
sive generation alongside these inputs, further con-
serving cost. Secondly, GMADS empowers the
model to selectively learn its downsampling pro-
cess, including choices on whether to focus locally
or integrate global features, allowing some degree
of information restructuring. The incorporation of
cross-modality encoding enables parts of the down-
sampled embeddings to capture essential informa-
tion across modalities while maintaining individual
modality components in the outputs ensuring that
some portion of the output embeddings is condi-
tioned on each modality, requiring the attention
mechanisms to remain sensitive to all modalities.

For feature extraction, we utilize the visual en-
coder from DINOv2 (Oquab et al., 2024) for visual
inputs and the encoder from Whisper-Large V3
(Radford et al., 2022) for audio. We retain only
the necessary encoder portions of these pretrained
models. In alignment with successful semantic
parsing efforts from speech (Arora et al., 2023), we
perform ASR transcription on the audio, appending
these textual embeddings to the prior context em-
beddings. ASR transcriptions are generated using
the Whisper-medium.en model. To enable scalable
fine-tuning, we integrate LoRa adaptation layers
into Llama 2 7B and freeze all feature extractors.

5.1 Training Routine
We train AViD-SP using cross-entropy loss (Eq. 3)
between the predicted and reference Formal Seman-
tic Parses, alongside the objectives in Eq. 1 and 2.
Our comprehensive loss function is outlined below



Figure 2: a) The architecture of the AViD-SP model for
VG-SPICE, integrating pretrained encoders and large
language models (LLMs) with LoRa adapters and fea-
ture fusion modules. Trained and frozen segments of the
model are denoted by fire and snowflake icons, respec-
tively. b) Our novel Grouped Modality Attention Down
Sampler module, enabling integrated cross-modality fu-
sion and downsampling. Green modules share weights.
For downsampling, we utilize meanpooling, and for up-
sampling we linearly interpolate the embeddings.

in Eq. 4, where pi,k denotes the softmax prediction
for each of the k tokens in Pi, and ti,k represents
the corresponding ground-truth token label.

ℓCE = −
n∑

k=1

ti,k log(pi,k) (3)

L = αℓCE + βℓOrtho +
γ

N

N∑
n=1

ℓn,Contrast (4)

AViD-SP employs a three-layer self-attention
transformer as the primary encoder transformer,
each layer having an embedding dimensionality of
1024 and 8 attention heads. The secondary encoder
transformer, used for the upsampled reconstruction
training objective, is of the same configuration. The
GMADS module employs a downsampling factor,
S, of 16. Additionally, we enhance the key, query,
and value layers of the Llama 2 7B model with
Low-Rank Adaptation (LoRa) layers. No hyperpa-
rameter optimization was conducted.

We train AViD-SP by incorporating randomly
sampled CHiME5 noise to simulate audio corrup-
tion, adding this noise at various Signal-to-Noise
Ratios (SNR) of 0, 2, 5, 10, or 20dB. Further de-
tails on training and inference hyperparameters are
discussed in Section E. To ensure robustness to
various input feature combinations, we implement
random input dropout with a probability of 30%.
In these instances, we randomly omit one of the
input modalities, either audio embeddings, visual
embeddings, or audio transcriptions. We do not
omit the prior context, as we found the task too
difficult to learn under such conditions since it re-
quires both the already known information as well
as their current assigned labels under our seman-
tic parsing framework. AViD-SP is trained in a
two-stage pipeline, with the initial stage acting as
pretraining without the ASR transcriptions to allow
the GMADS module to reach a semi-trained state
for enhanced efficiency. Subsequently, we continue
fine-tuning the model with ASR transcriptions until
convergence. Our initial pretraining lasts one full
epochs, followed by the fine-tuning stage.

5.2 Evaluation Metrics
We use several metrics to measure how closely the
generated semantic parse aligns with the ground
truth and how accurately the scene graph context
updates match the reference. Unlike conventional
semantic parsing assessments (Tomasello et al.,
2022), we omit exact-match metrics due to their
unsuitability for our problem, which allows for per-
mutation invariance in the formal-language output
(see Section G). This permits the parser to generate
scene-graph updates in any order and assign node
IDs freely, as long as the resulting scene graph is
isomorphic to the reference.

