
Closing the Computational-Query Depth Gap
in Parallel Stochastic Convex Optimization

Arun Jambulapati
University of Michigan
jmblpati@gmail.com

Aaron Sidford
Stanford University

sidford@stanford.edu

Kevin Tian
University of Texas at Austin

kjtian@cs.utexas.edu

Abstract

We develop a new parallel algorithm for minimizing Lipschitz, convex functions with a
stochastic subgradient oracle. The total number of queries made and the query depth, i.e.,
the number of parallel rounds of queries, match the prior state-of-the-art, [CJJ+23], while im-
proving upon the computational depth by a polynomial factor for sufficiently small accuracy.
When combined with previous state-of-the-art methods our result closes a gap between the
best-known query depth and the best-known computational depth of parallel algorithms.

Our method starts with a ball acceleration framework of previous parallel methods, i.e.,
[CJJ+20, ACJ+21], which reduce the problem to minimizing a regularized Gaussian convolution
of the function constrained to Euclidean balls. By developing and leveraging new stability
properties of the Hessian of this induced function, we depart from prior parallel algorithms
and reduce these ball-constrained optimization problems to stochastic unconstrained quadratic
minimization problems. Although we are unable to prove concentration of the asymmetric
matrices that we use to approximate this Hessian, we nevertheless develop an efficient parallel
method for solving these quadratics. Interestingly, our algorithms can be improved using fast
matrix multiplication and use nearly-linear work if the matrix multiplication exponent is 2.

Contents

1 Introduction 2

2 Technical overview 5
2.1 Framework: convolutions and acceleration . 6
2.2 Hessian stability of the Gaussian convolution . 8
2.3 Hessian optimization without Hessian approximation 10
2.4 Parallel maintenance of rank-one updates . 10

3 Parallel optimization of quadratic subproblems 11
3.1 Composite stochastic optimization . 12
3.2 Parallel maintenance of rank-1 updates . 15
3.3 High-probability error bound reduction . 19
3.4 Putting it all together . 20

4 Parallel stochastic convex optimization 22
4.1 Approximate Newton’s method . 23
4.2 Ball optimization oracles via binary search . 24
4.3 Proof of Theorem 2 . 28

1

ar
X

iv
:2

40
6.

07
37

3v
1

 [m
at

h.
O

C
]

11
 Ju

n
20

24

1 Introduction

Consider the classic problem of Lipschitz convex optimization. In this problem, there is a convex
f : Rd → R that is 1-Lipschitz, i.e., |f(x) − f(y)| ≤ ∥x− y∥ for all x, y ∈ Rd, that is guaranteed
to have a minimizer x⋆ ∈ Rd with ∥x⋆∥ ≤ 1. The goal of the problem is to compute an (expected)
ϵ-approximate minimizer to f , i.e., x ∈ Rd with Ef(x) ≤ f(x⋆) + ϵ given access to f only though a
subgradient oracle g that when queried at x ∈ Rd outputs a vector g(x) ∈ ∂f(x), where ∂f is the
set of subgradients of f at x. We focus on this standard setting in the introduction for simplicity,
however our results extend to the more general case of bounded stochastic gradient oracles and
further relaxations of the bounds on Lipschitz continuity and the minimizer (see Problem 1).

Lipschitz convex optimization is foundational in optimization theory, and its study has motivated
well-known optimization algorithms. Simple, classic subgradient descent solves the problem with
O(ϵ−2) oracle queries [NY83], and cutting plane methods solve the problem with O(d log ϵ−1) oracle
queries [KTE88a]. Consequently, the query complexity of the problem, i.e., the number of queries
needed to solve the problem in the worst case, is O(min{ϵ−2, d log(ϵ−1)}. Furthermore, this bound
is known to be optimal among deterministic algorithms for all settings of ϵ and d [NY83], and is
optimal even among randomized and quantum algorithms in certain settings [ABRW12, GKNS21].

Due to the massive growth in dataset sizes and use of parallel computing resources, a line of work has
studied parallel variants of Lipschitz convex optimization [Nem94, DBW12, BS18, BJL+19, CJJ+23]
and non-Euclidean generalizations [DG19, CGJS23]. Study of this problem dates to at least [Nem94]
which proposed the parallel oracle access model, in which the algorithm proceeds in T rounds and
in round t ∈ [T], the algorithm queries the oracle with nt points xt,1, . . . , xt,nt ∈ Rd and receives the
output of the oracle on each point. In round t, the nt queried points can depend only on the queries
in the previous rounds and the output of the oracle in those rounds (and additional randomness
used by the algorithm). We call such an algorithm highly parallel [BJL+19] if the number of queries
in each round is bounded by a polynomial in d and a natural condition number for the problem,
e.g., nt = poly(d, ϵ−1) for all t ∈ [T]. The total number of rounds of the algorithm, T , is called the
query depth of the algorithm, and is a natural measure of its parallel performance.

Perhaps surprisingly, nontrivial parallel speedups, i.e., parallel algorithms whose query depth is
better than the best-known query complexity, are only known for certain ϵ ranges. In fact, the
O(ϵ−2) complexity of simple subgradient descent is optimal among highly parallel algorithms for
sufficiently large ϵ. The associated lower bound was shown for all ϵ ≳ d−1/6 by [Nem94, BS18] and
for all ϵ ≳ d−1/4 by [BJL+19].1 Additionally, when ϵ ≲ d−1, the current state-of-the-art query depth
is achieved by applying classical cutting plane methods, e.g., [Vai96]. However, in the regime where
d−1/4 ≳ ϵ ≳ d−1, which we term the intermediate regime of ϵ, nontrivial parallel speedups are known
and there are algorithms which improve upon both subgradient descent and cutting plane methods.
Namely, Lipschitz convex optimization was first shown to be solvable with query depth Õ(d1/4ϵ−1)
by [DBW12], and then Õ(d1/3ϵ−2/3) by [BJL+19], the current state-of-the-art query depth.

However, beyond query depth, there are other natural ways to parameterize the complexity of a
highly parallel algorithm. Specifically, we measure the complexity of parallel algorithms as follows.

Definition 1 (Parallel complexity). We define the following four properties of an algorithm solving
an optimization problem, e.g., Problem 1, with parallel access to an oracle g.

1We use ≲, ≳, and Õ to hide polylogarithmic factors in d and ϵ−1 in the introduction, and more broadly we use
this notation to hide polylogarithmic factors in d and LR

ϵ
throughout the paper in the context of Problem 1.

2

1. Query depth: number of sequential rounds of interaction with g (queries submitted in batch).

2. Query complexity: total number of queries to g.

3. Computational depth: number of sequential rounds of computation, outside of querying g.

4. Computational complexity: amount of computational work performed, outside of querying g.

If g can be implemented with O(Tquery) work and O(Dquery) depth, we write that an algorithm can
be implemented with O(a · Dquery + b) depth and O(c · Tquery + d) work when its query depth is O(a),
query complexity is O(c), computational depth is O(b), and computational complexity is O(d).

Recently, [CJJ+23] designed an algorithm which matched the Õ(d1/3ϵ−2/3) query depth of [BJL+19],
while simultaneously achieving a query complexity of Õ(d1/3ϵ−2/3 + ϵ−2). This query complexity
improved upon the Õ(d4/3ϵ−8/3) query complexity of [BJL+19] and, when ϵ ≲ d−1/4, matched that
of subgradient descent, which is optimal for ϵ ≳ d−1/2 (as discussed earlier). Unfortunately, the
computational depth of [CJJ+23] is Õ(d1/4ϵ−1) (matching that of [DBW12]). This computational
depth scales polynomially worse than the query depth of [CJJ+23] for ϵ ≲ d−1/4, and is larger than
the computational depth of state-of-the-art cutting plane methods, e.g., [Vai96], when ϵ ≲ d−3/4.

The key question motivating our work is whether this gap between the computational and query
depths of state-of-the-art parallel algorithms in the intermediate regime is inherent. Specifically we
address an open problem left by [CJJ+23] as to whether there is an algorithm which, in the interme-
diate regime of ϵ, obtains the best-known query depth and query complexity, while simultaneously
obtaining a computational depth no worse than its query depth (ideally at low overhead to the
algorithm’s computational complexity). Closing this gap is a natural problem that would expand
the theory for parallel convex and stochastic optimization, and potentially be of broader utility.

Our results. Our main result is a new algorithm which closes this gap for Lipschitz convex
optimization and, more broadly, for stochastic convex optimization, as stated in Problem 1. The
most general form of our result, Theorem 2, is stated in Section 4. For simplicity in the introduction,
we state the specialization of Theorem 2 to Lipschitz convex optimization here.

Theorem 1. If queries to a subgradient oracle are implementable with O(Dquery) depth and O(Tquery)
work, then there is a randomized algorithm which solves Lipschitz convex optimization with

Õ(d
1
3 ϵ−

2
3 · Dquery + d

1
3 ϵ−

2
3) depth and Õ

(
(d

1
3 ϵ−

2
3 + ϵ−2) · Tquery + d

4
3 ϵ−

2
3 + d

5−ω
3 ϵ−

4ω−2
3

)
work,

where ω < 2.372 [ADW+24] is such that multiplying d× d matrices requires O(dω) work.

Theorem 1 matches the query depth and query complexity of the state-of-the-art algorithm [CJJ+23]
(in terms of query depth) in the intermediate regime and attains a computational depth matching
its query depth up to logarithmic factors (see Table 1 for a more complete comparison to prior
work). Interestingly, the method uses fast matrix multiplication, a technique used to obtain state-
of-the-art work and depth complexities for linear system solving; however, if ω = 2, assuming vector
operations using a stochastic gradient oracle require Ω(d) work, then its computational complexity
is no worse than the work to query the oracle. Moreover, if Tquery is moderately larger than d (e.g.,
Tquery = Ω(d · ϵ−

1
2) for the current value of ω ̸= 2), the overhead of d

5−ω
3 ϵ−

4ω−2
3 is a low-order term

compared to ϵ−2 · Tquery. In the more general Corollary 6 later in the paper, we show that it is
possible obtain different tradeoffs between computational complexity and computational depth.

Beyond these quantitative improvements to parallel Lipschitz and stochastic convex optimization, to
obtain our results, we provide several insights on related tools of potential independent interest (all

3

Method Query depth Query complexity Computational depth

SGD [NY83] ϵ−2 ϵ−2 ϵ−2

[DBW12] d
1
4 ϵ−1 d

1
4 ϵ−1 + ϵ−2 d

1
4 ϵ−1

[BJL+19] d
1
3 ϵ−

2
3 d

4
3 ϵ−

8
3 d

4
3 ϵ−

8
3

[CJJ+23] d
1
3 ϵ−

2
3 d

1
3 ϵ−

2
3 + ϵ−2 d

1
3 ϵ−

2
3 + d

1
4 ϵ−1

CPM* [Vai96] d d d

Theorem 1 d
1
3 ϵ−

2
3 d

1
3 ϵ−

2
3 + ϵ−2 d

1
3 ϵ−

2
3

Table 1: Highly parallel Lipschitz convex optimization algorithms. The table depicts the
history of improvements for solving Lipschitz convex optimization algorithms hiding polylogarithmic
factors in d and ϵ−1. CPM* refers to “cutting plane methods” and to the best of the authors
knowledge [Vai96] is the first paper to achieve the state-of-the-art complexity stated in the table;
there are additional CPM results discussed in Remark 1. The table applies to Problem 1 if each
occurrence of ϵ−1 is replaced with κ := LR

ϵ and the CPM* line is changed (again, see Remark 1).

outlined in Section 2). First, we provide a structural result (Lemma 1) about Gaussian convolutions
of convex functions, a central tool in stochastic optimization. When combined with prior parallel
optimization machinery, Lemma 1 reduces our problem to solving certain structured stochastic
quadratic optimization problems in parallel. We then provide a new parallel algorithm for solving
these quadratic optimization problems, which circumvents the need for concentration bounds. Along
the way, we provide tools for boosting expected optimality bounds into high probability and handling
hard constraints. We hope these tools may find broader use in optimization and learning theory
and facilitate reaping the rewards of parallelism while mitigating the computational costs.

Remark 1 (Parallel complexity of cutting plane methods). Cutting plane methods have a longer
history than that conveyed in the CPM* line of Table 1. [Lev65, New65] showed that it is possible
to obtain query complexity Õ(d) and since then a line of work has established different tradeoffs
between query complexity and computational complexity [Sho77, YN76, Kha80, KTE88b, Nes89,
Vai96, BV04, LSW15, JLSW20]. Though computational depth was not necessarily highlighted in
these works, we believe the first method with Õ(d) query complexity that could be implemented in
depth Õ(d) is due to [Vai96]; subsequent papers may or may not have the same property. For
stochastic convex optimization (Problem 1), though not explicitly stated, we believe the state-of-
the-art is to leverage [Vai96] within the framework of [SZ23] to obtain an algorithm query and
computational depth Õ(d) and query complexity Õ(d · poly(κ)) for κ := LR

ϵ .

