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Abstract

We consider the problem of learning a realization of a partially observed bilinear dynamical sys-
tem (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we
provide an algorithm and a finite time analysis for learning the system’s Markov-like parameters,
from which a balanced realization of the bilinear system can be obtained. The stability of BLDS
depends on the sequence of inputs used to excite the system. Moreover, our identification algorithm
regresses the outputs to highly correlated, nonlinear, and heavy-tailed covariates. These properties,
unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis
of our algorithm for learning the unknown dynamics. We address these challenges and provide high
probability error bounds on our identification algorithm under a uniform stability assumption. Our
analysis provides insights into system theoretic quantities that affect learning accuracy and sam-
ple complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these
insights.

Keywords: bilinear dynamical systems, single trajectory learning, partial observations, infinite
impulse response.

1. Introduction

Learning the dynamical behavior of nonlinear systems is an important and challenging problem
with applications ranging from engineering, physics, biology (Brunton et al., 2016; Strogatz, 2018;
Brunton and Kutz, 2022), to language modeling, and sequence predictions (Kombrink et al., 2011;
Bahdanau et al., 2014). Bilinear dynamical systems (BLDS) constitute a simple yet powerful class
of nonlinear systems naturally arising in a variety of domains from engineering, biology (Mohler,
1973), quantum mechanical processes (Pardalos and Yatsenko, 2010) to recommendation systems
(Koren et al., 2021). Moreover, bilinear systems approximate a much broader class of nonlinear
systems via Carleman linearization (Kowalski and Steeb, 1991) or Koopman canonical transform
(Goswami and Paley, 2017; Bruder et al., 2021) of control-affine nonlinear systems (Svoronos et al.,
1980; Lo, 1975). Therefore, learning the dynamics of BLDS from input-output data is an impor-
tant and useful problem which has attracted significant interest, both in the case of continuous-time
(Juang, 2005; Sontag et al., 2009) and discrete-time (Berk Hizir et al., 2012). However, theoretical
guarantees of learning BLDS from a single trajectory of noisy input-output data is lacking, with
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current guarantees existing only for bilinear systems with complete state observations (Sattar et al.,
2022; Chatzikiriakos et al., 2024). Our goal in this paper is to provide an algorithm and theoreti-
cal guarantees for learning partially observed BLDS from noisy input-output data sampled from a
single trajectory. We achieve this by learning the system’s Markov-like parameters, which uniquely
identify the end-to-end behavior of the system, and can be used to recover the state-space matrices
up to a similarity transform using existing algorithms (Ho and Kalman, 1966; Sarkar et al., 2019b;
Oymak and Ozay, 2021).

Our goal relates to the problem of learning linear dynamical system (LDS) from partial state-
observations. In this setting, a line of recent work focuses on finite sample error bounds. Tu et al.
(2017); Oymak and Ozay (2021); Simchowitz et al. (2019); Sun et al. (2022); Djehiche and Mazhar
(2022); Tsiamis and Pappas (2019); Sarkar et al. (2021); Bakshi et al. (2023) study methods which
use least squares regression to learn the system’s Markov parameters or Hankel matrix, which can
then be used to recover the state-space matrices (up to a similarity transform) using classic Ho-
Kalman Algorithm (Ho and Kélman, 1966). Sun et al. (2020, 2022); Fazel et al. (2013) study
system identification with Hankel nuclear norm regularization. Other works have focused on learn-
ing to predict the behavior of partially observed LDS via gradient descent (Hardt et al., 2018) and
spectral filtering (Hazan et al., 2017). The linear setting has been extended to (decode-able) non-
linear (Mhammedi et al., 2020) observations and bilinear (Sattar et al., 2024) partial observations.
However, to the best of our knowledge, sample complexity and non-asymptotic analysis for partially
observed nonlinear dynamical systems (including BLDS) have not been considered before.