For each below metric, we examine hard ("H")
and soft ("S") variants. The hard variant penal-
izes missing and unnecessary information, while
the soft variant only penalizes omissions. This ap-
proach accounts for the Visual Genome dataset’s
sparsity and the possibility of LLMs generating
extraneous yet potentially valid content. For ex-
ample, an LLM might enhance a "blue table" to a
"vibrant blue table," making "vibrant" an accept-
able attribute. Our analysis shows such inclusions
are common in the VG-SPICE dataset, leading us
to focus on the soft metric and qualitatively show
in Section 6 how updated utterances accommodate
these extraneous additions. We include results for
GED in the supplement Table 5.



Graph Edit Distance (GED): GED calculates
the normalized cost to transform the predicted con-
text to the reference one, considering only per-
fectly semantically equivalent Nodes, Attributes,
and Edges. Missing or extra Nodes or Edges in-
crease the error by one, while incorrect Attributes
have a smaller penalty of 0.25. GED is not normal-
ized and should be interpreted as the magnitude of
incorrect features compared with the reference so-
lution and not as a recall or precision metric. GED
is particularly reliant on exact matches, so minor
discrepancies (like "snow board" vs. "snowboard")
can incur significant penalties, with misalignments
doubly penalized in the hard variant.

Representation Edit Distance (RED): RED ad-
dresses the limitations of GED by employing a
“softer” semantic similarity to evaluate entity pair-
ings. Using a transformer model for sentence se-
mantic similarity4, RED groups Nodes and their
Attributes into descriptive phrases (for example, a
"table" Node with "vibrant" and "blue" Attributes
becomes "vibrant blue table") and assesses the dis-
similarity between potential pairings, using an ex-
haustic search for optimal pairings of Nodes and
Edges. Unmatched Nodes and Edges are consid-
ered entirely dissimilar. Since unmodified graph
portions from the prior context are pre-matched
and excluded from the exhaustive search, the com-
putation of the pairings remains manageable. RED
is normalized by the representation edit distance
needed to transform the prior context into the refer-
ence context, and so numerically can be interpreted
as the percentage of missing and/or extra informa-
tion relative to the reference context.

5.3 Baselines and Evaluation

To thoroughly evaluate our AViD-SP model, we
conducted a series of ablation studies to explore
the impact of various input modality combinations.
Given that AViD-SP was trained under diverse
noise conditions, its performance was tested across
noise levels of 0, 2, and 20 dB using the CHiME5
dataset. We assessed the model’s capability to re-
solve ambiguities in audio input by introducing
tests with and without visual modality, and by eval-
uating the model with incorrectly matched images
in the GMADS module. Additionally, we explored
potential enhancements in ASR performance by
incorporating ground truth ASR transcriptions in

4The “en_stsb_roberta_base” model from
https://github.com/MartinoMensio/spacy-sentence-bert

our evaluations. To ablate the effects our GMADS
module has on performance we compare against a
version of AViD-SP trained using traditional mean-
pooling after a per modality projection layer to
downsample the audio and visual input embed-
dings, with all hyperparameter and training meth-
ods matched between the two except the mean-
pooling baseline only utilizing the cross entropy
component of the full training objective.

We also extended our evaluations to the VG-
SPICE-C Subset. Here, we analyze the subset
through a single-step evaluation approach, with
ground truth prior context provided and metrics
measured after each individual SPICE update.

6 Results

The performance of the AViD-SP model on the
VG-SPICE test set, as shown in Table 3, demon-
strates that the baseline AViD-SP achieves S-RED
scores just below 0.4, with the meanpooling vari-
ant slightly lower, approaching 0.38. This perfor-
mance suggests a substantial effectiveness (over
60%) in assimilating desired information into the
scene graph. However, the H-RED metrics indi-
cate the introduction of moderate quantities of ir-
relevant information, particularly in the GMADS
version. Given that VG-SPICE scene graphs are
often overly sparse, the elevated H-RED values
for GMADS may reflect an increased utilization
of visual inputs, possibly learning to incorporate
non-essential features detected through visual cues.
While this interpretation is speculative, some level
of elevated H-RED could be reasonable for VG-
SPICE in its current state (Section C).

