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Abstract. Text-to-Image (T2I) diffusion models have recently gained
traction for their versatility and user-friendliness in 2D content genera-
tion and editing. However, training a diffusion model specifically for 3D
scene editing is challenging due to the scarcity of large-scale datasets.
Currently, editing 3D scenes necessitates either retraining the model to
accommodate various 3D edits or developing specific methods tailored to
each unique editing type. Moreover, state-of-the-art (SOTA) techniques
require multiple synchronized edited images from the same scene to en-
able effective scene editing. Given the current limitations of T2I models,
achieving consistent editing effects across multiple images remains diffi-
cult, leading to multi-view inconsistency in editing. This inconsistency
undermines the performance of 3D scene editing ® when these images
are utilized. In this study, we introduce a novel, training-free 3D scene
editing technique called FREE-EDITOR, which enables users to edit 3D
scenes without the need for model retraining during the testing phase.
Our method effectively addresses the issue of multi-view style incon-
sistency found in state-of-the-art (SOTA) methods through the imple-
mentation of a single-view editing scheme. Specifically, we demonstrate
that editing a particular 3D scene can be achieved by modifying only a
single view. To facilitate this, we present an Edit Transformer that en-
sures intra-view consistency and inter-view style transfer using self-view
and cross-view attention mechanisms, respectively. By eliminating the
need for model retraining and multi-view editing, our approach signifi-
cantly reduces editing time and memory resource requirements, achieving
runtimes approximately 20 times faster than SOTA methods. We have
performed extensive experiments on various benchmark datasets, show-
casing the diverse editing capabilities of our proposed technique. Project
Page: https://free-editor.github.io/

1 Introduction

Neural Radiance Fields (NeRF) [26], neural implicits [13] as well as subsequent
work [23, 28, 41], collectively termed as neural fields, have emerged as power-
ful 3D neural representations. Recent advances in this field [6, 7] have focused

* * Equal Contribution
3 Here, 3D scene editing indicates NeRF model editing. In this study, we mainly focus
on NeRF-based 3D scene representation.
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on both novel view synthesis, scene reconstruction as well as 3D scene ma-
nipulations such as color editing [17, 18,21, 39,49], scene composition [306, 38|,
and style transfer [10, 14]. Notably, it has been shown that text-guided 3D
NeRF [12,49] editing can be achieved through leveraging the diverse generation
capability of 2D text-to-image (T2I) diffusion models [3, 11, 32]. Despite their
demonstrated success existing methods
need to i) re-train the editing model for each
particular 3D scene which introduces com-
putational and memory overhead, and ii)
rely on the prior knowledge of specific edit-
ing types, which may not be feasible in most
scenarios. For instance, InstructNerf2Nerf
(IN2N) [12] iteratively edits the training im-
ages of a scene until it obtains the desired
editing result of the scene. The iterative
editing is inevitable since all training images
may not have consistent style information
during initial iterations. This is due to the
current limitations of T2I diffusion models

Target Prompt: "Turn him into Van Gogh Painting"

Fig.1: Multi-View Inconsis-
tency in Current Text-to-Image

.. ; o (T2I) Editing Models: The
as achieving prompt-consistent edits in mul- . - Tor oditin g model [3]
tiple images (even if they are from the same ,.eq significant challenges with

scene) is very challenging. Fig. 1 shows an mylti-view consistency. This issue

example where the same target prompt pro-
duces different multi-view outcomes within
the scene. Such inconsistent edits or styles
lead to poor 3D editing performance even
with extensive re-training. To tackle this is-
sue of multi-view style inconsistency, IN2N

adversely affects the quality of 3D
scene editing, especially when these
edited views are used to synthesize
novel views. This specific limitation
is also acknowledged in IN2N [12].
Note that this inconsistency is par-

ticularly problematic when editing is
performed without re-training, which
aligns with our objectives.

proposes to iteratively update the edited
training set based on direct feedback from
the NeRF model. Achieving the same goal
as IN2N without re-training limits us from
updating the training set more than once.
This leads to poor performance due to the aforementioned issues.

