
a
rX

iv
:2

3
0
3
.1

7
7
6
5
v
5

[s

ta
t.

M
L

]
 6

 J
u
l

2
0
2
5

Journal of Machine Learning Research 26 (2025) 1-125 Submitted 7/23; Revised 4/25; Published 6/25

Learning from Similar Linear Representations: Adaptivity,

Minimaxity, and Robustness

Ye Tian ye.t@columbia.edu

Department of Statistics
Columbia University
New York, NY 10027, USA

Yuqi Gu yuqi.gu@columbia.edu

Department of Statistics
Columbia University
New York, NY 10027, USA

Yang Feng yang.feng@nyu.edu

Department of Biostatistics, School of Global Public Health

New York University

New York, NY 10003, USA

Editor: Ji Zhu

Abstract

Representation multi-task learning (MTL) has achieved tremendous success in practice.
However, the theoretical understanding of these methods is still lacking. Most existing
theoretical works focus on cases where all tasks share the same representation, and claim
that MTL almost always improves performance. Nevertheless, as the number of tasks grows,
assuming all tasks share the same representation is unrealistic. Furthermore, empirical
findings often indicate that a shared representation does not necessarily improve single-task
learning performance. In this paper, we aim to understand how to learn from tasks with
similar but not exactly the same linear representations, while dealing with outlier tasks.
Assuming a known intrinsic dimension, we propose a penalized empirical risk minimization
method and a spectral method that are adaptive to the similarity structure and robust
to outlier tasks. Both algorithms outperform single-task learning when representations
across tasks are sufficiently similar and the proportion of outlier tasks is small. Moreover,
they always perform at least as well as single-task learning, even when the representations
are dissimilar. We provide information-theoretic lower bounds to demonstrate that both
methods are nearly minimax optimal in a large regime, with the spectral method being
optimal in the absence of outlier tasks. Additionally, we introduce a thresholding algorithm
to adapt to an unknown intrinsic dimension. We conduct extensive numerical experiments
to validate our theoretical findings.

1 Introduction

1.1 Representation Multi-task Learning

With the increased computational power, machine learning systems can now process datasets
on a large scale. However, for each machine learning task, we may not have access to a large

©2025 Ye Tian, Yuqi Gu, and Yang Feng.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v26/23-0902.html.

Tian, Gu, and Feng

amount of data due to data privacy restrictions and the high cost of data acquisition. This
motivated the idea of multi-task learning (MTL), where we jointly learn many tasks that
are similar but not identical to enhance model performance (Zhang and Yang, 2018, 2021).
Related concepts include transfer learning (TL), learning-to-learn, and meta-learning, where
model structures learned from multiple tasks can be transferred to new incoming tasks to
improve their performance (Weiss et al., 2016; Hospedales et al., 2021). Among numerous
multi-task and transfer learning approaches, representation learning has been one of the
most popular and successful methods over the past few years, where a data representation
is jointly learned from multiple similar data sets and can be shared across them (Rostami
et al., 2022). A successful example of multi-task and transfer representation learning is
learning the weights of a few initial layers of neural networks from ImageNet pre-training,
then retraining final layers on new image classification tasks (Donahue et al., 2014; Goyal
et al., 2019). Other applications include multilingual knowledge graph completion (Chen
et al., 2020) and reinforcement learning (Gupta et al., 2017).

While representation learning has been successful in practice, its theoretical understanding
in the context of multi-task and transfer learning remains limited. Most existing theoretical
works assume that the same representation is shared across all tasks, which is not always
realistic in scenarios with a large number of tasks (Rostami et al., 2022). Furthermore,
empirical studies have shown that freezing a representation across tasks from different
contexts may not improve model performance and can even be harmful. For example,
Raghu et al. (2019) found that pre-training on ImageNet offered little help to target medical
tasks, and Wang et al. (2019) found that different target tasks might benefit from different
pre-training in natural language understanding. These studies suggested that a frozen
representation may not always work well. Additionally, there may be outlier tasks that are
dissimilar to other tasks (Zhang and Yang, 2021) or may be contaminated with adversarial
attacks on the data (Qiao, 2018; Qiao and Valiant, 2018; Konstantinov et al., 2020). If
left unaddressed, such issues could severely impact the machine learning system’s overall
performance.

This paper investigates the effective learning of tasks with similar representations in
the presence of potential outlier tasks or adversarial attacks. Specifically, we consider the
following linear model with linear representations. Suppose there are T tasks in total, and

we have collected a sample {x(t)
i , y

(t)
i }ni=1 from the t-th task, where x

(t)
i ∈ Rp, y

(t)
i ∈ R, and

t ∈ [T] = {1, 2, . . . , T}. There exists an unknown subset S ¦ [T], such that for all t ∈ S,

y
(t)
i = (x

(t)
i)¦´(t)∗ + ϵ

(t)
i , i = 1 : n, (1)

where the regression coefficient ´(t)∗ = A(t)∗¹(t)∗, the representation A(t)∗ ∈ Op×r = {A ∈
Rp×r : A¦A = Ir}, low-dimensional parameter ¹(t)∗ ∈ Rr, r f p, and {ϵ(t)i }ni=1 are random
noises. Here r represents the intrinsic dimension of the problem, which is usually much

smaller than p. The data {x(t)
i , y

(t)
i }ni=1 for t /∈ S can be arbitrarily distributed in the

worst case, and the corresponding tasks in Sc = [T]\S are outlier or contaminated tasks.
We call ϵ := |Sc|/T the contamination proportion or the proportion of outlier tasks. To
ensure effective learning from similar representations, we assume that {A(t)∗}t∈S are similar
to each other, in the sense that min

A∈Op×r maxt∈S ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 f h, where

A ∈ Op×r achieving the minimum can be understood as a “central representation” and

2

Learning from Similar Linear Representations

h is the similarity measure. Our goal is to explore the upper and lower error bounds in
estimating {´(t)∗}t∈S for all possible cases of S under certain conditions. Furthermore, when
the tasks in Sc also satisfy the linear model (1), we aim to ensure the effective estimation of
{´(t)∗}t∈Sc as well.

It is worth pointing out that we allow the scales of {¹(t)∗}t∈S , i.e. {∥¹(t)∗∥2}t∈S , to
differ across tasks in S, and ∥¹(t)∗∥2 can also diverge as n→ ∞. Here, ∥¹(t)∗∥2 = ∥´(t)∗∥2
can be viewed as the signal strength of the t-th task. It turns out that the performance
of representation MTL on each task is highly relevant to ∥¹(t)∗∥2. In contrast, existing
literature generally assumes ∥¹(t)∗∥2 ≲ 1 for all t ∈ S = [T] and ignores the impact of
∥¹(t)∗∥2 on the model performance.