Under varying SNR conditions, both GMADS
and meanpooling configurations of AViD-SP show
minimal performance degradation at lower SNRs,
indicating resilience to reasonable background
noise levels. The use of accurate ASR transcrip-
tions substantially boosts parsing accuracy, empha-
sizing the benefits of reliable ASR.

Experiments omitting visual inputs or incorpo-
rating incorrectly paired visual inputs exhibit mi-
nor performance declines. For the meanpooling
based AViD-SP a slightly larger, but still quite mi-
nor, degradation in metric performance is observed
when audio inputs are excluded, with only ASR
transcriptions being provided. However, a more
significant degradation is observed for the GMADS
variant of AViD-SP under these same conditions.
This implies that the GMADS multimodal adapta-



Model Type H-RED↓ S-RED↓
0dB 2dB 20dB Gold* 0dB 2dB 20dB Gold*

AViD-SP + GMADS Base 1.618 1.517 1.412 1.272 0.402 0.383 0.3765 0.348
w/o Image 1.611 1.527 1.430 1.33 0.407 0.393 0.384 0.364
w/o Audio 1.660 1.607 1.590 1.540 0.570 0.559 0.538 0.481

w Incorrect Image** - - 1.423 - - - 0.381 -
w/o Prior Context*** - - 3.428 - - - 0.478 -

AViD-SP + Meanpool Base 1.083 1.038 0.940 0.817 0.377 0.368 0.359 0.323
w/o Image 1.051 0.980 0.911 0.826 0.386 0.377 0.362 0.330
w/o Audio 0.946 0.897 0.804 0.759 0.414 0.397 0.385 0.363

Table 3: RED results on the VG-SPICE test set for our AViD-SP model. AViD-SP was trained with CHiME5 noise
augmentation sampled between 0db and 20dB SNR (all CHiME5 noise followed the provided train/eval/test splits).
*Given the ground truth utterance transcripts in place of the ASR transcriptions. **Evaluated by offsetting visual
features within batch so incorrect image features are paired with the other input components. ***Evaluated with
"Empty Context" prior state scene graphs summaries instead of the correct ones.

Variant TTS Read
H-RED↓ S-RED↓ H-RED↓ S-RED↓

GMADS 0.739 0.497 0.731 0.497
Meanpool 0.640 0.460 1.415 0.628

Table 4: RED results on the VG-SPICE-C challenge
test set for AViD-SP with Single Step (ground truth prior
context provided for each step) metrics reported.

tion process has resulted in a model which is more
sensitive to the raw audio inputs than when mean-
pooling is used, which seems to dominantly rely
on the natively textual ASR transcriptions. We the-
orize that the enhanced capability of GMADS to
process multimodal inputs may lead to its overall
worse results, as it produces a more complex opti-
mization landscape compared with simply collaps-
ing to utilize only the native textual ASR transcripts.
Additionally, the absence of prior context markedly
increases error rates, underscoring the importance
of historical context for accurate SPICE updates.

Table 4 presents the performance of AViD-SP
on the VG-SPICE-C test set. For TTS audio, the
metrics diverge significantly from those of the stan-
dard VG-SPICE test set, featuring higher S-RED
and lower H-RED scores. The higher density of
VG-SPICE-C’s scene graphs, which include fewer
visually or auditorily supported features that are
untracked in reference scene graphs, likely con-
tributes to these lower Hard metric scores. How-
ever, this increased density also presents a greater
challenge in achieving improved Soft metric scores,
as the model must correctly incorporate a substan-
tial amount of information at each update step.

For the GMADS-based AViD-SP, performance
metrics on the read audio portion of VG-SPICE-C
align closely with those observed in the TTS por-
tion. Conversely, the meanpooling variant shows
a substantial performance reduction. This discrep-

ancy suggests that GMADS possesses more ro-
bust multimodal processing capabilities, especially
in processing out-of-domain real audio distribu-
tions. Since both model variants use the same ASR
model without parameter tuning, the observed dif-
ferences indicate that GMADS compensates more
effectively for poorer ASR performance.

