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Abstract: The demand for high-performance computing resources has led to a paradigm shift towards massive
parallelism using graphics processing units (GPUs) in many scientific disciplines, including machine learning,
robotics, quantum chemistry, molecular dynamics, and computational fluid dynamics. In earthquake
engineering, artificial intelligence and data-driven methods have gained increasing attention for leveraging
GPU-computing for seismic analysis and evaluation for structures and regions. However, in finite-element
analysis (FEA) applications for civil structures, the progress in GPU-accelerated simulations has been slower
due to the unique challenges of porting structural dynamic analysis to the GPU, including the reliance on
different element formulations, nonlinearities, coupled equations of motion, implicit integration schemes, and
direct solvers. This research discusses these challenges and potential solutions to fully accelerate the dynamic
analysis of civil structural problems. To demonstrate the feasibility of a fully GPU-accelerated FEA framework,
a pilot GPU-based program was built for linear-elastic dynamic analyses. In the proposed implementation, the
assembly, solver, and response update tasks of FEA were ported to the GPU, while the central-processing
unit (CPU) instructed the GPU on how to perform the corresponding computations and off-loaded the simulated
response upon completion of the analysis. Since GPU computing is massively parallel, the GPU platform can
operate simultaneously on each node and element in the model at once. As a result, finer mesh discretization
in FEA will not significantly increase run time on the GPU for the assembly and response update stages. Work
remains to refine the program for nonlinear dynamic analysis.

1 Introduction

Finite-element analysis for structural dynamics has widespread use in academia and industry for the seismic
design and performance assessment of civil structures (TBI, 2017; Wilson, 2010). However, the computational
cost associated with these simulations often restricts the practical level of resolution used in the numerical
model, which is defined by both model size and mesh refinement. For instance, executing a single response
history analysis for a tall building using a realistic three-dimensional model can take several hours or even
days (Lu and Guan, 2017). Moreover, complex simulations involving soil-structure (Elgamal et al., 2008;
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McCallen et al., 2022) and fluid-structure interactions (Gimenez et al., 2017; Motley et al., 2016; Zhu and Scott,
2014) typically demand significant computing resources and extended run times (Simpson et al., 2023). The
need for high-performance computing (HPC) resources also increases for parametric problems such as
uncertainty propagation or optimization, which require many realizations. Assessing ground motion variability
at the regional-level (McCallen et al., 2022) also often demands simplified or reduced-order numerical models
to reduce computational cost.

Parallel processing on central processing units (CPUs) has long been employed to accelerate finite-element
analyses (FEA) by partitioning the spatial domain across multiple processors (Chiang and Fulton, 1990;
Mackerle, 1996, 2003, 2004; McKenna and Fenves, 2000; McKenna, 1997; Topping and Khan, 1996).
However, this approach encounters limitations, because the split subdomains remain coupled, necessitating
communication between parts of the analysis running on different cores. As more cores are utilized, the
communication overhead can cause performance plateaus, where adding extra cores does not result in
decreased execution time (Amdahl, 1967; Jeremi¢ and Jie, 2008).

In contrast, graphics processing units (GPUs) are characterized for their massive parallel computing
capabilities, employing thousands of cores that can run operations on large volumes of data at a time. While
research in seismic wave propagation (Komatitsch et al., 2009; O’Reilly et al., 2022; Roten et al., 2016) and
biomechanics (Johnsen et al., 2015; Joldes et al., 2010; Mafi and Sirouspour, 2014; Taylor et al., 2008) have
successfully employed massively parallel GPU computing for FEA and finite differences, progress for the
structural dynamic analysis of civil structures has been comparatively slow. Challenges include diverse
element formulations, material along with geometric nonlinearities, coupled equations of motion, implicit
integration schemes, and reliance on direct solvers that have been conceived to execute in parallel on CPUs.

This paper explores the potential of using GPUs to accelerate the dynamic analysis of civil infrastructure using
finite-element analysis. To begin with a simple test case, a pilot program was built in CUDA to fully GPU-
accelerate a linear-elastic dynamic analysis. In contrast to previous partially-accelerated GPU implementations
of FEA (Bartezzaghi et al., 2015; Georgescu et al., 2013; Kang et al.,, 2014; Posey and Wang, 2012), the
platform developed in this study ported all major FEA tasks to the GPU, including the matrix assembly,
equation solver, and domain update. The CPU, acting as the host, instructed the GPU, functioning as the
device, on how to perform the computations (NVIDIA, 2017a), but the output was only returned to the CPU
upon completion of an analysis step. Future work will explore incorporating nonlinear behavior and the use of
different element formulations and time-integration methods.