1.2 Related Works

1.2.1 Multi-task and Transfer Learning

Representation MTL and TL: Baxter (2000) is among the earliest works to study the
theory of representation MTL under general function classes, where all tasks are generated
from the same distribution. Maurer et al. (2016) improved their results by using the analysis
based on Rademacher complexity. Ando et al. (2005) explored the case of semi-supervised
learning. More recently, Du et al. (2020) and Tripuraneni et al. (2021) studied linear model
(1) with S = [T] and h = 0, i.e., under the assumption that there are no outlier tasks and all
tasks share the same representation. They proposed the so-called task diversity condition,
under which the learning rate can be significantly improved by a non-convex empirical risk
minimization (ERM) algorithm. Tripuraneni et al. (2020) extended the analysis to general
non-linear models and provided general results. Thekumparampil et al. (2021) proposed a
polynomial-time alternating gradient descent algorithm that achieves similar performance
as ERM but avoids solving the non-convex optimization directly. Meunier et al. (2023)
characterizes the shared representation via a mapping into a finite-dimensional subspace
of a reproducing kernel Hilbert space (RKHS). Other related works include federated
representation learning (Collins et al., 2021; Duchi et al., 2022), tensor representation
meta-learning (Deng et al., 2022), conditional meta-learning (Denevi et al., 2020), and
matrix completion via representation MTL (Zhou et al., 2021). Note that MTL under the
assumption that ´(t)∗’s in (1) share the same or similar support sets (Lounici et al., 2009,
2011; Jalali et al., 2010; Li et al., 2021; Xu and Bastani, 2021) can also be viewed as a special
case of the general representation MTL.

Distance-based MTL and TL: There has been much literature in the statistics
community studying model (1) under the assumption that Euclidean distance or ℓ1-distance
between ´(t)∗’s are small (Bastani, 2021; Li et al., 2022b; Duan and Wang, 2023; Gu et al.,
2023), which is called “distance-based” MTL and TL in Gu et al. (2024). Some extensions
include high-dimensional GLMs (Tian and Feng, 2022), graphical models (Li et al., 2022a),
functional regression (Lin and Reimherr, 2022), semi-supervised classification (Zhou et al.,
2022), and unsupervised mixture models (Tian et al., 2022, 2024). Recently, Gu et al. (2024)
proposed the “angle-based” TL where they assume the angle between every pair of ´(t)∗’s is
small. As we will discuss in the next section, their setting is a special case of (1) when r = 1.

Other related literature: Other relevant literature includes the non-parametric TL
(Cai and Wei, 2021; Kpotufe and Martinet, 2021), the hardness of MTL (Hanneke and

3

Tian, Gu, and Feng

Kpotufe, 2019, 2022), adversarial robustness of MTL or distributed learning (Chen et al.,
2017; Alistarh et al., 2018; Yin et al., 2018; Qiao, 2018; Qiao and Valiant, 2018; Konstantinov
et al., 2020; Zhu et al., 2023; Guerraoui et al., 2024), gradient-based meta-learning (Finn
et al., 2017; Nichol et al., 2018; Finn et al., 2019), and theory of MTL based on distributional
measure (Ben-David and Borbely, 2008; Ben-David et al., 2010).

To help readers better understand the difference between some settings in literature
with our setting under the linear model (1), we drew Figure 1 as a simple visualization
corresponding to the case where p = 3 and r = 2.

(a) Distance-based similarity (Bastani, 2021;
Li et al., 2022b; Tian and Feng, 2022; Duan
and Wang, 2023; Tian et al., 2024)

(b) Angle-based similarity (Gu et al., 2024)

(c) The same representation (Du et al., 2020;
Tripuraneni et al., 2021; Thekumparampil
et al., 2021)

(d) Similar representations with outliers (ours)

Figure 1: A simple visualization of four different settings under the linear model (1).

1.2.2 Beyond the Assumption of the Same Representation

Several works have studied similar problems to the current work, but in different formulations.
Chua et al. (2021) explored linear model (1) but with the assumption that A(t)∗ = A+∆(t)∗

with some A ∈ Rp×r and ∥∆(t)∗∥F f h′′ and S = [T]. Duan and Wang (2023) considered
the same model with ´(t)∗ = A¹̄(t)∗ + ¶(t)∗ with ∥¶(t)∗∥2 f h′ and S = [T]. The following
theorem establishes the equivalence between these alternative formulations and our proposed
setting.

Theorem 1 Consider the following three settings: a

a. A ∈ O
p×r in the three settings are the same.

4

Learning from Similar Linear Representations

1. ´(t)∗ = A(t)∗¹(t)∗, where ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 f h for some A ∈ Op×r;

2. ´(t)∗ = A¹̄(t)∗ + ¶(t)∗, with ∥¶(t)∗∥2 f h′, (A)¦¶(t)∗ = 0;

3. ´(t)∗ = (A+∆(t)∗)¹̃(t)∗, with ∥∆(t)∗∥F f h′′.

They are equivalent in the following sense:

(i) If Setting 1 holds, then there exist ¹̄(t)∗ ∈ Rr, ¶(t)∗ ∈ Rp with ∥¶(t)∗∥2 f h∥¹(t)∗∥2
satisfying Setting 2, and there exist ∆(t)∗ ∈ Rp×r, ¹̃(t)∗ ∈ Rp with ∥∆(t)∗∥F f h√

1−h2

satisfying Setting 3.

(ii) If Setting 2 holds, then there exists A(t)∗ ∈ Op×r satisfying Setting 1 with ∥A(t)∗(A(t)∗)¦−
A(A)¦∥2 f (10

√
2 + 4) h′

∥β(t)∗∥2 ;

(iii) If Setting 3 holds, then there exists A(t)∗ ∈ Op×r and ¹(t)∗ ∈ Rr satisfying Setting 1
with ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 f (10

√
2 + 4) h′′

1−h′′ when h′′ ∈ [0, 1).

It is worth emphasizing that, despite the equivalence of the three settings, both Chua et al.
(2021) and Duan and Wang (2023) require S = [T] and impose the constraints ∥¹̄(t)∗∥2 ≲ 1
and ∥¹̃(t)∗∥2 ≲ 1 for all t ∈ [T], respectively. In contrast, our setting allows for S ̸= [T] and
for ∥¹(t)∗∥2 to diverge. Moreover, when S = [T] and h′ = h′′ = 0, all three settings reduce
to the shared representation case studied in Du et al. (2020); Thekumparampil et al. (2021);
Tripuraneni et al. (2021). b

Thus, our work addresses a more general scenario compared to these existing formulations.
Despite the equivalence established in Theorem 1, we focus on the setting defined in Section
1.1, as this formulation naturally facilitates the development of algorithms that adapt to the
unknown similarity between tasks and enjoy robustness against adversarial contamination.
More concretely, compared to the settings in Chua et al. (2021) and Duan and Wang (2023),
our formulation leads to simpler learning algorithms, which can adapt to the unknown
similarity level h (unlike Chua et al., 2021, where the algorithm requires tuning parameters
depending on the similarity level h), with stronger theoretical results. Our formulation also
inspires algorithms that remain robust to a small fraction of outlier tasks, a merit not shared
by the methods following the formulations in Chua et al. (2021) and Duan and Wang (2023).