7 Conclusion

In this paper, we introduced Semantic Parsing in
Contextual Environments (SPICE), an innovative
task designed to enhance artificial agents’ contex-
tual understanding by integrating multimodal in-
puts with prior contexts. Through the development
of the VG-SPICE dataset and the Audio-Vision
Dialogue Scene Parser (AViD-SP) model, we es-
tablished a framework for agents to dynamically
update their knowledge in response to new infor-
mation, closely mirroring human communication
processes. The VG-SPICE dataset, crafted to chal-
lenge agents with the task of visual scene graph con-
struction from spoken conversational exchanges,
represents a significant step forward in the field of
semantic parsing by incorporating both speech and
visual data integration. Meanwhile, the AViD-SP
model, equipped with the novel Grouped Multi-
modal Attention Down Sampler (GMADS), pro-
vides a strong initial baseline for VG-SPICE as
well as insights into potential methods to improve
multimodal information processing and integration.

Our work highlights the importance of develop-
ing systems capable of understanding and interact-
ing within complex, multimodal environments. By
focusing on the continuous update of contextual
states based on new, and multimodal, information,
SPICE represents a shift towards more natural and
effective human-AI communication.



8 Limitations

While VG-SPICE and AViD-SP are novel ap-
proaches, they have several limitations and should
be treated as initial attempts toward further SPICE
implementations and benchmarks. The main lim-
itation stems from the extensive use of synthetic
data augmentation in VG-SPICE’s creation. The
process involved several steps, including dataset
preprocessing with BERT-like POS taggers, craft-
ing update utterances using the Llama 2 70B LLM,
and generating synthetic TTS audio. These stages
may introduce errors, hallucinations, or overly sim-
ple data distributions, potentially misaligning with
real-world applications. For example, our models’
resilience to background noise may reflect the spe-
cific TTS audio distribution, possibly simplifying
the ASR model’s speech discernment. Addition-
ally, the Visual Genome, our work’s foundation,
suffers from notable quality issues, such as poor
annotations and unreliable synthetic object segmen-
tation, which, despite efforts to mitigate, remain
challenges in VG-SPICE. While the included VG-
SPICE-C test subset attempts to improve these lim-
itations, and indeed the hard versions of are metrics
are significantly improved on the manually cleaned
samples of this subset, they are still comprised of
intentionally crafted utterances with read audio,
which may not transfer to real-world applications
and natural spoken audio. Further, this work only
includes analysis of the VG-SPICE-C challenge
subset in the simple Single Step task and does not
evaluate in end-to-end sequence-based analysis.

The various version of AViD-SP we introduce
also provides indications of further development
for efficient multimodal adaptation methodologies.
While the version utilizing GMADS generally
failed to outperform the results of the traditional
meanpooling version the GMADS method also pro-
vided a stronger indication of cross-modality fea-
ture utilization, whereas integration of simplisti-
cally downsampled multimodal features alongside
native textual features appears to cause strong un-
derutilization and feature collapse for the multi-
modal features. This is further supported by the
poor performance achieved by the meanpooling
version of AViD-SP, relative to the GMADS ver-
sion, on real human recorded audio, indicating the
meanpooling version adapts much worse to out-
of-domain multimodal inputs. We suggest future
work to continue investigating methods similar to
GMADS to further realize their theoretical benefits.

Moreover, VG-SPICE, while pioneering in
SPICE tasks, is only a start, limited to audio and
images, with a basic language for knowledge graph
updates. Future research should address these limi-
tations by incorporating more realistic inputs, like
video, 3D environments, and paralinguistic cues,
and by exploring dynamic tasks beyond simple
scene graph updates. Environments like Matter-
port3D (Chang et al., 2017) or Habitat 3.0 (Puig
et al., 2023) offer promising avenues for embodied
SPICE research. Expanding SPICE to include sec-
ondary tasks that rely on an agent’s contextual un-
derstanding can also enhance its utility, such as aid-
ing in medical image annotation with co-dialogue.
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B Additional AViD-SP Results

We report the Graph Edit Distance (GED) results
for AViD-SP, and the tested baselines, here.

C Qualitative AViD-SP Examples

We include an example of a typical AViD-SP gener-
ation in Figure 3, with metric scores approximately
at the average obtained across the full testing set. In
this example it is evident that all of the ground truth
reference information was successfully added to
the updated scene graph, leading to the Soft-RED
score of 0.0. However, considerable extraneous
information is also observed to have been added.
In Figure 3 three additional Nodes are added, with
two of them being duplicates of ones that already
exist in the scene graph, along with one Edge.

