
 

 
 

ACCELERATING FINITE-ELEMENT STRUCTURAL ELASTIC DYNAMIC 
ANALYSIS USING GPU COMPUTING  

G.A. Araújo R.1, B.G. Simpson2, M. Zhu3 & M.H. Scott4 

 

 

1 PhD student, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United 

States, garaujor@stanford.edu  

2 Assistant Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 

United States  

3 Research Associate, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, 

United States 

4 Professor, School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, United 

States 

 

Abstract: The demand for high-performance computing resources has led to a paradigm shift towards massive 

parallelism using graphics processing units (GPUs) in many scientific disciplines, including machine learning, 

robotics, quantum chemistry, molecular dynamics, and computational fluid dynamics. In earthquake 

engineering, artificial intelligence and data-driven methods have gained increasing attention for leveraging 

GPU-computing for seismic analysis and evaluation for structures and regions. However, in finite-element 

analysis (FEA) applications for civil structures, the progress in GPU-accelerated simulations has been slower 

due to the unique challenges of porting structural dynamic analysis to the GPU, including the reliance on 

different element formulations, nonlinearities, coupled equations of motion, implicit integration schemes, and 

direct solvers. This research discusses these challenges and potential solutions to fully accelerate the dynamic 

analysis of civil structural problems. To demonstrate the feasibility of a fully GPU-accelerated FEA framework, 

a pilot GPU-based program was built for linear-elastic dynamic analyses. In the proposed implementation, the 

assembly, solver, and response update tasks of FEA were ported to the GPU, while the central-processing 

unit (CPU) instructed the GPU on how to perform the corresponding computations and off-loaded the simulated 

response upon completion of the analysis. Since GPU computing is massively parallel, the GPU platform can 

operate simultaneously on each node and element in the model at once. As a result, finer mesh discretization 

in FEA will not significantly increase run time on the GPU for the assembly and response update stages. Work 

remains to refine the program for nonlinear dynamic analysis.  

1 Introduction 

Finite-element analysis for structural dynamics has widespread use in academia and industry for the seismic 

design and performance assessment of civil structures (TBI, 2017; Wilson, 2010). However, the computational 

cost associated with these simulations often restricts the practical level of resolution used in the numerical 

model, which is defined by both model size and mesh refinement. For instance, executing a single response 

history analysis for a tall building using a realistic three-dimensional model can take several hours or even 

days (Lu and Guan, 2017). Moreover, complex simulations involving soil-structure (Elgamal et al., 2008; 

mailto:garaujor@stanford.edu


WCEE2024  Araújo R. et al. 

 
 

2 

McCallen et al., 2022) and fluid-structure interactions (Gimenez et al., 2017; Motley et al., 2016; Zhu and Scott, 

2014) typically demand significant computing resources and extended run times (Simpson et al., 2023). The 

need for high-performance computing (HPC) resources also increases for parametric problems such as 

uncertainty propagation or optimization, which require many realizations. Assessing ground motion variability 

at the regional-level (McCallen et al., 2022) also often demands simplified or reduced-order numerical models 

to reduce computational cost. 

Parallel processing on central processing units (CPUs) has long been employed to accelerate finite-element 

analyses (FEA) by partitioning the spatial domain across multiple processors (Chiang and Fulton, 1990; 

Mackerle, 1996, 2003, 2004; McKenna and Fenves, 2000; McKenna, 1997; Topping and Khan, 1996). 

However, this approach encounters limitations, because the split subdomains remain coupled, necessitating 

communication between parts of the analysis running on different cores. As more cores are utilized, the 

communication overhead can cause performance plateaus, where adding extra cores does not result in 

decreased execution time (Amdahl, 1967; Jeremić and Jie, 2008).  

In contrast, graphics processing units (GPUs) are characterized for their massive parallel computing 

capabilities, employing thousands of cores that can run operations on large volumes of data at a time. While 

research in seismic wave propagation (Komatitsch et al., 2009; O’Reilly et al., 2022; Roten et al., 2016) and 

biomechanics (Johnsen et al., 2015; Joldes et al., 2010; Mafi and Sirouspour, 2014; Taylor et al., 2008) have 

successfully employed massively parallel GPU computing for FEA and finite differences, progress for the 

structural dynamic analysis of civil structures has been comparatively slow. Challenges include diverse 

element formulations, material along with geometric nonlinearities, coupled equations of motion, implicit 

integration schemes, and reliance on direct solvers that have been conceived to execute in parallel on CPUs. 