In our work, we tackle the problem of tezt-driven 3D scene editing from a
fresh perspective. Given a 3D scene data with multiple source views with their
pose information, we randomly choose a starting view. Our objective is to edit
the entire 3D scene by editing only this starting view. By editing only one view
per scene, we eliminate the possibility of multi-view style inconsistency (Fig. 1)
while reducing the overall editing time significantly. In addition, we address
the problem of re-training with the help of a generalized NeRF (Gen-NeRF)
model [33,42]. Specifically, we leverage the style information in the starting
view and multi-view geometry information from several unedited source views
to render a novel edited target view with the same style as the starting view.
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Table 1: Comparison with SOTA.
Unlike prior works, our proposed
method does not re-train the model
each time we have to edit a new scene.

Methods Re-Training Text-Driven Style Transfer a

Blend-NeRF [19]
Blended-NeRF ||
DreamEditor [19]
NeRF-Art [10]
Instruct-N2N [12]
Ours

"Turn her into Modigliani Painting"

"Turn him into Van Gogh Painting"
Fig.2: 3D Scene Editing using our
proposed method for different target
poses.
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We argue that zero-shot 3D scene editing can easily be achieved by introducing
a few key architectural design changes to the Gen-NeRF.

These architectural changes are necessary as there are a few obvious chal-
lenges in achieving our goal: First, transferring style information from the start-
ing view to the target view requires the view geometry correspondence informa-
tion. In our framework, the view-geometry correspondence is solved by leverag-
ing pixel-aligned features for each target pixel. To further enhance these features
(obtained from unedited source views) with style information, we utilize an Fdit
Transformer (ET) that employs both self-view and cross-view attentions. While
self-view attention helps us grasp long-range content information within the
starting view, we can enrich the pixel-aligned features with content details from
the starting view with cross-view attention. Subsequently, these style-informed
features, obtained from ET, can easily be converted into RGB color using widely
used Epipolar and Ray transformers [35,46]. Second, features obtained from ET
lack necessary spatial awareness as closely situated neighboring views from the
same scene should change continuously. This may lead to spatial non-smoothness
in the pixel space which is highly undesirable for style transfer. To tackle this, we
design a multi-view consistency loss that encourages the features corresponding
to two spatially close points to be similar. In addition, we employ self-view robust
loss to obtain consistent color in the final edited scene. Our main contributions
can be summarized as follows:

— We propose FREE-EDITOR, a zero-shot text-guided 3D scene editing tech-
nique that can synthesize edited novel views based on a text description
while maintaining high 3D consistency. By introducing several novel modi-
fications to a generalized NeRF model, our proposed method eliminates the
requirement of scene-specific retraining across various editing styles.

— We propose an Edit Transformer to facilitate intra-view consistency and
inter-view style transfer, enabling us to edit a particular 3D scene using a
single edited view (see Fig. 2). This single-view editing scheme can effectively
remove the bottleneck of multi-view style inconsistency in SOTA methods.

— Due to the unique design choices in FREE-EDITOR, both training costs as
well as editing time are reduced significantly. Extensive evaluation on multi-
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ple datasets with various editing styles demonstrates the superiority of our
proposed method.

2 Related Work

Novel View Synthesis With NeRF. was first introduced in [26], gener-
ates realistic novel views by fitting scenes as continuous 5D radiance fields us-
ing a Multilayer Perceptron (MLP). Since its inception, several advancements
have enhanced NeRFs. For instance, Mip-NeRF |1, 2] efficiently handles object
scale in unbounded scenes. Nex [15] models significant view-dependent effects
whereas other works [29,43] improve surface representation, extend to dynamic
scenes [30], etc. Despite the tremendous success of NeRF, its time-consuming per-
scene fitting poses a notable drawback. To address this, Generalizable NeRFs
aim to bypass this optimization hurdle by framing new view creation as an
image-based interpolation challenge across different views. Approaches like Neu-
Ray [24], IBRNet [11], MVSNeRF [1], and PixelNeRF [17] construct a universal
3D representation using combined features from observed views. GPNR [35] and
GNT [42] elevate the quality of generated new views through a Transformer-
based aggregation method. In our work, we also consider Generalized NeRF as
we do not aim to re-train the model.