Paper organization. We assemble the pieces to prove Theorem 1 and its generalization, Theo-
rem 2, throughout the rest of the paper. In Section 2, we overview our approach. We first review
facts about Gaussian convolutions and a ball acceleration result from [CJJ+23], which constitutes
our main algorithm framework. Additionally, we prove a result about the stability of Hessians of
Gaussian convolutions of convex functions, which is the main structural insight enabling our new
algorithms. In Section 3, we give an efficient parallel algorithm for optimizing (suitably regularized)

4

local quadratic approximations to a Gaussian convolution. Finally, in Section 4, we show how to
obtain our results by using this quadratic solver to implement the constrained ball oracles required
by the acceleration framework by performing a binary search over our subroutine in Section 3.

General notation. For d ∈ N, we let 0d and 1d denote the all-zeroes and all-ones vectors in Rd, Id
denote the identity matrix in Rd×d, and [d] := {i ∈ N | 1 ≤ i ≤ d}. We let ∥·∥ denote the Euclidean
norm of a vector. For x ∈ Rd we let Bx(r) := {x′ ∈ Rd | ∥x′ − x∥ ≤ r} and B(r) := B0d

(r) when
d is clear from context. We use ⪯ to denote the Loewner partial ordering over d × d symmetric
matrices, i.e., A ⪯ B if and only if x⊤Ax ≤ x⊤Bx for all x, and define ⪰ analogously. For a
positive semidefinite (PSD) A ∈ Rd×d, we let ∥v∥A := (v⊤Av)1/2 be the induced seminorm.

Parallel computation model. We assume a parallel computation model where all vector oper-
ations in Rd (e.g., addition and scalar multiplication) require O(d) work and O(1) depth, and that
all matrix-vector multiplications (including computing dot products) require O(log d) depth. We let
ω < 2.372 [ADW+24] be defined such that two d× d matrices can be multiplied with work O(dω).
By a known reduction ([Pan87]; see also discussion in [PR85]), under this definition of ω, matrix
multiplication can be performed in work O(dω) and depth O(log d). Under different parallel models,
some of these bounds may incur polylogarithmic factor overheads.

2 Technical overview

In this remainder of the paper we consider the following stochastic convex optimization problem.

Problem 1 (Stochastic convex optimization). In the stochastic convex optimization problem we are
given ϵ, L,R > 0 and access to a stochastic gradient oracle g : Rd → Rd satisfying, for all x ∈ Rd,
Eg(x) ∈ ∂f(x) and E∥g(x)∥2 ≤ L2 for convex f : Rd → R. The goal is to output an expected
ϵ-approximate minimizer of f over B(R), i.e., xout ∈ Rd such that Ef(xout) ≤ minx∈B(R) f(x) + ϵ.
We assume g can be implemented with O(Tquery) work and O(Dquery) depth.

Note that stochastic convex optimization (Problem 1) generalizes the Lipschitz convex optimization
problem defined in Section 1. By Jensen’s inequality and the convexity of ∥·∥2, E∥g(x)∥2 ≤ L2

implies that ∥Eg(x)∥ ≤ L and consequently in Problem 1 at every point x there is a subgradient
of norm at most L. This implies that f is L-Lipschitz and thus Lipschitz convex optimization is
the special case of Problem 1 when L = R = 1, each output of the stochastic subgradient oracle is
deterministic, and f has a minimizer x⋆ ∈ Rd with ∥x⋆∥ ≤ 1.

Our main result is the following efficient parallel algorithm for solving Problem 1. This theorem
immediately implies Theorem 1 in the special case of Lipschitz convex optimization.

Theorem 2. There is an algorithm (BallAccel in Proposition 1, using Proposition 5 as a ball
optimization oracle) which solves Problem 1 using:

O
(
d

1
3κ

2
3 log

13
3 (dκ) log log (dκ) · Dquery + d

1
3κ

2
3 log

28
3 (dκ)

)
depth,

and O
((

d
1
3κ

2
3 log

10
3 (dκ) + κ2 log

19
3 (dκ)

)
· Tquery + d

4
3κ

2
3 log

10
3 (dκ) + d

5−ω
3 κ

4ω−2
3 log

19
3 (dκ)

)
work,

where ω < 2.372 [ADW+24] is the matrix multiplication exponent, and κ := LR
ϵ .

In the remainder of this technical overview we cover the main steps in proving Theorem 2, and discuss
key insights and tools developed along the way, of possible broader utility. First, in Section 2.1 we

5

provide an overview of the general framework used by both our parallel algorithm and prior work.
In Section 2.2 we then discuss the key structural insight about this framework that we make and
leverage to depart and improve upon prior work. In Section 2.3 we then discuss our main subroutine
that we develop to leverage this structural insight and then in Section 2.4 we discuss implementing
the subroutine in low computational depth to obtain our result.

2.1 Framework: convolutions and acceleration

All prior parallel improvements over subgradient descent for Problem 1 in the intermediate regime
follow a similar broad framework [DBW12, BJL+19, CJJ+23]. Each of these works considers a
process for smoothing f , i.e., working with a smooth approximation, and each uses accelerated
optimization methods, i.e., some form of momentum, for optimizing the smoothing of f . Where
the methods differ is in what smoothing is used, what accelerated method is applied, and how the
accelerated method is implemented. Our method follows the approach of [CJJ+23] which applies
ball acceleration frameworks to optimize the Gaussian convolution of f . We begin by reviewing
these techniques and highlighting their implication for parallel stochastic convex optimization.

Gaussian convolution. To solve Problem 1 rather than directly optimizing f , following the
approach of [DBW12, BJL+19, CJJ+23], we instead apply methods that optimize the Gaussian
convolution of f , i.e., the function resulting from convolving f with a Gaussian, as defined below.

Definition 2 (Gaussian convolution). For f : Rd → R and ρ ≥ 0, we let fρ denote the convolution
of f with N (0d, ρ

2Id), the normal distribution on Rd with covariance ρ2Id and mean 0d. We use ∗
to denote convolution and γp to denote the density function of N (0d, ρ

2Id), so that fρ = f ∗ γρ and

fρ(x) := Eξ∼N (0d,ρ2Id) [f(x− ξ)] =

∫
Rd

f(x− ξ)γρ(ξ)dξ for all x ∈ Rd .

Working with fρ offers a number of advantages: it is smooth, twice differentiable, and stochastic
approximations to its gradient and Hessian can be computed by querying the stochastic gradient
oracle at appropriately chosen random points. Additionally, it satisfies a new structural property we
develop in Section 2.2. Formally, we recall the following facts from prior work [DBW12, BJL+19],
where by the Alexandrov theorem, the first and second derivatives are almost-everywhere defined
in the third item. The fourth item in Fact 1 is shown in the proof of Lemma 8 in [BJL+19].

Fact 1 (Lemma 8, [BJL+19]). For all convex, L-Lipschitz f : Rd → R, ρ ≥ 0, and x ∈ Rd:

1. fρ is convex, L-Lipschitz, twice-differentiable, and satisfies ∇2fρ(x) ⪯ L
ρ Id,

2. f(x) ≤ fρ(x) ≤ f(x) + Lρ
√
d,

3. ∇fρ(x) =
∫
Rd ∇f(x− ξ)γρ(ξ)dξ, and

4. ∇2fρ(x) =
∫
Rd ∇2f(x− ξ)γρ(ξ)dξ = 1

ρ2

∫
Rd ∇f(x+ ξ)ξ⊤γρ(ξ)dξ.

In light of Fact 1, we make the following observation.

Observation 1. In the context of Problem 1, let ρ := ϵ
2L

√
d
. If a point xout solves an instance of

Problem 1 with f ← fρ and ϵ← ϵ
2 , then xout also solves Problem 1 with f ← f and ϵ← ϵ.

6

Proof. By the first item in Fact 1, it is valid to let f be fρ in an instance of Problem 1. By the
second item in Fact 1, letting x⋆ achieve minx∈B(R) f(x),

Ef(xout) ≤ Efρ(xout) ≤ fρ(x
⋆) +

ϵ

2
≤ f(x⋆) + ϵ.

In the rest of the paper, we consider a fixed instance of Problem 1; our approach is to optimize f by
instead designing an algorithm for optimizing its Gaussian convolution fρ. In light of Observation 1,
unless specified otherwise, we fix ρ := ϵ

2L
√
d

throughout the rest of the paper.

Ball acceleration. To optimize the Gaussian convolution fρ, we leverage recent advances in
accelerated proximal point algorithms, specifically a recent framework termed ball acceleration
[CJJ+20, ACJ+21]. Similar strategies were employed by [BJL+19] and [CJJ+23], which reduce
solving Problem 1 to a smaller number of carefully-designed subproblems; in the case of [CJJ+23],
the subproblem is to minimize a regularized approximation to fρ over a small Euclidean ball (a ball
optimization oracle). We specifically use the following variant of ball acceleration from [CJJ+23].

Definition 3 (Ball optimization oracle). We say Obo is a (ϕ, λ, r)-ball optimization oracle for
F : Rd → R if given x̄ ∈ Rd, Obo returns x ∈ Bx̄(r) with

E

[
F (x) +

λ

2
∥x− x̄∥2

]
≤ min

x′∈Bx̄(r)

{
F (x) +

λ

2

∥∥x′ − x̄
∥∥2}+ ϕ.

Proposition 1 (Proposition 2, [CJJ+23]). Let F : Rd → R be L-Lipschitz and convex, let R > 0,
and let x⋆ ∈ B(R). There is an algorithm BallAccel which takes parameters r ∈ (0, R] and ϵ ∈ (0, LR]
with the following guarantee. Define

κ :=
LR

ϵ
, K :=

(
R

r

) 2
3

, and λ⋆ :=
ϵK2

R2
log2(K).

For a universal constant Cba > 0, BallAccel produces x ∈ Rd such that EF (x) ≤ F (x⋆) + ϵ. Letting
T (ϕ, λ, r) ≥ d and D(ϕ, λ, r) ≥ log(d) denote the work and depth used by a (ϕ, λ, r)-ball optimization
oracle, the computational complexity of BallAccel is:

CbaK log3
(
Rκ

r

)
T
(
λ⋆r

2

Cba
,
λ⋆

Cba
, r

)
+

∑
j∈[⌈log2 K+Cba⌉]

Cba2
−jK log

(
Rκ

r

)
T
(

λ⋆r
2

Cba2j
log−2

(
Rκ

r

)
,
λ⋆

Cba
, r

)
,

and the depth of BallAccel is:

CbaK log3
(
Rκ

r

)
D
(
λ⋆r

2

Cba
,
λ⋆

Cba
, r

)
+

∑
j∈[⌈log2 K+Cba⌉]

Cba2
−jK log

(
Rκ

r

)
D
(

λ⋆r
2

Cba2j
log−2

(
Rκ

r

)
,
λ⋆

Cba
, r

)
.

7

Implication and approach. Proposition 1 allows us to focus on designing ball optimization
oracles for fρ in the remainder of the paper. Concretely, in our algorithm each oracle approximately
solves a problem of the form

min
x∈Bx̄(r)

fρ,λ,x̄(x) := fρ(x) +
λ

2
∥x− x̄∥2 , (1)

where fρ is the convolution of the density function of N (0, ρ2Id) and the function of interest f , and
λ > 0 is a regularization parameter. The key challenge we address is how to implement a ball oracle
for the Gaussian convolution efficiently in parallel. Since pioneering work of [DBW12] it has been
observed that stability of the Gaussian convolution can be useful in this endeavor, because higher
moments of the Gaussian convolution can be efficiently approximated via parallel queries. [DBW12]
leveraged smoothness (stability of the gradient) in accelerated gradient descent, [BJL+19] leveraged
higher-order smoothness and concentration to approximate the Gaussian convolution over a large
regions, and [CJJ+23] leveraged how it is possible to obtain stochastic gradients for the Gaussian
convolution at one point by sampling the stochastic gradient oracle a nearby point.

Our work exploits a new stability property of Gaussian convolutions (Lemma 1) that we introduce
in the next Section 2.2. We leverage this property to essentially reduce implementing a ball oracle
to solving a linear system induced by the Hessian of the Gaussian convolution, which we discuss
how to do efficiently in parallel in Sections 2.3 and 2.4. Along the way, we introduce several tools
which may be of broader interest to the stochastic optimization theory community.

2.2 Hessian stability of the Gaussian convolution

Our starting point for designing our ball optimization oracle is the observation that the Hessian of
the convolved objective fρ is stable, in a precise sense, over balls of small radii r ≪ ρ. To explain,
note that for any x, y ∈ Rd,

∇2fρ(x) =

∫
Rd

∇2f(x− ξ)γρ(ξ)dξ =

∫
Rd

∇2f(y − ξ)γρ(x− y + ξ)dξ.