Moreover, our framework is easier to generalize to an unsupervised learning setting
(e.g., multiple linear/nonlinear latent factor models with similar factor loading matrices or
similar factor score matrices). Additionally, a representation-based reweighting strategy was
proposed in Chen et al. (2021a), which is motivated by the concern of assuming the same
representation. Their similarity metric between tasks depends on the weight assigned to
the objective function of each task, while our similarity metric depends on the difference
between representations explicitly, which is more intuitive. Moreover, their approach can
suffer from a negative transfer in the worst case, while our approaches do not. Furthermore,
none of Chen et al. (2021a); Chua et al. (2021); Duan and Wang (2023) considered the
presence of outlier tasks.

b. Du et al. (2020) also studied the non-linear representations; here we are referring to their setting of linear
representations.

5

Tian, Gu, and Feng

Finally, we present a diagram in Figure 2 to summarize the relationship between the
different regimes studied in various papers mentioned earlier. To compare algorithms
across different settings more clearly, we focus on a specific regime, enclosed by a dashed
line in Figure 2. This regime allows for simpler, more intuitive, and explicit results,
making it easier to compare the estimation errors of ´(t)∗ across different approaches.
In this regime, defined for rate comparison, we have our setting introduced in Section
1.1 with minA∈Op×r maxt∈S ∥A(t)∗(A(t)∗)¦ − A(A)¦∥2 f h and maxt∈S ∥¹(t)∗∥2 ≲ 1, and√

|S|−1
∑

t∈S ∥¹(t)∗∥22 ≳ 1. We summarize the estimation errors of different approaches in

Table 1, highlighting our two proposed algorithms: penalized ERM (“pERM”) and the
spectral method (“Spectral”). We show that the spectral method is minimax optimal with
computational efficiency when there is no contamination (ϵ = 0), and pERM can handle the
contaminated case more effectively.

Figure 2: The diagram illustrating the relationship between different regimes studied in
different papers.

1.3 Our Contributions

Our contributions can be summarized below.

(i) Compared to most literature on representation MTL, we considered a more general
framework. Here, the linear representations can vary across tasks, signal strengths
may differ between tasks, and there can be a small fraction of unknown outlier tasks.

(ii) We proposed two algorithms, the penalized ERM and the spectral method, to learn
the regression coefficients and the representations from multiple tasks. Our algorithms
were shown to have the following properties:

6

Learning from Similar Linear Representations

Regime Algorithm maxt∈S ∥ ̂́(t) − ´(t)∗∥2 Optimal (ϵ = 0)? Poly-time?

h = ϵ = 0

ERM r
√

p
nT + r

√
1
n No No

MoM r
√

p
nT +

√
r
n No Yes

AltMinGD r
√

p
nT +

√
r
n No Yes

h ̸= 0

ϵ = 0

AdaptRep
[
r
√

p
nT + r

√
1
n +

√
rh(pn)

1/4
]
'
√

p
n No No

ARMUL
(
r
√

p
nT + r

√
1
n + rh

)
'
(
r
√

p
n

)
No No

h, ϵ ̸= 0

pERM
(
r
√

p
nT + r

√
1
n +

√
rh+ ϵ

r3/2
√
p√

n

)
'
√

p
n No No

Spectral
(√

pr
nT +

√
r
n + h+

√
ϵr
)
'
√

p
n Yes Yes

Single-task
√

p
n No Yes

Lower-bound
(√

pr
nT +

√
r
n + h+ ϵ r√

n

)
'
√

p
n – –

Table 1: A summary of the high-probability estimation error of ´(t)∗’s for different methods
in different regimes, where the two algorithms we proposed, penalized ERM (“pERM”,
Algorithm 1) and the spectral method (“Spectral”, Algorithm 2), are highlighted. Denote
the contamination proportion ϵ = |Sc|/T . Except for the lower bound, all the other
rates are upper bounds. All the rates are up to logarithmic factors. “ERM”: Du et al.
(2020); Tripuraneni et al. (2021). “MoM”: method-of-moments, Tripuraneni et al. (2021).
“AltMinGD”: alternating minimization gradient descent, Thekumparampil et al. (2021).
“AdaptRep”: adaptive representation learning, Chua et al. (2021). “ARMUL”: adaptive and
robust multi-task learning, Duan and Wang (2023). “Single-task”: single-task regression by
only using the local data from each task.

• They outperform single-task learning when the representations of different tasks
are sufficiently similar, and the proportion of outlier tasks is low.

• They guarantee no worse performance than single-task learning (safe-net guaran-
tee), even when task representations are dissimilar.

(iii) We thoroughly analyzed the relationship between different regimes of representation
MTL studied in the literature. Our derived upper bounds improve over existing rates,
particularly in scenarios without task contamination. Furthermore, in the context of
representation MTL, we are the first to examine the scenario where a small proportion
of the tasks is contaminated.

(iv) We derived the lower bounds for model (1). To our knowledge, these are the first lower
bound results for regression coefficient estimation under the representation MTL. Prior
works such as Duchi et al. (2022) and Tripuraneni et al. (2021) provided analogous
lower bounds for the subspace recovery problem, assuming identical representations
without outlier tasks. In a TL setup, Chua et al. (2021) showed that assuming the
same representation can lead to worse performance than target-only learning when
source representations differ from each other, but they did not provide a full lower
bound that relates to the representation difference. Comparing the upper and lower

7

Tian, Gu, and Feng

bounds, we demonstrated that both proposed algorithms are nearly minimax optimal,
with the spectral method being optimal in uncontaminated settings.

(v) We extended our analysis from linear model (1) to generalized linear models (GLMs)
and non-linear regression models, and obtained similar theoretical guarantees in these
settings.

(vi) We proposed a thresholding algorithm based on singular value decomposition (SVD)
to estimate the unknown intrinsic dimension r. This adaptation enables our penalized
ERM and spectral methods to handle cases where r is unknown, addressing a common
challenge where r is not a priori known in most prior works.