This paper explores the potential of using GPUs to accelerate the dynamic analysis of civil infrastructure using 

finite-element analysis. To begin with a simple test case, a pilot program was built in CUDA to fully GPU-

accelerate a linear-elastic dynamic analysis. In contrast to previous partially-accelerated GPU implementations 

of FEA (Bartezzaghi et al., 2015; Georgescu et al., 2013; Kang et al., 2014; Posey and Wang, 2012), the 

platform developed in this study ported all major FEA tasks to the GPU, including the matrix assembly, 

equation solver, and domain update. The CPU, acting as the host, instructed the GPU, functioning as the 

device, on how to perform the computations (NVIDIA, 2017a), but the output was only returned to the CPU 

upon completion of an analysis step. Future work will explore incorporating nonlinear behavior and the use of 

different element formulations and time-integration methods. 

2 GPU implementation 

To benchmark potential speedups, a simple platform was built to fully accelerate a linear-elastic dynamic 

analyses for frame structures (Simpson et al., 2023). The source code was implemented in CUDA® C++ v.9.0, 

a parallel programming model developed by NVIDIA® for general computing on GPUs (NVIDIA, 2017a). The 

major components of the platform are illustrated in Figure 1. The following sections use the minimal example 

in Figure 2 to illustrate the implementation in CUDA. 

The program uses FEA to solve the equations of motion for an elastic multiple-degree-of-freedom (DOF) 

system: 

 � ��� + � ��� + � �� = ��(�) 2 �0(�) (1) 

where � = the system mass matrix [�� × ��]; � = the system damping matrix [�� × ��]; � = the elastic stiffness 

matrix [�� × �� ]; �� , ��� , and ���  = the free-DOF displacements, velocities, and accelerations [�� × 1 ]; ��(�) = the free-DOF external dynamic loads, taken here to be only at the DOFs [�� × 1]; �0(�) = the free-DOF 

assembled element loads [�� × 1]; and �� = the number of free DOFs.  

A time integration scheme is usually applied to a linear program representing a solution for the next time step 

based on Eq. (1). In this study, the second-order differential equations of motion governing structural dynamics 

from Eq. (1) are discretized in time and solved using the unconditionally stable, implicit Newmark-beta time-

stepping integration scheme. This method requires the solver to compute the solution at each time step � to a 

system of equations of the form: 



WCEE2024  Araújo R. et al. 

 
 

3 

 � � = Ā (2) 

where � = the left-hand side, effective tangent stiffness matrix [�� × ��]; Ā = the right-hand side, residual load 

vector [�� × 1], and � = the solution vector [�� × 1]. 

 

 

Figure 1. Fully GPU-accelerated elastic FEA. 

 

Figure 2. Minimal example to illustrate the GPU-accelerated FEA implementation in CUDA. 

2.1 User input 

The user defines the instructions on the CPU host on how to port and solve the problem on the GPU device. 

The program requires the user to define the model in an input text file, set the number of threads to be used 

during the analysis, and set the solver configuration for the linear system of equations.  

Model input file 

The user defines the model as a text file using the format in Figure 3, where words in boldface are mandatory 

headers and each line after the nodes and elements header contains the data for an individual node or 

      

 ni iali e     and   l er 

Read m del in     ile  and 
l ad        

  ad m del        
             

 rea e da a   r    re   n       r  ,  , and   
                

  ad m del        
             

 e      ime in e ra i n   heme and  e  re   n e 
 redi   r          +1     +1   

                  

A  em le  and    
                    

  l e  he linear  y  em,    =   
              

  da e re   n e    +1     +1     +1
               

  mmi   l  i n   a e 

O  l ad  re i     a e  

 ni iali e  ime   e     n er,  =  , and n      e  ,                 
   

   

  ar   r  ram 

  i   r  ram 

  

  =   
    =        =        =         =    

   

  

   

  
  

  
 

 

   
  

  



WCEE2024  Araújo R. et al. 

 
 

4 

element. Note, nodes and elements are assumed to be numbered consecutively starting from 1 in this pilot 

implementation. 