2 GPU implementation

To benchmark potential speedups, a simple platform was built to fully accelerate a linear-elastic dynamic
analyses for frame structures (Simpson et al., 2023). The source code was implemented in CUDA® C++ v.9.0,
a parallel programming model developed by NVIDIA® for general computing on GPUs (NVIDIA, 2017a). The
major components of the platform are illustrated in Figure 1. The following sections use the minimal example
in Figure 2 to illustrate the implementation in CUDA.

The program uses FEA to solve the equations of motion for an elastic multiple-degree-of-freedom (DOF)
system:

MU, +CU; + KU, = Pr(t) — Po(0), (1)

where M = the system mass matrix [Ny X N¢]; C = the system damping matrix [Ny X N¢]; K = the elastic stiffness
matrix [Ny X N¢]; Ug, Uf , and Uf =the free-DOF displacements, velocities, and accelerations [Ny x 1];
P;(t) = the free-DOF external dynamic loads, taken here to be only at the DOFs [N, x 1]; Py(t) = the free-DOF
assembled element loads [Ny x 1]; and Ny = the number of free DOFs.

A time integration scheme is usually applied to a linear program representing a solution for the next time step
based on Eq. (1). In this study, the second-order differential equations of motion governing structural dynamics
from Eq. (1) are discretized in time and solved using the unconditionally stable, implicit Newmark-beta time-
stepping integration scheme. This method requires the solver to compute the solution at each time step nto a
system of equations of the form:
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Ax=bh. 2)

where A = the left-hand side, effective tangent stiffness matrix [Ny X N¢]; b = the right-hand side, residual load
vector [Ny X 1], and x = the solution vector [Ny X 1].
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Figure 1. Fully GPU-accelerated elastic FEA.
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Figure 2. Minimal example to illustrate the GPU-accelerated FEA implementation in CUDA.

2.1 User input

The user defines the instructions on the CPU host on how to port and solve the problem on the GPU device.
The program requires the user to define the model in an input text file, set the number of threads to be used
during the analysis, and set the solver configuration for the linear system of equations.

Model input file

The user defines the model as a text file using the format in Figure 3, where words in boldface are mandatory
headers and each line after the nodes and elements header contains the data for an individual node or
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element. Note, nodes and elements are assumed to be numbered consecutively starting from 1 in this pilot
implementation.

The current implementation of the program estimates a lumped mass matrix derived from the element density.
Future work includes adding support for nodal masses.

ndm

# NUMBER OF DIMENSIONS

2

nodes

# NUMBER OF DOFS COORDS FIXITIES LOADS DISPLACEMENTS VELOCITIES ACCELERATIONS
30.00.0111 # node 1, fixed.

30.02.0111 # node 2, fixed.
30.01.00000.0 -1.0 0.0 # node 3, free and loaded.
elements

# NUMBER OF NODES NODE LIST ELEMENT TYPE PROPERTIES

21 3 1 10000000.0 0.01 0.1 9800.0 # element 1, nodes {1, 3}.
2 32 1 10000000.0 0.01 0.1 9800.0 # element 2, nodes {3, 2}.

Figure 3. Input file format.

Number of threads

In the CUDA programming model, the programmer defines functions known as kernels that are executed in
parallel by a user-specified number of different CUDA threads. These threads are organized into programming
hierarchical units called thread blocks and grids. All threads in a block are expected to reside on the same
streaming multiprocessor (SM) core. Within NVIDIA GPU architectures, threads in a block are scheduled and
executed in groups of 32 threads, known as warps, by the SM.

To optimize efficiency, the user must carefully select the number of threads in a block (Kirk and Hwu, 2016).
It is advisable to choose a number of threads per blocks that is a multiple of the warp size, meaning a multiple
of 32, and align it with the number of warp schedulers per SM in the GPU device. The number of blocks should
also be a multiple of the number of SMs in the device. This minimizes the number of threads that are inactive
during the execution of the program.

