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Abstract

We study the problem of representational
transfer in offline Reinforcement Learning
(RL), where a learner has access to episodic
data from a number of source tasks collected
a priori, and aims to learn a shared repre-
sentation to be used in finding a good pol-
icy for a target task. Unlike in online RL
where the agent interacts with the environ-
ment while learning a policy, in the offline
setting there cannot be such interactions in
either the source tasks or the target task; thus
multi-task offline RL can suffer from incom-
plete coverage.

We propose an algorithm to compute point-
wise uncertainty measures for the learnt rep-
resentation in low-rank MDPs,; and establish
a data-dependent upper bound for the sub-
optimality of the learnt policy for the target
task. Our algorithm leverages the collective
exploration done by source tasks to mitigate
poor coverage at some points by a few tasks,
thus overcoming the limitation of needing uni-
formly good coverage for a meaningful transfer
by existing offline algorithms. We comple-
ment our theoretical results with empirical
evaluation on a rich-observation MDP which
requires many samples for complete coverage.
Our findings illustrate the benefits of penal-
izing and quantifying the uncertainty in the
learnt representation.

1 Introduction

The ability to leverage historical experiences from past
tasks and transfer the shared skills to learn a new task
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with only a few interactions with the environment is a
key aspect of machine intelligence. In this paper, we
study this goal in the context of multi-task reinforce-
ment learning (MTRL). Multi-task learning has been
widely studied across different paradigms. |Caruana)
1997, [Pan and Yang) [2009] study a transfer learning
scenario where the learner is equipped with data from
various source tasks during a pre-training phase. The
objective is to learn features easily adaptable to a des-
ignated target task. Similar problems are also studied
in meta-learning |Finn et al., [2017], lifelong learning
|Parisi et al.,[2019] and curriculum learning [Liu et al.|
2021]. The effectiveness of representation transfer for
RL has also been studied in Xu et al. [2020], |Zhang
et al.| [2022], Mitchell et al. [2021], Kumar et al. [2022].

Notably, in all these applications, task datasets are
available to the learner a priori. On the theoretical
side, there has been a recent surge in emphasis on rep-
resentation learning questions, driven by their practical
significance in both supervised learning and reinforce-
ment learning (RL). While the results in the supervised
learning setup [Du et al., 2020, Tripuraneni et al., 2021,
Sun et al., 2021] can work in the offline setting with
the assumption that data was collected independently
and identically from the underlying distributions, in
RL data collection is tied to the deployed policy. The
main focus has been on the online setting where the
learner is able to interact with source tasks to construct
datasets with good “coverage” by exploring extensively.
Several recent papers study reward-free representation
transfer learning [Jin et al., 2020a} |Zhang et al., [2020b),
Wang et al.l 2020a, [Misra et al., [2020, [Agarwal et al.
2020, Modi et al., 2021, [Agarwal et al.| |2023]. These
approaches are well-suited for scenarios with efficient
data generators, such as game engines |[Bellemare et al.,
2013] and physics simulators |[Todorov et all 2012|,
serving as environments.

Online RL is harder in safety-critical domains, like pre-
cision medicine |Gottesman et al.| [2019], autonomous
driving [Shalev-Shwartz et al., [2016] and ride-sharing
|Bose and Varakantham| |2021], where interactive data
collection processes can be costly and risky. Offline



Offline Multi-task Transfer RL with Representational Penalization

Task 1 Task i

3 _ Task K
E?r?:::iig [ Py H - H Pg ‘

Task | T | T | T

Specific { FLh (ewe) fily |ose [LEh
Layer A -

Target
Task

e

=
-
- |

|
ti

Common B S— Representation Transfer ¢y, Heprz:;x:rgaﬁon
Representation —f—
(6] ‘ ‘ ‘ Pn
. A AR i
Offline (D) (P D &)
Datasets { = =) oy g

Figure 1: The learner has access to offline datasets from K source tasks and one target task all of which are
modelled as Low-rank MDPs. First a common representation is learned across all source tasks, and keeping this
representation fixed, the learner plans a near optimal policy using the target task’s dataset.

datasets are often abundantly available, e.g., electronic
health records for precision medicine [Chakraborty
and Murphy, [2014], human driving trajectories for
autonomous driving [Sun et all |2020]. However, guar-
antees for current algorithms in offline RL exist under
strong assumptions as discussed in |Levine et al., |2020,
Lange et al., 2012, [Wang et al., [2020b|, which don’t
hold true on existing datasets.

In this paper we wish to ask the following question:
Can we design a provably sample efficient algorithm
for offline MTRL under minimal assumptions on the
datasets?

We answer this question in the affirmative by introduc-
ing a novel algorithm with a theoretical analysis under
suitable assumptions including a low-rank MDP model.
We list our contributions below.

1. We address a bottleneck in offline MTRL for low-
rank MDPs (Definition by quantifying data-
dependent pointwise uncertainty, while trying to
model the target task transition dynamics with the
representation learnt from source tasks (cf. Theo-
rem . Quantifying pointwise uncertainty has
not been addressed before even in single-task offline
RL in low-rank MDPs due to non-linear function
approximation |[Uehara et al., 2021].

2. Inspired by ideas in non-parametric estimation, we
introduce a quantity termed effective occupancy den-
sity (cf. Algorithm |[1)) which captures the coverage of
a certain state-action pair across all source datasets.
We show that representation transfer error scales
inversely with the square root of the effective occu-
pancy density (cf. Theorem . Our results show
that extensively exploring every state-action pair

for every source task is not necessary for uniformly
low error for the representational transfer; failure to
explore certain state-action pairs by some task can
be balanced out by the exploration done by other

tasks (cf. Corollary [3.1)).

3. We derive a data-dependent bound on the subop-
timality of the learnt policy for the target task (cf.
Theorem highlighting three key factors affecting
the success of the process (i) source tasks’ coverage
of target task’s optimal policy, (ii) source tasks’ cov-
erage of the offline samples from the target task, (iii)
target task’s coverage of its optimal policy.

4. We show that under mild assumptions on the policy
collecting the data, the learner can achieve a near-
optimal target policy by constructing source datasets
of size polynomial in the covering number of the
low-rank representation space, and target dataset
only polynomial in the dimension of the representa-
tion. This allows leveraging typically available vast
historical data from several source tasks and then
performing few shot learning for the target task (cf.

Corollary .

5. We empirically validate our algorithm on the bench-
mark in [Misra et al., [2020]|, and demonstrate
that baselines without penalising the representa-
tion transfer end up with suboptimal cumulative
rewards.

Related Work The main challenge in offline RL is in-
sufficient dataset coverage, leading to distribution shift
between trajectories in the dataset and those induced
by the optimal policy [Wang et al.,2020b, [Levine et al.,
2020|. This issue is exacerbated by overparameterized
function approximators, such as deep neural networks,
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Table 1: A comparison with lines of work closest to ours. |Jin et al.| [2021)’s algorithm works for linear MDPs
(assume a known representation) and is also for a single task. While both |[Cheng et al., 2022| |Agarwal et al.
2023| use maximum likelihood estimate on source datasets to compute a feature estimate (see Eq. ), both
works assume access to underlying source task MDPs to construct well covered datasets and thus provide uniform
representation transfer error guarantees. While |Agarwal et al.| [2023] is purely online for target task, |Cheng et al.
[2022] give results for downstream offline task with restrictive coverage assumptions on the policy collecting target
trajectories. A detailed comparison is presented in Appendix [Al

causing extrapolation errors on less covered states and
actions [Fujimoto et al., |2019]. Theoretical study of of-
fline RL typically requires one of these assumptions (i)
the ratio between the visitation measure of the optimal
policy and that of the data collecting policy to be upper
bounded uniformly over the state-action space or (ii)
the concentrability coefficient defined as the supremum
of a similarly defined ratio over the state-action space
needs to be upper bounded.

Recent algorithms proposed in [Yu et al., 2020, Ki-
dambi et al., 2020, |[Kumar et al.| [2020, [Liu et al.,|[2020]
Buckman et al., 2020, |Jin et al., |2021] provably work
without any coverage assumptions by penalizing the
exploration in offline datasets. The work closest to ours
is [Jin et al., |2021] who bound the suboptimality of
the learnt policy in terms of an uncertainty quantifier
for the limited exploration. For a special instance of
low-rank MDPs where the representation is assumed
to be known (linear MDP [Jin et al., 2020Db]), [Jin
et al., 2021] algorithmically construct an uncertainty
quantifier. Our setup has the additional challenge of
estimating the unknown representation, and bounding
the suboptimality of the learnt policy in terms of in-
sufficient coverage in the datasets used to learn the
representation, as well as the dataset used to learn the
policy. As discussed in [Uehara et al., [2021], the non-
linear function approximation in Low-rank MDPs as
opposed to linear MDPs makes the uncertainty quan-
tification very challenging. Thus our techniques are of
independent interest even for the single task offline RL
in low-rank MDPs. More discussion on related work is
deferred to Appendix [A]

2 Preliminaries

In this paper, we study transfer learning in finite-
horizon episodic Markov Decision Processes (MDPs),
M= (H,S, A {Pn}1.1,{rn}1.1, d1), specified by the
episode length or horizon H, state space S, action space

A, unknown transition dynamics P, : S x A — S,
known reward function r, : & x A — [0,1] and a
known initial state distribution d;. For any Markov
policy m : § — A, we use the shorthand notation
Ep to denote the expectation under the distribution
of the trajectory induced by executing the policy «
in an MDP with transition dynamics P = {Py}1.4,
i.e., start at an initial state s; ~ dy, then for all
h € [H], ap ~ Wh(sh), Spy1 Ph(-|sh,ah). The
value function is the expected reward of a policy
7 starting at state s in step h, ie., VE, ,(s) =
EPJT[Zf:h rr(sryar;)|sn = s]. The Q-function is
Q;,r;h(sva) = ’I“h(S, a) + ]ES’NPh,("S,a)VFT;T;h—Fl(s/)' The
expected total reward of a policy 7w is defined as
VB, = Es;~a, VE,.1(51) and the optimal policy 7* is
denoted as the policy maximizing the expected total
reward, i.e., 7* = argmax, Vg, . Our focus in this
paper is on a special class of MDPs formalized below.