1.4 Notations and Organization

Throughout the paper, we use bold capitalized and lower-case letters to denote matrices and
vectors, respectively. For a real number a, |a| stands for its absolute value. For a vector u,
∥u∥2 stands for its Euclidean norm. For a matrix A, ∥A∥2 and ∥A∥F represent its spectral
and Frobenius norm, respectively. A¦ denotes its transpose. Ãj(A), Ãmax(A), Ãmin(A) are
its j-th largest singular value, maximum singular value, and minimum (non-zero) singular
value, respectively. When A is a square matrix, we denote its maximum and minimum
eigenvalues as ¼max(A) and ¼min(A), respectively. For a function È : X → R, ∥È∥∞ is
defined to be maxx∈X |È(x)|. For two real numbers a and b, we denote their minimum by
min{a, b} or a'b and their maximum by max{a, b} or a(b, respectively. For two positive real
sequences {an}∞n=1 and {bn}∞n=1, an ≲ bn or bn ≳ an means there exists a universal constant
C > 0 such that an f Cbn for all n, and an j bn or bn k an means that an/bn → 0 as
n→ ∞. an ≍ bn means an ≲ bn and an ≳ bn hold simultaneously. Sometimes, we abbreviate
“with probability” as “w.p.” and “with respect to” as “w.r.t.”. For any N ∈ N+, [N] and
1 : N are defined to be {1, . . . , N}. P and E are the probability measure and expectation
taken over all randomness. We use C,C ′, C ′′, C1, C2, C3, c, c

′ to represent universal constants
that could change from place to place.

The rest of this paper is organized as follows. In Section 2, we first propose a penalized
ERM algorithm for the linear model (1), establish the upper bound of estimation error
for global minimizers of the ERM, study properties of the local minimizers, and discuss
implementation details. Subsequently, we introduce a novel spectral method that is com-
putationally more efficient and achieves sharper estimation error upper bounds than the
penalized ERM when there is no contamination. Next, we present lower bound results
for the representation MTL problem and conclude Section 2 with a brief discussion on
extensions to generalized linear models (GLMs) and non-linear regression models. In Section
3, we propose a thresholding algorithm to estimate the intrinsic dimension r and adapt our
penalized ERM algorithm and the spectral method to the case where r is unknown. We
conduct extensive simulation studies and analyze a real-world dataset to demonstrate our
theoretical findings in Section 4. Finally, we summarize our contributions and outline a few
potential avenues for future research in Section 5.

Due to space constraints, certain results are deferred to the appendix. In Section A
of the appendix, we provide details on the extension of our methods and theory to GLMs
and non-linear regression models. In Section B of the appendix, we study how to transfer

8

Learning from Similar Linear Representations

the knowledge to an unknown task, i.e., under the setting of transfer learning (TL) or
learning-to-learn. We propose an algorithm that leverages outputs from MTL algorithms
to adapt to a new target task, presenting corresponding upper and lower bounds. All the
proofs are also provided in the appendix.

2 Multi-task Learning with Similar Representations

2.1 Problem Set-up

Let us describe the problem setting introduced in Section 1.1 in more detail. Suppose there

are T tasks, and we have collected sample {x(t)
i , y

(t)
i }ni=1 from the t-th task, where x

(t)
i ∈ Rp,

y
(t)
i ∈ R, and t ∈ [T]. There exists an unknown subset S ¦ [T], such that for all t ∈ S,

y
(t)
i = (x

(t)
i)¦´(t)∗ + ϵ

(t)
i , i = 1 : n, (2)

where ´(t)∗ = A(t)∗¹(t)∗, A(t)∗ ∈ Op×r = {A ∈ Rp×r : A¦A = Ir}, low-dimensional

parameter ¹(t)∗ ∈ Rr, r f p, and {ϵ(t)i }ni=1 are i.i.d. zero-mean sub-Gaussian variables

independent of {x(t)
i }ni=1

c. Throughout this and the next sections, we assume the intrinsic
dimension r is known. The case that r is unknown will be addressed in Section 3.

Here the T tasks are divided into two groups, S and Sc. The tasks in S have “similar”
representations (similarity to be defined in the following), while the tasks in Sc can be
understood as outlier tasks or contaminated tasks with an arbitrary distribution. Our goal
is twofold:

1. Improve the learning performance simultaneously on the tasks in S, when they share
“similar” representations and the proportion of outlier tasks in Sc among all T tasks is
small;

2. Maintain the single-task learning performance when the “similarity” between tasks in
S is low.

It should be emphasized that if we allow the outlier tasks in Sc to be arbitrarily distributed,
no guarantee can be obtained for these tasks in the worst case. However, as we will discuss
later, if these tasks still follow linear models (2) (without a low-dimensional representation),
then the single-task linear regression estimation rate can be achieved for {´(t)∗}t∈Sc .

We also want to point out that the set S is unknown. We will show that our penalized
ERM algorithm and spectral method can perform well across all potential sets S ¦ [T] under
certain conditions. This flexibility is crucial from both perspectives of outlier tasks and
adversarial attacks. From the perspective of outlier tasks, we expect an algorithm to succeed
for all possible outlier task index sets Sc as long as |Sc|/T is small. In other words, the
algorithm should not only work for a specific Sc, but also not rely on task indices (otherwise,
we can always drop the data from tasks in Sc to avoid the impact of outliers). From the
perspective of adversarial attacks, the attacker can choose to corrupt the data from any

c. This is assumed for simplicity and can be relaxed. In fact, it suffices to require {ϵ
(t)
i |x

(t)
i = xi}

n
i=1 to be

independent zero-mean sub-Gaussian variables for almost surely {xi}
n
i=1 w.r.t. the product probability

measure induced by the distribution of x
(t)
i ’s.

9

Tian, Gu, and Feng

task, which usually happens after the release of the machine learning system. Therefore, a
robust learner should achieve ideal performance for all possible sets S. See Figure 3 for an
illustration of these two points of view.

Figure 3: An illustration for two perspectives of viewing model (2). In both cases, Sc = {4}.

The same setting when A(t)∗’s are the same and S = [T] (i.e. no outlier tasks) has been
studied in Du et al. (2020), where they argued that when r is much smaller than p, a better
estimation error rate of ´(t)∗ can be achieved compared to the single-task learning. Our
framework is more general and realistic because it is difficult for all tasks to be embedded in
precisely the same subspace as the number of tasks T grows (Rostami et al., 2022), and the
prevalence of outlier tasks is common (Zhang and Yang, 2018).