Solver configuration file

This study uses the AmgX library (Naumov et al., 2015) and its associated C++ application programming
interface (API) to iteratively solve the linear system of equations represented by Eq. (2) on the GPU. AmgX
offers optimized methods for massive parallelism and flexibility to choose between different solvers and
preconditioners. Prior to running an analysis, the user specifies the algorithm to be employed, as well as
options and parameters to configure that algorithm in a JSON file. For example, the user can specify to solve
the problem using the preconditioned conjugate gradient (PCG) method (Barrett et al., 1994; Hestenes and
Stiefel, 1952) with 1000 maximum iterations; see Figure 4. The PCG method requires a preconditioner (e.g.,
herein Block Jacobi), which is also defined in the configuration file. More information on how to setup a
configuration file is available in the AmgX reference manual (NVIDIA, 2017b).
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"config version": 2,
"determinism flag": 1,
"solver": ({
"preconditioner": {
"error_ scaling": O,
"print grid stats": 1,
"max uncolored percentage": 0.05,
"algorithm": "AGGREGATION",
"solver": "BLOCK JACOBI",
"smoother": "BLOCK JACOBI",
"presweeps": O,
"selector": "SIZE 2",
"coarse_solver": "DENSE LU SOLVER",
"max_iters": 1,
"postsweeps": 3,
"min_coarse_rows": 32,
"relaxation_ factor": 0.75,
"scope": "amg",
"max_levels": 100,
"matrix_coloring scheme": "PARALLEL GREEDY",
"cycle": "V",
"ilu_ sparsity level": 1,
"coloring level": 2
}I
"use_scalar norm": 1,
"solver": "PCG",
"print solve_stats": 1,
"obtain_timings": 1,
"max_iters": 1000,

"monitor residual": 1,

"gmres_n_ restart": 30,
"convergence": "RELATIVE INI CORE",
"scope": "main",

"tolerance": le-3,

"norm": "L2"

}
Figure 4. Example of a solver configuration file using the PCG solver with a Block Jacobi preconditioner.

2.2 Initialize GPU and Solver

The program begins its execution on the CPU after processing the aforementioned input parameters from the
user, specifically the model input and solver configuration files. Subsequently, the AmgX library is initialized
using the utility APl functions detailed in the AmgX Reference Manual (NVIDIA, 2017b), notably
AMGX initialize() and AMGX _initialize_plugins(). Any errors that may occur during the execution of AmgX are
managed using the AMGX_install_signal_handler() API function.

Following the initialization of the AmgX library, the program proceeds to read the user-provided configuration
file (Figure 4). Using this configuration file, it creates an AmgX Resources object, which allocates pertinent
information about the GPU, and initializes the Solver. The final step of the initialization process involves the
formation of AmgX objects that represent the matrix A and vectors b and x.

2.3 Read and load model in CPU memory

The model input file is processed by the CPU. Two classes, NodeHost and ElementHost, are defined to collect
and organize the information from the input file in the CPU memory. A single instance of NodeHost and
ElementHost is responsible for storing the data representing the entire model. While processing the input, the
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host (CPU) assigns numerical labels to the DOFs. Unconstrained DOFs are labelled with positive integers,
while constrained-DOF labels are labelled as negative. The numbering process is carried out in the sequence
in which nodes are specified in the input file.

2.4 domain.load(): Create domain and load model data to the GPU

The model domain is represented with a Domain object that contains the spatial representation of the model
and the dynamic response at the free DOFs. The domain is initialized, and the data contained in the NodeHost
and ElementHost objects in the CPU memory (i.e., load nodal data, initial nodal response, element
connectivity, element properties, etc) is copied to a Node and an Element object within the Domain that store
the data in allocated GPU memory.

2.5 domain.changed(): Create data structures on GPU

The connectivity and DOF numbering data contained in the Node and Element objects is used to compute the
number of equations or free DOFs, N¢, and the number of non-zero entries in the system stiffness matrix, N,,,.
The value of N, defines the size of the allocated memory for the right-hand side vector b and solution vector x
in Eq. (2). Similarly, N,,, defines the amount of memory allocated to store the system matrix A in compressed
sparse row (CSR) format in the GPU memory. The CSR format allows A to be represented efficiently in
memory by storing only the non-zero entries in a linear array (size = N,,, values), along with an array containing
their corresponding column indices (size = N,,, indices), and a separate array of row pointers indicating the
start and end indices of each row (size = Ny + 1 row pointers).