Diffusion-based 3D Scene Editing. The emergence of text-to-image conver-
sion models has notably impacted NeRF editing. Beginning with the Score Dis-
tillation Sampling method in DreamFusion [31], Vox-e [34] explored techniques
to regulate alterations in pre-existing voxel fields. NeRF-Art [40] utilizes various
regularization approaches during training to ensure that NeRF when edited us-
ing CLIP, preserves the original structure. InstructNerf2Nerf (IN2N) employed
2D image translation models [12] to adjust 2D image characteristics for NeRF
training based on textual prompts. However, IN2N’s reliance on IP2P [3] for
updating NeRF training data tends to excessively modify scenes. Furthermore,
encounter difficulties such as extended training durations and unstable loss func-
tions. Addressing the challenge of undesired alterations, D-Editor [19] introduced
a mesh-based neural field that efficiently converts 2D masks into 3D editing
areas. This enables precise local modifications while avoiding unnecessary geo-
metric changes when altering only the appearance. Similarly, Blended-NeRF [9]
and Blend-NeRF [19] require additional cues like bounding boxes for localized
editing. However, all of these methods require per-scene adaptation of the 3D
model to induce any editing effects which increases computational overhead sig-
nificantly. In our work, we propose a zero-shot editing technique that performs
similarly or better than SOTA with more practical applicability.

3 Method

3.1 Background

Neural Radiance Fields. In neural radiance fields (NeRF) [26], the task is
to find a neural network-based representation of 3D scenes. The neural network
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here is a multi-layer perceptron (MLP) that maps a 3D location = € R? and
viewing direction d € S? to an emitted color ¢ € [0, 1]3 and a volume density
o € [0,00),

Flx,d;0) — (c,0), (1)

where F and @ represent MLPs and the set of learnable parameters, respectively.
Volume Rendering. Let us define r (t) = o + td as a ray in a NeRF, where
o is the camera center and d is the ray’s unit direction vector. Along this ray,
we can predict the color values ¢; and volume densities o; of K sample points,
{r(t;)]i =1,..., K}, by following this formal procedure:

K
> r)= Zwici, where
i=1
(2)
w; = exp 720&'5]' (]. — exp (70’151))
j=1

Here, w; indicates the weight or hitting probability of i-th sampling point [24]
and §; is the distance between adjacent samples.

Text-to-3D Scene Editing Method, IN2N, operates by repeatedly updat-
ing the training dataset images using a diffusion model and then training the
NeRF on these modified images to maintain a consistent 3D representation.
This iterative approach allows the gradual integration of the diffusion priors
into the 3D scene, enabling substantial edits. The image-conditioned diffusion
model (IP2P [3]) helps preserve the original scene’s structure and identity.

3.2 Free-Editor: Zero-shot Scene Editing

In this section, we describe our proposed method Free-Editor, a training-free
approach for 3D scene editing without the requirements of iterative updates of
dataset and per-scene optimization. Consider a dataset that contains L number
of 3D scenes in terms of images and their camera intrinsic and extrinsic param-
eters. Let us define a 3D scene training data that contains N images with their
corresponding camera parameters, {I; € RIXWx3 P ¢ R3*4} First, we select
a starting view Iy and render a target view I;. To apply specific 2D editing in I;
and Iy, we employ a text-guided diffusion model D with group attention,

f (IOacvonvc’tgfa ) (Itvcztnactgtv )’ (3)

where @ is the diffusion model, C9, and Cfn are input captions of Iy and I,
respectively. On the other hand, Ctg is the target caption used for editing. As
the next step, we perform source-view selection to select M source views, S =
{In, P, }M_,, from the remaining source views {I,,, P, }" !, where M < N —1.
Details of selecting M views are in Sec. 3.3. The generalized NeRF model [16,24]
with parameters 0, G(.; ), takes {I,,, P, }*_, and Iy, Py as inputs and predicts
I~t as output,

I, = Gy, Ipm, Py, P, 0lm =1,... M) (4)
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Fig. 3: Overview of our proposed method. Top Left. We train a generalized
NeRF (G(.)) model that takes an edited starting view and M source views to render
a novel target view. Here, the edited target view is not the input to the model, rather
will be rendered and works as the ground truth for the model output. In G(.), we
employ a novel Edit transformer that utilizes: Bottom Left. cross-view attention
to produce style-informed source feature maps that will be aggregated through an
Epipolar transformer. Top Right. During training, we employ different sets of source
views Sq, Sy, S; for 4 different loss functions. Note that S, is a variant of S, with
additional ray information for calculating Lcon. Bottom Right. During inference,
only a single image needs to be edited to obtain a 3D-edited scene.