So, if γρ(x − y + ξ) ≈ γρ(ξ) multiplicatively for all ξ, then similarly ∇2fρ(x) ≈ ∇2fρ(y). Unfortu-
nately, this is not true: directly expanding shows

γρ(x− y + ξ)

γρ(ξ)
= exp

(
1

2ρ2

(
⟨2ξ, y − x⟩ − ∥x− y∥2

))
.

If ξ is large in the direction y − x, then the first term in the exponential dominates. Standard
Gaussian tail bounds show the measure of such poorly-behaved ξ is small, but we do not have an
a priori upper bound on ∇2f at the corresponding points (as f is possibly nonsmooth). Hence,
it is unclear how to quantify the effect of these points. We leverage the simple observation that
fρ = f ∗ γρ is the convolution of γρ/2 and that fρ/2 is a smooth function with a bounded Hessian.
Consequently, ∇2fρ(x) ≈ ∇2fρ(y) does hold for x and y in a ball of small radii r ≪ ρ up to a small
additive factor (which we can control by choosing the radii). To formalize this, we use the following
notation for comparing deviations between a pair of PSD matrices in the following Definition 4. We
then bound the stability of Hessians of the Gaussian convolution in Lemma 1.

Definition 4 (Matrix approximation). We say that PSD A ∈ Rd×d is an (ϵadd, ϵmul)-approximation
to PSD B ∈ Rd×d if A ⪯ exp(ϵmul)B+ ϵaddId and B ⪯ exp(ϵmul)A+ ϵaddId.

8

We choose this Definition 4 because it is symmetric: A is an (ϵadd, ϵmul)-approximation of B if and
only if B is an (ϵadd, ϵmul)-approximation of A. This symmetry reflects our setting of comparing
Hessians of the Gaussian convolution for pairs of points. It is straightforward that Definition 4
implies other notions of additive-multiplicative approximation, e.g., the less-symmetric alternative
exp(−ϵmul)B− ϵaddId ⪯ A ⪯ exp(ϵmul)B+ ϵaddId.

Lemma 1. Let f : Rd → R be convex and L-Lipschitz, and ρ > 0. Then for x, y ∈ Rd, δ ∈ (0, 1),
∇2fρ(x) is an (ϵadd, ϵmul)-approximation to ∇2fρ(y), following Definition 4, for

ϵmul :=
∥x− y∥2

ρ2
+

2 ∥x− y∥
√
log 1

δ

ρ
, ϵadd :=

√
2Lδ

ρ
.

Proof. Without loss of generality (as shifting by a constant vector does not affect the problem
assumptions), let y = 0d. Furthermore, let g := fρ and h := fρ/

√
2, so that g = h ∗ γρ/√2. Note that

by Fact 1, ∇2h is bounded by
√
2L
ρ Id pointwise, and for all ξ ∈ Kr := {ξ ∈ Rd | ⟨x, ξ⟩ ≥ −r2},

γρ/
√
2 (ξ) = exp

(
∥x∥2 − 2 ⟨x, ξ⟩

ρ2

)
γρ/

√
2(ξ − x) ≤ exp

(
∥x∥2 + 2r2

ρ2

)
γρ/

√
2(ξ − x). (2)

We hence have, by Fact 1 applied to h and g,

∇2g(x) =

∫
Kr

∇2h(x− ξ)γρ/
√
2(ξ)dξ +

∫
Rd\Kr

∇2h(x− ξ)γρ/
√
2(ξ)dξ

⪯ exp

(
∥x∥2 + 2r2

ρ2

)∫
Kr

∇2h(x− ξ)γρ/
√
2(ξ − x)dξ +

√
2L

ρ

(
Pr

ξ∼N (0, ρ
2

2
Id)

[ξ ∈ Kr]

)
Id

⪯ exp

(
∥x∥2 + 2r2

ρ2

)
∇2g(0d) +

√
2L

ρ
exp

(
− r4

ρ2 ∥x∥2

)
Id.

In the second line, we used (2) and that ∇2h ⪯
√
2L
ρ Id, and in the last line, we used standard tail

bounds on the Gaussian error function [DLMF, Eq. 7.8.3]. The conclusion follows by substituting
the specific value r =

√
ρ ∥x∥ · log

1
4 (1δ), and using symmetry of Definition 4 in x and y.

Our ball optimization oracle objective fρ,λ,x̄ in (1) is regularized, so when the additive term is
dominated by the regularizer’s Hessian, we can show fρ,λ,x̄ is multiplicatively second-order stable.
This is the key fact that we use to facilitate the implementation of our ball optimization oracles.

Corollary 1. Let λ > 0 and suppose that y ∈ Bx(r) for 0 < r ≤ ρ
6 · log

− 1
2 (2Lλρ). Then, ∇2fρ,λ,x̄(x)

is a (0, log 2)-approximation to ∇2fρ,λ,x̄(y), following Definition 4.

Proof. Note that x ∈ By(r) if and only if y ∈ Bx(r), so by symmetry it suffices to show ∇2fρ,λ,x̄(x) ⪯
2∇2fρ,λ,x̄(y). Also, ∇2fρ,λ,x̄(x) = ∇2fρ(x) + λId, and by Lemma 1 and our parameter settings,

∇2fρ(x)−
√
2Lδ

ρ
Id ⪯ 2∇2fρ(y) and λId +

√
2Lδ

ρ
Id ⪯ 2λId,

for δ := λρ√
2L

. Adding the above two inequalities yields the conclusion.

9

2.3 Hessian optimization without Hessian approximation

Multiplicative Hessian stability in small balls was a key building block of several algorithms in
[CJJ+20], which introduced the ball acceleration framework. Specifically, [CJJ+20] considered prob-
lems such as logistic and ℓp regression, where the objective’s Hessian is both explicit and locally
multiplicatively stable. This stability allows for efficient ball optimization via variants of Newton’s
method (e.g., gradient descent preconditioned by the objective’s Hessian at the ball center).

In our setting, the use of such Newton’s methods for ball optimization is complicated by two factors:
our parallel implementation requirement, and the fact that we only have implicit access to ∇2fρ,λ,x̄,
as it involves evaluating an integral. One useful characterization is that2

∇2fρ(x̄) =
1

ρ2

∫
Rd

∇f(x+ ξ)ξ⊤︸ ︷︷ ︸
:=Mξ

γρ(ξ)dξ,

so a natural way to proceed is to estimate ∇2fρ(x̄) as the average of a small number of randomly-
sampled Mξ. Unfortunately, matrix concentration bounds such as the matrix Bernstein inequality
(which are tight in the worst case [Tro15]) yield sample complexities which depend on

max


∥∥∥E [MξM

⊤
ξ

]∥∥∥
op︸ ︷︷ ︸

:=V1

,
∥∥∥E [M⊤

ξ Mξ

]∥∥∥
op︸ ︷︷ ︸

:=V2

 , (3)

for measuring convergence of random averages to ∇2fρ(x̄). In our case, V2 can be significantly
smaller than V1: the former can be upper bounded by L2 (as Eξξ⊤ = ρ2Id), but the latter grows
as L2d (as Eξ⊤ξ = ρ2d). A similar issue arises if one replaces the use of Mξ with its symmetrized
counterpart Sξ := 1

2(Mξ +M⊤
ξ). This results in requiring at least d samples for Hessian approxi-

mation which is too many for our purposes (note that, e.g., the entire query complexity of [CJJ+23]
is o(d) for moderate ϵ), and appears to be an obstacle for use of Newton’s method.

We circumvent this obstacle by treating the implementation of each Newton step as a stochastic op-
timization problem, which breaks the symmetry between the dependence on V1 and V2. Specifically,
each Newton iteration requires approximately solving a problem

min
x∈Bx̄(r)

⟨g, x⟩+ x⊤∇2fρ(x̄)x+
λ

2
∥x− x̄∥2 , (4)

for some vector g. We can therefore design a stochastic estimate g+2Mξx of the gradient of the ob-
jective in (4), whose second moment only depends on V2 = EM⊤

ξ Mξ and not V1. Interestingly, using
Sξ to estimate the gradient of (4) would run into the same issue as before (where the convergence
rate also depends on V1 ≈ L2d), so using asymmetric estimates is crucial for our analysis.

2.4 Parallel maintenance of rank-one updates

An additional challenge is implementing our strategy for solving (4) efficiently in parallel. We
show in Section 4.2 how to remove the constraint in (4) by developing a binary search procedure
for an appropriate Lagrange multiplier, so it suffices to optimize over Rd, subject to additional

2The λId component of ∇2fρ,λ,x̄ is explicit, so it suffices to evaluate ∇2fρ.

10

regularization. To facilitate this reduction, in Section 3.3, we provide a technique for improving our
expected error bounds to high probability bounds (similar to a recent technique in [SZ23]).

With these reductions in place it suffices to solve unconstrained variants of (4) in parallel. In
Section 3.1, we provide a general stochastic composite gradient descent algorithm compatible with
the stochastic oracles discussed in Section 2.3. It then turns out, as intended, that the resulting
iterates of this stochastic composite gradient descent algorithm are highly-structured (as each Mξ is
rank-one). This structure is captured by the following linear algebraic maintenance problem, which
we solve in Section 3, allowing for the parallel implementation of our stochastic gradient method.

Problem 2. Let T ∈ N. For inputs {x0, {ut, vt, wt}t∈[T]} ⊂ Rd and {ct}t∈[T] ⊂ R, we wish to
compute all {xt}t∈[T] defined by the recurrence relation

xt := ct

((
Id − utv

⊤
t

)
xt−1

)
+ wt.

In our setting, ct arises due to the regularization component, wt captures the first-order part of (4),
and ut, vt capture the (rank-one) estimate of the second-order part of (4). Note that if the term wt

did not exist, solving Problem 2 would amount to computing the product of T rank-one matrices
in parallel, which can be done using a divide-and-conquer technique (see Lemma 4). By using a
relatively lightweight combination of divide-and-conquer and fast matrix multiplication, we show
that Problem 2 can similarly be solved in polylogarithmic depth and O(dTω−1) work.

Applying this parallel implementation of our stochastic composite gradient descent algorithm,
though our “in expectation-to-high probability” and binary search reductions, yields our ball opti-
mization oracle implementation. When applied in the ball optimization framework to the Gaussian
convolution, this then yields our main result, Theorem 2. While there are a few steps of indirection,
we believe that reducing parallel optimization to stochastic quadratic optimization is an interesting
and key contribution by itself. We hope the structural facts that enable this reduction and the
algorithmic techniques that make it yield an efficient algorithm may have broader utility.

3 Parallel optimization of quadratic subproblems

In this section, we develop an efficient parallel optimization method for solving structured uncon-
strained quadratics of the following form:

min
x∈Rd

⟨g + v, x⟩+ ∥x− z∥2H +
Λ

2
∥x∥2 , for g, v ∈ Rd, H ∈ Rd×d, Λ ∈ R≥0. (5)

In particular, we consider a stochastic setting where instead of explicit access to g or H we assume
sample access to random variables g̃ ∈ Rd and H̃ ∈ Rd×d (not necessarily symmetric), such that

Eg̃ = g and EH̃ = H. (6)

Our consideration of this setting is motivated by the special case when

g = ∇fρ(z) and H = ∇2fρ(0d). (7)

Objectives of the form (5), (7) arise in Newton’s method for implementing a ball optimization
oracle for fρ,λ,x̄ as defined in (1), where x̄ ← 0d without loss of generality by shifting the problem
domain. The additional quadratic ⟨v, x⟩ + Λ ∥x∥2 arises due to regularization and a binary search

11

on a Lagrange multiplier to enforce the domain constraint in (1). The two parts of this reduction
(Newton’s method and binary search) are respectively derived in Sections 4.1 and 4.2.

In Section 3.1, we give an initial solver for the problem (5) that has an expected error guarantee
and we show how to implement this solver in parallel in Section 3.2. We then show how to boost
this guarantee to hold with high probability using a reduction we develop in Section 3.3. Finally,
we assemble these components to give the main exports of this section in Section 3.4.

3.1 Composite stochastic optimization

In this section, we fix Λ ∈ R≥0 and v, z ∈ Rd throughout, and decompose (5) into two parts:

h(x) := h1(x) + h2(x) where h1(x) := ⟨g, x⟩+ ∥x− z∥2H and h2(x) := ⟨v, x⟩+
Λ

2
∥x∥2 . (8)

We treat the objective in (5) as a composite objective h1 + h2, where we can exactly optimize over
h2, and we have stochastic access to h1. Specifically, we use that g1(x) := g̃ + 2H̃(x − z) is an
unbiased estimate of ∇h1(x). More broadly, we design an algorithm for minimizing h1 + h2 under
the assumption that for some L1, L2 ∈ R≥0,

E
[
∥g1(x)∥2

]
≤ L2

1 + L2
2 ∥x− z∥2 for all x ∈ Rd. (9)

To motivate (9), Fact 1 shows that in the setting of Problem 1, when g,H are as in (7), we can use

g1(x) = g(z − ξ) +
2

ρ2
⟨ξ, x− z⟩ g(ξ) for ξ ∼ N (0d, ρ

2Id) (10)

as our unbiased estimator. We give a second moment bound on the estimator in (10).