The current implementation of the program estimates a lumped mass matrix derived from the element density. 

Future work includes adding support for nodal masses. 

Figure 3. Input file format. 

Number of threads 

In the CUDA programming model, the programmer defines functions known as kernels that are executed in 

parallel by a user-specified number of different CUDA threads. These threads are organized into programming 

hierarchical units called thread blocks and grids. All threads in a block are expected to reside on the same 

streaming multiprocessor (SM) core. Within NVIDIA GPU architectures, threads in a block are scheduled and 

executed in groups of 32 threads, known as warps, by the SM. 

To optimize efficiency, the user must carefully select the number of threads in a block (Kirk and Hwu, 2016). 

It is advisable to choose a number of threads per blocks that is a multiple of the warp size, meaning a multiple 

of 32, and align it with the number of warp schedulers per SM in the GPU device. The number of blocks should 

also be a multiple of the number of SMs in the device. This minimizes the number of threads that are inactive 

during the execution of the program. 

Solver configuration file 

This study uses the AmgX library (Naumov et al., 2015) and its associated C++ application programming 

interface (API) to iteratively solve the linear system of equations represented by Eq. (2) on the GPU. AmgX 

offers optimized methods for massive parallelism and flexibility to choose between different solvers and 

preconditioners. Prior to running an analysis, the user specifies the algorithm to be employed, as well as 

options and parameters to configure that algorithm in a JSON file. For example, the user can specify to solve 

the problem using the preconditioned conjugate gradient (PCG) method (Barrett et al., 1994; Hestenes and 

Stiefel, 1952) with 1000 maximum iterations; see Figure 4. The PCG method requires a preconditioner (e.g., 

herein Block Jacobi), which is also defined in the configuration file. More information on how to setup a 

configuration file is available in the AmgX reference manual (NVIDIA, 2017b). 



WCEE2024  Araújo R. et al. 

 
 

5 

Figure 4. Example of a solver configuration file using the PCG solver with a Block Jacobi preconditioner. 

2.2 Initialize GPU and Solver 

The program begins its execution on the CPU after processing the aforementioned input parameters from the 

user, specifically the model input and solver configuration files. Subsequently, the AmgX library is initialized 

using the utility API functions detailed in the AmgX Reference Manual (NVIDIA, 2017b), notably 

AMGX_initialize() and AMGX_initialize_plugins(). Any errors that may occur during the execution of AmgX are 

managed using the AMGX_install_signal_handler() API function. 

Following the initialization of the AmgX library, the program proceeds to read the user-provided configuration 

file (Figure 4). Using this configuration file, it creates an AmgX Resources object, which allocates pertinent 

information about the GPU, and initializes the Solver. The final step of the initialization process involves the 

formation of AmgX objects that represent the matrix � and vectors Ā and �. 
2.3 Read and load model in CPU memory 

The model input file is processed by the CPU. Two classes, NodeHost and ElementHost, are defined to collect 

and organize the information from the input file in the CPU memory. A single instance of NodeHost and 

ElementHost is responsible for storing the data representing the entire model. While processing the input, the 



WCEE2024  Araújo R. et al. 

 
 

6 

host (CPU) assigns numerical labels to the DOFs. Unconstrained DOFs are labelled with positive integers, 

while constrained-DOF labels are labelled as negative. The numbering process is carried out in the sequence 

in which nodes are specified in the input file. 

2.4 domain.load(): Create domain and load model data to the GPU 

The model domain is represented with a Domain object that contains the spatial representation of the model 

and the dynamic response at the free DOFs. The domain is initialized, and the data contained in the NodeHost 

and ElementHost objects in the CPU memory (i.e., load nodal data, initial nodal response, element 

connectivity, element properties, etc) is copied to a Node and an Element object within the Domain that store 

the data in allocated GPU memory. 

2.5 domain.changed(): Create data structures on GPU 

The connectivity and DOF numbering data contained in the Node and Element objects is used to compute the 

number of equations or free DOFs, ��, and the number of non-zero entries in the system stiffness matrix, ���. 
The value of �� defines the size of the allocated memory for the right-hand side vector Ā and solution vector � 
in Eq. (2). Similarly, ��� defines the amount of memory allocated to store the system matrix � in compressed 

sparse row (CSR) format in the GPU memory. The CSR format allows � to be represented efficiently in 

memory by storing only the non-zero entries in a linear array (size = ��� values), along with an array containing 

their corresponding column indices (size = ��� indices), and a separate array of row pointers indicating the 

start and end indices of each row (size = �� + 1 row pointers). 