Non-asymptotic learning of (non)linear dynamical systems with complete state observations
has also attracted significant attention recently. Most of the advancements in this direction are
focused on linear systems (Faradonbeh et al., 2018; Dean et al., 2018; Simchowitz et al., 2018;
Dean et al., 2019; Fattahi et al., 2019; Sarkar et al., 2021; Sarkar and Rakhlin, 2019; Lale et al.,
2020; Jedra and Proutiere, 2020; Wagenmaker and Jamieson, 2020), where an optimal error rate is
achieved by using either mixing-time (Yu, 1994) or martingale-based arguments (Abbasi-Yadkori
et al., 2011). These results have been extended to switched linear dynamical systems (Sarkar et al.,
2019a; Sattar et al., 2021; Du et al., 2022; Sayedana et al., 2024), as well as certain classes of
nonlinear dynamical systems, including state transition models with nonlinear activation functions
(Oymak, 2019; Bahmani and Romberg, 2019; Mhammedi et al., 2020; Sattar and Oymak, 2022; Jain
et al., 2021), nonlinear features (Mania et al., 2022; Musavi et al., 2024), or from a nonparametric
perspective (Taylor et al., 2021; Ziemann et al., 2022; Kazemian et al., 2024). However, the problem
of learning nonlinear dynamical systems from partial observations of a single trajectory is still an
open problem. In this paper, we take a step towards addressing this problem by answering the
following question:

Can we learn a partially observed bilinear dynamical system from a single trajectory?

The main difficulty arises from the fact that the hidden states evolve according to a bilinear state
equation, for which the analysis tools developed for learning partially observed LDS do not work.
Moreover, the stability of a BLDS explicitly depends on the input sequence, which is in stark con-
trast to the deterministic notion of stability in the case of LDS.

Contributions: We overcome the aforementioned challenges and provide theoretical guarantees
for learning partially observed bilinear dynamical systems. We make the following contributions
towards bilinear system identification:
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* Sample complexity and error bounds: We provide the first sample complexity analysis and
finite-sample error bounds for learning a realization of a partially observed BLDS from a single
trajectory of input-output data. Unlike LDS, the output of a bilinear system maps to the history of
inputs via nonlinear features (obtained by the Kronecker products of past inputs) and a sequence of
Markov-like parameters with exponentially increasing length. Our main result (Theorem 2) pro-
vides (5(1 / VT ) error rate for learning these parameters from a single trajectory of length 7". Our
sample complexity bound Q ((p + 1)L+1) grows exponentially with the history length L (where
p is the input dimension), which correctly captures the dependence on the number of unknown
Markov-like parameters (growing exponentially with L). For stable bilinear systems (defined in
§2.2), this can be mitigated by choosing a smaller history of inputs (see § 5).

* Input choice and stability: Stability of BLDS is typically input dependent. We work with a
novel notion of stability (Definition 1) that generalizes the classic notion of stability for LDS to
the BLDS. We also define a notion of stability radius which governs our choice of inputs.

* Persistence of excitation: Of independent interest, we establish the persistence of excitation
(Theorem 5) for a broader class of inputs (possibly heavy-tailed) satisfying a hyper-contractivity
condition. Our persistence of excitation result holds for nonlinear, correlated, and heavy-tailed
covariates (i.e., the input features).

* Numerical experiments: Lastly, we perform experiments with synthetic data to verify our theo-
retical findings. Interestingly, our experiments show that exciting the system with inputs sampled
uniformly at random from a sphere leads to better estimation of Markov-like parameters as com-
pared to Gaussian inputs, empirically reinforcing our theory on choice of inputs.

The rest of the paper is organized as follows: §2 sets up the problem and introduces the notion

of stability. §3 provides our main result on learning Markov-like parameters of partially observed

BLDS. §4 discusses our proof idea, and provides persistence of excitation result for a broader class

of inputs. Lastly' , we perform numerical experiments in §5, and conclude with a discussion of

future directions in §6.

Notations: We use boldface lowercase (uppercase) letters to denote vectors (matrices). p(X),

| X||op and || X || 7 denote the spectral radius, spectral norm and Frobenius norm of a matrix X,

respectively. ||v||s, denotes the Euclidean norm of a vector v, and (v); denotes its i-th element.

For a positive definite matrix M € R%*9, the Mahalanobis norm of a vector v € R is given by

|lvllar = Vo T Mw. For a sequence of d x d matrices My, ..., My, we use the convention that

Hle M; = M x My x - - - x Mj,. We denote by SP~1, the centered unit sphere in R”. We denote

by a V b, the maximum of two scalars @ and b. We use 2 and < for inequalities that hold up to an

absolute constant factor. @(~) and Q() are used to show the dependence on a specific quantity of
interest (up to constants and logarithmic factors). Finally, ® denotes the Kronecker product.