The computation of N,,, is parallelised by having each CUDA thread compute the number of entries in the local
stiffness matrix from an element in the model. The partial contribution to N,,, of each element is stored in a
linear array in the GPU memory and the total sum is executed using reduction and pre-fix sum operations in
the CUDA C++ Thrust library (NVIDIA, 2018). A similar approach using reduction operations from Thrust is
used to compute N, using the number of DOFs associated with each node and its corresponding constraints.

Memory access patterns in the platform are designed such that a thread operates on a single element and
adds its contribution to A and b. Given that some elements will share degrees of freedom, extra memory is
also allocated for duplicate element entries in the left-hand side matrix (A4,,) and right-hand side vector (bgyp)
where elements share the same DOF and need to be entered at the same location of the global system
matrices. To prepare for filling matrices Agy, and bgy,, two arrays of pointers (Ay,ap and by,,,) map the entries
from the local stiffness matrix and load vector of each element to the corresponding memory addresses
(represented with the symbol & in C++) in Ag,p and bg,,; see Figure 5.

thread 0 operates on element 1 and fills A,.,[0] to A,,,[35] and by,,,[0] to by,,,[5] Empty data structures with duplicate entries
DOF Label DOF Label baup
Anapl0] -1 -2 -3 0 1 2 brap[0] Adup 0 0 1 1 2 2
-1

0 Daup 0

0 Adapo | Aapt | Aapz | Adps | Awps | Adps

0 Daup, 1

1 Asps | Aapr | Aaps | Aaps | Adpto | Adup,1t

DOF Label

1 Daup.2

DOF Label

&bayp, 1
&by, 3
&by, 5

2 Adgup,12 | Adup,13 | Adup14 | Adup,i5 | Adup,ts | Adup,17

DOF Label

8Auup7 | &Adup.s | EAaip 1
&Adup, 13 | &Aqup, 15 | &Adp,17

1 Daup 3

NS o b N A

2
3
0 8Agp1 | 8Aaups | Auups
1
2

2 Daupa

2 | by,
thread 0 operates on element 1 and fills Ayapl35] t0 Apapl71] and byyao[6] t0 bygp[11] Empty data structures e
DOF Label OF Label
Anspl36] 0 1 2 -4 5 6 Dpmapl6] DOF Labe
A 0 1 2 b
0 [ &Auypo | 8Agp2 | &Adup s 0 [&bgupo
= 1 8Agup6 | &Aaip s [ &Adup, 10 1 [ 8bap2 0 Ao A, A, 0 by
E 2 | &Agup, 12 [ &Adup 14 [ EAdup, 16 2 &byup.a g 2
w4 4 5 3
L. - 1 A, A, As 1 by
o [e) o
5 -5 a [a]
5 5 2 Ps A As 2 b,
(a) (b)

Figure 5. Memory allocation and access patterns for the minimal example: (a) local-to-global matrix and vector
maps for each element, and (b) data structures to store left-hand side matrix A and right-hand side vector b
with and without duplicate entries.
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2.6 newmark.new_step(): Setup time-integration scheme
Using the incremental form of Newmark’s method, the resulting left-hand side matrix (A) and right-hand side
vector (b) in Eq. (2) are:

— K+ 1
A=K+70Ch M, 3)

_ pn+1) _ p(n+1) m+1) _ (1) pary(n+1)
b =P P, KU; CU; Mo, (4)
y and § = parameters from Newmark’s method, and ﬁ}’”” and ﬁ;"“) = velocity and displacement estimates.
The solution x corresponds to the change in displacement response from time step n to time step n + 1:
— —_ +1) _
x = AU; = U} U, ()

As part of the setup of the time-integration scheme, the function newmark.new_step() preliminary sets the
nodal velocities and accelerations in the domain (stored in the Node container object in the GPU) to trial

quantities ﬁ}"“) and ﬁf(n“), which are response estimates assuming zero increment in displacement:

rr(n+1) _ Y\ y7(n) 0.5y y3(n)
U —(1—E)Uf +At(1——B)Uf , (6)
~ 1 0.5\ ..
r(n+1) _ T(n) )
Uy __<_BAt)Uf +(1_T;)Uf : (7)

The newmark.new_step() function employs a CUDA kernel to sets the trial values in Eq. (6) and (7), with each
node being assigned to a separate thread. These trial values are later used by the assembler to compute the
right-hand side vector b, as shown in Eq. (4).