Lemma 2. In the setting of Problem 1, for x, z ∈ Rd, where E is taken over ξ ∼ N (0d, ρ
2Id) and

the randomness of querying g at z − ξ and ξ,

E

[∥∥∥∥g(z − ξ) +
2

ρ2
⟨ξ, x− z⟩ g(ξ)

∥∥∥∥2
]
≤ 2L2 +

8L2

ρ2
∥x− z∥2 .

Proof. Let a := g(z − ξ) and b := 2
ρ2
⟨ξ, x− z⟩ g(ξ), and note that E ∥a+ b∥2 ≤ 2E ∥a∥2 + 2E ∥b∥2.

Further, by definition E ∥a∥2 ≤ L2, so it suffices to bound E ∥b∥2. We conclude by computing:

E
[
∥⟨ξ, x− z⟩ g(ξ)∥2

]
= Eξ∼N (0d,ρ2Id)

[
E
[
∥g(ξ)∥2 | ξ

]
⟨ξ, x− z⟩2

]
≤ L2Eξ∼N (0d,ρ2Id)

[
⟨ξ, x− z⟩2

]
= L2ρ2 ∥x− z∥2 .

In other words, in the setting of Problem 1, the assumption (9) holds with L2
1 = 2L2 and L2

2 =
8L2

ρ2
. We now move to the abstraction of (8), (9), and design a general-purpose algorithm for this

optimization problem. At the end of the section, we specialize our method to Problem 1.

Due to the unconstrained nature of our problem and the dependence (9) on movement from z, we
take care to ensure that the iterates of our algorithm do not drift by too much. This is the primary
challenge faced in this setting. We give an algorithm (Algorithm 1) and analysis based on [LSB12],
using a “warm-started” step size schedule to ensure sufficient expected norm bounds on iterates.

12

Algorithm 1: UnconstrainedSGD(h2, z, g1)

1 Input: h2 : Rd → R, a Λ-strongly convex function, z ∈ Rd, and g1 : Rd → Rd, an unbiased
estimator for ∇h1 where h1 : Rd → R is convex, and for all x ∈ Rd, (9) holds.

2 x0 ← argminx∈Rdh2(x)

3 T0 ←
8L2

2
Λ2

4 for 0 ≤ t < T do
5 ηt ← 2

Λ(t+T0)

6 xt+1 ← argminx∈Rd{ηt ⟨g1(xt), x⟩+ ηth2(x) +
1
2 ∥x− xt∥2}

7 end
8 Return: xavg := 1

T

∑
0≤t<T xt

Lemma 3. Let h1 : Rd → R, h2 : Rd → R, g1 : Rd → Rd, and z ∈ Rd satisfy the assumptions of
Algorithm 1 for L2 ≥ Λ, and let x⋆ minimize h := h1 + h2. Following notation of Algorithm 1,

E [h(xavg)]− h(x⋆) ≤
(
2L2

2

ΛT
+

Λ

4T

)
∥x0 − x⋆∥2 + log(T + T0)

ΛT

(
L2
1 + 2L2

2 ∥z − x⋆∥2
)
.

Proof. Throughout the proof, for all 0 ≤ t < T let

Dt := E

[
1

2
∥xt − x⋆∥2

]
and Φt := E [h(xt)]− h(x⋆).

By first-order optimality of xt+1,

⟨g1(xt), xt+1 − x⋆⟩+ ⟨∇h2(xt+1), xt+1 − x⋆⟩ ≤ 1

2ηt

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2 − ∥xt − xt+1∥2

)
.

By rearranging and taking an expectation (conditioned on the realization of xt),

h1(xt) + h2(xt+1)− h(x⋆) +
Λ

2
∥xt+1 − x⋆∥2 ≤ ⟨∇h1(xt), xt − x⋆⟩+ ⟨∇h2(xt+1), xt+1 − x⋆⟩

≤ 1

2ηt

(
∥xt − x⋆∥2 − E ∥xt+1 − x⋆∥2

)
+ E

[
⟨g1(xt), xt − xt+1⟩+

1

2ηt
∥xt − xt+1∥2

]
≤ 1

2ηt

(
∥xt − x⋆∥2 − E ∥xt+1 − x⋆∥2

)
+

ηt
2

E
[
∥g1(xt)∥2

]
.

In the first inequality, we used convexity of h1 and strong convexity of h2, and in the last line,
we applied the Cauchy-Schwarz and Young’s inequalities to bound the quantity in the third line.
Hence, iterating expectations, rearranging, and using the assumption (9),

Φt + ΛDt+1 ≤ E [h2(xt)− h2(xt+1)] +
1

ηt
(Dt −Dt+1) +

ηt
2

(
L2
1 + L2

2E
[
∥xt − z∥2

])
≤ E [h2(xt)− h2(xt+1)] +

1

ηt
(Dt −Dt+1) +

ηt
2

(
L2
1 + 2L2

2 ∥z − x⋆∥2 + 4L2
2Dt

)
.

13

Moreover, note that for the given choice of parameters, i.e., using T0 =
8L2

2
Λ2 ,

1

ηt
+ 2ηtL

2
2 ≤

Λ(t+ T0)

2
+

4L2
2

ΛT0
=

Λ(t+ T0 + 1)

2
,

1

ηt
+ Λ =

Λ(t+ T0)

2
+ Λ =

Λ(t+ T0 + 2)

2
.

Combining the above two displays, we have

Φt ≤ E [h2(xt)− h2(xt+1)] +
Λ(t+ T0 + 1)

2
Dt −

Λ(t+ T0 + 2)

2
Dt+1

+
ηt
2

(
L2
1 + 2L2

2 ∥z − x⋆∥2
)
.

Therefore, by telescoping over T iterations, and using minimality of x0 with respect to h2,

1

T

∑
0≤t<T

Φt ≤
Λ(T0 + 1)

4T
∥x0 − x⋆∥2 +

 1

T

∑
0≤t<T

ηt
2

(L2
1 + 2L2

2 ∥z − x⋆∥2
)
.

Applying convexity of h and plugging in our parameter choices yields the claim, where we bound
the partial harmonic sequence

∑
0≤t<T

1
t+T0

≤
∑T+T0

t=8
1
t ≤ log(t+ T0).

We now state Algorithm 2, our specialization of Algorithm 1 to the problem (5), (7). In Line 10 of
Algorithm 2, we used the definition of h2 from (8). We observe that the update in Line 10 can be
conveniently written in closed form as

xt+1 ←
1

1 + ηtΛ

(
xt − ηtv − ηtg

′
t −

2ηt
ρ2
⟨ξt, xt − z⟩ gt

)
. (11)

We demonstrate in Section 3.2 how to support efficient parallel maintenance of weighted averages of
iterates undergoing updates of the form (11). For now, we give an error bound following Lemma 3.

Algorithm 2: UnconstrainedSGDConv(Λ, ρ, z, v, T, f)

1 Input: Λ, ρ ≥ 0, z, v ∈ Rd, T ∈ N, f in the setting of Problem 1
2 x0 ← − 1

2Λv

3 T0 ← 64L2

ρ2Λ2

4 for 0 ≤ t < T do
5 ξt ∼ N (0d, ρ

2Id)
6 gt ← g(ξt), g′t ← g(z − ξt)

7 end
8 for 0 ≤ t < T do
9 ηt ← 2

Λ(t+T0)

10 xt+1 ← argminx∈Rd{ηt⟨g′t + 2
ρ2
⟨ξt, xt − z⟩ gt, x⟩+ ηth2(x) +

1
2 ∥x− xt∥2}

11 end
12 Return: xavg := 1

T

∑
0≤t<T xt

14

Corollary 2. Following the notation in (8) and Algorithm 2, let x⋆Λ,z,v minimize (5) under the
setting (7), and suppose max(∥z∥ , ∥x0∥) ≤ ρ and ρ ≤ L

Λ . Then,

Eh(xavg)− h(x⋆Λ,z,v) ≤
(
66L2 log(T + T0)

ΛT
+

Λρ2

2T

)1 +

∥∥∥x⋆Λ,z,v∥∥∥2
ρ2

 .

Proof. In light of Lemma 2 and the fact that the gradient estimator in (10) is unbiased for ∇h1
defined in (8), we can apply Lemma 3 with h1, h2 as in (8), and L2

1 := 2L2 and L2 := 8L2/ρ2. The
conclusion follows from Lemma 2 once we simplify using max(∥x0∥ , ∥z∥) ≤ ρ.

To gain some intuition for Corollary 2, note that it shows if ∥x⋆Λ,z,v∥ ≪ ρ and our target error is
Θ(Λr2), we recover the standard L2

ΛT rate of strongly convex optimization under a bounded-variance
gradient oracle, up to a log factor. We show how to combine this guarantee with a binary search in
Section 4 to efficiently solve constrained optimization problems, as required by Proposition 1.

3.2 Parallel maintenance of rank-1 updates

In this section, we give our parallel solution to Problem 2, reproduced here for convenience.

Problem 2. Let T ∈ N. For inputs {x0, {ut, vt, wt}t∈[T]} ⊂ Rd and {ct}t∈[T] ⊂ R, we wish to
compute all {xt}t∈[T] defined by the recurrence relation

xt := ct

((
Id − utv

⊤
t

)
xt−1

)
+ wt.

Our updates in Algorithm 2, as stated in (11), are exactly of the form in Problem 2, with

ct ←
1

1 + ηt−1Λ
, ut ←

2ηt−1

ρ2
gt−1, vt ← ξt−1,

wt ← −ct
(
ηt−1(v + g′t−1) +

2ηt−1

ρ2
⟨ξt−1, z⟩ gt−1

)
.

(12)

Moreover, all of the {ct, ut, vt, wt}t∈[T] can be queried and precomputed with Õ(1) depth and O(dT)
work. Accordingly, it suffices to solve Problem 2 to give a parallel implementation. As a warmup
to our overall solution, we first give our parallel solution to the following simpler Problem 3.

Problem 3. In the setting of Problem 2, we wish to compute xT .

We then modify our strategy to solve Problem 2, at a slightly larger parallel depth. Our solution to
Problem 3 follows straightforwardly from maintaining matrix products in a dyadic fashion, using the
following observation (Lemma 4) on maintaining low-rank updates of the identity. We combine this
with a variant of a parallel prefix sum maintenance strategy for recursive matrix-vector products.

Lemma 4. Let A0,B0,A1,B1 ∈ Rd×r for r ∈ [d]. In depth O(log d) and work O(drω−1), we can
compute A,B ∈ Rd×2r such that Id −AB⊤ = (Id −A0B

⊤
0)(Id −A1B

⊤
1).

Proof. Note that it suffices to choose

A =
(
A0 A1 −A0B

⊤
0 A1

)
and B =

(
B0 B1

)
.

The bottleneck is evaluating A0B
⊤
0 A1 which takes work O(drω−1) and depth O(log d).

15

Building upon Lemma 4, we next give a solution to Problem 3 when all ct = 1.

Lemma 5. If ct = 1 for all t ∈ [T], we can solve Problem 3 with depth O(log(d) log(T)) and work
O(dTω−1).

Proof. Throughout this proof let ℓ := ⌊log2 T ⌋ + 1, define w0 := x0, and for t > T let ut = vt =
wt := 0d. We also define for s ≤ t, where all matrix products are evaluated right-to-left,

Mt:s :=
t∏

r=s

(
Id − urv

⊤
r

)
,

so that MT :1 = (Id − uT v
⊤
T) . . . (Id − u1v

⊤
1). As all iterates after T do not change, we observe that

xT = x2ℓ =
2ℓ−1∑
t=0

M2ℓ:t+1wt, (13)

since by definition, w2ℓ = 0d. For notational convenience, we define

M(i,j) := M2ij:2i(j−1)+1 (14)

for each 0 ≤ i ≤ ℓ and j ∈ [2ℓ−i]. We observe that with O(dTω−1) work, we can explicitly compute
{A(i,j),B(i,j)}0≤i≤ℓ,j∈[2ℓ−i] such that

M(i,j) = Id −A(i,j)B
⊤
(i,j), for A(i,j),B(i,j) ∈ Rd×2i .

To see this, we clearly can compute all {A(0,j),B(0,j)}j∈[2ℓ] with O(dT) work and O(1) depth.
Further, for 0 ≤ i < ℓ, assuming access to all {A(i,j),B(i,j)}j∈[2ℓ−i], we can apply Lemma 4 in
parallel to compute each required A(i+1,j),B(i+1,j) with work O(d(2i)ω−1), incurring a total work
of

2ℓ−i ·O
(
d(2i)ω−1

)
= O(dT) · (2i)ω−2.