2. Preliminaries

2.1. Problem Formulation

Consider a partially observed bilinear dynamical system with the following state-space representa-
tion: forall t > 0, P
Tip1 = Aoz + Y (ue)pArzi + Bug + wy,
k=1
Yyt = Cxy + Duy + 24,

2.1

1. For the supplementary material which contains the appendix we refer the readers to the extended-version.
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where ; € R”, u; € RP, and y, € R™, wy; € R", and z; € R™ represent the hidden state, input,
output, process noise, and measurement noise, respectively, at time ¢. Without loss of generality,
we consider that zy = 0. The noise processes {w; }+>0 and {z; }+>( are assumed to be sequences of
independent, zero-mean, o2-subgaussian random vectors taking values in R” and R™, respectively,
for some variance proxy parameter o > (.

In this work, we wish to identify the unknown parameters of the system from a single trajectory
of input-output samples {(wu;, y;)}._;. To that end, we focus on the task of learning the so-called
Markov-like parameters (detailed in §3) of the system. Once learned, these Markov-like parameters
can be exploited using the classic Ho-Kalman algorithm to recover the unknown matrices of the
system up to some similarity transform as will be described in §3. Next, we clarify our choice of
inputs and discuss the required stability assumption.

2.2. Input Choice & Stability of Bilinear Dynamical Systems

Stability of bilinear dynamical systems is typically input dependent. To see that, we can unroll the
state dynamics in (2.1) to write: for all £ > 0,

t /o1 ¢ /e-1
Typ1 = Z <H(Utk o A)) Bu;_,+ Z (H(Utk o A)> Wyi_y, 2.2)

=0 \k=0 (=0 \k=0

where we define u¢ o A := Ay + > ¢_, (u¢), Ay, for the ease of notation. Then, observe that the
products of matrices Hf;;t(ut_k o A) may grow exponentially in norm if we consistently choose
large inputs. This is precisely why stability in bilinear dynamical systems is more challenging than
other classes of systems such as linear dynamical systems or switched systems.

Traditionally, notions like Mean Square Stability (MSS) have been considered to reason about
the stability behavior of bilinear systems (Kubrusly and Costa, 1985; Pardalos and Yatsenko, 2010;
Sattar et al., 2022). Typically, these notions are asymptotic in nature, require distributional assump-
tions on the inputs, permit diverging trajectories with nonzero probability, and may not allow us to
obtain tight guarantees. We introduce an alternative notion of stability that naturally generalizes the
classical notion of stability in standard LTI systems.

Uniform stability in bilinear dynamical systems: First, let us recall that the joint spectral radius
of a set of matrices M C R™*™ can be defined as follows:

p(M):= lim  sup  |[MyM;--- My, (2.3)
k—oo ppy ... M eM

For p > 0, we define the following quantity: ¢(M, p) := SuPg>1 ;.. M eM w The
quantity ¢(M, p) is defined in similar vein to that by Mania et al. (2019) for LDS, and it captures the
transient behavior of a system with state transition matrices varying in M. Note that if p(M) < 1,
then for any p > p(M), the quantity ¢(M, p) is finite. Now, given a set Y C RP, we denote
UoA:={Ayg+ Y " |(u);A;: u € U} and introduce the following definition of stability.

Definition 1 (U, s, p)-uniform-stability) LerU/ C RP, k > 1, and 0 < p < 1. We say that
a partially observed bilinear dynamical system (as defined in (2.1)) with state-transition matrices
A = {Ao,..., A} is (U, K, p)-uniformly-stable, if the joint spectral radius of the set U o A
satisfies: (i) p(U o A) < p < 1; and (ii) p(U 0 A, p) < K.
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Note that, if there exists a nonempty and bounded set &/ C RP such that p(i/ o A) < 1, then for
any p(U o A) < p < 1, the system is (U, k, p)-uniformly-stable with K = ¢(U o A, p) V 1. We
provide detailed discussion on this claim in Sattar et al. (2025, Appendix A). Furthermore, we note
that Definition 1 naturally generalizes that introduced by Monfared et al. (2023). Indeed, there
the authors assume that there exists u* such that p(u* o A) < 1. This is equivalent to assuming
that their system is ({u*}, x, p)-uniformly-stable for some x > 1 and p(u* o A) < p < 1. We
need stronger requirements on the stability of the system in comparison with Monfared et al. (2023)
because we are concerned with the task of identification. This requirement stems from the need to
have persistence of excitation so that estimation is possible.