To train G(.;#), we minimize the following optimization objective,

argminﬁtat(e;ft,ft). (5)
6

Style-aware Multi-view Feature Extraction. In Figure 3, we show the de-
tails of our proposed method. We can consider the generalized NeRF as a com-
bination of feature extractor (F') to extract coordinate-aligned feature maps
before aggregating them and ray transformer (R) [42] that will transform the
features into color and density. Using F'), we adopt a feed-forward fashion to ex-
tract generalized features from multi-view images fo, {In, P, }M_, and convert
them later into 3D representation using R. Eq. 1 shows how a 3D location can
be mapped into color and density. Here, we do that in two stages: i) create a
coordinate-aligned feature field using F'), and ii) aggregate point-wise features
along different rays to form ray colors using an attention-based ray transformer.
We use I; as the ground truth for ray colors.

We first construct hierarchical image features using pre-trained 2D CNN
Image Encoder [13] as follows, f; = T'(I;);m = 1,... M, where f; is the image
feature for i*" source image. We then feed these features to the newly proposed
edit transformer, h; = H( fo, fi), which would give us the editing-informed
multi-view feature maps. Here, fo is the 2D image feature corresponding to



Free-Editor 7

the starting view, Iy. We use both self-attention and cross-attention in our edit
transformer (shown in Fig. 3) with different purposes. The functional mechanism

of attention can be defined as Attention(Q, K,V) = Softmax(%) -V, where
Q=W ,K=wkz v=w"z (6)

Here, W®, WX and WV denote trainable matrices that project the inputs to
the query (@), key (K), and value (V') components, respectively. z represents
the latent features, and d represents the output dimension of the key and query
features. The objective of self-attention is to learn long-range and relevant in-
formation within a given view. In our particular case, we aim to capture the
exact editing effects that have taken place in I utilizing self-attention. How-
ever, capturing only single-view information using self-attention is not enough
as it is required to have multi-view feature maps for a successful novel view syn-
thesis. To understand why multi-view information is needed, we briefly analyze
the recently proposed Epipolar Aggregated Transformer [35,46] which functions
between the target pixels and pixels positioned on the epipolar line of multiple
source views. Using the epipolar geometry constraint, the features can be ag-
gregated to capture long-range content information within and across images.
However, vanilla multi-view feature maps obtained from M source views do not
have the editing information in Io. We find a simple fix to this issue by explicitly
injecting editing information from Iy into the multi-view source feature maps
with the help of cross-attention. As shown in Fig. 3, we first tokenize the 2D
image features obtained from 7" which reduces the attention complexity signifi-
cantly. To extract the key (K) and value (V'), tokens from the starting view are
used whereas we use source view tokens as the query (Q). Using cross-attention,
we aggregate features from source views towards fo.

Now, for each target pixel in I, we uniformly sample P coordinate-aligned
3D points {x1,...,xp} from the set of points between far and near planes. Each
of these points is projected into the feature maps obtained from H and then
aggregated to form a coordinate-aligned feature field as follows,

F(zp,¢) = E(h1(I1(z))), -, har (I (). (7)

Here, E is the Epipolar Aggregated Transformer, II;(x,) projects 3D point @,
onto the i-th source-image plane with the help of an extrinsic matrix. We use
bilinear interpolation to compute the feature vector hq(u) at projected 2D po-
sition u € R?. Finally, we utilize the Ray Transformer R along with an MLP to
dynamically learn the blending weights along the ray for each point and produce
the RGB color information. Given ray information, » and {x;,...,zp} as the
uniformly sampled points along r, an MLP (V') can be used to map the pooled
features vectors from R to RGB color C;,

Ci(r) = V(R(F(z,))); p € [1, P]. (8)

For training the model end-to-end, we employ different loss functions that
serve important roles in producing good performance.
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3.3 Training Objectives and Data Generation

Photometric Loss, L,,s.. First, we adopt the photometric loss in NeRF [20]
which is defined as the mean square error (MSE) between the predicted and
ground truth pixel colors,

mse Z HCt ( )HQ’ (9)

reR

where R represents the set of rays and C’t(r) is the ground truth pixel values in
I, for ray r € R.