Summing over all 0 ≤ i ≤ ℓ yields a geometric sequence with dominant term O(dTω−1) as desired.
This procedure can be implemented in depth O(log(T) log(d)) by repeatedly applying Lemma 4.
Next, for each 0 ≤ i ≤ ℓ and j ∈ [2ℓ−i], define

x(i,j) :=
∑
k∈[2i]

M2ij:2i(j−1)+kw2i(j−1)−1+k, (15)

such that by inspection, the following recursion holds for i ∈ [ℓ]:

x(i,j) = M2ij:2ij−2i−1+1x(i−1,2j−1) + x(i−1,2j). (16)

For example,

x(3,1) = M8:1w0 +M8:2w1 +M8:3w2 +M8:4w3 +M8:5w4 +M8:6w5 +M8:7w6 +M8:8w7

= M8:5 (M4:1w0 +M4:2w1 +M4:3w2 +M4:4w3)︸ ︷︷ ︸
x(2,1)

+M8:5w4 +M8:6w5 +M8:7w6 +M8:8w7︸ ︷︷ ︸
x(2,2)

.

Our goal is simply to compute x(ℓ,1) = xT , where we recall (13). First, we clearly can compute
all x(0,j) for j ∈ [2ℓ] with O(dT) work. Further, for 0 ≤ i < ℓ, assuming access to all x(i,j) for

16

j ∈ [2ℓ−i] and all {A(i,j),B(i,j)}j∈[2ℓ−i], we claim we can compute all x(i+1,j) for j ∈ [2ℓ+1−i] in
parallel incurring a total work of O(dT). To see this, to compute each x(i+1,j) via the recursion
(16), we require one vector addition, and one matrix-vector multiplication through

M2ij:2ij−2i−1+1 = Id −A(i−1,2j)B
⊤
(i−1,2j)

which can be performed with O(d2i) work. Therefore, the total work required to compute all
x(i+1,j) is bounded by O(d2ℓ) = O(dT). Finally, summing over all 0 ≤ i ≤ ℓ the total work of these
computations is bounded by O(dT log T) which does not asymptotically dominate the work. The
depth of this recursive computation is again bounded by O(log(T) log(d)).

We conclude with a simple extension of Lemma 5 to general {ct}t∈[T], giving our full solution.

Corollary 3. We can solve Problem 3 with depth O(log(T) log(d)) and work O(dTω−1).

Proof. First, we may assume all {ct}t∈[T] are nonzero, else we can begin the recursion in Problem 3
starting from the index right after the last zero value. Under this assumption, by writing Ct :=∏

s∈[t] cs and xt = Ctyt for all t ≥ 0, we have the equivalent recurrence

yt = C−1
t

(
ct

(
Id − utv

⊤
t

)
Ct−1yt−1 + wt

)
=
(
Id − utv

⊤
t

)
yt−1 + C−1

t wt.

Further, computing all {Ct}t∈[T] in the same dyadic fashion used to compute the M(i,j) in Lemma 5
can be performed in O(log T) depth and O(T log T) work. Hence it suffices to apply Lemma 5 to
an instance of Problem 3 with all ct = 1 and inputs

{x0, {ut, vt, C−1
t wt}t∈[T]}

and multiply the final output vector (corresponding to yT) by CT . The scalings {C−1
t wt}t∈[T] can

be performed using O(1) depth and O(dT) work by computing each in parallel.

We now show how modifying the strategy for Problem 3 also yields an efficient parallel solution for
the generalization in Problem 2. As before, we first handle the case where all ct = 1.

Lemma 6. If ct = 1 for all t ∈ [T], we can solve Problem 2 with depth O(log2(T) log(d)) and work
O(dTω−1).

Proof. We follow notation of Lemma 5, and assume that in depth O(log(T) log(d)) and work
O(dTω−1), we have precomputed all M(i,j) and x(i,j) for 0 ≤ i ≤ ℓ and j ∈ [2ℓ−i]. Define zs := xs−ws

for all s ∈ [2ℓ], and let T (ℓ) be the total work it takes to compute all {zs}s∈[2ℓ] in an instance of
Problem 2, given access to all M(i,j) and x(i,j) defined in (14) and (15). In particular, (13) holds
with the left-hand side replaced with zs and the right-hand side’s summation ending at s− 1. We
claim

T (ℓ) = 2T (ℓ− 1) +O(dT log T) =⇒ T (ℓ) = O(dT log2 T), (17)

which gives the total work bound because adding ws to each zs can be done in constant depth and
O(dT) work which does not dominate. Clearly, computing all {zs}s∈[2ℓ−1] can be done within work
T (ℓ− 1). Moreover, for each 2ℓ−1 < s ≤ 2ℓ, note that

zs =
2ℓ−1−1∑
t=0

Ms:t+1wt︸ ︷︷ ︸
:=us

+
s−1∑

t=2ℓ−1

Ms:t+1wt︸ ︷︷ ︸
:=vs

.

17

Computing all {vs}2ℓ−1<s≤2ℓ can be done within work T (ℓ− 1), as these constitute an independent
copy of the problem over 2ℓ−1 iterations. Finally, we complete the proof of (17) by showing we
can compute all {us}2ℓ−1<s≤2ℓ using O(dT log T) work and O(log2(T) log(d)) depth. Define u⋆ :=∑2ℓ−1−1

t=0 M2ℓ−1:t+1wt, and note that

us = Ms:2ℓ−1+1u
⋆ for all 2ℓ−1 < s ≤ 2ℓ.

Since we have access to all the M(i,j), we can compute the us in a dyadic fashion, i.e., we first
compute u2ℓ−1+2ℓ−2 and u2ℓ using a single matrix multiplication each, and then u2ℓ−1+2ℓ−3 and
u2ℓ−1+3·2ℓ−3 , and so on. The work cost of multiplying by a matrix M(i,j) is O(d2i), so the overall
work of computing all {us}2ℓ−1<s≤2ℓ is then indeed bounded by

O(d2ℓ−1) +O(2 · d2ℓ−2) +O(22 · d2ℓ−3) + . . . = O(dT log T),

as claimed. To see the depth bound, we can solve the two instances of T (ℓ−1) independently, leading
to a recursion depth of O(log T). The sequential depth of each recursion layer (due to computing the
{us}2ℓ−1<s≤2ℓ) is bottlenecked by O(log(T) log(d)) due to the use of O(log T) matrix multiplications,
each of which takes depth O(log d). Thus, overall the depth is O(log2(T) log(d)).

By using the same reduction as in Corollary 3, we extend our solution in Lemma 6 to the general
setting of Problem 2, giving our main result.

Proposition 2. We can solve Problem 2 with depth O(log2(T) log(d)) and work O(dTω−1).

Proof. We first consider the case where all {ct}t∈[T] are nonzero. Define the sequence {yt}t∈[T] as in
Corollary 3, which can be computed within the depth and work budgets given by Lemma 6. Since

xt = Ctyt for all t ∈ [T],

it suffices to compute all {Ct}t∈[T] and perform the scalings Ctyt in parallel, which can be done
within the stated budgets by the arguments of Corollary 3. Finally, in the case where some ct = 0,
we can split the problem into independent contiguous blocks of nonzero ct values whose total sizes
sum to at most T and which can be solved in parallel. Since the claimed work is superlinear in T ,
it remains correct after operating on each contiguous block separately.

As a consequence of Proposition 2, we have the following complexity bounds on Algorithm 2.

Corollary 4. Following the notation in (8) and Algorithm 2, let S ∈ [T] be arbitrary. We can
implement T iterations of Algorithm 2 using

O

(
Dquery +

T

S
· log2(S) log(d)

)
depth, and O

(
T · Tquery + dTSω−2

)
work.

Proof. Assume for simplicity that S divides T , else we can obtain the result by increasing T by a
constant factor. Recall from (11), (12) that implementing Algorithm 2 is an instance of Problem 2,
where we are required to compute the average iterate. Moreover we can compute all the inputs
to Problem 2 in parallel, which gives the query depth and query complexity. Our strategy is to
use Proposition 2 for every S consecutive iterations, which gives us all the iterates in the stated
computational depth and complexity by applying Proposition 2, T

S times. Given all the iterates we
can clearly output the average within the stated computational depth and complexity.

18

3.3 High-probability error bound reduction

We now give a simple reduction from an algorithm which returns an approximate minimizer with
high probability, to one which returns an expected approximate minimizer. Our reduction assumes
access to a bounded-variance gradient estimator. We note that a similar procedure appears as
Section 4.2 of [SZ23], but it does not quite suffice for our purposes due to the composite nature of
our objective. We provide a different proof for completeness, which also shows a slightly stronger
fact that the approximately-optimal point returned comes from the original set of candidates.

Finally, we note that our reduction has implications on the query complexity of high-probability
stochastic convex optimization (i.e., Problem 1) in the non-parallel setting. In particular, it shows
that the expected error guarantee in Problem 1 can be boosted to have failure probability ≤ δ at a
polylog(1δ) overhead in the query complexity. Such a result is classical when g(x) satisfies stronger
tail bounds (such as a sub-Gaussian norm), but to our knowledge the corresponding result in the
bounded variance setting (as in Problem 1) was only obtained recently by [CH24]. We do note that
[CH24]’s approach yields an improved polylogarithmic overhead in 1

δ , which they show is optimal;
we find it interesting to explore if different tradeoffs in Proposition 3 yield the same optimal result.

Proposition 3. Let h : Rd → R be differentiable with minimizer x⋆, and assume h(x) = h1(x) +
h2(x) for all x ∈ Rd and we can evaluate h2(x) for any x ∈ Rd. Further, suppose S := {xi}i∈[k]
has ∥xi − xj∥ ≤ R for all i, j ∈ [k], and mini∈[k] h(xi) − h(x⋆) ≤ ϵ. Finally, suppose g1(x) is an
unbiased estimate for ∇h1(x) and E[∥g1(x)∥2] ≤ L2 for all x in the convex hull of S. For δ ∈ (0, 1),
there is an algorithm which returns x ∈ S with h(x)− h(x⋆) ≤ 2ϵ with probability ≥ 1− δ, using

O

(
L2R2

ϵ2
· k log

(
log k

δ

))
queries to g1 and k evaluations of h2.

The query depth used is O(log(k)), and the computational depth used is O((log(d)+log log(kδ)) log(k)).

Proof. Fix any two i, j ∈ [k] with i ̸= j. Our first step is to build a high-probability approximation
subroutine for the value of h1(xi)− h1(xj). To this end, observe that for x

(t)
i,j := (1− t)xi + txj ,

h1(xj)− h1(xi) =

∫ 1

0

〈
∇h1(x(t)i,j), xj − xi

〉
dt︸ ︷︷ ︸

:=I(i,j)

= Et∼unif.[0,1]

[〈
∇h1(x(t)i,j), xj − xi

〉]
.

Next, consider the estimator

Z(i, j) :=
〈
g1(x

(t)
i,j), xj − xi

〉
, for t ∼unif. [0, 1].

From the given assumptions, it is clear that EZ(i, j) = I(i, j) and

EZ(i, j)2 ≤ E

[∥∥∥g1(x(t)i,j)
∥∥∥2 ∥xj − xi∥2

]
≤ L2R2.

Therefore, Chebyshev’s inequality shows that averaging 4L2R2

∆2 independent copies of Z(i, j) produces
a ∆-additive approximation of I(i, j) with probability 3

4 . A median of O(log(log kδ)) such independent
averages then estimates I(i, j) to additive error ∆ with probability at least 1− δ

log k , by a Chernoff
bound. The total computation required to produce this estimate for a pair (i, j) ∈ [k]× [k] is

O

(
L2R2

∆2
· log

(
log k

δ

))
calls to g1.

19

Using two additional evaluations of h2, we can thus estimate h(xj)−h(xi) to additive error ∆, with
probability ≥ 1 − δ

log k . To obtain the claim, we run a tournament on the elements of S using our
subroutine as an approximate comparator. Suppose that k is a power of 2 without loss of generality
(otherwise we can duplicate x1 appropriately), and initialize a complete binary tree on 2k−1 nodes
(with depth log2(k)), placing elements of S at the leaf nodes. We define the ith layer of the tree to
be all nodes which are distance exactly i from the leaf nodes (the leaf nodes themselves form layer
0). Starting from layer 1 and working upwards, for a node in layer ℓ with children xi and xj , we
compute E(i, j), a ∆ℓ =

ϵ
3(

4
3)

−ℓ-approximation to h(xi)−h(xj), and promote the child with smaller
estimated h value (i.e., we promote xi if E(i, j) ≤ 0, and we promote xj otherwise). Assume without
loss of generality that x1 minimizes h(x) over S. Conditioned on all estimates on x1’s root-to-leaf
path succeeding (which happens with probability 1 − δ since there are log k nodes), the minimum
function value on level ℓ is at most h(x1) +

∑
i∈[ℓ]

ϵ
3(

4
3)

−i, and so the algorithm returns some node
y with h(y) ≤ mini∈[k] h(xi) + ϵ ≤ h(x⋆) + 2ϵ. The complexity and correctness follow by setting
∆← ϵ

log2(k)
. The total failure probability follows from a union bound, since there are at most k− 1

comparisons (as each comparison eliminates an element).