Input choice: We consider that the inputs {u;}+>¢ are sampled in an i.i.d. manner from some
distribution D,, on RP. For ease of exposition, we will focus on the case where inputs are sampled
uniformly at random from a sphere of radius /p, that is, u; ~ Unif(,/p - SP~!). More generally,
as long as the inputs are isotropic and are bounded with high probability, our results will still hold
at the expense of longer proofs. Putting together this input choice with the stability definition, we
are now ready to present the assumption we make on the stability of the bilinear system (2.1).

Assumption 1 (Stability) There exists k > 1 and p € (0,1) such that the partially observed
bilinear dynamical system (2.1) is (\/p - SP~Y Kk, p)-uniformly-stable.

In view of Assumption 1, choosing inputs uniformly at random from /p - SP~! guarantees stability
almost surely. More generally, we can choose to sample inputs from any set U/, so long as the system
is stable under such set in the sense of Definition 1. However, the quality of estimation depends on
whether inputs sampled from U/ are persistently exciting or not (see §4.1).

3. Learning the Markov-like Parameters

The Markov-like parameters are defined in a similar vein (except nonlinear input-output map) to the
classical Markov parameters for partially observed LTI systems. By unrolling the dynamics (2.1),
we can represent the output y, in terms of the past L inputs w;_g,, . .., us, forany t > L, as follows:

L L (-1
Yt = C (H(’utg o A)) Ty + Z C (H(ut_i o] A)) (But,g + wt,g) + Dut + z. (31)

{=1 (=1 i=1

We can simplify the form of (3.1) by adopting a more convenient notation and expanding further
some of the products that involve the inputs. First, we introduce €; := C (Hle(ut,g o A)) Ti_1,

and define:
_ w - C T
Ut—1 wi—1
U1 @ U2 (L))
T T - ~
Uy :[1 ut]7 Uy = Ut Q Wp_o @ Up_ ) Wt = | w5 |
t—1 QU2 ® U3 t—3 3.2)
(Ut 1 QU 2@+ QU | | Wy |
and F = [Im C Clu_10A) CT (uroA) ... CI[= (wyo A)} .

5
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Moreover, let us define the matrix G as follows:
G=[D Gi Gy -+ Gp]eR™% with dy=(p+1)l+p-1, (3.3)

where G1=CB, G(={CA; x---xA;, B} _i_ ef0. p} € Rm>*P(r+1) for f € {2,...,L}.
The parameters {CB,{CA;,B}; cqo,..p}-- - {CAiy X -+ X Aip B}y i1 efo,.p}) are
what we refer to as the Markov-like parameters of the system. We are finally ready to rewrite (3.1)
in terms of these parameters as follows: for all ¢ > L, we have

Yt = G’I]t + F’th + €t. (34)

With the dynamics written in the form of (3.4), it is natural to use the least squares estimation
method to learn the Markov-like parameters from the observations {y;, u;}~_; . More specifically,
the (minimum norm) Least Squares Estimator (LSE) G of G admits a closed form and can be
defined as:

T

T T t
G = (Z ytaj> (Zamj) € argmin Y _|lye — G, (3.5)
t=L t=L

GERdeﬁ =1

Moreover, when the matrix ZtT: I @@, = 0, then the estimation error can be expressed as:

-1

T T
G-G= (Z(Fwt + et)atT) (Z amj) . (3.6)
t=L

t=L
We now present Theorem 2, our main result on the recovery of the Markov-like parameters:

Theorem 2 (Learning Markov-like parameters) Let 6 € (0,1), T > 0. Suppose Assumption
I holds, and the inputs are sampled uniformly at random from a sphere of radius \/p, that is,

{ut}i>o0 E~ Unif(/p - SP~1). Then the event:

|G — Gllop < (3.7)