The computation of ��� is parallelised by having each CUDA thread compute the number of entries in the local 

stiffness matrix from an element in the model. The partial contribution to ��� of each element is stored in a 

linear array in the GPU memory and the total sum is executed using reduction and pre-fix sum operations in 

the CUDA C++ Thrust library (NVIDIA, 2018). A similar approach using reduction operations from Thrust is 

used to compute �� using the number of DOFs associated with each node and its corresponding constraints. 

Memory access patterns in the platform are designed such that a thread operates on a single element and 

adds its contribution to � and Ā. Given that some elements will share degrees of freedom, extra memory is 

also allocated for duplicate element entries in the left-hand side matrix (����) and right-hand side vector (Ā���) 

where elements share the same DOF and need to be entered at the same location of the global system 

matrices. To prepare for filling matrices ���� and Ā���, two arrays of pointers (��ÿ� and Ā�ÿ�) map the entries 

from the local stiffness matrix and load vector of each element to the corresponding memory addresses 

(represented with the symbol & in C++) in ���� and Ā���; see Figure 5. 

  

(a) (b) 

Figure 5. Memory allocation and access patterns for the minimal example: (a) local-to-global matrix and vector 

maps for each element, and (b) data structures to store left-hand side matrix � and right-hand side vector � 

with and without duplicate entries. 

210   2 1       

 1

 2

  

 Ad  ,  Ad  ,  Ad  ,10

 Ad  ,11 Ad  ,9 Ad  ,71

 Ad  ,17 Ad  ,1  Ad  ,1 2

                                                                                   

       

 1

 2

  

  d  ,10

  d  , 1

  d  , 2

 6    210        

 Ad  ,  Ad  ,2 Ad  ,00

 Ad  ,10 Ad  ,8 Ad  ,61

 Ad  ,16 Ad  ,1  Ad  ,122

  

  

 6

                                                                                     

       

  d  ,00

  d  ,21

  d  , 2

  

  

 6

 O   a el

 
O
  
 a

 e
l

 O   a el

 
O
  
 a

 e
l

221100    

Ad  , Ad  , Ad  , Ad  ,2Ad  ,1Ad  ,00

Ad  ,11Ad  ,10Ad  ,9Ad  ,8Ad  ,7Ad  ,61

Ad  ,17Ad  ,16Ad  ,1 Ad  ,1 Ad  ,1 Ad  ,122

                                            

    

 d  ,00

 d  ,10

 d  ,21

 d  , 1

 d  , 2

 d  , 2

210 

A2A1A00

A A A 1

A6A7A82

 

 00

 11

 22

                    

 O   a el

 
O
  
 a

 e
l

 
O
  
 a

 e
l

 O   a el

 
O
  
 a

 e
l

 
O
  
 a

 e
l



WCEE2024  Araújo R. et al. 

 
 

7 

2.6 newmark.new_step(): Setup time-integration scheme 

Using the incremental form of Newmark’  me h d, the resulting left-hand side matrix (�) and right-hand side 

vector (Ā) in Eq. (2) are: 

 � = � + γÿ Δ� � + 1ÿ Δ�2� (3) 

 Ā = ��(�+1) 2 �0(�+1) 2 � ��(�+1) 2 ���̃�(�+1) 2���̃�(�+1), (4) γ and � =  arame er   r m Newmark’  me h d, and ��̃�(�+1) and ��̃�(�+1) = velocity and displacement estimates. 

The solution � corresponds to the change in displacement response from time step � to time step � + 1: 

 � = Δ�� = ��(�+1) 2 ��(�). (5) 

As part of the setup of the time-integration scheme, the function newmark.new_step() preliminary sets the 

nodal velocities and accelerations in the domain (stored in the Node container object in the GPU) to trial 

quantities ��̃�(�+1) and ��̃�(�+1), which are response estimates assuming zero increment in displacement: 

 ��̃�(�+1) = (1 2 Āÿ)���(�) + Δ� (1 2 0 5Āÿ )���(�) (6) 

 ��̃�(�+1) = 2( 1�Δ�)���(�) + (1 2   5� ) ���(�)  (7) 

The newmark.new_step() function employs a CUDA kernel to sets the trial values in Eq. (6) and (7), with each 

node being assigned to a separate thread. These trial values are later used by the assembler to compute the 

right-hand side vector Ā, as shown in Eq. (4). 