Definition 2.1. (Low-Rank MDP [Jiang et al., (2017,
[Agarwal et al., 2020]): A transition model Py
S x A — S is low-rank with dimension d if there
exist two unknown embedding functions ¢p, : S x A —
R, pp S — R? such that Vs,s' € S,a € A :
Pu(s')5,0) = n(s,a) un(s), where |on(s,a)lls <
1 for all (s,a) and for any function g S —
0,1], ]| [ g(8)un(s)d(s)||2 < Vd. An MDP is low rank
if P allows such a decomposition for all h € [H].

Low-rank MDPs capture several classes of MDPs such
as the latent variable model |[Agarwal et al.| 2020|
where ¢(s,a) is a distribution over a discrete latent
state space Z, and the block-MDP model [Du et al.,
2019] where ¢(s,a) is a one-hot encoding vector. Note
that since ¢ can be a non-linear, flexible function class,
the low-rank framework generalizes prior works with
linear representations [Hu et al.| 2021|, [Yang et al.,
2020a], |[Yang et al.| [2022].

The setup involves K source tasks and one target task
all of which can be modeled as low rank MDPs. The
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learning process can be classified into 2 steps: (i) Rep-
resentation Learning: The learner learns a shared rep-
resentation across all the source tasks, (ii) Planning:
With the learnt representation, the learner plans a good
policy for the target task. We first list a few common
structural assumptions on the tasks which are needed
for a meaningful representation transfer.

Assumption 2.1. (Common Representation): All
tasks share a common representation ¢7 (s, a).

We denote the next state feature maps for the target
task as uy and for the source tasks as {4}, ..., Wj.p }-

Assumption 2.2. (Pointwise Linear Span [Agar-
wal et all (2028]) For any h € [H] and s’ €
S, there ezists a wvector an(s’) € RE, such
that py,(s") = 3 ,cir) @isn(s)bin(s), and omax =
maXh;i;s’E[H]X[K]X[S] Oéi;h(sl) s bounded.

These assumptions capture a large class of MDPs.
|Cheng et al.| 2022] study unknown source models with
the same ¢* thus satisfying Assumption Assump-
tion is a strict generalization of mixture models
where the target task transitions are a linear combina-
tion of the source tasks dynamics, studied by [Modi
et al.| |2020],|Ayoub et al.l [2020], Block MDPs with
shared latent dynamics [Du et al.| 2019].

In this paper we consider tasks which can all be modeled
as low rank MDPs satisfying Assumptions We
study the offline setting where a learner has access
to datasets from K source tasks, each containing Ng
episodic trajectories. Let the dataset corresponding
to task ¢ be denoted as D; = {(s}", a;f)}ivflg Since
Assumption states that all tasks share a common
r/e\presentation, our goal is to first learn a good estimate
®n(sn, an) of ¢}, from the available offline data on source
tasks and then do few shot offline training on a target
task using this learned representation. The learner
also has access to a dataset containing n (typically
n < Ng) episodic trajectories from the target task,
denoted by D = {(s],, ag)}fle Our main goal is to
learn a good policy 7 for the target task using the
learnt representation ¢; that maximizes the expected
total reward. The performance metric is defined below.

Definition 2.2. (Suboptimality Gap): The suboptimal-
ity gap for any given policy w and initial state s € S is
the defined as SubOpt(m,s) = Vi (s) — Vi (s), where
7* is the optimal policy.

In order to state the assumptions on the collected
datasets, we begin with the following definition.

Definition 2.3. (Compliance [Jin et al., |2021]) For
a dataset D = {(s},a})}"1_,, let Pp be the joint dis-
tribution of the data collécting process. We say D is
compliant with the underlying MDP M if Pp(s},_ | =

(s, @)Y= sty }j=t) = Palsnin = 'lsn =

styap = a},), for all & € S at each step h € [H]
of each trajectory T € [n].

Definition [2.3] implies that the data collecting process
should satisfy the Markov property. At each step
h e [H] of each trajectory 7 € [n], s}, depends on
{(sh: @)} iU st 41 ;;11 only via (s}, a]) and the tran-
sition dynamics P of the underlying MDP M. Thus
the randomness in the {s},a}, s7, H}]T-;ll is completely
captured by (s],a}) when we examine the randomness
in sy, .

Assumption 2.3. (Data Collecting Process [Jin et al.l
2021]) The offline source and target task datasets the
learner has access to are compliant with their respective
underlying MDPs.

Assumption [2.3] is a weak assumption and captures
several scenarios. (i) An experimenter collected the
data according to a fixed policy, (ii) Experimenter se-
quentially improved the policy to collect data using any
online RL algorithm, thus allowing the trajectories to
be interdependent across each other, (iii) Experimenter
collected the data by taking actions arbitrarily, say
randomly or even any adaptive or adversarial manner
and doesn’t need to conform to any fixed policy. The
important part is that Assumption doesn’t require
the dataset to well explore the entire state-action space
which is often the case with offline datasets such as
electronic health records or human driving trajectories
for autonomous driving.

3 Representation Learning

Recall from Definition the transition dynamics of
low rank MDPs can be expressed as a function of the
representation. In our setting, all the MDPs have a
shared representation (Assumption . Note that
Assumption [2.2] implies that the transition dynamics of
the target task lies in a linear span of the transition dy-
namics of the source tasks. Thus obtaining an estimate
of the representation from the source tasks significantly
reduces the sample complexity in the target task, since
it allows the learner to model the transition dynamics
of the target task in terms of this learnt representation.
In this section we discuss the challenges of obtaining
a good representation estimate without any coverage
assumptions on the offline datasets and describe our
methodology to overcome these challenges.

Learning a Joint Representation In order to learn
a joint representation from the source tasks, for every
h € [H] we perform a Maximum Likelihood Estimate
(MLE) using the union of data across all source tasks
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as follows:

K Ns

,ufl K;hs ¢h = argmax Z Z IOg M’L Sh;j,-l)(b(sz‘r7ah )a
'U‘lKGT(bG(PZ 17=1
(1)

where T and ® are finite hypothesis classes and we are
working in the realizable setting, i.e. uj.;.,, € T, ¢} €
®. For special cases where the MDP is tabular or linear,
the MLE objective is convex and the optimal solution
has closed-form.

Pointwise Uncertainty in Learnt Representation
Since we do not assume any coverage conditions on
the collected datasets, the representation learnt by
Equation is likely to have estimation uncertain-
ties. However, the magnitude of uncertainty for certain
state-action pairs might be larger compared to others
due to poor exploration. It is therefore desirable to
quantify pointwise uncertainty in the estimation which
is formally defined below.

Definition 3.1. (Pointwise Uncertainty in Transi-
tion Dynamics) Given an arbitrary transition dynam-
ics P : Sx A — S, its misspecification error at
some state action pair (s,a) € S x A w.r.t. the
true transition dynamics P* is defined as Ap(s,a) =

1P(s,a) = P*(:|s,a) |3y

In the context of low rank setting, the learner estimates
the transition dynamics for task ¢ as Pp(-|s,a) =
;. e )(;Abh(s a), where [i;.p, QASh are obtained from Equa-
tion ([1)). As discussed in [Uehara et al.; 2021] the joint
estlmatlon of i and ¢ in Equation (1)) is an instance
of non-linear function approximation. Therefore one
cannot get pointwise uncertainty quantification via the
typically used linear-regression based analysis. Due to
this bottleneck, prior works extensively study this prob-
lem in the online setting to ensure good exploration
and uniform coverage |Agarwal et al.,|2023] or in the
offline scenario by imposing the strict assumption that
all source datasets have uniformly explored all state ac-
tion pairs. This allows for the construction of a uniform
confidence bound, i.e. € = ming 4)esx.4 Ap(s,a) be-
fore transferring this representation for planning in the
target task. The magnitude of € impacts the subopti-
mality of the learnt policy for the target task. However,
without uniform coverage assumptions this approach
could be detrimental because even one failure mode, i.e.
failing to explore some state action-pair even in one
source task could lead to a large value of €, rendering
the suboptimality of the target task policy meaningless.
This motivates us to develop an algorithm to quan-
tify pointwise uncertainty in the transition dynamics
estimation.

First we state a guarantee on the estimates in Equa-

tion . The following lemma states that the sum of
the pointwise errors in the transition dynamics aver-
aged over the points in the source datasets is upper
bounded with high probability.

Lemma 3.1. Let {fi;p }ic K]7$h be the learned MLE
estimates from Equation (1). Then with probability at
least 1 — 0 we have the following bound:

K N * T

E:i || Zis;n (-) ¢h Sh th ") - Hi;h(')T(ﬁh(Sz 7a’h )HTV
N,

i=17=1 5

average error on source i’s dataset
2(log(|®[/6) + Klog(|T]))
> NS .

(2)

It would useful to use the average sense guarantee in
Lemma to derive pointwise guarantees. To work
our way towards this goal, we introduce the following
concept.

Algorithm 1 Effective Occupancy Density

1: Input: Source Datasets : Dyj, = {(s}7,a;")}N5,
10g(|¢|/5)+K10g|T|

foralli € [K],h € [H],C = Ned
2: Define v;-neighborhood occupancy den51ty

1.
= — inf max
Ng ¢c®CCD;.p

o(s',d)|h < v, V(s d) eC.

DZ’h (s,a)

l6(s,a) —

|C| such that (3)

3: Solve {v1,...,vk} C Rf such that:

minie[K] DZih(S,a) . Zie[K] v; = C. (4)

4: Define effective occupancy density:

Dp(s,a) = —ZiE?K] o

Neighborhood Density: We borrow ideas from non-
parametric estimation literature [Epanechnikovl |1969)
Kaplan and Meier| [1958] where the probability density
at some point is estimated based on the observed data
in its neighborhood (for, e.g., kernel density estima-
tion |Chen} 2017]). Since (1)) uses non-linear function
estimation, we first need to formalize the concept of
neighborhood in our setting. The v;-neighborhood
occupancy density at some (3 a) in the dataset for
source task i denoted by D" (s,a) is the fraction of
points in the dataset Wlthln a distance of v; of (s,a)
in the representation space R% and is defined in Equa-
tion (B). Dy (s,a) essentially quantifies how well a
dataset expldres regions around (s,a) in the reprsen-
tation space. In the following lemma we focus our



Offline Multi-task Transfer RL with Representational Penalization

attention on quantifying the pointwise uncertainty for

source task ¢, where the transition dynamics is esti-

mated as Pi(+|s,a) = fin(-) T on(s, a).