1—0p —L

~

C(r*p" + k) \/Lp2 (p + )& (log (£) +m +nL + (p + 1)L+)

holds with probability at least 1 — 6, provided that

T—L>L(L+1) (pz)fQ)LH <log <(L ; 1)> +(p+ 1) 1 log (W;)Hl)) . (3.8)

with positive constant C' = poly(c, || B||op, [|C|op)-

The proof of Theorem 2 is deferred to Sattar et al. (2025, Appendix C). We discuss the analysis
of the estimation error leading to Theorem 2 in §4. There, we also highlight the key challenges and
steps in establishing this result. From the bound in (3.7), we see the recovery error |G — G ||lop scales
as, ignoring all other dependencies, O(+/(p + 1)2(L+1) /(T — L)). This contrasts with partially
observed linear systems where typically we only have a polynomial dependence in L, and also
reflects the difficulty in learning bilinear systems from partial observations. To recover the unknown
matrices C, Ao, ..., A,, B, we require L large enough, typically larger than 2n (see Remark 3).
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Remark 3 (The BLDS parameter recovery.) We remark that, for every k € {0,...,p}, we can
directly extract from G, estimates of the matrices {CB,CAyB,..., C’AIS_lB}. To see that,
observe that letting T, o C {1,...,dg} be the p indices corresponding to the p-dimensional sub-
vector of uy, (Hf;ll (wi—i)r)us—e, then G. 1, , = CAf;_lB. In other words, we can take é:,z,_;yk
to be an estimate C’Af;_lB. We then construct a Hankel matrix from GAQ,IL .- Under the condition
that our estimation error is sufficiently small, each pair (Ay, B) is controllable, each pair (A, C)
is observable, and L > 2n, we can use classic Ho-Kalman algorithm (Ho and Kdlmdn, 1966) to
estimate Ay, A1, ..., A,, B,C up to a similarity transform, with robustness guarantees (Oymak
and Ozay, 2021). Lastly, note that the estimate of D is obtained as the first p columns of G.

4. Sample Complexity Analysis

To prove Theorem 2, we start our analysis by decomposing the estimation error as follows:

T t
< i,
L2z ) |

T T
A ~ =T ~ T
HG —G S aw(Fa) | +||Y e ) L@
op Mt=L op It=L op
Excitation Mutiplier Process Truncation Bias
where we use the submultiplicativity of || - ||op and the triangular inequality. Next, we will ana-

lyze each of three terms appearing in the decomposition above separately and obtain corresponding
bounds in high probability. Once these bounds have been established, the proof concludes imme-
diately (see details in Sattar et al. (2025, Appendix C.1)). In what follows, we focus on presenting
the results regarding the analysis of the three terms. We note that the challenge in analyzing this
terms lies in the presence of non-trivial dependencies and nonlinearities. As such, recent analysis
tools from the non-asymptotic system identification literature (Ziemann et al., 2023) do not apply,
and this is precisely what we manage to tackle.

4.1. Persistence of Excitation

We show persistence of excitation which is necessary to ensure that the LSE is a consistent estimator.
More precisely, we will establish that smallest singular value of the design matrix U whose rows
correspond to {@, }~_, is bounded from below by Q(v/T — L + 1). One of the major sources of
difficulty in establishing this persistence of excitation result challenging is the nonlinear dependence
of u; on uy_g,...,us forall ¢ > L. We need to understand how distributional properties of the
input impact the lower spectrum of U'U. To that end, we start by introducing the property of
hypercontractivity.

Definition 4 (Hypercontractivity) A p-dimensional random vector w is (4, 2,~)-hypercontractive,
IFE[(u"x)Y] < AE[(u'x)?)? forall x € RP.

The (4, 2, v)-hypercontractivity property is satisfied by many classical distributions. Notably, a p-
dimensional standard gaussian random vectors satisfies it with v = 3, while p-dimensional random
vectors sampled uniformly from /p - SP~ ! satisfies y=3/(1 + 2/p). We refer the reader to Sattar
et al. (2025, Appendix B) for a proof of these claims.
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Assumption 2 (Distributional properties of the input) {w.}:>¢ is a sequence of independent zero-
mean, isotropic®, and (4,2,~)-hypercontractive for some v > 1, p-dimensional random vectors
with zero third moment marginals®.