To mathematically quantify the similarity between representations {A(t)∗}t∈S , we con-
sider the maximum principal angle between subspaces spanned by the columns of these
representation matrices. More specifically, we assume that there exists h ∈ [0, 1] such that

min
A∈Op×r

max
t∈S

∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 f h. d

A small h means the representations are more similar. The case when h = 0 reduces to the
setting of the same representations in literature (Du et al., 2020; Tripuraneni et al., 2021).
In the literature, ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 is often referred to as the maximum principal
angle between column spaces of A(t)∗ and A. This concept and its variations have been
widely used to measure the difference between subspaces in perturbation theory (e.g., Wedin,
1972; Cai et al., 2013; Kato, 2013; Yu et al., 2015; Chen et al., 2021b). The case when r = 1
(where all representations are p × 1 vectors and ¹(t)∗’s are scalars) reduces to the setting

d. Note that the LHS of the following inequality is always less than or equal to 1, because A
(t)∗ and A are

orthonormal matrices. Here, the minimum is achievable because of the Weierstrass Theorem. Note that
the objective function is continuous (over A) under ∥ · ∥2 norm and the space (Op×r, ∥ · ∥2) is compact.

10

Learning from Similar Linear Representations

of Gu et al. (2024). In this case, the principal angle between subspaces becomes the angle
between regression coefficient vectors.

We now make some assumptions. Without loss of generality, suppose x(t) is mean-
zero. Denote the covariance matrix Σ(t) = E[x(t)(x(t))¦] and the joint distribution of

{{x(t)
i , y

(t)
i }ni=1}t∈Sc as QSc . For the convenience of description, define a coefficient matrix

B∗
S ∈ Rp×|S|, each column of which is a coefficient vector in {´(t)∗}t∈S . Denote the ℓ2-

norm ·(t) = ∥¹(t)∗∥2 = ∥´(t)∗∥2, the average ℓ2-norm ·̄ =
√
|S|−1

∑
t∈S(·

(t))2, and assume

mint∈S ·(t) ≳

√
p+log T

n . e ·(t) can be viewed as the signal strength of the t-th task. In

almost all the existing literature, it is assumed that ·(t) ≲ 1 for all t ∈ S = [T] and ·̄ ≳ 1,
and the impact of ·(t) on the model performance is ignored. In this work, however, we allow
·(t)’s to vary across tasks, and we will show later how the performance of representation
MTL on each task depends on ·(t).

Assumption 1 For any t ∈ S, x(t) is sub-Gaussian in the sense that for any u ∈ Rp and
¼ ∈ R, E[e¼u

¦x(t)
] f eC¼2∥u∥22 with some constant C > 0. And there exist constants c, C

such that 0 < c f ¼min(Σ
(t)) f ¼max(Σ

(t)) f C <∞, for all t ∈ S.

Assumption 2 There exists a constant c > 0 such that Ãr(B
∗
S/
√

|S|) g c√
r
·̄, where each

column of B∗
S is a coefficient vector in {´(t)∗}t∈S.

Assumption 3 n g C(p+ log T) with a sufficiently large constant C > 0.

Assumptions 1 and 3 are standard conditions in literature (Du et al., 2020; Duan and
Wang, 2023). Assumption 2 is often called the task diversity condition. When A(t)∗’s are
the same, Ãr(B

∗
S/
√

|S|) = Ãr(Θ
∗
S/
√
|S|), where each column of Θ∗

S is a coefficient vector in
{¹(t)∗}t∈S , which means that the low-dimensional task-specific parameters ¹(t)∗’s are diverse.
Such a task diversity condition has been adopted in other related studies (Du et al., 2020;
Chua et al., 2021; Tripuraneni et al., 2021; Duchi et al., 2022) f, to obtain a parametric rate
which is faster than the rate without this condition (Maurer et al., 2016). The benefit of this
condition is intuitive, because a full exploration of all directions in the subspace is necessary
to learn representations well, which is the key to representation MTL.

It is important to note that the presented assumptions are imposed on both the set
of non-outlier tasks S and the model parameters. These assumptions are made from the
perspective of outlier tasks. However, when considering adversarial attacks, we can replace
S with the set of all tasks [T] and assume that each task follows the linear model (2). An
attacker can then adversarially select a subset Sc ¦ [T] and distort the data distribution
for these tasks. For simplicity, we do not distinguish between these two perspectives in the
following parts of this paper.

e. In general, we have the same results hold by defining ·(t) = ∥θ(t)∗∥2 (
√

p+log T
n

. Here we define

·(t) = ∥θ(t)∗∥2 and assume mint∈S ·(t) ≳
√

p+log T
n

for presentation simplicity.

f. In Duchi et al. (2022) and Tripuraneni et al. (2021), the lower bound of Ãr(B
∗
S/

√
|S|) is defined as a

parameter and appears in the estimation error. Here we follow Du et al. (2020) and impose an explicit
bound on it to obtain a cleaner result, but our analysis can carry over to the analysis where the lower
bound of Ãr(B

∗
S/

√
|S|) is denoted as a parameter.

11

Tian, Gu, and Feng

In the following subsections, we will present two algorithms, study their properties, and
derive a lower bound of the estimation error.

2.2 The First Algorithm: Penalized ERM

2.2.1 Algorithm and Upper Bounds

In a special case of our setting, when A(t)∗’s are the same, S = [T], maxt∈S ·(t) ≲ 1, and
·̄ ≳ 1, Du et al. (2020) proposed an algorithm by combining the objective functions of
all tasks and solving the optimization problem. A more general version accommodating
various loss functions has been explored in Tripuraneni et al. (2020). Under our setting,
where the representations are similar but not exactly the same, and with the inclusion
of potential outlier tasks, the objective function needs to be properly adjusted. When h
is large, learning {´(t)∗}t∈S by presuming similar representations may lead to a negative
transfer effect. Considering these differences, we proposed a two-step learning approach in
Algorithm 1 that addresses these issues. Note that we will apply the same algorithm to some
extended models in Section 2.5, so for description convenience, we introduce the algorithm
with generic loss functions f (t) for the t-th task. For the linear model (2), specifically, we set

f (t)(´) = 1
2n∥Y (t) −X(t)´∥2 = 1

2n

∑n
i=1[y

(t)
i − (x

(t)
i)¦´]2 for ´ ∈ Rp, where X(t) ∈ Rn×p

and Y (t) ∈ Rn are corresponding matrix representations of the data from the t-th task.