Lemma 3.2. Let A;T a (s,a) = ||ﬁi;h(-)—ra>;(s,a) -
-

ish
u;‘;h()—r(ﬁ(s, a)||%y, denote the transition dynamics
misspecification for source task i at time h for any
(s,a) € SxA specified by representations ¢y, f;.p, learnt
from Equation . For some v; > 0, AL (s,a) can

[STSNTINN
be upper bounded as follows:
(s,a) <2d-vi+
——
bias
D [17in() " on(s',a") = pin() T on(s"s a)Tv
NsDJ (s, a) '

i
Onsish

(s'5a’,-)€Dy;p

variance

Note that the variance term is the average error on
source i’s dataset (Lemma divided by the ;-
neighborhood occupancy density D} (s,a). Since,
D;’lh(s, a) is a non-decreasing function of v;, the vari-
ance term is non-increasing in v;, whereas the bias term
is increasing in v;. Thus there is a bias-variance trade-
off in choosing v;. We utilize this idea in Algorithm
which solves an optimization problem Equation
to optimally balance out the total variance and bias
across all source tasks to return the effective occupancy
density D}, (s,a), as defined in Equation . Now, we
are ready to state our main result and provide a proof
sketch to highlight the main ideas.

Algorithm 2 Pessimisitc RepTransfer (PRT)

Target Dataset D = {(s},a})}"
Learnt Representation ggh( -, ), RepTransfer bound
€(+, ) for all points in D, G, .

2: Initialization: Set Vi i(-) < 0.

3: forh=H,H—-1,...,1do

1: Input:

40 SetAp«+ L (Zﬁ:l on(sT,al)on(sy,ap)T + )\H).
5. Set @y Ay (L5002 dnlsf,a) - i (5F4) )

6 Set e e /1 S0, e(s, ap)?

7 Set Tn(,) = H(B+en)-lon(-, )lla, + He(--).
8: Set Qh(7) <_rh(’l+ Qﬁh(.’.)—r@h_rh(’ .
9: Set Qh('a') <_Hlin{Qh("')7I{_h—i_l}—i_'

10:  Set 7 (+|-) < argmax,, Qu(-,-) mh.

11:  Set V() < Equzp (9 @n(:s a).

12: end for

13: Return 7 = {7, (-|-)}L,.

Theorem 3.1. (Representation Transfer Error): Let
Py (-|sh,an) denote the true transition dynamics of the

target task, and @(s,a) be the learnt representation
from Equation (I)). For all h € [H],(s,a) € S x A,
there exists pj, : S — R? such that the following bound
holds with probability at least 1 — ¢

1, ()T (s, a) — Py (|, a) | v

K log(|®[/6) + K log |T|
Ns Dh(s,a) ’

< 20mmax

where Dp(s,a) is the effective occupancy density as
computed in Algorithm [1.

Proof Sketch: We show in Lemma that there exists
a transition model linear in the learnt representation
¢y, such that the model misspecification error for the
target task can be upper bounded in terms of the model
misspecification errors of the individual source tasks,
Le. ek A%hﬁi_h(s,a). The sum of the variance
terms can be uppér bounded with high probability
by utilizing the MLE guarantee in Lemma [3.1] with
an additional multiplicative factor of the Importance

. . 1 .
sampling ratio - YRR The solution of the

optimization problem in Equation in Algorithm |I
optimally balances out the overall variance with the
sum of bias terms.

One of the main implications of Theorem is that
the learner doesn’t need to impose the strict assump-
tion that every source task has extensively explored
every state action pair in order to have a uniformly
low representation transfer error. In fact in the fol-
lowing corollary we present a much more relaxed yet
sufficient condition to ensure uniformly low estimation
error. If for some v’ € (0,1] and every (s,a) € S x A
the following optimization problem admits a feasible
solution:

—1

1 1 - log(|®|/d) + K log | Y|
Vi = d- v
Kle[K] i (85 @) Ng-d-v
1 /
such that 7 Z v, <V, (6)
i€[K]

then the representation error is uniformly upper
bounded and scales as V7' as formalized below.
Corollary 3.1. Let Py (:|sp,an) denote the true tran-
sition dynamics of the target task, and g/b;(s,a) be
the learnt representation from Equation . For all
h € [H],(s,a) € S x A, there exists yi}, : S — R? such
that the following bound holds with probability at least
1-96

5, ()T G (s,0) = Py (s, )l7v < 20man KV,

under the condition in Equation @
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Thus we only need the harmonic means of the neigh-
borhood densities to be lower bounded under an upper
bounded average neighborhood size in order to get a
uniformly low representation transfer error.

4 Representational Transfer in Target
Task

In this section we present PessimisticRepTransfer (Al-
gorithm [2)) for policy planning in the target task using
the learnt representation. Our algorithm is based on
the idea of pessimism, i.e. penalizing the Q-function
estimate for each (s,a) based on how uncertain the
estimate is. The idea of pessimism in offline RL is very
classical and has been explored in contextual bandits,
tabular MDPs [Rashidinejad et al., 2021], and very
recently for linear MDPs |Jin et al.| 2021]. Ours is the
first work for Low-rank MDPs. A detailed comparison
to [Jin et al.| 2021] is stated in Appendix [A] and a de-
scription of Algorithm [2] can be found in Appendix [B!
In comparison with prior work which compute uncer-
tainty estimates only for exploration in the downstream
task, our setting has the additional challenge of bound-
ing the uncertainty in learnt representation ¢, from
upstream tasks, and we see how our novel techniques
introduced in Section [3 allows us to state guarantees
on the quality of the target task policy.

Theorem 4.1. Let 7 be the output of Algorithm |2.
Then with probability at least 1 — §

H

SubOpi(7, s) < ZHZE(S,L7G,l)NW*7p; [ €(sp,an)