However, considering the Transcription and Vi-
sual Scene for the illustrated sample reveals that
these features, while not included in the reference,
likely are logically reasonable for the agent to in-
clude. For the additional Node of “runway” the
motivation is obvious. Not only is the runway and
its corresponding edge relationship mentioned by
the LLM, but a runway is even present in the scene
visual. Similar conditions apply to the two dupli-
cate nodes added. While those nodes already exist,
they are mentioned in the Audio Transcription at
two distinct times. Inspection of the highlighted
and blown-up parts of the image also reveals that
there are in fact duplicates of these entities in the
scene, making their addition to the updated context
reasonable.

This is not to say all extraneous additions should
be treated as correct since many should not. How-
ever, it does illustrate a key area to seek further
improvement in the VG-SPICE dataset and why,
for this work, we focus more on the “soft” capa-
bility to add all known good information tot he
graph.
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Model Type H-GED↓ S-GED↓
0dB 2dB 20dB Gold* 0dB 2dB 20dB Gold*

AViD-SP + GMADS Base 2.010 1.921 1.811 1.621 0.924 0.889 0.862 0.778
w/o Image 2.044 1.973 1.816 1.642 0.944 0.923 0.878 0.791
w/o Audio 2.168 2.101 2.071 1.863 1.209 1.186 1.158 1.004

w Incorrect Image** - - 1.806 - - - 0.861 -
w/o Prior Context*** - - 4.656 - - - 0.909 -

AViD-SP + Meanpool Base 1.739 1.617 1.514 1.295 0.935 0.889 0.859 0.759
w/o Image 1.732 1.599 1.514 1.285 0.939 0.910 0.872 0.759
w/o Audio 1.622 1.560 1.428 1.244 1.002 0.964 0.909 0.815

w Incorrect Image** - - 1.517 - - - 0.857 -
w/o Prior Context*** - - 4.778 - - - 0.905 -

Table 5: GED results on the VG-SPICE test set for our AViD-SP model. AViD-SP was trained with CHiME5 noise
augmentation sampled between 0db and 20dB SNR (all CHiME5 noise followed the provided train/eval/test splits).
*Given the ground truth utterance transcripts in place of the ASR transcriptions. **Evaluated by offsetting visual
features within batch so incorrect image features are paired with the other input components. ***Evaluated with
"Empty Context" prior state scene graphs summaries instead of the correct ones.

Figure 3: Sample generation output with corresponding inputs from AViD-SP. Scored a Soft-RED of 0.0 and
Hard-RED of 6.727. Significant features highlighted in colors. Qualitative evaluation reveals that the majority of
extraneous additions were either supported by the Audio Transcription, the scene image, or both.



D Visual Genome Preprocessing

The Visual Genome serves as a strong basis for VG-
SPICE but has quality issues such as inconsistent
naming for Nodes, Attributes, and Predicates, du-
plicate Nodes, and unnecessary Nodes (e.g., <man,
has, head>). Prior solutions for Scene Graph Gen-
eration (SGG) tasks (Liang et al., 2019; Zhang
et al., 2019; Xu et al., 2017; Maëlic et al., 2023)
curated versions by limiting predicates and node
names, reducing predicates from 27k to 50 and
node names from 53k to 150. While the Visual
Genome contains a substantial portion of single-
sample terms, typically of lower quality, such re-
strictions can oversimplify and yield smaller, less
representative scene graphs.

Our approach refines the Visual Genome by:

Standardization and Correction: We applied
rule-based systems with Sentence Transformer Part
of Speech taggers 5 to fix inconsistencies and im-
prove scene graph density by retaining rare Node
names (e.g., "red table", identifying "red" as an at-
tribute). We removed low-quality attributes and
predicates by limiting them to specific parts of
speech conditions, such as removing proper and
common nouns from attributes/edges. Furthermore,
we imposed several straightforward constraints to
refine the scene graph structure. These included set-
ting limits on the word counts for individual scene
graph elements and consolidating attributes when
redundancy was detected within a specific node, for
instance, merging "reddish" and "red" when both
attributes described the same entity.