Algorithm 1: Penalized ERM

Input: Data {X(t),Y (t)}Tt=1 = {{x(t)
i , y

(t)
i }ni=1}Tt=1, penalty parameters ¼ and µ,

intrinsic dimension r
Output: Estimators { ̂́(t)}Tt=1, Â

1 Step 1: (Aggregation) {Â(t)}Tt=1, {¹̂(t)}Tt=1, Â ∈
argmin{A(t)}Tt=1¦Op×r,A∈Op×r,{θ(t)}Tt=1¦Rr

{
1
T

∑T
t=1

[
f (t)(A(t)¹(t))

+ ¼√
n
∥A(t)(A(t))¦−A(A)¦∥2

]}

2 Step 2: (Biased regularization) ̂́(t) = argminβ∈Rp

{
f (t)(´) + µ√

n
∥´− Â(t)¹̂(t)∥2

}
for

t ∈ [T]

In Algorithm 1, Step 1 aims to learn all tasks by aggregating the data, where the penalty
∥A(t)(A(t))¦ − A(A)¦∥2 is added to force the subspaces represented by {Â(t)}Tt=1 to be
similar. This penalty is motivated by the connection between penalized over-parameterized
models and robustified empirical risk minimization (ERM) (e.g., Gannaz, 2007; She and
Owen, 2011; Donoho and Montanari, 2016; Duan and Wang, 2023). Specifically, adding such a
penalty is equivalent to employing a robustified loss function to estimate the central subspace
A, which is then adapted to obtain individual estimators for each A(t)∗. As discussed in
Section 1.2.2, formulating the problem in our setting naturally leads to this penalty structure,
which provides an advantage over existing approaches such as those in Chua et al. (2021)
and Duan and Wang (2023). Moreover, note that when ∥A(t)(A(t))¦ −A(A)¦∥2 = 0, it can
be shown that A(t) and A are identical up to a rotation. And this distance is equivalent to
other subspace distances like sin-Θ distance or the distance between two matrices up to a
rotation (Chen et al., 2021b). Step 2 uses data from each task to make proper corrections to

12

Learning from Similar Linear Representations

prevent negative transfer, which is often referred to as biased regularization in the literature
(Schölkopf et al., 2001; Kuzborskij and Orabona, 2013, 2017). Such two-step methods are
widely used in the distance-based MTL and TL literature to alleviate the adverse effect of
negative transfer (Bastani, 2021; Li et al., 2022b; Lin and Reimherr, 2022; Tian and Feng,
2022). It is important to point out that A(t)∗’s and ¹(t)∗’s are not uniquely identifiable in
model (2), which does not pose an issue because our focus is on estimating ´(t)∗’s.

Next, we proceed to present the upper bound on estimation errors of {´(t)∗}t∈S incurred
by Algorithm 1.

Theorem 2 (Upper bound for Algorithm 1) Suppose Assumptions 1-3 hold with a

subset S ¦ [T] satisfying ϵ = |Sc|
T f cr−3/2 ·̄2

maxt∈S(·(t))2
, where c > 0 is a small constant.

By setting ¼ = Cmaxt∈S(·
(t))2

mint∈S ·(t)

√
r(p+ log T) and µ = C ′√p+ log T with sufficiently large

positive constants C and C ′, for an arbitrary distribution QSc of {{x(t)
i , y

(t)
i }ni=1}t∈Sc, w.p.

at least 1− e−C′′(r+log T), we have

∥ ̂́(t) − ´(t)∗∥2 ≲
{
·(t)

·̄
r

√
p

nT
+

(
·(t)

√
r

·̄
(1

)√
r + log T

n
+ ·(t)

√
rh

+
·(t)maxt∈S(·(t))2

·̄2mint∈S ·(t)
r3/2

√
p+ log T

n
ϵ

}
'
√
p+ log T

n
, ∀t ∈ S.

Furthermore, if the data from tasks in Sc satisfies the linear model (2) (without any latent
structure assumption) and Assumption 1, then w.p. at least 1− e−C′(p+log T), we also have

max
t∈Sc

∥ ̂́(t) − ´(t)∗∥2 ≲
√
p+ log T

n
.

In Theorem 2, the upper bound of ∥ ̂́(t) −´(t)∗∥2 for t ∈ S is the minimum of two terms,
where the first term corresponds to the rate obtained through data aggregation and the
second term corresponds to the single-task rate. This result shows that our algorithm is
automatically adaptive to the optimal situation, whether or not aggregating data across
tasks is beneficial. Furthermore, it demonstrates that Algorithm 1 is robust to a small
fraction of outlier tasks, in the sense that representation MTL remains beneficial when the
outlier proportion ϵ is small.

Analyzing the components of the upper bound of ∥ ̂́(t) − ´(t)∗∥2 for t ∈ S further

elucidates their interpretability. The term ·(t)

·̄
r
√

p
nT + ·(t)

√
rh arises from learning similar

representations,
(·(t)√r

·̄
(1
)√ r+log T

n is due to learning the representations and task-specific

parameters, ·(t) maxt∈S(·
(t))2

·̄2 mint∈S ·(t)
r3/2

√
p+log T

n ϵ accounts for outlier tasks, and
√

p+log T
n is the

error rate of single-task learning. Note that the term ·(t)
√
rh does not explicitly depend on

n (although ·(t), r, h might depend on n). At first glance, this may appear overly restrictive,
but the lower bound in Section 2.4 contains a similar term that does not involve n explicitly.
This phenomenon was also observed in many distance-based multi-task and transfer learning
studies, such as Li et al. (2022b,a); Lin and Reimherr (2022); Tian and Feng (2022); Duan
and Wang (2023).

13

Tian, Gu, and Feng

To understand when Algorithm 1 improves upon single-task learning, consider the scenario

maxt∈S ·(t) ≲ 1 and ·̄ ≳ 1, where the upper bound simplifies to
(
r
√

p
nT +

√
r
√

r+log T
n +

√
rh + r3/2

√
p+log T

n ϵ
)
'
√

p+log T
n . When T k r2 (many tasks), h j

√
p+log T

nr (similar

representations), pk r(r (log T) (low intrinsic dimension), and ϵj r−3/2 (a small fraction

of outlier tasks), the rate is faster than the single-task error rate
√

p+log T
n .

Furthermore, contrary to the results in existing literature (Du et al., 2020; Chua et al.,
2021; Tripuraneni et al., 2021; Thekumparampil et al., 2021; Duan and Wang, 2023), our
results indicate that the performance of representation MTL on each task depends critically
on the norm ·(t) = ∥¹(t)∗∥2. This insight suggests that tasks characterized by smaller
coefficients may benefit more from representation MTL. We will verify this phenomenon
through numerical experiments in Section 4.1.4.

It is also worth noting that Assumption 3 can be relaxed to n ≳ r + log T for penalized

ERM, provided that we are willing to forego the safe-net guarantee
√

p+log T
n . However,

omitting the minimum with
√

p+log T
n in the estimation error can expose penalized ERM to

negative transfer effects when either h or ϵ is large.
Before closing this subsection, we present the following theorem, which demonstrates

that the personalized estimators {Â(t)¹̂(t)}Tt=1 obtained in Step 1 already achieve strong
performance, albeit with a loss of a factor of

√
r and other scaling factors compared to the

estimation error of { ̂́(t)}Tt=1 in Theorem 2. In this sense, Step 2 in Algorithm 1 can be seen
as a refinement that further improves estimation accuracy.