h=1 *
source coverage on m

Vo FnCom an)lan |1 = ]
—_———

target coverage on m*

(6 + €h
~~~

source coverage on target

Here the expectation is taken with respect to the optimal
policy 7 of the true underlying MDP of the target task.

log(2|®|/8)+K log | YT
\/K g( \NIS/DEL(M)g\ g = ¢ dVe,

6(57(1) = 2amax

log(4dHn/§)
n

where ( = and ¢ > 1 is an absolute constant

and €, = \/% S e(st,al)?.

Below we discuss the factors affecting the suboptimality

of the learnt target policy:

1. Source Tasks’ Coverage on Target Task’s
Optimal Policy 7*: The source tasks’
should have sufficient samples along the trajec-
tory of the optimal policy of the target task:
>oner) Esnan)~rs,pr V/ 1/ Da(sn, an).

2. Source Tasks’ Coverage on the offline samples
from the Target Task : Let dj(,-) denote
the target task’s occupancy density based on the
offline dataset Dj, = {s],,a}}?_,. Evaluating the

4tion Space) Let m; = {m; 1, ..

term €, we get: €, \/zTe[n] 1/nDy(s},a}) =

\/Z(S’a)e‘SXAdh(s,a)/Dh(s,a). Note that ¢,

doesn’t depend on 7* or Pj;. In order for the
representational transfer to be effective, this term
implies that the source tasks’ must have sufficient
coverage at all points covered in the target task.

3. Target Task’s Coverage on its Optimal Policy
s A= 2 (S0 OlsT ap)dn(sTaf)T + )
indicates the empirical covariance of the samples
from the target task. For any arbitrary (sp,ay), the
term [|¢n (s, an)l|a, = Gn(snran) TAL  onsn, an)
indicates how well (s, ay) is covered by the offline
samples from the target dataset. The suboptimality
gap depends on how well the offline samples from the
target task covers the trajectory of the taget task’s
optimal policy, i.e., 2H Zhe[H] E(sp,apn)~re,pr (B +
€n) - | On(sn an)la, - , ,

Remark 4.1. The computational complexity of Al-

gorithm [2 to obtain the guarantee in Theorem is

O(KNgn). The derivation and wall-clock run times

can be found in Appendiz|C.

Well Explored Source and Task Datasets We
wish to study the suboptimality rates as a function
of the number of source and target task samples. We
examine this under the assumption that the data col-
lecting process work with well exploratory policies,
formally defined below.

Assumption 4.1. (Bounded Density in Representa-
., 1} denote the policy
that collects offline data for source task i. A feature
map ¢ € O defines a distribution d:rh¢() in the repre-
sentation space R%. We assume that there exists policy
m; such that we can lower bound the density in the
representation space, i.e.

infgeq inf, cra di};‘z’(;v) > and  SUpyeq SUP,era dz};d’(l‘) <1,
for all h € [H].

Note that by Definition every feature map ¢ € @,
satisfies [|¢(s,a)ll2 < 1 V(s,a) € § x A. Thus the
representation space in R? is the unit £ norm ball in d
dimensions, B¢ which is a compact set. Assumption
thus states existence of policy with bounded density
only on a compact set instead of the raw state action
space which can be infinite.

Assumption 4.2. [Jin et all, [2021] There exists a
policy ™ = {71,...,Tu} for the target task such that

infyca )\min(Ef:) > ¢/d where Efz = E(s,.ap)~7 P+ [6n(s,a)pn(s,a)T].
The following corollary gives a high probability bound

on the target policy suboptimality as a function of the
number of source and target task samples.
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Corollary 4.1. Let @ be a policy satisfying Assump-
tion and {71, ..., 7K} be policies satisfying Assump-
tion[{.1. Suppose n i.i.d. trajectories are sampled from
the target task by policy @ and Ng i.i.d. trajectories
are sampled from each task i by policy m;. Then with
probability at least 1 — 0, the suboptimality gap is upper
bounded as:

SubOpt(T, s) < @(maX(Ngffld .n2)H2d3 K1, /log(1/9)).

5 Experiments

In this section we empirically stud the benefits of
penalizing the learnt representation in offline Multi-
Task Transfer RL. We ask the following questions:

1. Does uncertainty quantification in the learnt repre-
sentation reduce sample complexity of both source
and task datasets?

2. Does running online algorithms such as UCB with
inaccurate representation lead to convergence to
suboptimal target policies?

3. Does our algorithm outperform baselines irrespective
of the data collection policies for source and target
tasks?

Our experiments suggest affirmative answer to all the

questions above. We use the high dimesnional rich

observation Combination Lock (comblock) benchmark

(see Table [2).

Baselines:  All baselines considered in our study
leverage the representation learned from source tasks’
offline datasets, obtained through Maximum Likeli-
hood Estimation as described in Equation . The
algorithm employed for the target task varies across
these baselines and a complete description is provided
in Appendix @ RT-L uses the LSVI (Least Squares
Value Iteration) algorithm [Sutton and Bartol 2018,
RT-P uses the Pessimistic Value Iteration (PEVI) algo-
rithm [Jin et al., [2021], PRT denotes our Algorithm
These 3 are purely offline algorithms designed to work
with the target task’s offline dataset. RT-LU uses the
learnt representation like the other baselines, but then
can adaptively collect samples from the target task
using the Upper Confidence Bound (UCB) algorithm
[Sutton and Barto, [2018]. In Table [2| we vary the num-
ber of source trajectories Ng and target trajectories
n, reporting the average reward (over 50 runs) for all
baselines. For RT-LU, n is the number of trajecto-
ries for the algorithm to converge and is reported in
parenthesis (we terminate when n = 50000 if it fails to
converge).

Offline Dataset Construction: We run our ex-
periments with 2 types of data collecting policies: (i)

LAll our code is available at https://anonymous .4open
science/r/PessimisticRepTransfer-DBDE

Exploratory: We use the Exploratory Policy Search
(EPS) Algorithm proposed by [Agarwal et al., [2023] to
identify exploratory policies for the source and target
task. Note that exploratory policies aim to cover as
much of the feature space and are potentially very dif-
ferent from the optimal policy. (ii) Optimal / Expert
Demonstrations: The dataset comprises of trajecto-
ries optimally solving the task.

We independently and identically sampled Ng trajec-
tories from source task and n trajectories from the
target task to construct 3 types of offline datasets: (a)
Exploratory Source and Optimal Target (Table 2), (b)
Exploratory Source and Exploratory Target and (c)
Optimal Source and Optimal Target (Table [3).

Results: In scenarios where the source tasks benefit
from well explored datasets (i.e., large Ng and trajec-
tories from Exploratory policies), the representation
transfer error is uniformly low. All algorithms demon-
strate strong performance under these well-covered con-
ditions, as evident in Row 3 of Table 3| (left). Our focus,
however, lies in situations where the source datasets
are less explored, indicating a small Ng (rows 1-2 of
Table [3(left)) or the source trajectories were from ex-
pert demonstrations (Table [3(right)). In such cases,
our representation transfer penalty becomes crucial
for selectively penalizing estimated representations for
specific state-action pairs. We observe that both RT-
L and RT-P, assuming the learned representation as
ground truth, struggle to reach the optimal solution
in these less-explored settings. While RT-P performs
better than RT-L by penalizing points in the target
dataset, it still falls short. On the other hand, RT-LU
fails to recover the optimal policy even after 50000
episodes due to reliance on an inaccurate representa-
tion. Notably, our proposed algorithm, PRT, stands
out as the only method capable of optimally solving
the target task. Table [2 also demonstrates our algo-
rithm’s ability for few-shot learning when the source
trajectories are sampled from exploratory policies and
target trajectories are samples from optimal policies.

Wall Clock Times: We report the wall clock times
for the MLE estimation step to learn a representation
and the whole algorithm 2 under the various settings.
We highlight 2 things (I) MLE is much more com-
putationally expensive, (IT) As the number of source
trajectories Ng grows the additional time needed to
construct uncertainty quantifiers is negligible to the
gain in time for constructing uncertainty quantifiers.
Thus implementation of the proposed method is feasi-
ble.

6 Conclusion
We address offline representation transfer in low-rank
MDPs with a relaxed assumption that the trajectories


https://anonymous.4open.science/r/PessimisticRepTransfer-DBDE
https://anonymous.4open.science/r/PessimisticRepTransfer-DBDE

Avinandan Bose, Simon Shaolei Du, Maryam Fazel

High Dimensional Rich Observations
| Faking the only correct action in each siep leads ia the final reward]
|

¥, — L —
()l ) (s 9) Source | Target RT.L RT.P PRT RT-LU
L ) M N o N (Ng) (n) (Ours)
N 550 50 021 030  0.51 0.04
WA YR AN o 100 0.30 0.33  0.55 | (50K)
N NATIN S T R AN 500 50 025 035 0.57 | 005
bad action (45 af inthe bad 100 0.40 043  0.65 | (50K)
. . . .wm 1000 | 99 039 0.73  0.96 0.07
100 0.41  0.81 1.0 (50K)

Table 2: (Left) A visualization of the rich observation CombLock environment. Our experiment uses K = 5
source tasks, H = 5 time steps and 5 actions in each step. See Appendix [K|for details. (Right) Average Rewards
for CombLock across different algorithms and varying number of samples. We observe that our algorithm enables
few shot learning in the target task by being able to recover a near optimal policy (last row) with very few target
samples. Note that pre-training representation and fixing it, followed by online downstream learning on target
(last column) fails to converge when the learned representation is inaccurate and uncertainty quantification isn’t