Duplicate Node Elimination: We added a post-
standardization phase to remove duplicate nodes.
Unlike earlier methods (Maëlic et al., 2023) rely-
ing solely on a high Intersection over Union (IoU)
threshold for exact node matches, we included
a semantic similarity check from the contextual-
ized embeddings from the same Sentence Trans-
former utilized in the Standardization and Correc-
tion phase. This allows for the detection of dupli-
cate Nodes with significant name similarities and
IoUs. With a preference for visually supported
scene graphs over the potential exclusion of some
valid Nodes, we set a lower IoU threshold (0.5,
compared to prior works’ 0.9) and a semantic simi-
larity threshold of 0.7.

5Using "all-mpnet-base-v2" from Python Sentence Trans-
formers

Term Frequency Analysis: Next, we manually
curated terms in the filtered dataset to establish a
relevant set for the SPICE task, excluding single-
occurrence terms for their low quality, and filtered
scene graphs based on this list.

Scene Graph Size Restriction: Finally, we fil-
tered out small graphs to ensure a diverse set
for VG-SPICE, excluding graphs with fewer than
four Nodes or Edges and applying dynamically in-
creased threshold for graphs with duplicate nodes.

These methods enhanced the Visual Genome’s
graphs, yielding a dataset with improved quality
and annotation density, as illustrated in Table 1.

E Training and Inference
Hyperparameters

The training regimen for AViD-SP spans two
epochs across the dataset, using a combined batch
size of 72 on six Nvidia L40 GPUs. An initial
learning rate of 5 × 10−5 is applied, followed by
exponential decay. We employ cross-entropy loss
for the prediction of target semantic parses, intro-
ducing loss masking for padding and for the prompt
that combines prior context with multimodal inputs.
We utilize loss factors of α = 1.0, β = 0.1, and
γ = 0.1.

Inference leverages a greedy decoding strategy
with a max generation length of 160 tokens and oth-
erwise default generation parameters for LLAMA
2 7B.

F Contextual State Representation

SPICE formulates the prior context to be utilized
by the agent as a structured knowledge graph. How-
ever, top-performing semantic parsing generation
models, such as those best on the Llama architec-
ture as used in this work, are decoder-only models
that can accept inputs from linear text sequences
only. This requires utilizing either a compatible
knowledge graph encoder which can embed and
project the knowledge graph representation for use
by the semantic parse generation model, or rep-
resenting the knowledge graph in the form of a
textually formatted prompt. For AViD-SP devel-
oped in this work, we utilized the second, with the
format of the textually prompted representation of
the prior context shown in Figure 1.

When generating the context representations all
existing Nodes are assigned Node IDs, and seman-
tic parses are expected to operate in reference to
these Node IDs (Section G). We provide Nodes



and Attributes first, followed by any Edges. The
ordering of all information is sorted by Node ID
in ascending order. In practice, all Node IDs are
randomly assigned for each training iteration to
diversity training inputs.

G Formal Language Definition

The formal language we used in the semantic
parses Pi and the corresponding execution func-
tion e contained the following executable func-
tion, which together could deterministically up-
date the scene graph prior context Ci to the next
context state Ci+1. Since VG-SPICE only rep-
resents the conversational construction of scene
graphs, and not deletion or alterations, our formal
language is comprised of three distinct operations:
1) #ADD_NODE accepting a new Node ID, name,
and optionally a set of attributes to add along with
it, 2) #ADD_ATTR accepting an existing Node ID
as well as a set of attributes to be added to the spec-
ified node, and 3) #ADD_EDGE accepting a source
and target pair of existing node IDs along with the
predicate to be assigned between them. Our for-
mal language always generates reference semantic
parses with new attributes added first, followed
by new Nodes (and assigned attributes), and lastly
new edges. However, when evaluating our model
outputs the execution function e can accept these
commands in any order, so long as the referenced
node IDs already have been added.

H Licensing

Our paper utilized the Visual Genome dataset
which is listed under a Creative Commons license.
All other tools utilized are available from either
Pythons Spacy or Huggingface and are available
for academic use. To the best of our knowledge, all
artifacts utilized are aligned with their intended use
cases.

I AI Assistance

A minor portion of code development was done
with the assistance of ChatGPT. All research ideas
and writing are of the author’s original creation.
Grammarly was utilized for writing assistance.
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