Again, it can be verified that Assumption 2 is satisfied by inputs sampled from A (0, I,,) or Unif (,/p-
SP~1). More importantly, Assumption 2 covers a wide range of input distributions that may even
be heavy-tailed, as it only requires conditions on the first four moments of the distribution. This
contrast with classical assumptions that require the input distribution to have sub-Gaussian tails,
and is also consistent with the intuition that bounding the smallest singular value of random ma-
trix requires weaker moment conditions (Koltchinskii and Mendelson, 2015). We are now ready to
present our main result on the persistence of excitation:

Theorem 5 (Persistence of Excitation) Suppose the sequence of inputs {u:}>o are selected as
per Assumption 2, then for all 6 € (0, 1), the event:

T
Amin (f]Tf]) = Amin <Z i, ) > (T —L+1)/4. (4.2)
t=L
holds with probability at least 1 — 6, provided that

T> L+ L(L+1)(3Vy)~Et! (log <(LZ 1)> +(p+ 1) log (W)) . 43)

The proof of Theorem 5 is deferred to Sattar et al. (2025, Appendix B). Interestingly, despite the
presence of nonlinearities and dependencies in the covariates of U, persistence of excitation is still
guaranteed. Part of the reason is because the distributional properties presented in Assumption 2
ensure that isotropy of the vectors u; is still preserved, and their third and fourth moments are well
bounded. The dependence on (p + 1)“*! in (4.3) is unavoidable because of the dimension of the
vectors ;.

4.2. Analysis of the Multiplier Process

The analysis of the the multiplier process term || Zf: 1 U (Fay) " ||op is somewhat simpler than that
of truncation bias term. The reason is because the sequences {u }+> 1., and {w; }+>1, are independent
with zero-mean vectors. However, each of these two sequences contains dependent vectors. Below,
we present a high probability bound on the multiplier process term showing that we can still control
this term despite the presence of these dependencies:

Proposition 6 Ler 6 € (0,1) and T > L. The event:

T
> (Faivy) "
t=L

< G2 i p\/L(T — L)(p+ 1)L+t <log (e(SL) +m+4nL+ (p+ 1)L+1>

op
holds with probability 1 — §, with a positive constant Cy = poly(c, ||C|op).

The key idea behind the proof of Proposition 6 is observing that each of the subsequences, ¢ €
{1,..., L}, {WkL+¢} k>0, has independent vectors. Thus, we can use a blocking trick to rewrite the
multiplier process as a sum of L martingales which can bound using classical concentration tools.
This argument is made precise in the proof and is deferred to Sattar et al. (2025, Appendix C.2).

2. A p-dimensional random vector w is isotropic if for all z € R”, E[(u " 2)%] = ||z||7,.
3. A p-dimensional random vector w has zero-third-moment-marginals if for all € R?, E[(u; x)] = 0.
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4.3. Analysis of the Truncation Bias

The analysis of the truncation bias term || ZtT: 1 W€/ ||op is challenging for multiple reasons. In-
deed, first, the sequences {@; }+>7, and {€;};>7, are non-trivially dependent, and second, €, is only
zero-mean conditioned on future inputs u;_r, . . . , wr and is still dependent on ug, ..., u;—r—1. It
is worth noting that this type of dependence does not arise when learning partially observed linear
dynamical systems. Indeed, the analysis of the truncation bias term in linear systems involves €, that
are only dependent on the covariates x;_;, and are independent of u;_r, ..., u; (e.g., see Oymak
(2019)). In addition to that, when learning linear systems L can be made large enough to trivially
bound the truncation bias, whereas in bilinear systems our bounds pay exponential dependence on
L so choosing this parameter more carefully is more important. Nonetheless, we establish a high
probability bound on the truncation bias as presented below:

Proposition 7 Ler 6 € (0,1) and T > L. The event:

T
S
t=L

holds with probability at least 1 — 6, with a positive constant Cy = poly(a, || B|op, [|C||op)-

- CHKQPL
=1,

\/(T — L)p?(p+ 1)L+1 (log (g) +n+(p+ 1)L+1)

op

The proof of Proposition 7 relies on the critical observation that the truncation bias term can be
rewritten as martingale difference as follows: for all § € Sdﬁ_l, Aesm

T-L-1

T
o7 (Z a@) A=Y (Bus+wy) fo(0,) i1, ... ur), (4.4)
t=L

s=0

where the functions { f;}s>0 are nonlinear in their arguments. Moreover, thanks to our choice of
inputs and the stability Assumption 1, the terms fs(6, \,, ®s+1, ..., wr) are bounded and do not
scale with T". Thus, we use classical concentration tools to deduce our final bounds. The details of
the proofs, and the precise definition of { fs}s>¢ are given in Sattar et al. (2025, Appendix C.3).