taken into account. This also underscores the poor performance of the purely offline baselines (first 2 columns).

Source | Target PRT Source | Target PRT
(Ns) (n) RT-L. RT-P (Ours) RT-LU (Ns) (n) RT-L. RT-P (Ours) RT-LU
150 0.39  0.73 1.0 0.05 150 0.16  0.32 0.57 0.04
500 200 041 081 1.0 (50K) 500 200 0.21 041 0.63 (50K)
250 0.50  0.89 1.0 250 040 043 0.74
150 0.72  0.76 1.0 0.07 150 044 0.54 0.76 0.05
1000 200 0.86  0.88 1.0 (50K) 1000 200 0.60  0.78 0.88 (50K)
250 0.94  0.96 1.0 250 0.72  0.86 1.0
150 0.76  0.76 1.0 1.0 150 0.55  0.76 0.92 0.76
1500 200 0.88  0.89 1.0 (5%2) 1500 200 0.65  0.89 0.96 (50K)
250 0.96  0.98 1.0 250 0.77  0.96 1.0

Table 3: Average Rewards for CombLock across different algorithms and varying number of samples (Left)
Exploratory source and target policies, (Right) Optimal Source and Target policies.

Ng n  MLE PRT
500 150 332 2.85
500 200 332 3.78
500 250 332 4.72
1000 150 362 5.43
1000 200 362 7.42
1000 250 362 9.27
1500 150 450 8.26
1500 200 450 10.93
1500 250 450  12.77

Table 4: Wall clock time for MLE and PRT (Algo-
rithm as number of source and target samples is
varied.

comply with the underlying MDPs, and contribute
an algorithm for pointwise uncertainty quantification
of the learned representation, demonstrating through
theory and experiments that incorporating uncertainty
improves the target policy, with future work focusing

on source task selection and active error reduction in
an online setting.

Future Work. Working completely in the offline
setting means the learner incurs an irreducible sub-
optimality from the error in the learnt representation.
However, if the learner had online access to only the
target task, then theoretical analysis of actively reduc-
ing the representation error is an interesting direction
of future work. This is particularly useful in the RL
finetuning of pre-trained language models for specific
tasks |Bose et al., [2024Db|, |Bhatt et al., [2024]. Another
promising direction of future work is the problem of
source task selection. Typically domain experts are
needed to select source tasks relevant for the corre-
sponding target task. However, with the availability
of offline datasets from a large number of source tasks
available online necessitates principled approaches to
select a small subset of tasks that are relevant to the
target task [Chen et al., 2022, [Bose et al.l [2024a].
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A More Discussion on Related Work

A.1 Online Multi-Task Transfer Learning in Low-rank MDPs

Our setup is similar to that studied in [Cheng et al., 2022, [Lu et al., 2022, |Agarwal et al., [2023] which learns a
representation from the source tasks and then uses the learnt representation to learn a good policy in the target
task, where all tasks are modeled as low-rank MDPs. However, all consider the online setting where the learner
uses reward-free exploration in the source tasks to construct datasets with good coverage. As mentioned earlier,
this can be costly or risky in applications such as precision medicine or autonomous driving, which preferably rely
on offline data.

A.2 Offline RL

Theoretical study of offline RL typically requires one of these assumptions (i) the ratio between the visitation
measure of the optimal policy and that of the data collecting policy to be upper bounded uniformly over the
state-action space [Jiang and Li, 2016, [Thomas and Brunskill, 2016} [Farajtabar et al., [2018| [Liu et al., [2018| Xie|
let al, [2019] Nachum et al.| 2019, [Nachum and Dai, 2020} [Tang et al., [2019] [Kallus and Uehara, 2022 [Jiang and
Huang, [2020, [Uehara et al.| 2021 Du et al., [2019] [Yin and Wang, [2020, [Yin et all [2021] [Yang et al., [2020D,
[Zhang et al., [2020a] or (ii) the concentrability coefficient defined as the supremum of a similarly defined ratio
over the state-action space needs to be upper bounded [Antos et al., 2007, Munos and Szepesvari, 2008, [Scherrer
et al., 2015} [Chen and Jiang, 2019] [Liu et al., [2019] [Wang et al., [2019] [Fan et al.], 2020, [Xie and Jiang] 2020] [Liao|
et al., 2022, [Zhang et al.,[2020a].

A.3 Comparison to |Cheng et al. |[2022]

We list the key differences to |Cheng et al. [2022]:

1. Algorithm 1 (|Cheng et al.| [2022]) needs access to the underlying MDPs, while in our setting we just have
access to the trajectories and not to the underlying MDPs. Hence our setting does not have the ability to
construct datasets, but rather compute policies on whatever dataset is available.

2. Theorem 4.1 (|[Cheng et al., 2022]) is on the offline dataset curated by policies improved gradually over time
by Algorithm 1 (|[Cheng et al., 2022|), line 15. New trajectories are added to the dataset with the updated
policies (lines 6,7). Thus although the representation is learnt via offline MLE (line 9) , the dataset itself is
controlled by the online policy in Algorithm 1 (|Cheng et al., |2022] )to have desirable properties.

3. Lemma 1 (|[Cheng et al., 2022|) is derived under a very restrictive Assumption 2 (|Cheng et al., [2022]) which
requires the dataset to be collected via an exploratory policy. This enables them to utilize concentration
inequalities to uniformly bound the representation error in Lemma 1 (|Cheng et al.| [2022]). In contrast, our
work makes no assumptions on the policy collecting the dataset. Our proof direction is via our novel notion
of neighborhood density and is thus very different from the usual route of concentration inequalities typically
followed in offline RL papers.

4. We do not need Assumption 3 (|[Cheng et al., [2022]) for the state space to be compact.

5. Assumption 3 ([Cheng et al.| [2022]) is essentially an assumption imposed within the class of Low Rank MDPs.
Hence their result doesn’t hold for all LowRank MDPs. Our method doesn’t need such an assumption and is
applicable to any Low Rank MDP.

6. Assumption 5 (|[Chen et al| [2022]) states that the transition dynamics of the source tasks can be linearly
combined to approximate the target task transition dynamics up to an error of . This £ error is irreducible
as noted in the definition of £qown before Lemma 1 (|Chen et al., 2022]). This notion of approximate linear
can be trivially extended to Assumption 2, and our results will have an additional & error term which stems
from triangle inequality. Thus we lose nothing in terms of the approximate linear span assumptions and it is
only a matter of writing. The more important distinction is Assumption 2.2 in our paper allows for different
weights for different states s’ unlike fixed weights.
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A.4 Comparison to Jin et al.| [2021]

We follow the similar set of assumption on the trajectories in the dataset satisfying the Markov property of the
underlying MDPs (Assumption [2.3).

We list down the key differences to |[Jin et al.| [2021]:

1. Definition 4.1 and Theorem 4.2 in |Jin et al.| |2021] are non-constructive for general MDPs, and they derive
an uncertainty quantifier for the special case of linear MDPs. Our Lemma [B.1]is the first work on uncertainty
quantifier for low-rank MDPs in the offline setting which leads to the main result of our paper in Theorem

2. Our work focuses on the Multi-task setting, where first one needs to learn a representation from source
datasets. Our contributions over |Jin et al.| [2021] are two fold: (i) We construct uncertainty estimators for
the representation learning stage, (i) Combine both the represntation learning errors and penalize the poor
exploration in target task to bound suboptimality on the output policy.

A.5 Comparison to |Agarwal et al.| [2023]

We follow the similar setup with the source task relatedness to the target task as stated in Assumption [2.2
However, |Agarwal et al.| [2023] focus on the purely online setting, with access to both source and target MDPs.
Hence our work diverges from their direction.

A.6 Comparison to concurrent work [Ishfaq et al., 2024]

In a concurrent work [Ishfaq et al.l [2024] study the same problem as us. Unlike our Theorem [3.1] which leverages
our algorithmic contribution in terms of the neighborhood density function to get a pointwise uncertainty bound,
[Ishfaq et al., 2024] rely on prior techniques on condition number to provide an uniform upper bound on the
estimated transition kernels. For the downstream target task, while we only consider the offline setting, [Ishfaq
et al. [2024] primarily focus and on the study of reward-free setting.

B PRT Description

First we present a brief overview of the standard Value Iteration algorithm [Sutton and Barto, [2018], which
under the assumption of known transition dynamics Pj(:|s, a) returns the optimal policy. Recall the definition of
the Q-function : Qp(s,a) =rp(s,a) + IES/NP}:(,‘&G)VhH(s’). The Value Iteration Algorithm initializes V1 =0
and goes backwards by setting the policy 7y (s) = argmax,c 4 Qu(s,a), and the corresponding value for this
policy Vi (s) = max,e4 Q@m(s,a). Doing this iteratively for all h = H —1,...,1, the learner is able to obtain the
optimal policy 77,..., 7.

However, since Py (+|s, ) is unknown in our setting, the learner is unable to accurately compute E,/ . Py (-|s.a) Va1 (s")
at any arbitrary step h. However based on the available offline data and using the low-rank structure, the
learner can form an estimate Es'Nﬁh(~|s,a)Vh+1(8/) = ¢n(s,a) " W, using Least Squares regression (see Lines 4-5
in Algorithm . Since this estimate is likely to have uncertainties, before constructing the Q-function it is
necessary to penalise every (s, a) based on how uncertain the estimation is. The following lemma introduces such
an uncertainty quantifier I'y, (s, a) with high probability.

Lemma B.1. In Algorithm E, setting A = 1,8 = ¢ - dy/C and €(s,a) = 2ozmax\/Klog@l@‘/éHKlong‘ where