2.7 assembler.assemble(): Assemble global matrix 

The assembly process involves mapping element contributions from local stiffness, damping, and mass 

matrices to global entries in the system matrix � and vector Ā. To ensure parallel execution without race 

conditions, an intermediate matrix ���� and a vector Ā���, both larger in size than � and Ā, respectively, are 

initially populated with duplicate contributions from elements sharing degrees of freedom, as illustrated in 

Figure 5(a-b). This duplication facilitates the subsequent execution of a CUDA kernel for assembly, with each 

thread responsible for mapping the contributions from a single element. 

Once ���� and Ā��� are assembled, two additional CUDA kernels are invoked to sum and reduce duplicates 

and fill the corresponding entries in � and Ā. During the reduction on ���� and Ā���, each thread is tasked with 

adding the duplicate entries for a specific non-zero entry in � and row entry in Ā. 

2.8 solver.solve(): Solve system 

The system of equations �� = Ā is solved at each time step using the AmgX Solver with the configurations 

provided by the user; see Figure 4. To fully take advantage of the GPU massively parallel resources, this 

study uses the iterative PCG solver, as it is formulated to require only matrix-vector products that are amenable 

to the massive parallelism of the GPU. Preconditioning is used to replace the original �� = Ā with an equivalent 

set of equations with a better condition number with the aim of less iterations. 

2.9 domain.update(): Update response and offload to CPU 

After solving the linear system of equations, the nodal displacements, velocities, and accelerations are 

determined based on Newmark constants: 

 ��(�+1) = ��(�) + Δ�� (8) 

 ���(�+1) = ��̃�(�+1) + γ� Δ� Δ��  (9) 

 ���(�+1) = ��̃�(�+1) + 1� Δ�2 Δ�� (10) 



WCEE2024  Araújo R. et al. 

 
 

8 

As with earlier tasks in the program, domain.update() is executed in parallel, with each thread handling 

operations for an individual node. Once the final state is determined, it is committed and transferred back to 

the CPU. The program then iterates through steps 2.6 to 2.9 for the remaining time steps of the analysis. 

3 Summary and conclusions 

This study describes a pilot implementation for the linear-dynamic analysis of civil structures in CUDA C++ 

that leverages GPUs to accelerate computation. The program uses a simple interface where users define the 

numerical model on the CPU using a model input file, configure the linear-algebra solver using the AmgX 

library, and set the number of CUDA threads. Upon loading the model into CPU memory, the domain is created 

in GPU memory and the model is copied to the GPU. To estimate the dynamic response, Newmark’  me h d 
is used to discretize the equations of motion in time and transform them into a linear system of the form � � =Ā. To optimize memory use, the CSR format is used to store the non-zero entries in matrix � and all entries in 

vector Ā . The number of non-zero entries and rows, determining the memory allocated for �  and Ā , is 

computed in parallel from the contributions of each element later added using sum and reduction operations 

from the Thrust library. Given that some elements will share degrees of freedom, extra memory is also 

allocated for duplicate element entries (���� and Ā���). This duplication facilitates the subsequent execution 

of a CUDA kernel for assembly of ���� and Ā���, with each thread handling the contributions from a single 

element. Once ���� and Ā��� are assembled, two additional CUDA kernels are invoked to sum and reduce 

duplicates and fill the corresponding entries in � and Ā. Then, the system � � = Ā is solved at every time step 

using the iterative PCG solver, formulated to require only matrix-vector products that are amenable to the 

massive parallelism of the GPU. Once a solution has been found, the domain is updated and the dynamic 

response at the free DOFs is offloaded to the CPU. Notably, the proposed pilot implementation achieves 

massive parallelism, enabling the GPU code to operate simultaneously on each node or element in the model. 

This design ensures that computational time for the assembly and update tasks remains nearly independent 

of the number of DOFs.  