Multi-view Consistency Loss, L.,,. As we are editing only a single image to
edit an entire 3D scene, achieving spatial smoothness is challenging due to the
constraints of view geometry in NeRF. To tackle this issue, we introduce a multi-
view consistency loss to encourage a smooth transition between texture or color
between neighboring views. Let us denote the feature distribution obtained at
3D point x}, as €l = {hy(IT(x)))), ..., har(ITp(2]))}, obtained from M source
views. Here the pomt zcj is sampled along the ray, r;. Let us select another ray
rj which is very close to r;. For each point @}, we select its closest point wj/

along the ray r; based on their Euclidean dlstance denoted as d] ;, = l|a] —wj ||
To encourage consistency among the coordinate-aligned features of the closest

points, we employ Jensen-Shannon Divergence (JSD) loss,
Ly(xp) = JSD(e]||e] ), (10)

where e;{;/ is the features corresponding to r;. We use JSD loss for its sym-
metric nature which offers some notable advantages over Kullback—Leibler (KL)
divergence [15] loss. Since closer points in the pixel space should have smaller
distances in the feature space, we employ a weighted JSD loss for defining our
final multi-view consistency loss,

con pr[’] mp (11)

Here, w,, indicates the weight corresponding to the pair (w;, w;/) which can be
P

—a?
e 17 . Our unique formulation of L., imposes consis-

P g
tency on 3D points agr(l)ss various viewpoints, inherently promoting smoothness
in the scene’s geometry.

Self-View Robust Loss, L. ¢. In general, when the training data for a 3D
scene remains coherent, generating the same target view using different source
views usually produces consistent outcomes. However, this may not hold true for
our case as we are dealing with an edited target View To address this, we choose
two different sets of source views S, = {I%, _, and S, = {If,, P2}

The predicted target views utilizing S, and Sb are I 2 and It , respectively Wthh

expressed as w, =
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rn him into a Modigliani”
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Original Scene “Make him Hulk” “Make him Dracula”

Fig. 4: Text-driven 3D scene editing. Illustration of text-driven 3D scene editing
using our proposed method across various target poses. This figure showcases the view-
consistent results generated by our method. A qualitative evaluation on multiple scenes
reveals the efficacy of our approach: starting from a single view, our method successfully
generates novel views that are conditioned on the editing prompt, demonstrating its
robustness and versatility in 3D scene editing.

should have consistent content information. To ensure this consistency, we em-
ploy
Loy =Y ICHr) = Cy(r)|1%, (12)

reER

where é’f and C’tb indicate RGB color values in ff and ff, respectively.
Entropy Loss, L.,. In addition, we consider an entropy loss for regularizing
the hitting probabilities of the sampled points [20],

Len =— sz log(1 — w;). (13)

Finally, the total loss function employed to train our framework can be ex-
pressed as follows,

Ltot = Emse + )\c‘ccon + /\sLself + /\eﬁena (14)

where M., Ag, are A, the loss coefficients.

Training Data Generation. From each scene, we first select a target view
and then identify a pool of m.(M + 1) nearby views (m is sampled uniformly
at random from [1, 3]), among which a randomly sampled view is chosen as the
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Table 2: Quantitative assessment of 3D
scene editing focusing on text alignment
and frame consistency is conducted. Our
method exceeds all other state-of-the-art edit-
ing techniques in terms of Edit PSNR met-

Table 3: PSNR comparison
with recent SOTA generalized
NeRF methods. Here, LLFF-E
indicates the performance on the
edited LLFF dataset.