NgDy(s,a)
C __ log(4dHn/d)

\/% Sor_ e(sh.a})?. Define the event & :

Here ¢ > 1 is an absolute constant and § € (0,1) is the confidence parameter and €, =

{Fh(s’ a) = |ES/~P;('|57‘1)‘7}L+1(8/) - Es’wﬁh(‘|s,a)‘7h+1(s/)‘ < H(ﬁ + Eh) : ||(/£h(8, a)HAh + HG(S’ a)}
Then & satisfies Pp(E) > 1 —§, where Pp is the data generating process for the tasks satisfying Assumption @

By penalizing the @-functions by the uncertainty quantifier (lines 8-9 Algorithm , the learner chooses the policy
as the action maximizing the Q—function for each corresponding state (line 10 Algorithm . Doing it for all
steps h € [H] as described in Algorithm [2] gives the target policy.
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C Computational Complexity

Remark C.1. (Computation of MLE) The MLE estimation is in general a non-convexr optimization problem
when ¢ and p are general nonlinear function approzimators. However, this is treated as a standard supervised
learning ERM oracle in the literature (Uehara et all, |2021, |Agarwal et al., 2020, |2025].

Remark 4.1. The computational complexity of Algorithm@ to obtain the guarantee in Theorem is O(KNgn).
The derivation and wall-clock run times can be found in Appendiz|C.

First, we provide the description of an efficient algorithm to compute Eq. (3) and Eq. (4) in Algorithm 1. For
any given state action pair (s,a), and any chosen ¢ € ®, for all Ng points in the source task i, D;,}, pre-compute
the distances |¢(s,a) — ¢(s',a’)| : (s',a") € Dy One can do this for all ¢ € & in O(Ng|®|) time. Notice that
the neighborhood density function is a piecewise constant function with a maximum of n jumps, and can be
computed in O(Ng|®|) time. We solve Eq. (4) by first initializing all vy, ..., vk to 0 and then incrementing them
at the pre-assigned points K Ng|®| points of discontinuity. Thus the overall theoretical computational cost of
the algorithm to compute the neighborhood density for a given (s, a) pair is O(K Ng|®|). For our experiments,
where our representation class is a parametrized neural network we use the MLE estimate (;AS to compute the
distances in Eq (3), thus the practical computational cost for any (s,a) is O(K Ng). Note that the neighborhood
density only needs to be computed for points in the target dataset in Algorithm 2, so that we can penalize the
representation error. we state that these need to be done for only the points in the target task since uncertainty
needs to be computed only on the seen target samples, thus the overall cost of the uncertainty quantifier along
with Algorithm 2 is O(K Ngn).

D Missing Algorithms

In this section we present the algorithms we used for our baselines. All of these use the learnt representation
¢n(-,-) from Equation ().

Algorithm 3 (RepTransfer Least Squares Value Iteration) RT-L

Input: Target Dataset D = {(3;—7’) a;)}:—b:}{,{:ﬂ Learnt Representation (/ﬁ\h(', )
Initialization: Set Vi1 (-) < 0.
forh=H,H—-1,...,1do
Set A+ L (X", on(sh,af)dn(sh,af) T + Al).
Set @, Ay (202, on(sTaR) - Tha (7).
Set Qh('ﬂ ) — Th('v l+ d)h(’v ')Tﬂ)\h'
Set Qn(+,+) « min{Q,(-,"), H —h + 1}T.
Set 7, (-|-) + argmax,, Qn(-,-) 7.
Set Vi(-) = Eqnsy (1) Qn(+ @)
end for
Return 7 = {7, (-|) }HL,.
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Algorithm 4 RepTransfer Pessimistic Value Iteration (RT-P)

Input: Target Dataset D = {(s], aﬁ)}"’H Learnt Representation $h(.7 ).

T,h=1"
Initialization: Set ‘A/HH(-) + 0.
forh=H,H—-1,...,1do
Set Ap < & (X7, On(sF. af)on(sF, ) + AD).
Set @ — Ayt (%372, onlshaf) - Vha(s74))-
Set Ty () 8- o lan.
Set Qh('a ) <~ Th('v l"‘ ¢h('7 ')Twh - Fh('v )
Set Qh('a ) «— min{Qh('v ')7 H—h+ 1}+'
Set 7 (+]-) < argmax,, Qn(-, SRS
end for
Return 7 = {7, (-|-)}L,.
Set Vh() — an%;L('\~)Qh('v a)'

Algorithm 5 RepTransfer Least Squares Value Iteration Upper Confidence Bound (RT-LU)

Input: Learnt Representation $h(-, -), Access to draw samples from Target MDP.
Initialization: Set Vi1 (-) < 0, Randomly initialize {Zntherm-
fori=1,...,ndo
Sample s} ~ d;.
for h=1,....H do
Perform a}, ~ 7p,(+|s}).
Collect sh 1 ~ Py(:|s},, al,).
end for
forh=H,H—-1,...,1do

Set A« 3 ()1 dn(s7, af)n(s7,a7) T+ AT).

Set @+ Ay (2320, 05T, aF) - Vi (57n) )
Set Eh('v ) <~ 6 : ||¢h(7 ')”Ah'
Set () 1) + 0n( )y + Tale ).
Set Qn(, ) + min{Q,(-,"), H —h+ 1} .
Set 7 (+|) < argmaxy, Qu(-,) " Th.
Set ‘/}L() — anﬁh(-\-)Qh('va')'
end for

end for
Return 7 = {%h(l)}le
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E Proof of MLE Guarantee

We first state an auxiliary lemma which allows us to work our way to the MLE guarantee for Equation

Lemma E.1. Consider a class of conditional probability distribution functions F : {f|f(ylz) — [0,1]}. Suppose
we have data samples D = {(x;,y;)}7-; C X x Y where y|lz ~ f*(-|z) (f* € F). We find an MLE estimate:

n

7 = argmax 3" log f(yilz).

fer o

Then the following bound holds with probability at least 1 —§:

1 > . 2log(|F]/9)
= > I FClas) = £ Claa)llzy < :
n n
i€[n]
Proof. Given an set of points {z1,...,2,}, we observe samples {y1,...,yn} from f*. We wish to understand
how well the estimate f captures the randomness in the ) space on the empirical distribution over {z1,...,z,}.

%Zie[n] 1F(|ai) — f*(-]x;)||%y is a measure of the quality of this estimate.

We invoke Theorem 18 from |Agarwal et al.| [2020], with a slight variation. Given offline source data D =
{(z4, i) }ien), We create a tangent sequence D' = {(x},y;) }ie[n], Where z; = x; and y; ~ f*(-|z}). Rest of the
proof follows after making this choice of D’. In [Agarwal et al.| [2020|, they consider the randomness in the X
space as well, but since we are working with a offline dataset, we don’t need to take that into account. O

Lemma 3.1. Let {ﬁi;h}ie[K],(Eh be the learned MLE estimates from Equation (1). Then with probability at least
1 —§ we have the following bound:

K Ne . — . N - Ny
Z i 720 () " n (s3T5 0y ) — i () T (575 @) IFv
i=171=1 Ns

average error on source ¢’s dataset
. 201og(11/8) + K log(|Y])) o
Ng

Proof. This follows from Lemma where the function class is expressed as F = ® x TX and the number of
samples is Ng. O

F Proof of Theorem [3.1

F.1 Error Bounds for one Source Task

We first derive an upper bound on the pointwise uncertainty error for any low-rank MDP in the following lemma.

Lemma F.1. For all ¢ € @, € T, the pointwise model misspecification Ny (-, -) can be bounded as

Aw(sva)ﬁi Y Apulsha)+2dsup Y [é(s,a) — (s’ d)h |

Dl (s',a')ED 9€® (s1,0)eD

for all (s,a) e S x A and all D C S x A.

Proof. We use [|u(-)|| = || [,cgdp(s)]- By Deﬁnition choosing g(s) = 1 Vs € S, we have ||u(-)|2 < Vd. By
Cauchy Schwartz inequality ||u(-)|l1 < d. Noting that that the total variation distance between two distributions
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is the £1 norm of their difference, we can write:
‘A¢7#(slv al) - A¢’#(Sa a)

_ ‘iHuT(-)qb(sl,a') . H*T(.)dj*(s/?a/)”% _ i“u—r()(b(&a) — ,U*T(')d)*(sv a)”%

= 11Tl @) — T OF )l = T (5,0 — T (O (5,0
(T (o' a) = T (o (s )l + 1T (Vb(s, @) = p* T (D" (s, a) )
" ()e(s',a') = T ()" (s, a) [ = Il (Yels,a) — T ()" (s,0)ln
(Since ||p" ()¢(s,a)|1 =1 V(s,a) €S x A and V¢ € ®, i € T; it is a probability distribution)

< T ()(s',a) = pT (s, a) i+ | ()67 (s' a') = 1" T ()¢ (s,@)]l (Triangle Tnequality)
<d(|l¢(s'a") = ¢(s,a)[ls + 1197 (s', a) = ¢"(s,a)[l1)  (Since [|u(-)[x <d VueT).

<

Now given a set of state-action pairs D C S x A, we can write:

1
= > (Dguls,a) = Ag (s a))
D|
(s',a’)eD
1
< Z (A¢7M(S’ a) - A¢,M(S/7 CL/))
D]
(s’,a’)ED

1
=D > d(lles’a) = é(s,a)ll + 167 (s, a') — ¢ (s, a) 1)
(s’,a’)ED

<2dsup Y lg(s,a) — (s, )1

¢ (s',a")eD

This completes the proof.

O

Note that the lemma above allows us to write the uncertainty at some point (s, a) in terms of the distances in the
representation space for any arbitrary D C S x A. In the following lemma we are going to restrict D to be a

subset of the offline dataset and use the MLE guarantee (Lemma .

Lemma 3.2. Let AZ? 2 (s,a) = ||ﬁ,-;h(-)ng;(s,a) — i, () @5 (s,a)||%, denote the transition dynamics mis-
h> ’

ih

specification for source task i at time h for any (s,a) € S x A specified by representations (E;“ﬁi;h learnt from

Equation . For some v; > 0, Ai? i (s,a) can be upper bounded as follows:
hoyMish

(s,a) <2d-vi+
——

bias

i
Snslish

Z 1B () dn(s' ) — pin() T on (s, )l
NsDy (s, a) '

(s",a’,-)EDy.p,

variance
Proof. For a given (s,a), choose D = S;.5(s,a,v;) where

1
Siin(s,a,v;) = Ns (;Ielg aggglax |
=%ih

such that ||¢(s,a) — ¢(s',a)||1 < v, V(s',a’) €C,
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as the subset of datapoints optimizing Equation [3]in Algorithm [I] Plugging this choice of D in Lemma we
can write:

1
Boplsn) € e | 2 M)t ST o) ol )l

(s',a’)€Si;n(s,a,v:) oc® (s”,a")ESi;n(s,a,v4)

The second term on the right hand side is < v; by the condition of the optimization problem. Now we will
use importance sampling (IS) to bound the first term on the right hand side by the average error on dataset
(Lemma . Consider a support as the collection of state action pairs in D;;,. For the expression above, the
probability density is:

if(8/7 a/> S Si;h(87 a, Vi)

I S
q(s',a) = { [Siin(s,a,0)]

0 otherwise
The probability distribution for the average error on dataset is uniform Nis on the support. Therefore, the IS
ratio max(s o/ .)ep,., Z‘EZ,Z% =5 hgsa T = D:‘ihl(&a). Hence, we can write:
. ~ T * T 1% 2
LS e Y Y ) Gl a) () G )y + 24
b h i€[K] (5/7a/)€Di;h
This completes the proof. O

F.2 Error Bounds for Target Task

First we show the existence of a transition function linear in g/b\h, such that the pointwise error of this transition
function with respect to the true transition dynamics of the target task can be decomposed into the sum of
pointwise errors of the individual source tasks.