2.7 assembler.assemble(): Assemble global matrix

The assembly process involves mapping element contributions from local stiffness, damping, and mass
matrices to global entries in the system matrix A and vector b. To ensure parallel execution without race
conditions, an intermediate matrix Agy,, and a vector by,,, both larger in size than A and b, respectively, are
initially populated with duplicate contributions from elements sharing degrees of freedom, as illustrated in
Figure 5(a-b). This duplication facilitates the subsequent execution of a CUDA kernel for assembly, with each
thread responsible for mapping the contributions from a single element.

Once Ay,p and by, are assembled, two additional CUDA kernels are invoked to sum and reduce duplicates
and fill the corresponding entries in A and b. During the reduction on Ag,, and bg,,, each thread is tasked with
adding the duplicate entries for a specific non-zero entry in A and row entry in b.

2.8 solver.solve(): Solve system

The system of equations Ax = b is solved at each time step using the AmgX Solver with the configurations
provided by the user; see Figure 4. To fully take advantage of the GPU massively parallel resources, this
study uses the iterative PCG solver, as it is formulated to require only matrix-vector products that are amenable
to the massive parallelism of the GPU. Preconditioning is used to replace the original Ax = b with an equivalent
set of equations with a better condition number with the aim of less iterations.

2.9 domain.update(): Update response and offload to CPU

After solving the linear system of equations, the nodal displacements, velocities, and accelerations are
determined based on Newmark constants:

U = U + Aug, (8)
“(n+1) _ T (n+1) Y
U =0 4+ E—AtAUf. (9)
x(n+1) _ §y(n+1)
U™ =00 + AU (10)
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As with earlier tasks in the program, domain.update() is executed in parallel, with each thread handling
operations for an individual node. Once the final state is determined, it is committed and transferred back to
the CPU. The program then iterates through steps 2.6 to 2.9 for the remaining time steps of the analysis.

3 Summary and conclusions

This study describes a pilot implementation for the linear-dynamic analysis of civil structures in CUDA C++
that leverages GPUs to accelerate computation. The program uses a simple interface where users define the
numerical model on the CPU using a model input file, configure the linear-algebra solver using the AmgX
library, and set the number of CUDA threads. Upon loading the model into CPU memory, the domain is created
in GPU memory and the model is copied to the GPU. To estimate the dynamic response, Newmark’s method
is used to discretize the equations of motion in time and transform them into a linear system of the form Ax =
b. To optimize memory use, the CSR format is used to store the non-zero entries in matrix A and all entries in
vector b. The number of non-zero entries and rows, determining the memory allocated for A and b, is
computed in parallel from the contributions of each element later added using sum and reduction operations
from the Thrust library. Given that some elements will share degrees of freedom, extra memory is also
allocated for duplicate element entries (Aq4,p and bgy,). This duplication facilitates the subsequent execution
of a CUDA kernel for assembly of Agy,, and bg,,, with each thread handling the contributions from a single
element. Once Ag4yp and by,, are assembled, two additional CUDA kernels are invoked to sum and reduce
duplicates and fill the corresponding entries in A and b. Then, the system A x = b is solved at every time step
using the iterative PCG solver, formulated to require only matrix-vector products that are amenable to the
massive parallelism of the GPU. Once a solution has been found, the domain is updated and the dynamic
response at the free DOFs is offloaded to the CPU. Notably, the proposed pilot implementation achieves
massive parallelism, enabling the GPU code to operate simultaneously on each node or element in the model.
This design ensures that computational time for the assembly and update tasks remains nearly independent
of the number of DOFs.

Although speedups can be significant for the assembly and update tasks, the program still needs to be refined
to maximize speedups on the GPU, as described in Simpson et al. (2023). In particular, several challenges
still need to be addressed to capitalize on GPU-driven speedups for nonlinear dynamic analysis, especially
the handling of the solver and state determination. Although promising and prevalent in other fields, questions
remain on which types of algorithms best translate into efficient GPU acceleration for structural analysis
problems (e.g., in terms of the time-stepping integration scheme and solver).

Ongoing work by the authors is currently underway to extend this GPU acceleration to include nonlinear
response with heterogeneous elements and inelastic material formulations. It is expected that such work may
deviate substantially from the traditionally formulated approaches described herein for this pilot
implementation. Future work will compare other solvers and time integration schemes, including explicit or
semi-implicit methods. A baseline for comparison of multicore CPU to GPU computing would give an effective
comparison of speedups; i.e., speedups against single-core CPUs may look more impressive than multicore
CPUs.
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