ric while achieving comparable performances

in other scenarios. We use LLFF dataset here. Method |LLFF LLFF-E
PixelNeRF 18.66  11.03
Metrics ‘C-NeRF NeRF-Art IN2N DreamEditor Ours ?é\éil\i:RF géi? iggé
Edit PSNR| 22.15 20.89 22.26 22.34 22.47 Neuray 25.35 18.31
CTDS 02375 02503 0.2804 02788  0.2601 GeoNeRF 25.44 18.98
CDC 09672 09751 0.9882  0.9850  0.9781 Frep-EpiTor (Ours)| 24.61  22.47

starting view while M other views are the source views. This sampling approach
of m mimics diverse view densities during the training process, enhancing the
network’s ability to generalize across different view densities. We get the RGB
images Iy and I; corresponding to the starting and target views, respectively.
For editing Iy and I;, we utilize the open-source pre-trained models BLIP [22]
and IP2P [3]. The BLIP model produces the input caption C?, of the starting
view Iy. Later, we employ a GPT model to generate C?gt by modifying C9, . In
addition to GPT, we apply manually designed prompts as well. For example,
C’Egt can be generated by simply following this format- "X painting of C3, ". X
can be chosen from ["Leonardo da Vinci", "Sam Francis", "Max Ernst", "Henri
Matisse", "Eva Hesse", "Carl Andre", "Cy Twombly"|. Finally, we feed Cfgt and

Iy to IP2P to produce I. For ft, we generate multiple edited copies and select
the one as the ground truth (for G) that has the highest CLIP consistency score
with fg. In our work, we use e,, randomly chosen C’togt for each scene where e,
is set to be 6. We do not choose a higher value for e, as our objective is not
to learn all types of editing available but rather how to transfer the edits from
the starting view to other views. During training, we randomly select M from a
uniform distribution of [8, 12]. More on this in the supplementary.

Inference Phase. During inference, we use different sets of scenes and target
captions (C’Egt) than the training stage. This is to ensure that Free-Editor is
generalizable in terms of both scenes and editing prompts. To edit a test scene,
we first randomly select I that will be edited and M (= 12) source images. We
then pass a novel target pose (close to the M source views, but not necessarily
close to the Ip) to render an edited target view. As Free-Editor can consistently
transfer the edits from one starting view to all other views, we can easily edit a
3D scene by editing a sufficient number (e.g. 70-80) of target views. Note that
our proposed method edits any particular target view only once, in contrast to
the iterative edits proposed in IN2N.

4 Experiments and Analysis

Datasets. Our model is trained on datasets including Google Scanned Ob-
jects [5], NerfStudio [37], Spaces [8], and IBRNet-collect [14], and
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RealEstatel0K [18]. For evalua-
tion, we use IN2N [12], NeRF-
Synthetic [27], LLFF [25], and our
own dataset of four scenes.

Training Details. is in supple-

mentary.
Baselines. We report qualita- @6
tive and quantitative compar-

isons against four baseline NeRF
editing methods including IN2N
[12], NeRF-Art [10], C-NeRF [39],
and DreamEditor [19]. The de-
fault 2D-image editing model is
Instruct-Pix2Pix (IP2P) [3]

Nerf-Art

Original

DreamEditor

IN2N

Fig.5: Style Transfer Comparison. Ex-
hibiting proficiency in conducting style edits
within 3D NeRF Scenes, our method exempli-
fies its versatility and precision through intri-
cate modifications and advanced prompt-guided
editing in a three-dimensional environment. Vi-
’ sually, our outcomes resemble those of IN2N,
to textual narratives. since both methods utilize IP2P for 2D image
Text-driven 3D Scene Edit- editing. However, our method tends to preserve
ing. Figure 4 shows the text- background details more effectively than IN2N.
driven editing performance of our

proposed method. We use differ-

ent text-scene pairs to show the

diversity of our method. We start

with the edited starting view and produce the novel target view from different
poses. Our method shows notable alignment between the provided text descrip-
tion and the resulting views. Yet, there are instances where the alignment isn’t
perfect. For instance, when attempting to transform an image into Modigliani
style, the details around the nose might not be accurately captured. This kind of
intricate detail can be challenging to represent when working within significant
limitations during the editing process.