Theorem 3 (Step 1 only) Under the same assumptions imposed in Theorem 2, for any

S ¦ [T] satisfying ϵ = |Sc|
T f cr−3/2 ·̄2

maxt∈S(·(t))2
with a small constant c > 0, and an arbitrary

distribution QSc of {{x(t)
i , y

(t)
i }ni=1}t∈Sc, w.p. at least 1− e−C′(r+log T), we have

∥Â(t)¹̂(t) − ´(t)∗∥2 ≲
{
·(t)

·̄

√
p

nT
+

(
·(t)

√
r

·̄
(1

)√
r + log T

n
+ ·(t)

√
rh

+
·(t)maxt∈S(·(t))2

·̄2mint∈S ·(t)

√
p+ log T

n
ϵ

}
'
{√

r(p+ log T)

n

maxt∈S(·(t))2

·(t)mint∈S ·(t)

}
,

∀t ∈ S.

As pointed out in Section 1.2, our setting reduces to the setting in Gu et al. (2024) when
r = 1, where they considered a ridge regression by penalizing the angle between different
regression coefficients. The main idea of our Algorithm 1 resembles their approach, but
they only considered the case when the angles between different regression coefficients are in
[0, Ã/2]. Our result shows that representation MTL helps as long as the subspaces spanned
by each coefficient (i.e., the straight line) are similar, where the angles can be either close
to 0 or Ã. Moreover, Theorem 3 shows that when r is a constant, the estimators obtained
from Step 1 of Algorithm 1 already achieve a desired rate (despite an inflation term in the

single-task rate
√

p+log T
n), which means Step 2 may be omitted.

14

Learning from Similar Linear Representations

2.2.2 Discussions on Local Minimizers

It can be observed that the optimization problem in Step 1 of Algorithm 1 is non-convex.
Therefore, in addition to studying the global minimizers as previously examined, it is also
crucial to investigate the properties of local minimizers. Specifically, if only a local minimizer
is found in Step 1, does Algorithm 1 still achieve the same upper bound in Theorem 2?

Our first result below focuses on a special case where S = [T] and ¼ = +∞. In this
scenario, Step 1 of Algorithm 1 reduces to the ERM algorithm introduced in Du et al.
(2020). The following theorem shows that even if we replace the global minimizer with a
local minimizer in Step 1, Algorithm 1 still achieves the same upper bound as stated in
Theorem 2. In other words, there is no “bad” local minimizer in this case.

Theorem 4 (No bad local minimizer when S = [T] and ¼ = +∞) When S = [T] and
¼ = +∞, replacing the global minimizer in Step 1 of Algorithm 1 with any local minimizer g

delivers the same upper bound as in Theorem 2, i.e. w.p. at least 1− e−C′(r+log T),

∥ ̂́(t)−´(t)∗∥2 ≲
{
·(t)

·̄
r

√
p

nT
+

(
·(t)

√
r

·̄
(1
)√

r + log T

n
+·(t)

√
rh

}
'
√
p+ log T

n
, ∀t ∈ [T].

Tripuraneni et al. (2021) proves a similar result for the ERM when S = [T], h = 0, and
¼ = +∞. However, their result only holds for ERM with an additional regularization term,
and the optimization must be conducted within a constrained set. In contrast, Theorem 4
shows that there is no bad local minimizer across the entire optimization landscape. This
result significantly supplements the existing literature for the case S = [T].

Next, we present a more general result for the generic case S ̸= [T] with the same ¼
value as in Theorem 2. Unfortunately, similar to the result in Tripuraneni et al. (2021), in
this general case, we can only establish that there is no bad local minimizer within a large
regime instead of the entire landscape. This implies that we can replace the global minimizer
in Step 1 with a local minimizer under some constraints to obtain the same upper bound.

Theorem 5 (No bad local minimizer in a large regime, for general S ̸= [T]) Consider
the same ¼ value taken in Theorem 2. Replacing the global minimizer in Step 1 of Algorithm
1 with any local minimizer satisfying

4(1 +
√
2)max

t∈S
∥Â(t)(Â(t))¦ −A(A)¦∥2 + 4

ϵ

1− ϵ
< 1− µ;

√
2max

t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
∥Â(t)(Â(t))¦ −A(t)∗(A(t)∗)¦∥2

}
< 1− µ,

with a universal constant µ > 0 delivers the same upper bound as in Theorem 2, i.e. w.p. at
least 1− e−C′(r+log T), for all t ∈ S,

∥ ̂́(t) − ´(t)∗∥2 ≲
{
·(t)

·̄
r

√
p

nT
+

(
·(t)

√
r

·̄
(1

)√
r + log T

n
+ ·(t)

√
rh

g. Here we say {{Â(t)}Tt=1, Â, {θ̂(t)}Tt=1} is a local minimizer of function G({A(t)}Tt=1,A, {θ(t)}Tt=1) =∑T
t=1 f

(t)(A(t)
θ
(t)) + λ√

n
∥A(t)(A(t))¦ − A(A)¦∥2, if there exists a constant ¶ > 0, such that

for any {{A(t)}Tt=1,A, {θ(t)}Tt=1} with maxt∈[T] minR∈Op×r

{
∥Â(t) − A

(t)
R∥2 + ∥θ̂(t) − R

¦
θ
(t)∥2

}
+

minR∈Op×r ∥Â − AR∥2 f ¶, we must have G({Â(t)}Tt=1, Â, {θ̂(t)}Tt=1) < G({A(t)}Tt=1,A, {θ(t)}Tt=1).
The same definition is used in Theorem 5.

15

Tian, Gu, and Feng

+
·(t)maxt∈S(·(t))2

·̄2mint∈S ·(t)
r3/2

√
p+ log T

n
· ϵ
}

'
√
p+ log T

n
.

Theorem 5 is similar to the results from other non-convex problems such as the EM
algorithm for the mixture models (e.g., Balakrishnan et al., 2017; Cai et al., 2019), where
a contraction basin exists within which the only local minimizer is the global one. This
suggests that a good initialization can be used in the optimization problem of Step 1 to
avoid bad local minima. We conjecture a similar result in Theorem 4 holds in the general
case as well, i.e. there is no bad local minimizer in the entire optimization landscape. This
conjecture remains a direction for future research.

The diagrams in Figure 4 below summarize the results discussed in this subsection.

Figure 4: The optimization landscape of Algorithm 1 proved in Theorems 4 and 5. The big
rectangle is the full optimization landscape.

2.2.3 Implementation

While we have provided desired upper bounds of estimation error with both local and global
minimizers in Step 1 of Algorithm 1, solving the optimization problem there is challenging

due to the constraint that representation matrices {Â(t)}Tt=1 and Â must belong to the
orthonormal space Op×r = {A ∈ Rp×r : A¦A = Ir}. In this subsection, we want to point
out that this restriction is adopted mainly for clarity of exposition. In practice, we can
formulate the optimization problem in Rp×r with a modified penalty term, achieving the
same theoretical guarantees as with Op×r.