Lemma F.2. Let P} (-|sp,an) denote the true transition dynamics of the target task, and ?b;(s, a) be the learnt
representation from Equation (1). For all h € [H],(s,a) € S x A, there exists pj, : S — R? such that:

1) Gn(s.0) — P (s, )y < 0K 30 AL - (s,a).
i€[K]

Proof. Denote p},(s") = 3 ;¢ (5 @isn(8")Hisn (s") where (') is as defined in Assumption

A5, 0 (5,0) = 11, () Onls.0) = P (s, a)l[3y
= ()T G (s,0) = i ()T (s, 0) [y
=1 @in() (B () nls @) = i () ils)) Iy (By Assumption B2)

1€[K]
< max” Z Mzh ¢h s Cl) M:;k(')T¢Z(saa)H%V
1€[K]
<a maxK Z Hﬂlh d)h s CL) M:;h(')T(b;(L(Saa)”%V (By CaU-Chy SChW&ItZ)
i1€[K]
=a? K Z A%’Mh (s,a).
i€[K]

O

Now we show that the solution of Algorithm E, allows to use the MLE guarantee (Lemma to get a high
probability pointwise uncertainty error bound for the target task.
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Theorem 3.1. (Representation Transfer Error): Let Py (-|sn,an) denote the true transition dynamics of the

target task, and q/[);(s, a) be the learnt representation from Equation (1). For all h € [H],(s,a) € S x A, there
exists py, : S — R such that the following bound holds with probability at least 1 — §

1, ()T (s, @) — Py (|5, a) | v

K log(|®[/§) + K log |T|
Ng Dy(s,a) ’

S 2amax
where Dy (s, a) is the effective occupancy density as computed in Algorithm |Z

Proof. Let’s use Ag . (s,a) to denote Huﬁl(-)—r(g;(s,a) — Pi(+|s,a)||%y. By Lemma [F.2, we can write:

Ag}“/j(s,a) <al K Z A%hhﬁi;h (s,a).
1€[K]

For some choice of {v1,...,vk}, using Lemma for the right hand side, we can write:

1 1 ~ -/ * *
Agw(sa a) < OlfnaxK Z m]\/is Z ||Mz‘;h(')T¢h(5/a a') — :ui;h(')Td)h(Slv a/)HQTv + 2dL Z Vi
ie[K] BT (s',a’)EDisn icK

Invoking Lemma with probability at least 1 — §, we have:

2 log(|®|/d) + K log | Y|
A~ <a? K 2dL i .
G (8:0) < Onax (Zné[z}?(] Dy (s, a) Ng + ;{V
Choosing {v1,...,vk} by Algorithm [1| we can write:
log(|®|/6) + K log ||
Ao, <4dal K .
oNT (S’a) = *max Nth(s,a)
This completes the proof. O

G Proof of Corollary [3.1

Corollary 3.1. Let P} (-|sn,an) denote the true transition dynamics of the target task, and aﬁz(s,a) be the learnt
representation from Equation , For all h € [H],(s,a) € S x A, there exists ), : S — R® such that the following
bound holds with probability at least 1 — ¢

15, T Gn (s, @) = Py (-ls, @) |rv < 20mac KV ¥/,
under the condition in Equation @

Proof. For a given (s,a) € S X A, let v1,..., vk be such that the following are satisfied:
-1

by ) e
ie[K] Bh\T S i€lK]

Given any arbitrary set of positive numbers {aj,...,ax}, using the properties that HM(ay,...,ax) <

Kmin{ay,...,ax}, we get: min;ex Df’h(s, a) > log(li}{v?\,);_gyl?gwl.

Since min;e [k D;’;ih(s, a) - ZiE[K] v; is an increasing function in {v4, ..., vk}, thus there exists {v{,..., v} such

that vj > v; Vi € [K] and ), v; = K1/ satisfies : min;e |k DZ;',L(s,a) e Vi 2 10g(\<1>|/?\/2:§(10g|’r|'

Therefore there exists vf,...,v% such that vf < v/ Vi € [K] and X v¥ < Kv' which is the solution of
1> K [ [ i€[K] Y

Equation . Therefore by Equation : Dy(s,a) = 10%9;%%“{“?5*”‘ > l°g(‘ﬂ(j‘\,);§j?gm- Plugging this back
i€[K i

in Theorem [3.1] gives us the desired result. O
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H Proof of Theorem 4.1

We introduce the following standard definition to ease the presentation of the results in this section.

Definition H.1. (Transition Operator): Given any function f : S — R, the Transition operator Py at step
h € [H] is defined as:

(th)(sa a) = Es’wPh(-|s,a)f(Sl)~

The following lemma states that for a low-rank MDP the Transition Operator P, can be written as a linear
function of the representation ¢y, (-, ).

Lemma H.1. For a low rank MDP, given any function f : S — R there exists an unknown wy, € R? such that
(Puf)(s,a) = ¢n(s,a) " wp.
Proof. By Definition [2.1] and [H.T| we have:
(P)(s.) = [ ons.0) () ()5
= én(s,a)T /S (') f()ds
Thus wy, = [ n(s') £(5') s :

Since the true representation ¢j (-, -) is not known, a key step is proving under Theorem the existence of a

transition operator P}, with high probability which is linear in the learnt representation ¢(-,-) that is close to
the true transition operator Py.

Lemma H.2. Let QASh(', -) be a representation from Equation . Given any function f : S — R, there exists
an unknown w), € RY, such that (P} f)(s,a) = ¢n(s,a) w) satisfies the following bound with probability at least
1-6/2:

(P f)(s,a) = (P f)(s,0)| < max |f] - (s, a),

where (s, a) = 2amax\/Klog(2|<1>\/5)+Klog|T\.

v (5,a)
Proof. Let wy, = [ f(s")p,(s')ds’, where pj,(-) is as defined in Theorem Then we have:
Py f)(s,a) = (P,f)(s,
| / Pi(sls,a) f(')ds’ — / Bu(5,0) (s £ (5")ds'|
<max|f| |/Ph \sads—/gbhsa 1 (s)ds').

Now use Theorem with tolerance d/2 to bound the second term with probability at least 1 — §/2 completes
the proof. O

Lemma B.1. In Algorithm E, setting A = 1,8 = c¢-dy/C and €(s,a) = 2amax\/Klog(zltb‘/éHKlong‘ where

NgDy,(s,a)
C _ log(4dHn/d)

\/% Sor_ e(sh.a})?. Define the event & :

Here ¢ > 1 is an absolute constant and § € (0,1) is the confidence parameter and €, =

{Th(s,a) = By (o) Vir1(s) = Egop, (o, Vir1 (8] < H(B + en) - [dn(s, a)lla, + He(s, a)}.

Then & satisfies Pp(E) > 1 —§, where Pp is the data generating process for the tasks satisfying Assumption @
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Proof. Note that T'y(s,a) = |(P;L‘1A/h+1)(s, a) — (PyVii1)(s, a)|. We now use triangle inequality to upper bound
Fh(sa a)'
(B Vi) (5,0) = (PuVisa) (s, a)|
<[(PiViin)(5,0) = (P Visn) (s, )| + | (P Vi) (5, @) = (PuVis) (5, 9)]
(2) (i1)

(¢) can be bounded by Lemma H.QL with f = Vi41 and maxg |Vig1| < H. Thus (i) < He(s,a) with probability
at least 1 —§/2.

Let us define

Thus we can write

(P;;‘A/h-s-l)(s,a) = (bh(s,a)Tw;l.

Now we analyse (7).

~ 1 &~ ~
— dn(s,a) AL (n o(shah) - (Vg (sh4q) — (Pth+1)(SZ,aﬁ)>

(iv)

~ 1 ~ ~ ~
+ ¢n(s,a)TAL! (n ¢(sp»ap,) - (PpVit1)(sh, ap) — (Pth+1)(82,aﬁ))> :

(v)

Using triangle inequality we get |(¢)| < |(¢4¢)| + |(4v)| + |(v)|. The analysis for |(éit)], |(iv)| follows similarly to
the proof of Lemma 5.2 in [Jin et al.| [2021]. We state the bounds:

\(i4d)| < H\/Ci?\/<$h(s7a)—r/\h1$h(s, a)) < H*s\/(ah(s,a)mhlq?h(s, a)).

Pp <|(w)| < Hg\/(ah(s,a)m;%h(s,a))) >1-4/2,

where Pp is the data generating distribution.

Let us now bound |(v)].

|(v)] = @n(s,a) A, ( Zfb sfsaf) - (P Vis)(sh, af) = (Ph‘7h+1)(82,aﬁ))> |

J (i(msa AL ¢><sh,ah>)2> (

=1

S|
S|

Z ( (P Vh+1)(shvah) (thh+1)(sh7ah))2>

=1
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This follows from Cauchy Schwartz inequality. From Theorem [3.1] we can bound the second term with probability
at least 1 — §/2, where €(s,a) = 2am, \/Klog QICI)‘/‘;HK)IOng‘ and we get:

Nyin(s,a

(V)| < H - <¢h(5‘1TA ( Z¢siz’ah (shrap) " )Ah ¢h5a> Tllg S5y a7)°

The first inequality follows from Lemma by noting maxs IA/;H_l < H. The second equation follows from
definition of Ay,.

Combining the bounds by taking union bound concludes the proof of the Lemma. O

Theorem 4.1. Let T be the output of Algorithm|[2. Then with probability at least 1 — ¢

H
SubOpt(7,s) < 2H ZE(S}“%)NW*,F;‘ [ e(sp,ap) +

h=1 *
source coverage on m

Gt o) [Bulnanl, s =]
source coverage on target target coverage on 7*

Here the expectation is taken with respect to the optimal policy 7™ of the true underlying MDP of the target task.

e(s,a) = 2amax\/Klog(glﬁ‘s/g)}jfal)ogm , B=-c-d\/C, where ( = w and ¢ > 1 is an absolute constant and

en = /L S0 (], 072

Proof. Follows from Theorem 4.2 in [Jin et al. [2021] by plugging in uncertainty quantifiers I'y, (-, ) satisfying
guarantees in Lemma O

I Proof for Uniform Cover in Source Tasks (Corolloary

I.1 Recap on Covering and Packing Numbers

Definition I.1. (v-Covering) Let (V, | - ||) be a normed space and X C V. A set A is called a v-covering of X, if
for all x € X 32’ € A such that ||x — 2’| < v. The collection of such sets is denoted by denoted by N'(X, | - ||,v).

Definition 1.2. (v-Covering Number) The size of the minimal set which is v-covering is defined as the v-covering
number, that is

Ny = min Al
AN (X,|-II,v)

Definition 1.3. (v-Packing) Let (V,|| - ||) be a normed space and X C V. A set A is called a v-packing of X, if
forall z,x’ € A ||x — 2'|| > v. The collection of such sets is denoted by denoted by M(X,| - ||,v)-

Definition 1.4. (v-Packing Number) The size of the maximal set which is v-packing is defined as the v-packing
number, that is

M&x, |- ,v) = max |Al.
AeM(XI-lv)

We introduce some notation and state some bounds on covering and packing numbers. The unit £, norm ball in
R? is defined as :

By = {z]z € R [|z|, < 1}.
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The following lemmas are borrowed from [Zhou, [2002].

Lemma I.1. The v-covering number of BY satisfies:

NBE I o) < (M)d

Lemma 1.2. The v-packing number of B¢ satisfies:
1\ ¢
ML) = ()

1.2 Some Results using Covering and Packing Numbers

Lemma 1.3. A set D C X is a v-covering of X, i.e. D € N(X,| - |,v) if it is a v/2-covering for some
AeNX, | -1,v/2).

Proof. Let us consider a set D C X that is a v/2-covering for some A € N (X, || - ||,v/2). Therefore for all 2’ € A
there exists 2" € D such that ||z — 2/|| < v/2.

Now by definition of A, for every x € X there exists 2’ € A such that ||z’ — x| < v/2.

For any « € X, by the existence results above there exists @’ € A,z” € D such that ||z — 2’| < v/2 and
lz" — z|| < v/2.

Using triangle inequality:

lz —2"|| = [[(z — 2") + (2" — 2”)]|
< i@ =)+ (=" —2")
<.

This proves that D is a v-covering of X. O

Lemma L.4. If D C X is a v/l-covering of X then for every x € X there exists at least M (By, || - |1, 7) number
of points «' € D such that ||z' — z|; < v.

Proof. Pick any x € X and construct an ¢; norm ball of radius v centered at x, x + vB; . The maximum number
7B balls we can pack in vB; is given by M (B, | - |1, %) Since, D covers X and consequently x + vBj, there are