Style Transfer. Figure 5 illustrates the visual comparisons between FREE-
EDITOR and other 3D scene style transfer methods. Owing to the use of the
IP2P 3] editing backbone, our editing outcomes closely resemble those of IN2N [12].
However, the distinct advantage of our approach lies in its training-free nature,
setting it apart from others. A notable distinction is that our method tends to
preserve background details more effectively than IN2N [12], which often strug-
gles to maintain this aspect. Comparisons with top-tier methods further corrob-
orate the effectiveness of our technique and show the adeptness of our method in
capturing both the color palette and stroke patterns of the desired style. Further-
more, our results are more realistic and preserve non-targeted areas, facilitating
multiple sequential edits. Details are in supplementary.

4.1 Qualitative Results

Figures 4, 5 demonstrate the pro-
ficiency of our method in execut-
ing effective style edits, maintain-
ing 3D coherence, and conforming
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Table 4: An ablation with the Table 5: Quantitative ablation

number of source views, M. A study with different loss func-

higher value of M produces slightly tions. Self-view robust loss impacts the

better performance before the perfor- color consistency while Lo, impacts

mance saturates at a certain point. the smooth transfer of color informa-

LLFF dataset has been used. tion. Our own scenes have been used
for this study.

M ‘ Edit PSNR CTDS CDC
3 20.94 0.2386 0.953 Use Cases ‘ W/0 Leon W/0 Lsery All Loss

4 21.68 0.2471  0.962 Casel | 2098  19.63  22.76
6 22.09 0.2548  0.972 Case2 | 22.86 2152 23.11
8 22.38 0.2563  0.975 Case3 | 23.14 2229  24.21
10 22.44 0.2590 0.977 Case 4 23.08 21.81  23.96
12 22.47 0.2601 0.978 Case 5 21.37 20.13 22.56
18 22.52 0.2604 0.978 Case 6 | 21.25 2038  22.03

4.2 Quantitative Results

3D Scene Editing. The chosen metrics for the editing evaluation are CLIP
Text-Image Directional Similarity (CTDS) and CLIP directional consistency
(CDS), which serve as indicators of how effectively each method preserves 3D
consistency across edited scenes. CTDS evaluates how well the executed 3D ed-
its correspond to the text instructions. While CDS is akin to CTDS it assesses
the similarity in direction between the original and edited images in successive
frames along newly generated camera paths. Additionally, Edit PSNR compares
the cosine similarity and PSNR between each rendered view from the edited and
input NeRF. These metrics collectively provide insight into the integrity of the
3D scene post-editing. Table 2 showcases quantitative evaluations on the LLFF
dataset across diverse scene editing tasks. Our findings indicate that both IN2N
and our proposed approach produce outcomes consistent with the original view-
points, demonstrated by their CLIP directional scores. Notably, the proposed
method outperforms IN2N in terms of Edit PSNR, signifying better preserva-
tion of scene consistency with the original input. This suggests that our method
maintains the details of the initial scene while implementing edits more effec-
tively. Despite these advantages, our method slightly lags behind IN2N in overall
performance, likely due to the zero-shot nature of FREE-EDITOR. However, our
findings underscore the strength of the proposed method in preserving scene
integrity during editing.

Generalization Capabilities. Although the goal of our work is scene editing,
we employed a generalized NeRF to achieve zero-shot capabilities. Therefore, it
necessitates us to validate our method in generalization tasks too. For this, we
consider recent generalized NeRF methods such as pixelNeRF [17], IBRNet [14],
MVSNeRF [4], Neuray [24], GeoNeRF [16]. We modify the original forward-
facing LLFF data dataset, LLFF-E based on diffusion-based editing, e.g. color
or attribute changes. Table 3 shows our findings for this particular experiment.
For the regular LLFF dataset, FREE-EDITOR obtains slightly worse performance
than previous methods which is somewhat understandable as it is developed
mostly for scene editing. However, these methods severely underperform when
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Fig.7: In an extensive user study that

Fig. 6: Loss Sensitivity. An ablation assessed three evaluation metrics, our ap-
study, to show the impact of different proach demonstrated comparable perfor-
loss functions on the final performance. mance to IN2N [12]

we evaluate them on LLFF-E. This shows that one can not just use an off-
the-shelf generalized NeRF for editing purposes. It also shows the necessity of
developing a proper technique to obtain a generalizable method with editing
capabilities. More on this is in supplementary

4.3 Ablation Studies

In this section, we perform an ablation study with different loss functions and
the efficiency of FREE-EDITOR.