Although speedups can be significant for the assembly and update tasks, the program still needs to be refined 

to maximize speedups on the GPU, as described in Simpson et al. (2023). In particular, several challenges 

still need to be addressed to capitalize on GPU-driven speedups for nonlinear dynamic analysis, especially 

the handling of the solver and state determination. Although promising and prevalent in other fields, questions 

remain on which types of algorithms best translate into efficient GPU acceleration for structural analysis 

problems (e.g., in terms of the time-stepping integration scheme and solver).  

Ongoing work by the authors is currently underway to extend this GPU acceleration to include nonlinear 

response with heterogeneous elements and inelastic material formulations. It is expected that such work may 

deviate substantially from the traditionally formulated approaches described herein for this pilot 

implementation. Future work will compare other solvers and time integration schemes, including explicit or 

semi-implicit methods. A baseline for comparison of multicore CPU to GPU computing would give an effective 

comparison of speedups; i.e., speedups against single-core CPUs may look more impressive than multicore 

CPUs. 

4 Acknowledgements 

This research was supported by National Science Foundation (NSF) under grant number CMMI-2145665, 

titled CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering 

with a Graphics Processing Unit (GPU)-driven Paradigm. The findings, opinions, recommendations, and 

conclusions in this paper are those of the authors alone and do not necessarily reflect the views of others, 

including the sponsors. 

5 References 

Amdahl,   M  (1967), <Validi y     he  in le  r  e   r a  r a h    a hie in  lar e   ale 
  m   in   a a ili ie =, AFIPS ’67 (Spring): Proceedings of the April 18-20, 1967, Spring 
Joint Computer Conference, Association for Computing Machinery, Atlantic City, New Jersey, 
pp. 483–485, doi: https://doi.org/10.1145/1465482.1465560. 



WCEE2024  Araújo R. et al. 

 
 

9 

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., et al. 
(1994), Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 
2nd ed., SIAM, Philadelphia, PA. 

Bar e  a hi, A ,  rem ne i, M ,  ar lini, N  and  ere  ,    (201 ), <An e  li i  dynami       
  r    ral   l er   r  hin  hell  ini e elemen  =, Computers and Structures, Elsevier Ltd, Vol. 
154, pp. 29–40, doi: 10.1016/j.compstruc.2015.03.005. 

 hian , K N  and   l  n, R    (1990), <  n e    and  m lemen a i n     arallel  ini e  lemen  
Analy i =, Computers & Structures, Vol. 36 No. 6, pp. 1039–1046, doi: 
https://doi.org/10.1016/0045-7949(90)90211-J. 

 l amal, A , Yan,   , Yan , Z  and   n e, J    (2008), <Three-Dimensional Seismic Response of 
Humboldt Bay Bridge-Foundation- r  nd  y  em=, Journal of Structural Engineering, Vol. 
134 No. 7, pp. 1165–1176, doi: 10.1061/ASCE0733-94452008134:71165. 

 e r e   ,   ,  h w,    and Ok da, H  (201 ), <    A  elera i n   r   M-Based Structural 
Analy i =, Archives of Computational Methods in Engineering, June, doi: 10.1007/s11831-
013-9082-8. 

 imene , J M , Ramaj ,     , Márq e   amián,   , Ni r , N M  and  del  hn,   R  (2017), <An 
assessment of the potential of PFEM-2 for solving long real- ime ind   rial a  li a i n =, 
Computational Particle Mechanics, Springer International Publishing, Vol. 4 No. 3, pp. 251–
267, doi: 10.1007/s40571-016-0135-2. 

He  ene , M R  and   ie el,    (19 2), <Me h d       nj  a e  radien     r   l in   inear 
 y  em =, Journal of Research of the National Bureau of Standards, Vol. 49 No. 6, pp. 409–
436, doi: 10.6028/jres.049.044. 

Jeremić, B  and Jie,    (2008), < arallel   il–Foundation–  r    re  n era  i n   m   a i n =, in 
Papadrakakis, M., Charmpis, D.C., Tsompanakis, Y. and Lagaros, N.D. (Eds.), Computational 
Structural Dynamics and Earthquake Engineering: Structures and Infrastructures Book Series, 
1st ed., Vol. 2, CRC Press, pp. 427–446, doi: 10.1201/9780203881637-38. 