at least M (B, | - |1, ) points in D that are contained in = + vB;. O

J  Proof of Corollary 4.1

Lemma J.1. Let w; be a policy satisfying Assumption used to collect n i.i.d. trajectories. Let D! =
{(s1,a1),-..,(8n,an)} denote the n state action pairs in the offline dataset at time step h. Then with probability
at least 1 — 6, for every (s,a) € S x A and for all h € [H] there exists (s',a’) € D! such that supycq || ¢(s, a) —
o(s',a)llh < v if

n > Cy_d,
where C' = ¢~ %p=4(6v/d)? - (dlog(6\/a/6)>.

Proof. The condition for every (s,a) € S x A and for all h € [H] there exists (s',a’) € DI such that
SUPyeq [|4(s,a) — ¢(s',a’)|[1 < v implies that we need the offline dataset to be v-covering in the represen-

tation space. For a particular ¢ € ®, we use D¢ = {¢(s,a)|(s,a) € D"} to denote the mappings of the state
action pairs in ’DZ in the representation space.

By Lemma E it is sufficient for D¢ to be an v/2-covering of some A € N (BY,| - ||1,7/2) to be an v-covering of
B4 (since the representation space is B¢). We choose the minimal set A such that |A| = N(BY, | - ||l1,v/2). We
need to show that the worst case (over ¢ € ®) D¢ is v-covering with high probability.
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Lets construct bins A, = {¢/|y’ € BY, ||y’ — y|l1 < v/2} for all y € A. Note that Uyc 44, = B3. These sets are ¢,
norm balls of radius v/2, i.e. v/2 - B¢ if they lie in the complete interior of BY. For those sets on the boundary,
their volume is at least some fraction ¢ times the volume of v/2 - B¢ since their center is within B¢, for some
finite ¢ < 1. Thus we can argue

N(Bg, | -l v/2)Vol(Ay) > cVol(B3) Vy € A

¥ - Vol(A,) S cp
1-Vol(B) = N(BL |- |1, v/2)

By Assumption we have infycq inf, cga dfhd)(x) > 1) and sup e q SUP,cpd dfh‘b(x) > 1. Thus we can write

>

¥ - Vol(Ay) cy
1-Vol(B) = N(BL, | - |1, v/2

inf P ~dT0%) > =p.
Inf Plw € Ayl ~ di}") > ) =P

This statement implies that the map of a randomly sampled state action pair via m; in the representation space
lies in the bin A, with probability at least p.

We upper bound the probability that none of the n i.i.d. draws lies in A, as follows:

sup P(Az € D ;0 € A,)) < (1 —p)" < exp (—np).
ped

Now we wish to lower bound the probability that given n i.i.d. draws we sample at least 1 point from each of
these bins. This is achieved as follows:

inf P(Nyeadz € Dy, ;2 € Ay) =1 —sup P(Uyes Az € D, ;€ Ay)
pe® ’ ‘ ped
>1-— ZsupP(ﬂxeDn jx € Ay)
y€A¢€<I>
>1— N(BS, || - |l1,v/2) exp (—np).

For this probability to be greater than 1 — §, we need

N(BL, || - 2
n—= ( 23”0’(/}17]// )log(

N8BS -1, V/2))
0

samples. Plugging in Lemma |[.1
n=c 4 46Vd)? - (dlog(6\/&/5)) v

samples are needed for this event to happen with probability at least 1 — §.

O
Lemma J.2. Let w; be a policy satisfying Assumption used to collect n i.i.d. trajectories. Let D! =
{(s1,a1),...,(Sn,an)} denote the n state action pairs in the offline dataset at time step h. Then with probability
at least 1 — 6, for every (s,a) € S x A and for all h € [H] there exists v € N state action pairs (s',a’) € DI such
that supseq [9(5,0) — 3(s', )|y < v if

n Z Cll/id,
where Oy = y%e=%p=4(6+/d)? - (dlog(G\/&/é)).

Proof. Setting v — v/~ in Lemma and using Lemma E gives us the result. O
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Lemma J.3. Let {m1,..., 7k} be policies satisfying Assumption E Suppose Ng i.i.d. trajectories are sampled
from each task i by policy m;, then with probability at least 1 — &, for all (s,a) € S x A we can upper bound the
transition model estimation error as:

. 1/4
15,(-) " bn(s,0) = P (s, @) [rv < CoNg ™" *amay ((10g(2|‘1>|/5) + Klog |T)> K312yt
where Cy is a finite constant.

Proof. Let us use € to denote the desired error tolerance in the transition model. We choose v =
4e2a2,, (K log(2|®|/0) + K?log |Y|). If we sample Ng = y%c~%)p=4(6/d)? - (dlog(G\/a/é)) v=d,

max

min D, (s,a)Ns > v = 4202, (K log(2|®|/d) + K*log |Y|)

i€[K] max

2
. 2amax\/Klog(2<I>|/5)+K log |T| <.

minge(x) Dy (s,a)Ns  —

Writing the total variance as a function of v (setting all v; identical to v). With probability at least 1 — §/2 we
can upper bound the total variance as

2 log(2|®|/6) + K log ||
max .
i€[K] D;’;h(s,a) Ng

By our choice of v, by the union bound with probability at least 1 — 4, the total variance variance gets upper
bounded by 21(-;72

max

Note that the total bias is 2vdK . Since the sample complexity is decreasing in v. We want to find largest v such
that variance is larger than bias. Thus we equate upper bound on variance to bias to compute v.
2

€
4dK2a?2

‘max

This gives the optimal v =

Plugging the values of v and ~, we get
4d d
Ng = ¢4 (mmax) ((10g(2<1>|/5) +Klog|T|)) = (6v/d) - (d1og(6\/21/5)) A K3,
We can write the error bound € in terms of Ng, we get:
1/4
€= CyNg Va . ((1og(2<1>|/5) + K log |T|)) K3/4q 214

where Cy is a positive constant (upto factor in log(6v/d/§)'/49). O

Lemma J.4. Suppose 7 is a policy satisfying Assumption [{.2 and n i.i.d. trajectories are sampled from the
target task by policy w. Then with probability at least 1 — §/2 we can show that:

H

2HBS E(op anyne, e [0 (505 an)lla, Is1 = 8] < exn™/2d%/>H? \/log(4dHn]/5),

h=1

for some finite constant c; .

Proof. Proof directly follows from proof of Corollary 4.6 in [Jin et al.| 2021]. O

Corollary 4.1. Let T be a policy satisfying Assumptz'on and {71, ..., TK} be policies satisfying Assumption .
Suppose n i.i.d. trajectories are sampled from the target task by policy T and Ng i.i.d. trajectories are sampled
from each task i by policy w;. Then with probability at least 1 — &, the suboptimality gap is upper bounded as:

SubOpt(7, s) < O(max(Ng~ 3, n~2)H2d3 K1 \/log(1/9)).
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Proof. Let consider 2 events as the ones stated in Lemma [J.3 and Lemma [J.4, each likely to happen with
probability at least 1 — §/2. By using union bound it is easy to show that both these events hold simultaneously
with probability at least 1 — 4. Plugging these upper bounds in Theorem [4.1]we get with probability at least 1 — 4:

H

SubOpt(7, s) < 2H ZE(sh,a,M,P;[ (smoan)  +(B+ n Yo 1Bn(snan)llan |51 =s

h=1 S
source coverage on T source coverage on target  target coverage on w*

1/4
< CIH?Ng Y4000 <(1og(2|<1>|/5) + K log |T)> K3/ @M 2= 14
+ Chn~ Y232 H?\/log(4dHn/d)

1/4
+ CLH?Ng Y40, ((log(2|<I>| /6) 4+ K log |T|)> K3/ g4k

< O(Ng~ian~2 H?d? K% /log(1/5)).

K Experiment Details

Environment Description: In this section, we introduce the Combination lock (Comblock) environment, a
widely adopted benchmark for algorithms designed for Block Markov Decision Processes (MDPs). Figure |Z
provides a visualization of the Comblock environment. Specifically, the environment encompasses a horizon
denoted as H, and at each timestep h, it includes 3 latent states z;., where ¢ € {0, 1,2}, along with 5 possible
actions. Within the three latent states, we designate zy and z; as the desirable states leading to the final reward,
while z5 represents undesirable states. At the onset of the task, the environment uniformly and independently
samples one out of 5 possible actions for each good state zp,;, and z1,, at each timestep h. These sampled actions,
denoted as ag.;, and a5, respectively, are considered optimal actions corresponding to each latent state. These
optimal actions, in conjunction with the task itself, dictate the dynamics of the environment. At each good
latent state so,n or si;, taking the correct action results in a transition to either good state at the next timestep
(i.e., So;h+1, S1:h+1) With equal probability. Conversely, if the agent chooses any of the four bad actions, the
environment deterministically transitions to the bad state sg.,41, and the bad states transition only to bad states
at the subsequent timestep. The agent receives a reward in two scenarios: firstly, upon reaching the good states
at the last timestep, the agent receives a reward of 1; secondly, upon the first transition into the bad state, the
agent receives an "anti-shaped" reward of 0.1 with a probability of 0.5. This design renders greedy algorithms,
lacking strategic exploration such as policy optimization methods, susceptible to failure. Regarding the initial
state distribution, the environment begins in either sp.g or si,0 with equal probability. The dimension of the
observation is 2'°8(H#+ISI+1) " For the emission distribution, given a latent state Si:h, the observation is generated
by concatenating the one-hot vectors of the state and the horizon. Additionally, i.i.d. A/(0,0.1) noise is added
at each entry, and if necessary, a 0 is appended at the end. Finally, a linear transformation is applied to the
observation using a Hadamard matrix. It’s noteworthy that, without effective features or strategic exploration, it
requires 5 actions with random actions to reach the final goal.

Generating Source and Target Tasks: To create the source environment, we randomly generate five instances
of the Comblock environment as described. It’s important to note that this approach ensures a shared emission
distribution across the sources, while the latent dynamics differ due to independently and randomly selected
optimal actions. To construct the target environment, for each timestep h, we randomly select optimal actions
at h from one of the sources and designate them as the optimal actions for the target environment at timestep
h. This is contingent upon the condition that the selected optimal actions differ for the two good states. If the
optimal actions are the same, we continue sampling until distinct actions are obtained. This procedure ensures
variability in the optimal actions, introducing diversity in the latent dynamics of the target environment.