We now control the number of gradients computed by the algorithm. Level ℓ of the tree calls the
estimation subroutine k2−ℓ times with failure probability δ

log k and error ϵ
3(

4
3)

−ℓ: summing over all
layers gives a total gradient bound of

O(1)
∑

ℓ∈[log2 k]

L2R2k2−ℓ

ϵ2(43)
−2ℓ

log

(
log k

δ

)
= O

(
L2R2

ϵ2
k log

(
log k

δ

)) ∑
ℓ∈[log2 k]

(
8

9

)ℓ

= O

(
L2R2

ϵ2
k log

(
log k

δ

))
.

3.4 Putting it all together

In this section, we combine the tools given in the previous sections to develop two high-probability
optimization primitives, which will be used in Section 4.2 in conjunction with a binary search to
give our overall ball optimization oracle implementation. We now formally define the two types of
oracles we require for implementing our binary search. Roughly speaking, the first type of oracle
(Definition 5) is used to find a range of regularization amounts α such that the resulting regularized
minimizers lie in a ball of radius O(r). The second type of oracle (Definition 6) is then used to
obtain accurate minima for our original constrained function. In the following definitions, for a
fixed differentiable convex function F and α > 0, we let

x⋆α := argminx∈RdF (x) +
α

2
∥x∥2 . (18)

Definition 5. We call O1 an (r, β)-phase-one oracle for F : Rd → R if on input α ≥ β, following
notation (18), O1 returns x satisfying

∥x− x⋆α∥ ≤
r + ∥x⋆α∥

100
.

Definition 6. We call O2 a (∆, r, β)-phase-two oracle for F : Rd → R if on input α ≥ β, following
notation (18), O2 returns x satisfying

F (x) +
α

2
∥x∥2 ≤ F (x⋆α) +

α

2
∥x⋆α∥

2 +∆.

20

We specialize the following discussion to the specific context where F is of the form

argminx∈B(r) ⟨∇fρ,λ(z), x⟩+ ∥x− z∥2∇2fρ(0d)
+ λ ∥x− z∥2

= argminx∈B(r) ⟨∇fρ(z)− λz, x⟩+ ∥x− z∥2∇2fρ(0d)
+ λ ∥x∥2 ,

(19)

where ∥z∥ ≤ r and ρ ≥ r, λ > 0. These constrained subproblems arise in an approximate Newton’s
method which we develop in Section 4.1. Formally, we define

F (x) := ⟨∇fρ(z)− λz, x⟩+ ∥x− z∥2∇2fρ(0d)
. (20)

We use two tools to boost constant-accuracy bounds to high probability. The first is the reduction
in Proposition 3, and the second is the following standard geometric aggregation method.

Lemma 7 (Claim 1, [KLL+23]). Let δ ∈ (0, 1) and x ∈ Rd be unknown, and let A be an algorithm
which returns x′ ∈ Rd such that ∥x′−x∥ ≤ ∆

3 with probability ≥ 2
3 in DA depth and TA work. There

is an algorithm which returns y such that ∥y − x∥ ≤ ∆ with probability ≥ 1−δ, using O(DA+log(d))
depth and O(TA · log(1δ) + d log2(1δ)) work.

We now state our oracle implementations and their guarantees.

Lemma 8. Let F be defined as in (20), assume ρ ≤ L
λ , and let δ ∈ (0, 1). We can implement an

(r, 2λ)-phase-one oracle for F which succeeds with probability ≥ 1− δ with

O

(
Dquery + log2

(
L

λr

)
log(d)

)
depth,

and O

(L2 log
(
L
λr

)
λ2r2

)
log

(
1

δ

)
· Tquery + d

(
L2 log

(
L
λr

)
λ2r2

)ω−1

log

(
1

δ

)
+ d log2

(
1

δ

) work.

Proof. We first show how to obtain x such that ∥x− x⋆α∥ ≤
r+∥x⋆

α∥
300 with probability ≥ 2

3 . By
Markov’s inequality and α-strong convexity of F (x) + α

2 ∥x∥
2, it is enough to produce x such that

E

[(
F (x) +

α

2
∥x∥2

)
−
(
F (x⋆α) +

α

2
∥x⋆α∥

)2]
≤ α

6
· (r + ∥x

⋆
α∥

2)

3002
.

In the context of Corollary 2 (with Λ← α), it suffices to take

T = O

(
ρ2

r2
+

L2 log
(

L
αr

)
α2r2

)
= O

(
L2 log

(
L
αr

)
α2r2

)
.

The conclusion follows from Corollary 4 (with S ← T) and Lemma 7.

Lemma 9. Let F be defined as in (20), assume ρ ∈ [r, Lλ], and let δ ∈ (0, 1). For ∆ ≤ λr2

100 , we can
implement a (∆, r,max(α3r, 2λ))-phase-two oracle for f which succeeds with probability ≥ 1−δ with

O

(
log log

(
1

δ

)
· Dquery +

λr2

∆
log

(
L2

λ∆

)
log2

(
L

λr

)
log

(
d

δ

))
depth,

and O

L2 log
(

L2

λ∆

)
λ∆

log3
(
1

δ

)
· Tquery + d log4

(
L2

δλ∆

)
· λr

2

∆
·
(

L2

λ2r2

)ω−1
 work.

21

Proof. Since α ≥ α3r, we can produce a point x with expected suboptimality ∆
6 to the function

F (x) + α
2 ∥x∥

2 by calling Corollary 2 with

T = O

αρ2

∆
+

L2 log
(

L2

α∆

)
α∆

 = O

L2 log
(

L2

α∆

)
α∆

 .

Therefore, by Markov’s inequality x has suboptimality ∆
2 with probability ≥ 2

3 . Moreover, each x
which achieves this suboptimality has, by α-strong convexity,

∥x− x⋆α∥ ≤
√

∆

α
≤ r

10
.

We run this algorithm k = O(log 1
δ) times, where the constant is large enough that Lemma 7 applies

with probability ≥ 1− δ
3 , and also k ≥ log3(

3
δ), so some run produces x with suboptimality gap ∆

2

with probability ≥ 1− δ
3 . Call A = {xi}i∈[k] the set of output points, and let xi⋆ ∈ S satisfy

F (xi⋆) +
α

2
∥xi⋆∥2 − F (x⋆α)−

α

2
∥x⋆α∥

2 ≤ ∆

2
.

By Lemma 7, we obtain x̄ with ∥x̄− x⋆α∥ ≤ 3
√
∆/α. Let B ⊆ A be the elements of A with

∥x̄− x∥ ≤ 4
√
∆/α, which contains xi⋆ by definition. Then for any x, x′ ∈ B, we have

∥∥x− x′
∥∥ ≤ 8

√
∆

α
.

Moreover, since all points in B lie at distance ≤ 2r
5 from x⋆α, their norms are all at most 4r. Since

∥z∥ ≤ r by assumption, Lemma 2 shows we can implement an unbiased estimator for the gradient
of the implicit part of (20), i.e., ∇fρ(z)+2∇2fρ(0d)(x−z), with second moment O(L2), for any x in
the convex hull of B. We therefore can apply Proposition 3 with ϵ← ∆

2 to obtain an element of B
with suboptimality gap ≤ ∆ with probability ≥ 1− δ

3 , within the stated complexities. We can check
that all other steps also fall within the stated complexities, using Corollary 4 with S ← L2

αλr2
.

4 Parallel stochastic convex optimization

In this section, we prove Theorem 1 by using the results of Section 3 to implement the ball opti-
mization oracles required by Proposition 1. Our reduction from (constrained) ball optimization to
the (unconstrained) quadratic problems considered by Section 3 proceeds in two steps.

1. In Section 4.1, we show how to use Hessian stability of the ball optimization oracle subproblems
(Corollary 1) to efficiently solve these problems using an approximate Newton’s method.

2. The subproblems required by our method in Section 4.1 are constrained optimization problems,
which are almost compatible with our tools in Section 3. In Section 4.2, we develop a simple
binary search procedure, inspired by a procedure in [JRT23], which reduces each constrained
optimization problem to a small number of unconstrained stochastic optimization problems.

Finally, we show how to combine the pieces and give our proof of Theorem 1 in Section 4.3.

22

Algorithm 3: ConstrainedNewton(λ, T, x0, f, ϕ)

1 Input: Positive definite A ∈ Rd×d, T ∈ N, x0 ∈ X , differentiable f : X → Rd, ϕ > 0
2 for 0 ≤ t < T do
3 xt+1 ← any (randomized) point in X satisfying

E ⟨∇f(xt), xt+1⟩+ ∥xt+1 − xt∥2A ≤ min
x∈X

{
⟨∇f(xt), x⟩+ ∥x− xt∥2A

}
+

ϕ

20

4 end
5 Return: xT

4.1 Approximate Newton’s method

In this section, we state and analyze an approximate variant of a constrained Newton’s method
under Hessian stability, patterned off classical analyses of gradient descent in a quadratic norm.

Lemma 10. Let ϕ > 0, let f : X → R be twice-differentiable for convex X ⊂ Rd, and let x⋆ :=
argminx∈X f(x). Assume that 1

2A ⪯ ∇
2f(x) ⪯ 2A for all x ∈ X , for positive definite A ∈ Rd×d.

Algorithm 3 with T ← O(log f(x0)−f(x⋆)
ϕ) returns xT ∈ X satisfying Ef(xT) ≤ f(x⋆) + ϕ.

Proof. Throughout the proof, let Φt := Ef(xt) − f(x⋆), so our goal is to show ΦT ≤ ϕ. We first
observe that, conditioning on xt, and letting x(s) := (1− s)xt + sx⋆,

Ef(xt+1) ≤ E
[
f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ ∥xt+1 − xt∥2A

]
≤ min

s∈[0,1]

{
f(xt) +

〈
∇f(xt), x(s) − xt

〉
+
∥∥∥x(s) − xt

∥∥∥2
A

}
+

ϕ

20

≤ min
s∈[0,1]

{
f(x(s)) + s2 ∥xt − x⋆∥2A

}
+

ϕ

20

≤ min
s∈[0,1]

{
f(x(s)) + 4s2Φt

}
+

ϕ

20
.

Above, the first line used a second-order Taylor expansion and our assumption ∇2f(x) ⪯ 2A
pointwise, the second line used the definition of xt+1, the third used convexity, and the last used
first-order optimality of x⋆ as well as our assumption 1

2A ⪯ ∇
2f(x) pointwise which implies that

1

4
∥xt − x⋆∥2A ≤ ⟨∇f(x

⋆), xt − x⋆⟩+ 1

4
∥xt − x⋆∥2A ≤ Φt.

Subtracting f(x⋆) from both sides and using convexity once more yields

EΦt+1 ≤ min
s∈[0,1]

{
(1− s)Φt + 4s2Φt

}
+

ϕ

20
=

15

16
Φt +

ϕ

20
.

Recursively applying for T iterations, and using 1
20

∑∞
i=0(

15
16)

i ≤ 1, yields the conclusion.

Lemma 10 and Corollary 1 show that to implement a ball optimization oracle for the function
f = fρ,λ,x̄ (defined in (1)) over sufficiently small radii, it suffices to implement Line 3 of Algorithm 3

23

logarithmically many times. Concretely, when X = B(r) and f = fρ,λ,x̄, Line 3 requires a Θ(ϕ)-
approximate minimizer to a problem of the form in (19), for z ∈ B(r) given by the algorithm. These
are exactly the problems which our tools in Section 3 can approximately solve, except they are hard-
constrained. We show how to lift the constraints via a regularized binary search in Section 4.2.

4.2 Ball optimization oracles via binary search

In this section, we provide a binary search strategy for approximately solving the constrained opti-
mization problem (19), by binary searching on a Lagrange multiplier for the constraint. To begin,
we require the following claims on the minima of regularized convex functions.

Lemma 11. Let F : Rd → R be a twice-differentiable convex function satisfying ∥∇F (0d)∥ ≤ L,
and for all α ∈ R≥0, let x⋆α := argminx∈RdF (x) + α

2 ∥x∥
2. We have the following claims.

1. For all 0 < α < α′, ∥x⋆α∥ >
∥∥x⋆α′

∥∥.
2. For all 0 < α < α′,

∥∥x⋆α − x⋆α′

∥∥ ≤ ∥x⋆α∥ log(α′

α).

3. If α ≥ 4L
r , ∥x⋆α∥ ≤ r

2 .

Proof. The optimality conditions on x⋆α show that ∇F (x⋆α) = −αx⋆α, so differentiating in α,

∇2F (x⋆α)

(
d
dα

x⋆α

)
= −x⋆α − α · d

dα
x⋆α =⇒ d

dα
x⋆α = −

(
∇2F (x⋆α) + αId

)−1
x⋆α.