Johnsen, S.F., Taylor, Z.A., Clarkson, M.J., Hipwell, J., Modat, M., Eiben, B., Han, L., et al. (2015), 
<Ni  y im: A    -based nonlinear finite element package for simulation of soft tissue 
 i me hani  =, International Journal of Computer Assisted Radiology and Surgery, Springer 
Verlag, Vol. 10 No. 7, pp. 1077–1095, doi: 10.1007/s11548-014-1118-5. 

J lde ,   R , Wi  ek, A  and Miller, K  (2010), <Real-time nonlinear finite element computations on 
GPU - A  li a i n    ne r   r i al  im la i n=, Computer Methods in Applied Mechanics and 
Engineering, Vol. 199 No. 49–52, pp. 3305–3314, doi: 10.1016/j.cma.2010.06.037. 

Kan ,   K , Kim,   W  and Yan , H    (201 ), <   -based parallel computation for structural 
dynami  re   n e analy i  wi h    A=, Journal of Mechanical Science and Technology, 
Korean Society of Mechanical Engineers, Vol. 28 No. 10, pp. 4155–4162, doi: 
10.1007/s12206-014-0928-2. 

Kirk, D.B. and Hwu, W.W. (2016), Programming Massively Parallel Processors: A Hands-on 
Approach, 3rd ed., Morgan Kaufmann, Waltham, MA. 

K ma i   h,   , Mi héa,    and  rle a her,    (2009), <  r in  a hi h-order finite-element 
ear hq ake m delin  a  li a i n    NV   A  ra hi    ard    in     A=, Journal of Parallel 
and Distributed Computing, Vol. 69 No. 5, pp. 451–460, doi: 10.1016/j.jpdc.2009.01.006. 

Lu, X. and Guan, H. (2017), Earthquake Disaster Simulation of Civil Infrastructures: From Tall 
Buildings to Urban Areas, 1st ed., Springer Singapore, doi: https://doi.org/10.1007/978-981-
10-3087-1. 

Ma kerle, J  (1996), < m lemen in   ini e elemen  me h d   n    er  m   er , w rk  a i n  and 
PCs: a bibliography (1985-199 )=, Engineering Computations, Vol. 13 No. 1, pp. 33–85, doi: 
https://doi.org/10.1108/02644409610110985. 

Ma kerle, J  (200 ), <  M and B M  arallel  r  e  in : The ry and a  li a i n  - A bibliography 
(1996-2002)=, Engineering Computations, Emerald Group Publishing Ltd., Vol. 20 No. 3–4, 
pp. 436–484, doi: 10.1108/02644400310476333. 

Ma kerle, J  (200 ), <O je  -oriented programming in FEM and BEM: A bibliography (1990-200 )=, 
Advances in Engineering Software, Elsevier Ltd, Vol. 35 No. 6, pp. 325–336, doi: 
10.1016/j.advengsoft.2004.04.006. 



WCEE2024  Araújo R. et al. 

 
 

10 

Ma i, R  and  ir      r,    (201 ), <   -based acceleration of computations in nonlinear finite 
elemen  de  rma i n analy i =, International Journal for Numerical Methods in Biomedical 
Engineering, Wiley-Blackwell, Vol. 30 No. 3, pp. 365–381, doi: 10.1002/cnm.2607. 

M  allen,   , Tan , H , W ,   ,   ker ,   , H an , J  and  e er   n, N A  (2022), <    lin     
regional geophysics and local soil-structure models in the EQSIM fault-to-structure 
ear hq ake  im la i n  ramew rk=, The International Journal of High Performance Computing 
Applications, Vol. 36 No. 1, pp. 78–92, doi: 10.1177/10943420211019118. 

M Kenna,    and  en e ,      (2000), <An O je  -Oriented Software Design for Parallel Structural 
Analy i =, Advanced Technology in Structural Engineering, doi: 10.1061/40492(2000)30. 

McKenna, F.T. (1997), Object-Oriented Finite Element Programming: Frameworks for Analysis, 
Algorithms and Parallel Computing, Dissertation, University of California, Berkeley, Berkeley. 