5. Numerical Experiments

For our experiments, we consider a partially observed bilinear dynamical system (2.1) with n=>5
hidden states, input dimension p=2, and output dimension m=2. The dynamics matrices Ay, A1, As
are constructed with i.i.d. N(0, 1) entries, and are scaled to have spectral radius p(Ag)=po and
p(A1)=p(Az)=pg, where pg, p; are hyper-parameters in our experiments. Similarly, B, C and
D are generated with i.i.d. A (0,1/n) and NV (0,1/m) entries, respectively. The noise processes
{w;}L,, and {2} are chosen according to i.i.d. Gaussian distribution with zero mean and vari-
ances 02 = 0.0001. Lastly, the control inputs are either sampled uniformly at random from the
sphere /p - SP~L or sampled i.i.d. from a Gaussian distribution N(0, I,).

In Figure 1, we plot the estimation error |G — G |2, over different values of po, px, L and T.

Each experiment is repeated 10 times and we plot the mean and one standard deviation. Figure 1(a)
and Figure 1(c) correspond to estimation with Gaussian inputs {u: }+>0 g (0, I,,), whereas,
Figure 1(b) and Figure 1(d) correspond to estimation with uniformly distributed inputs {w; }+>0 S

Unif (,/p - SP71).
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Figure 1: We plot the estimation error |G — G’ng over different values of T', L, p(Ay), p(A1),
p(Az) while fixing n=5, p=2 and m=2. Figure 1(a) and Figure 1(c) correspond to estimation

with Gaussian inputs {u; }+>0 Sy N (0, I,,), whereas, Figure 1(b) and Figure 1(d) correspond to

o . . o . idd 1o _

estimation with uniformly distributed inputs {w; };>0 "= Unif(,/p- SP~!). Our plots show that the
later input choice gives better estimation of G as compared to the first one. Moreover, the estimation
error increases as L and p increases, whereas, it decreases as 1" increases.

Figure 1 shows that the estimation error increases with L, because the number of Markov-like
parameters increases exponentially in L. Interestingly, Figure 1 suggests that choosing the inputs
{ut}t>0 <y Unif (,/p - SP7!) leads to more accurate estimation than {u;};>0 S N(0,I,) at
any given T'. This seems to highlight the role of hypercontractivity parameter y in the estimation
accuracy. Recall that y=3 for Gaussian inputs, whereas, VZﬁ for uniformly distributed input.

We observe double descent curves (Nakkiran et al., 2020) for L=7. This is because our regres-
sion problem is not regularized and has (p + 1)L + p — 1 = 2188 unknown parameters, and the
number of input-features (u;) is T'—7. Hence, for L = 7, we see the peak at T = 2195, and the error
decays smoothly after this point. Note that the peak occurs at T — L = (p 4 1) 4 p — 1 (where the
number of unknown parameters become equal to the number of input-features). For L = {5,6}, we

do not see the double descent because we start at 7' = 1000 which is greater than (p + 1)* +p — 1.
6. Conclusion and Future Direction

We provide the first non-asymptotic learning bounds for partially observed BLDS. Given finite
input-output data sampled from a single trajectory of BLDS, we learn its Markov-like parameters,
provide an upper bound on the estimation error with @(1 /v/T) dependence, and provide a bound on
the number of samples required, scaling as Q ((p + 1)L+1). These parameters uniquely characterize
the input-output map of a BLDS via nonlinear input features, hence, can be used to recover the state-
space matrices. Our results hold under a novel notion of stability that generalizes the classic notion
of stability for LDS to the BLDS.

There are several interesting future directions. First, can the exponential dependence on L be
avoided? We believe this can be done by carefully designing the inputs such that the number of
Markov-like parameters does not grow exponentially in L. Second, can our results be extended
to account for marginally-stable BLDS? This requires stabilization of a partially observed BLDS
with unknown state-space matrices which itself is an interesting future direction. Other possible
directions include exploring the benefit of regularization (e.g., Hankel nuclear norm regularization)
for BLDS identification, exploring gradient-based methods for learning partially observed BLDS,
and adaptive control of BLDS.
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