Therefore, for any 0 < α < α′, we have Item 1, as convexity of F shows

1

2
∥x⋆α′∥2 −

1

2
∥x⋆α∥

2 =

∫ α′

α

(
−∥x⋆t ∥(∇2F (x⋆

t)+tId)−1

)
dt ≤ 0.

Now, by using the triangle inequality and Item 1, Item 2 follows:

∥x⋆α − x⋆α′∥ ≤
∫ α′

α

∥∥(∇2F (x⋆t) + tId)
−1x⋆t

∥∥ dt ≤
∫ α′

α

1

t
∥x⋆t ∥ dt ≤ ∥x⋆α∥ log

(
α′

α

)
.

Finally, to see Item 3, note that for α ≥ 4L
r ,

F (0d) ≥ F (x⋆α) +
α

2
∥x⋆α∥

2 ≥ F (0d) + ⟨∇F (0d), x
⋆
α⟩+

α

2
∥x⋆α∥

2 ≥ F (0d)− L ∥x⋆α∥+
α

2
∥x⋆α∥

2 .

Rearranging and applying our lower bound on α yields ∥x⋆α∥ ≤ r
2 as claimed.

In light of Lemma 11, in the remainder of the section we fix a differentiable convex function F , and
develop a generic framework for approximately solving, for a parameter λ > 0,

argminx∈B(r)F (x) + λ ∥x∥2 .

We follow the notation (18) throughout for brevity, so the above minimizer is denoted x⋆2λ. For
convenience, for any t ∈ [0, ∥x⋆2λ∥], we also use αt to denote the unique value of α ∈ [2λ,∞) such
that ∥x⋆αt

∥ = t, where uniqueness and existence follows from Lemma 11 and x⋆∞ = 0d.

At the end of Section 3.4, we gave implementations of a phase-one oracle and a phase-two oracle
for F in (20) (see Lemmas 8 and 9). We now apply Definitions 5 and 6 to implement our binary
search, stated formally in the following and with pseudocode provided in Algorithm 4.

24

Algorithm 4: BinarySearch(λ, r,∆, L,O1,O2)

1 Input: λ, r,∆, L ∈ R>0, O1, an (r, 2λ)-phase-one oracle (Definition 5) for differentiable
convex f : Rd → R satisfying ∥f(0d)∥ ≤ L, O2, a (∆2 , r,max(α3r, 2λ))-phase-two oracle for f
// Start phase one.

2 u← 2λ
3 while ∥O1(u)∥ > 2.5r do u← 2u
4 if u = 2λ then α′ ← 2λ
5 else
6 ℓ← u

2
7 while true do
8 m←

√
uℓ

9 if ∥O1(m)∥ ∈ [2.1r, 2.9r] then α′ ← m and break
10 else if ∥O1(m)∥ > 2.9r then ℓ← m
11 else u← m

12 end

// Start phase two.
13 ℓ← α′

14 u← 4L
r + 2λ

15 while u
ℓ > 1 + ∆

10(Lr+λr2)
do

16 m←
√
uℓ

17 if ∥O2(m)∥ > r then ℓ← m
18 else u← m

19 end
20 x1 ← O1(ℓ), x2 ← O2(u)
21 if ℓ = 2λ then Return: x1
22 Return: xout ← (1− t)x1 + tx2, where t ∈ [0, 1] is chosen so ∥xout∥ = r

Proposition 4. Let F be a differentiable convex function satisfying ∥∇F (0d)∥ ≤ L. Let λ,∆, r ∈
R>0 with ∆ ≤ λr2

100 . Algorithm 4 computes x ∈ B(r) satisfying

F (x) + λ ∥x∥2 ≤ min
∥y∥≤r

F (y) + λ ∥y∥2 +∆.

Algorithm 4 makes at most O(log L
λr) calls to O1, and O(log Lr+λr2

∆) calls to O2.

Proof. We start with a correctness proof, and bound the number of oracle calls at the end. Because
the specifications of O1 and O2 do not preclude returning different answers on multiple calls with
the same α, throughout the proof to alleviate burdensome notation, we assume that if an oracle is
called twice with the same α, it gives the same result (e.g., the result of the first call).

We begin by analyzing the first phase of the algorithm, starting from Line 2 and ending before
Line 13. By the criterion in the while loop on line 3, u satisfied ∥O1(u)∥ ≤ 2.5r, so

∥O1(u)− x⋆u∥ ≤
1

100
(r + ∥x⋆u∥),

which implies that for the value of u after the while loop ends,

∥x⋆u∥ − 2.5r ≤ ∥x⋆u∥ − ∥O1(u)∥ ≤
1

100
(r + ∥x⋆u∥) =⇒ ∥x⋆u∥ ≤

100

99
· (2.51r) < 3r.

25

Next, we claim that at the conclusion of phase one, either α′ = 2λ and O1(2λ) ≤ 2.5r, or α′ has

∥x⋆α′∥ ∈ [2r, 3r] . (21)

The first case is obvious from Line 4. Otherwise, for the values of ℓ, u on Line 6, we have ℓ ≥ 2λ and
∥O1(u)∥ ≤ 2.5r < ∥O1(ℓ)∥. When the while loop breaks on Line 9, we have ∥O1(m)∥ ∈ [2.1r, 2.9r],
which yields (21) (since α′ = m in this case) due to the following derivations:

∥x⋆m∥ − 2.9r ≤ ∥x⋆m −O1(m)∥ ≤ 1

100
(r + ∥x⋆m∥) =⇒ ∥x⋆m∥ ≤

100

99
· (2.91r) < 3r,

2.1r − ∥x⋆m∥ ≤ ∥x⋆m −O1(m)∥ ≤ 1

100
(r + ∥x⋆m∥) =⇒ ∥x⋆m∥ ≥

100

101
· (2.09r) > 2r.

Both bounds used the triangle inequality. This concludes our correctness analysis of Phase 1.

We now analyze correctness of phase two. By Item 3 of Lemma 11, we have ∥O2(u)∥ ≤ ∥x⋆u∥ +
∥x⋆u −O2(u)∥ ≤ r on Line 13, where we used strong convexity of F (x)+α

2 ∥x∥
2 to bound ∥x⋆u −O(u)∥ ≤

r
2 . Thus, inspecting the while loop starting on Line 15, we preserve the invariants:

ℓ < u, ∥O2(u)∥ ≤ r, and either ∥O2(ℓ)∥ > r, or ℓ = 2λ.

In particular, if ∥O2(ℓ)∥ ≤ r, it must be that α′ = ℓ (i.e. ℓ never updated), but if α′ ̸= 2λ then this
is impossible by (21). Hence, when the while loop on line 15 terminates, the values ℓ, u associated
with x1, x2 satisfy u ∈ [ℓ, (1 + ∆

10(Lr+λr2)
)ℓ], ∥x2∥ ≤ r, and we are in one of the following cases.

1. ℓ = 2λ and O2(u) ≤ r.

2. x1 = O2(ℓ) has ∥x1∥ > r.

In Case 1, let y := argminy∈B(r)F (y) + λ ∥y∥2. Then by the guarantees of O2,

F (x1) + λ ∥x1∥2 ≤ F (x1) +
u

2
∥x1∥2 ≤ F (y) +

u

2
∥y∥2 + ∆

2

≤ F (y) + λ ∥y∥2 +
(u
2
− λ

)
r2 +

∆

2
≤ F (y) + λ ∥y∥2 +∆,

where we used u
2 − λ ≤ ∆

10λr2
· λ2 ≤

∆
2r2

. On the other hand, in Case 2, recalling ∥x⋆ℓ∥ , ∥x⋆u∥ ≤ 3r by
the guarantees of phase one, and letting xout := (1− t)x1 + tx2 as in Line 22,

(1− t)F (x1) + tF (x2) +
(1− t)ℓ

2
∥x1∥2 +

tu

2
∥x2∥2 ≤ F (y) +

u

2
∥y∥2 + ∆

2
,

for every y ∈ Rd, by the definition of O2. Now, letting y := argminy∈B(r)F (y) + λ ∥y∥2,

F (xout) +
ℓ

2
∥xout∥2 ≤ (1− t)F (x1) + tF (x2) +

(1− t)ℓ

2
∥x1∥2 +

tu

2
∥x2∥2

≤ F (y) +
u

2
∥y∥2 + ∆

2
.

Additionally, note that if we are in Case 2, then ∥y∥ = r. To see this, suppose for contradiction
that ∥y∥ < r, which means ∥x⋆2λ∥ < r. If α′ > 2λ, then (21) and Item 1 of Lemma 11 give a
contradiction. Otherwise, α′ = 2λ, but then ∥x⋆2λ∥ < r contradicts the statement before (21) since
O1(2λ) ≤ 2.5r cannot happen. Hence, ∥y∥ = ∥xout∥ = r, and correctness in Case 2 follows from

F (xout) + λ ∥xout∥2 = F (xout) + λ ∥y∥2

≤ F (y) + λ ∥y∥2 + (u− ℓ)r2

2
+

∆

2
≤ F (y) + λ ∥y∥2 +∆,

26

where u− ℓ ≤ ∆
10(Lr+λr2)

· u ≤ ∆
r2

, since u ≤ 4L
r + 2λ. This completes the correctness proof.

We now bound the number of calls to O1,O2. By Item 3 of Lemma 11 and (21), it is clear the
number of times Line 3 occurs is O(log L

λr). Next, consider the loop on Line 7 until Line 9 is hit. We
claim the loop must break if log u

ℓ ≤
1

100 , which means the loop can only run O(1) times, because
log u

ℓ halves each time the loop is run, and u
ℓ = 2 initially. To see our claim, for any α,

∥O1(α)∥ − ∥x⋆α∥ ≤
r + ∥x⋆α∥

100
=⇒ 100

101
∥O1(α)∥ −

r

101
≤ ∥x⋆α∥ ,

∥x⋆α∥ − ∥O1(α)∥ ≤
r + ∥x⋆α∥

100
=⇒ 100

99
∥O1(α)∥+

r

99
≥ ∥x⋆α∥ ,

(22)

which follow from the definition of O1. Further, by Item 2 of Lemma 11, supposing log u
ℓ ≤

1
100 ,

∥x⋆u − x⋆ℓ∥ ≤
∥x⋆ℓ∥
100

≤ 1

100

(
100

99
∥O1(ℓ)∥+

r

99

)
,

where we used the second bound in (22). Combining with (22), we have

1

100

(
100

99
∥O1(ℓ)∥+

r

99

)
≥ ∥x⋆ℓ∥ − ∥x⋆u∥ ≥

(
100

101
∥O1(ℓ)∥ −

r

101

)
−
(
100

99
∥O1(u)∥+

r

99

)
=⇒ 100

99
∥O1(u)∥+

r

33
≥
(
100

101
− 1

99

)
∥O1(ℓ)∥ ,

which is a contradiction since ∥O1(u)∥ < 2.1r and ∥O1(ℓ)∥ > 2.9r until termination.

Finally, consider the loop starting on Line 15. At the beginning, we have u
ℓ = O(L

λr + 1), and log u
ℓ

halves each time the loop is run. Therefore, O2 is called O(Lr+λr2

∆) times as claimed.

We now combine Proposition 4 with Lemmas 8 and 9 to give our parallel ball optimization oracle.

Proposition 5. Define fρ as in Definition 2, where f is in the setting of Problem 1. Let λ, r ∈ R>0

satisfy r ≤ ρ
6 · log

− 1
2 (2Lλρ) and ρ ≤ L

λ . For any ϕ ∈ (0, λr
2

100], we can implement a (ϕ, λ, r)-ball
optimization oracle (Definition 3) for fρ with

O

(
log

(
Lr

ϕ

)
log log

(
Lr

ϕ

)
· Dquery +

λr2

ϕ
log4

(
L2

λϕ

)
log

(
dL2

λϕ

))
depth,

and O

(
L2

λϕ
log5

(
L2

λϕ

)
· Tquery + d log5

(
L2

λϕ

)
· λr

2

ϕ
·
(

L2

λ2r2

)ω−1
)

work.

Proof. Throughout, assume x̄ = 0d in the definition of the ball optimization oracle, which is without
loss of generality because shifting by a constant vector does not affect the assumptions in Problem 1.
Also, define fρ,λ,x̄ as in (1), where x̄ = 0d. We give an algorithm which always returns a point x in
B(r), and such that x has suboptimality gap ϕ

2 , except with probability δ := ϕ
2Lr+λr2

. Because f is
L-Lipschitz by Jensen’s inequality on the moment bound in Problem 1, so is fρ by Fact 1. Therefore
the range of fρ,λ,x̄ over B(r) is at most Lr + λr2, and the expected suboptimality gap is

(1− δ) · ϕ
2
+ δ ·

(
Lr +

λr2

2

)
≤ ϕ,

27

as required. To implement this algorithm, we first apply Lemma 10 and Corollary 1, which show
that it suffices to solve T = O(log Lr+λr2

ϕ) = O(log Lr
ϕ) problems of the form, for some z ∈ B(r),

⟨∇fρ(z)− λz, x⟩+ ∥x− z∥2∇2fρ(0d)︸ ︷︷ ︸
:=F (x)

+λ ∥x∥2 ,

each to error ∆ := ϕ
40 (see (19) for the derivation). Note that

∥∇F (0d)∥ =
∥∥∇fρ(z)− λz − 2∇2fρ(0d)z

∥∥ ≤ 2L+ λr,

because fρ is L-Lipschitz and L
ρ -smooth (Fact 1). Finally, let Z := O(log Lr

ϕ) be the total number
of oracle calls to O1 or O2 used by Proposition 4. We implement each oracle using either Lemma 8
or Lemma 9 appropriately, with failure probability set to δ

Z , and the conclusion follows.