M  ley, M R , W n , H K , Qin, X , Win er, A O  and   erhard, M O  (2016), <T  nami-Induced 
  r e   n  kewed Brid e =, Journal of Waterway, Port, Coastal, and Ocean Engineering, 
American Society of Civil Engineers (ASCE), Vol. 142 No. 3, doi: 10.1061/(asce)ww.1943-
5460.0000328. 

Naumov, M., Arsaev, M., Castonguay, P., Cohen, J., Demouth, J., Eaton, J., Layton, S., et al. 
(201 ), <AM X: A li rary   r     a  elera ed al e rai  m l i rid and  re  ndi i ned i era i e 
me h d =, SIAM Journal on Scientific Computing, Society for Industrial and Applied 
Mathematics Publications, Vol. 37 No. 5, pp. S602–S626, doi: 10.1137/140980260. 

NV   A  (2017a), <   A T  lki  9 0=, NV   A,  e  em er  
NV   A  (2017 ), <AM X Re eren e Man al=, NV   A, O    er  
NVIDIA. (2018), Thrust Quick Start Guide. 
O’Reilly, O , Yeh, T Y , Ol en, K B , H , Z , Bre er, A , R  en,    and    le ,   A  (2022), <A Hi h-

Order Finite-Difference Method on Staggered Curvilinear Grids for Seismic Wave Propagation 
A  li a i n  wi h T    ra hy=, Bulletin of the Seismological Society of America, 
Seismological Society of America, Vol. 112 No. 1, pp. 3–22, doi: 10.1785/0120210096. 

   ey,    and Wan ,    (2012), <GPU progress in sparse matrix solvers for applications in 
  m   a i nal me hani  =, 50th AIAA Aerospace Sciences Meeting Including the New 
Horizons Forum and Aerospace Exposition, doi: 10.2514/6.2012-562. 

Roten, D., Cui, Y., Olsen, K.B., Day, S.M., Withers, K., Savran, W.H., Wang, P., et al. (2016), 
<Hi h-Frequency Nonlinear Earthquake Simulations on Petascale Heterogeneous 
   er  m   er =, SC16, Supercomputing Conference, IEEE Press, Salt Lake City, UT, USA, 
pp. 957–968, doi: 10.1109/SC.2016.81. 

 im   n, B   , Zh , M ,  eki, A  and      , M H  (202 ), < hallen e  in    -Accelerated 
N nlinear  ynami  Analy i    r   r    ral  y  em =, Journal of Structural Engineering, 
American Society of Civil Engineers, Vol. 149 No. 3, p. 04022253, doi: 
10.1061/JSENDH.STENG-11311. 

Tayl r, Z A ,  hen , M  and O r elin,    (2008), <Hi h-speed nonlinear finite element analysis for 
  r i al  im la i n   in   ra hi    r  e  in   ni  =, IEEE Transactions on Medical Imaging, 
Vol. 27 No. 5, pp. 650–663, doi: 10.1109/TMI.2007.913112. 

TB   (2017), <  ideline    r  er  rman e-Ba ed  ei mi   e i n    Tall B ildin  =,  a i i  
Earthquake Engineering Center, Berkeley, CA, United States. 

Topping, B.H. V. and Khan, A.I. (1996), Parallel Finite Element Computations, Saxe-Coburg 
Publications, Edinburgh. 

Wilson, E.L. (2010), Three Dimensional Static and Dynamic Analysis of Structures: A Physical 
Approach With Emphasis on Earthquake Engineering, 4th ed., Computers & Structures Inc., 
Berkeley, CA. 

Zh , M  and      , M H  (201 ), <M delin   l id-structure interaction by the particle finite element 
me h d in O en ee =, Computers and Structures, Vol. 132, pp. 12–21, doi: 
10.1016/j.compstruc.2013.11.002. 

  

 


	1 Introduction
	2 GPU implementation
	2.1 User input
	Model input file
	Number of threads
	Solver configuration file

	2.2 Initialize GPU and Solver
	2.3 Read and load model in CPU memory
	2.4 domain.load(): Create domain and load model data to the GPU
	2.5 domain.changed(): Create data structures on GPU
	2.6 newmark.new_step(): Setup time-integration scheme
	2.7 assembler.assemble(): Assemble global matrix
	2.8 solver.solve(): Solve system
	2.9 domain.update(): Update response and offload to CPU

	3 Summary and conclusions
	4 Acknowledgements
	5 References