Effect of Different Loss Functions. We study the impact of different
loss functions on the overall

performance of our proposed

method. Table 5 shows 6 differ-

ent use cases (scenes) where we Table 6: Runtime efficiency comparison of
apply 4 different text prompts for different methods. We take 2 of our scenes
and apply 10 different editing before averaging.

Method ‘PS.\'R (dB) Edit-time (mins.) Time Complexity Space Complexity

each scene. It can be observed
that Lser has the most impact

L. Clip-NeRF 21.15 1034.2 O(n) O(n)

on the editing performance. The — NeRF-Ar | 2164 780.6 o) O(m)
. . . Instruct-N2N|  22.98 62.1 O(n) O(n)

reason behind this is the com-  Dreamkditor| 23.18 705 Oln) On)
Ours 23.06 3.2 O(n) 0(1)

promised generalizability of the
model without L r. On the other
hand, L., helps us obtain better
spatial smoothness, which can be also shown by the qualitative comparison we
present in Fig. 6. Note that the impact of L, wears off when we increase M.
Model Efficiency. One of the main goals is to edit a particular 3D scene within
a realistic timeframe. Table 6 shows that we are close to achieving that goal.
FREE-EDITOR obtains almost 20x better runtime efficiency compared to the
previous SOTA. Our proposed approach reduces the total editing time while
obtaining better space efficiency, leading to a constant space complexity of O(1).
On the contrary, previous methods necessitate the retraining of a model for each
distinct scene or editing type, resulting in increased space complexity O(n).
Effect of M. In Table 4, we study the impact of different numbers of source
views. It can be observed that our proposed method can produce similar per-
formance even with very few source views. The performance trade-off is not
meaningful for M > 12.
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4.4 User Study

We conducted a user study to observe the acceptability of our method in com-
parison to other leading-edge methods. This study involved a broad participant
base, resulting in a total of 1000 responses across three critical evaluation criteria:
the 3D spatial coherence, the retention of the original scene’s elements, and the
accuracy in reflecting the given textual descriptions. The outcomes of this user
survey are visually represented in Figure 7. These results indicate a preference
for results generated by our method and IN2N [12], highlighting Free-Editor’s
proficiency in these key areas. Detailed information regarding the methodology
and execution of this user study is provided in the supplementary.

5 Discussion and Limitations

One potential solution to the issue of multi-view inconsistency within the same
scene can be through trial and error. Specifically, we can generate a particular
set of edited images and then observe the rendering performance. Since we are
using a pre-trained 2D diffusion model, this process can be repeated until we
get our desired editing effects in the target view. However, it may take hundreds
of trial and error iterations before achieving a reasonable performance on the
edited scene. Therefore, developing an efficient method for 3D scene editing is
necessary and makes practical sense.

Limitations. Since we depend on the 2D image pre-editing process [3] for such
edits, multi-view inconsistency could still be an issue here. To tackle this, we can
use the CLIP consistency score to see whether we have a good match between
the starting and target views. However, the probability of inconsistent edits
between 2 views is much lower as compared to the scenario where we need to
edit all training images. Another limitations of our work is to heavily focusing
on style transfer as there are other area of interests such as object addition or
removal. We leave this to the future studies of our work. Another limitation
could be that for complex and large scenes, the model may need fine-tuning, not
full training, for the desired performance.

6 Conclusion

We proposed a zero-shot text-driven 3D scene editing technique that does not
require any re-training. Although the issue of re-training can be addressed by
training a generalized NeRF model, the produced features do not contain the
necessary editing information. To overcome this, our proposed edit transformer
can effectively transfer the style information to the rendered target views through
cross-attention. In addition, multi-view consistency loss and self-view robust loss
are employed to further enhance spatial smoothness and color consistency. Our
method offers not only diverse editing capabilities but also considerable benefits
in processing speed and storage efficiency when compared with prior methods
with requirements of retraining for individual scenes or modifications.
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