We also note that we can achieve a computational depth-complexity tradeoff in Proposition 5 by
choosing different values of S in Corollary 4, than was used in Lemma 9. As stated, Lemma 9 uses
Corollary 4 by applying our parallel implementation S iterations at a time, where S = L2

αλr2
is the

number of iterations required to achieve ≈ λr2 error. By instead choosing a larger error C · λr2 for
a parameter C ∈ [1, L2

λ2r2
], which induces S = L2

Cαλr2
, we can obtain improved total work bounds at

the cost of larger computational depth. In particular, Corollary 4 has a computational depth scaling
linearly in the parameter C, and a computational complexity scaling as C2−ω; all logarithmic terms
are unnaffected, since C ≤ L2

λ2r2
. We summarize this observation in the following.

Corollary 5. In the context of Proposition 5, for any C ∈ [1, L2

λ2r2
], we can implement a (ϕ, λ, r)-ball

optimization oracle (Definition 3) for fρ with

O

(
log

(
Lr

ϕ

)
log log

(
Lr

ϕ

)
· Dquery +

Cλr2

ϕ
log4

(
L2

λϕ

)
log

(
dL2

λϕ

))
depth,

and O

(
L2

λϕ
log5

(
L2

λϕ

)
· Tquery + d log5

(
L2

λϕ

)
· λr

2

ϕ
·
(

L2

λ2r2

)ω−1

·
(
1

C

)ω−2
)

work.

4.3 Proof of Theorem 2

In this section, we prove our main result, Theorem 2, by combining the ball acceleration framework
in Proposition 1 with our parallel ball optimization oracle implementation in Proposition 5.

Theorem 2. There is an algorithm (BallAccel in Proposition 1, using Proposition 5 as a ball
optimization oracle) which solves Problem 1 using:

O
(
d

1
3κ

2
3 log

13
3 (dκ) log log (dκ) · Dquery + d

1
3κ

2
3 log

28
3 (dκ)

)
depth,

and O
((

d
1
3κ

2
3 log

10
3 (dκ) + κ2 log

19
3 (dκ)

)
· Tquery + d

4
3κ

2
3 log

10
3 (dκ) + d

5−ω
3 κ

4ω−2
3 log

19
3 (dκ)

)
work,

where ω < 2.372 [ADW+24] is the matrix multiplication exponent, and κ := LR
ϵ .

Proof. Throughout, let ρ := ϵ
2L

√
d
, and let x⋆ minimize f over B(R). We optimize fρ to expected

error ϵ
2 , yielding the conclusion via Observation 1. Let K = Θ(d

1
3κ

2
3 log

1
3 (dκ)), and choose

λ⋆ = Θ

(
ϵκ

4
3d

2
3

R2
log2(dκ)

)
, r = Θ

(
ρ√

log (dκ)

)
, (23)

28

to be compatible with the parameters in Proposition 1, such that r ≤ ρ
6 · log

− 1
2 (2CbaL

λ⋆ρ
), following

the notation in Proposition 1. This implies that Corollary 1 holds for every choice of λ ≥ λ⋆
Cba

used in ball optimization oracles by Proposition 1. Therefore, assuming Cba ≥ 100 without loss of
generality, we can use Proposition 5 to implement every ball optimization oracle.

To bound the query depth, we apply Proposition 5 for each of the O(K log3(dκ)) ball optimization
oracles required. To bound the query complexity, we have the claim from

O

(
K log3(dκ) · L2

λ2
⋆r

2
log5(dκ)

)
= O

(
κ2 log

16
3 (dκ)

)
,

∑
j∈[⌈log2 K+Cba⌉]

O

(
2−jK log (dκ) · 2

jL2

λ2
⋆r

2
log7 (dκ)

)
= O

(
KL2

λ2
⋆r

2
log9 (dκ)

)
= O

(
κ2 log

19
3 (dκ)

)
.

We also require one query per ball optimization oracle, so there is an additive K log3(dκ) term. To
bound the computational depth, we perform a similar calculation using Proposition 5:

O
(
K log3(dκ) · log5(dκ)

)
= O

(
d

1
3κ

2
3 log

25
3 (dκ)

)
,∑

j∈[⌈log2 K+Cba⌉]

O
(
2−jK log (dκ) · 2j log7 (dκ)

)
= O

(
K log9(dκ)

)
= O

(
d

1
3κ

2
3 log

28
3 (dκ)

)
.

Finally, for the computational complexity, we have (using the bound ω ≥ 2)

O

(
K log3(dκ) · d log5(dκ) ·

(
L2

λ2
⋆r

2

)ω−1
)

= O

d
4
3κ

2
3 log

34
3
−3ω(dκ) ·

(
κ

4
3

d
1
3

)ω−1


= O
(
d

5−ω
3 κ

4ω−2
3 log

16
3 (dκ)

)
,

and ∑
j∈[⌈log2 K+Cba⌉]

O

(
2−jK log (dκ) · 2j · d log7(dκ)

(
L2

λ2
⋆r

2

)ω−1
)

= O
(
d

5−ω
3 κ

4ω−2
3 log

19
3 (dκ)

)
.

Again, we must perform at least one step per ball optimization oracle, so there is an additive
dK log3(dκ) term. Combining these bounds yields the conclusion.

By instead using a different parameter C as in Corollary 5, we obtain the following corollary, which
interpolates between the two extremes of standard stochastic gradient descent and Theorem 2.

Corollary 6. In the context of Theorem 2, for any C ∈ [1, L2

λ2
⋆r

2] where λ⋆, r are as defined in (23),
there is an algorithm which solves Problem 1 using:

O
(
d

1
3κ

2
3 log

13
3 (dκ) log log (dκ) · Dquery + Cd

1
3κ

2
3 log

28
3 (dκ)

)
depth,

and O
((

d
1
3κ

2
3 log

10
3 (dκ) + κ2 log

19
3 (dκ)

)
· Tquery

)
+O

(
C2−ω

(
d

4
3κ

2
3 log

10
3 (dκ) + d

5−ω
3 κ

4ω−2
3 log

19
3 (dκ)

))
work,

where ω < 2.372 [ADW+24] is the matrix multiplication exponent, and κ := LR
ϵ .

29

Acknowledgements

We thank Yair Carmon for helpful conversations during the initial stages of this project. Aaron
Sidford was supported in part by a Microsoft Research Faculty Fellowship, NSF CAREER Award
CCF-1844855, NSF Grant CCF1955039, and a PayPal research award. Part of this work was
conducted while authors were visiting the Simons Institute for the Theory of Computing.

References

[ABRW12] Alekh Agarwal, Peter L. Bartlett, Pradeep Ravikumar, and Martin J. Wainwright.
Information-theoretic lower bounds on the oracle complexity of stochastic convex opti-
mization. IEEE Trans. Inf. Theory, 58(5):3235–3249, 2012.

[ACJ+21] Hilal Asi, Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. Stochastic
bias-reduced gradient methods. In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, pages 10810–
10822, 2021.

[ADW+24] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu,
and Renfei Zhou. More asymmetry yields faster matrix multiplication. CoRR,
abs/2404.16349, 2024.

[BJL+19] Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Complexity
of highly parallel non-smooth convex optimization. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, pages 13900–13909, 2019.

[BS18] Eric Balkanski and Yaron Singer. Parallelization does not accelerate convex optimiza-
tion: Adaptivity lower bounds for non-smooth convex minimization. arXiv: 1808.03880,
2018.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
Journal of the ACM (JACM), 51(4):540–556, 2004.

[CGJS23] Deeparnab Chakrabarty, Andrei Graur, Haotian Jiang, and Aaron Sidford. Parallel
submodular function minimization. CoRR, abs/2309.04643, 2023.

[CH24] Yair Carmon and Oliver Hinder. The price of adaptivity in stochastic convex optimiza-
tion. CoRR, abs/2402.10898, 2024.

[CJJ+20] Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford,
and Kevin Tian. Acceleration with a ball optimization oracle. In Advances in Neural In-
formation Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, 2020.

[CJJ+23] Yair Carmon, Arun Jambulapati, Yujia Jin, Yin Tat Lee, Daogao Liu, Aaron Sidford,
and Kevin Tian. Resqueing parallel and private stochastic convex optimization. CoRR,
abs/2301.00457, 2023.

[DBW12] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for
stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

30

[DG19] Jelena Diakonikolas and Cristóbal Guzmán. Lower bounds for parallel and randomized
convex optimization. In Conference on Learning Theory, COLT, 2019.

[DLMF] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.8
of 2022-12-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F.
Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain,
eds.

[GKNS21] Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. No quantum
speedup over gradient descent for non-smooth convex optimization. In 12th Innovations
in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual
Conference, volume 185 of LIPIcs, pages 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting
plane method for convex optimization, convex-concave games, and its applications. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 944–953, 2020.

[JRT23] Arun Jambulapati, Victor Reis, and Kevin Tian. Linear-sized sparsifiers via near-linear
time discrepancy theory. CoRR, abs/2305.08434, 2023.

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KLL+23] Jonathan A. Kelner, Jerry Li, Allen X. Liu, Aaron Sidford, and Kevin Tian. Semi-
random sparse recovery in nearly-linear time. In The Thirty Sixth Annual Conference
on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages
2352–2398. PMLR, 2023.

[KTE88a] Leonid G. Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The method of in-
scribed ellipsoids. Soviet Math. Dokl., 37:226–230, 1988.

[KTE88b] Leonid G Khachiyan, Sergei Pavlovich Tarasov, and II Erlikh. The method of inscribed
ellipsoids. In Soviet Math. Dokl, volume 37, pages 226–230, 1988.

[Lev65] Anatoly Yur’evich Levin. An algorithm for minimizing convex functions. In Doklady
Akademii Nauk, volume 160, pages 1244–1247. Russian Academy of Sciences, 1965.

[LSB12] Simon Lacoste-Julien, Mark Schmidt, and Francis R. Bach. A simpler approach to
obtaining an o(1/t) convergence rate for the projected stochastic subgradient method.
CoRR, abs/1212.2002, 2012.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 1049–1065. IEEE, 2015.

[Nem94] Arkadi Nemirovski. On parallel complexity of nonsmooth convex optimization. Journal
of Complexity, 10(4):451–463, 1994.

[Nes89] Ju E Nesterov. Self-concordant functions and polynomial-time methods in convex pro-
gramming. Report, Central Economic and Mathematic Institute, USSR Acad. Sci, 1989.

[New65] Donald J Newman. Location of the maximum on unimodal surfaces. Journal of the
ACM (JACM), 12(3):395–398, 1965.

31

http://dlmf.nist.gov/

[NY83] A. Nemirovski and D.B̃. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. Wiley, 1983.

[Pan87] Victor Y. Pan. Complexity of parallel matrix computations. Theor. Comput. Sci.,
54:65–85, 1987.

[PR85] Victor Y. Pan and John H. Reif. Efficient parallel solution of linear systems. In Pro-
ceedings of the 17th Annual ACM Symposium on Theory of Computing, pages 143–152.
ACM, 1985.

[Sho77] Naum Z Shor. Cut-off method with space extension in convex programming problems.
Cybernetics, 13(1):94–96, 1977.

[SZ23] Aaron Sidford and Chenyi Zhang. Quantum speedups for stochastic optimization.
CoRR, abs/2308.01582, 2023.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends
Mach. Learn., 8(1-2):1–230, 2015.

[Vai96] Pravin M. Vaidya. A new algorithm for minimizing convex functions over convex sets.
Math. Program., 73:291–341, 1996.

[WXXZ23] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega. CoRR, abs/2307.07970, 2023.

[YN76] David B Yudin and Arkadi S Nemirovskii. Informational complexity and efficient meth-
ods for the solution of convex extremal problems. Matekon, 13(2):22–45, 1976.

32

	Introduction
	Technical overview
	Framework: convolutions and acceleration
	Hessian stability of the Gaussian convolution
	Hessian optimization without Hessian approximation
	Parallel maintenance of rank-one updates

	Parallel optimization of quadratic subproblems
	Composite stochastic optimization
	Parallel maintenance of rank-1 updates
	High-probability error bound reduction
	Putting it all together

	Parallel stochastic convex optimization
	Approximate Newton's method
	Ball optimization oracles via binary search
	Proof of Theorem 2