Before discussing the practical formulation of the optimization problem in Step 1, we
first introduce several new notations. For any non-zero matrix A ∈ Rp×r with p g r, we
define the projection matrix onto the column space of A as PA = UU¦, where U ∈ Op×r′

is the left singular matrix in the SVD of A = Up×r′Λr′×r′V
¦
r′×r′ , 1 f r′ f r, and Λr′×r′ is

16

Learning from Similar Linear Representations

diagonal with positive entries. When rank(A) = r, we have PA = A(A¦A)−1A¦. When A

is zero, we define PA = 0p×p. Note that while U in the SVD of A may not be unique, PA

is unique by the Hilbert projection theorem.
In practice, Step 1 of Algorithm 1, i.e.

{Â(t)}Tt=1, {¹̂(t)}Tt=1, Â ∈ argmin
{A(t)}Tt=1,A¦Op×r,{θ(t)}Tt=1¦Rr

{
1

T

T∑

t=1

[
f (t)(A(t)¹(t))

+
¼√
n
∥A(t)(A(t))¦ −A(A)¦∥2

]}
,

is equivalent to solving the following relaxed problem

{Â(t)}Tt=1, {¹̂(t)}Tt=1, Â ∈ argmin
{A(t)}Tt=1,A¦Rp×r,{θ(t)}Tt=1¦Rr

{
1

T

T∑

t=1

[
f (t)(A(t)¹(t))+

¼√
n
∥PA(t)−PA∥2

]}
.

(3)

This replacement relaxes the constraint that {Â(t)}Tt=1 and Â must belong to the orthonormal
space Op×r = {A ∈ Rp×r : A¦A = Ir}, allowing them to reside in Rp×r with a modified
penalty term. Intuitively, we can see why this relaxation preserves our previous theoretical
guarantees. For any A(t) ∈ Rp×r and ¹(t) ∈ Rr, it can be shown that there exist Ã(t) ∈ Op×r

and ¹̃(t) ∈ Rr such that A(t)¹(t) = Ã(t)¹̃(t) and PA(t) = P
Ã(t) . Since we are interested in

the product instead of A(t) ∈ Rp×r and ¹(t) ∈ Rr individually, the replacement does not
affect the estimation error of ´(t)∗. The following theorem formally presents this result.

Theorem 6 We replace the Step 1 of Algorithm 1 with the real-matrix optimization problem
(3), and replace ∥Â(t)(Â(t))−A(A)¦∥2, ∥Â(t)(Â(t))−A(t)∗(A(t)∗)¦∥2 in Theorem 5 with
∥P

Â(t) − PA∥2 and ∥P
Â(t) − PA(t)∗∥2. All theoretical results in Sections 2.2.1 and 2.2.2

remain valid.

In all the numerical experiments, we used the automatic differentiation implemented
in PyTorch (Paszke et al., 2019) along with the Adam optimizer (Kingma and Ba, 2015)
to solve the optimization problem (3). Further implementation details will be discussed in
Section 4.

It is also possible to conduct optimization directly on the Stiefel manifold Op×r in Step
1, which is recently explored in Chen and Feng (2025).

2.3 The Second Algorithm: Spectral Method

In this subsection, we propose another algorithm for the representation MTL, which is
based on singular value decomposition (SVD), and we refer to this approach as the Spectral
Method.

The motivation of the spectral method arises from the special case h = 0 and S = [T],
implying A(t)∗ ≡ A for all t ∈ [T]. In this scenario, B∗

S = (´(1)∗, . . . ,´(T)∗) = Ap×rΘ
∗
r×T

with Θ∗ = (¹(1)∗, . . . ,¹(T)∗) is a rank-r matrix, and the column spaces of B∗
S and A are

the same. Thus, the left singular matrix in the SVD of B∗
S can exactly recover A. In

17

Tian, Gu, and Feng

practice, we can use the single-task estimator to estimate each column of B∗
S and apply

SVD to estimate A. With the estimated A, we can then perform a single-task regression
to estimate ¹(t)∗. When h is not necessarily zero and S ≠ [T], the same idea can still be
applied. However, to avoid negative transfer when h is large, we can follow the SVD with a
biased regularization step similar to Algorithm 1. Additionally, we need to conduct SVD on
a robust estimator of B∗

S to accommodate outlier tasks.

We use
∏

R to denote the projection operator to an ℓ2-ball centered at zero of radius R
in Rp, and use quantile({at}Tt=1, 1− ϵ̄) to denote the lower (1− ϵ̄)-quantile of a sequence
{at}Tt=1 ¦ R, where ϵ̄ ∈ [0, 1]. We formalize the intuition into the spectral method in
Algorithm 2.

Algorithm 2: Spectral Method

Input: Data {X(t),Y (t)}Tt=1 = {{x(t)
i , y

(t)
i }ni=1}Tt=1, penalty parameter µ, an upper

bound ϵ̄ (for ϵ), intrinsic dimension r

Output: Estimators { ̂́(t)}Tt=1, Â

1 Step 1: (Single-task regression) ˜́(t) = argminβ∈Rp

{
f (t)(´)

}
for t ∈ [T]

2 Step 2: (Projection and concatenation) Create a p× T matrix B̂ of which the t-th

column is
∏

R(
˜́(t)), where R = quantile({∥ ˜́(t)∥2}Tt=1, 1− ϵ̄)

3 Step 3: (SVD) Conduct SVD B̂ = ÛΛ̂V̂ ¦ with Û ∈ Op×T , let Â be the first r

columns of Û , and set ¹̂(t) = argminθ∈Rr f (t)(Â¹)

4 Step 4: (Biased regularization) ̂́(t) = argminβ∈Rp

{
f (t)(´) + µ√

n
∥´ − Â¹̂(t)∥2

}
for

t ∈ [T]

Steps 1 and 2 of Algorithm 2 construct a robust estimator of B∗
S by concatenating

projected single-task estimators. The projection limits the impact of outlier tasks by setting
the projection radius to a quantile of the ℓ2-norms of all single-task estimators. This
projection technique, sometimes referred to as truncation or winsorization, is widely used in
robust statistics (e.g., Lugosi and Mendelson, 2021) and differential privacy (e.g., Dwork,
2006; Dwork et al., 2014). To determine the quantile percentage, we need an upper bound
ϵ̄ of ϵ. If we have prior knowledge of ϵ (but not S and Sc), we can set ϵ̄ = ϵ. Without
this information, ϵ̄ can be chosen as a small constant, such as 0.05. In the simulations,
we set ϵ̄ as the true ϵ value, and in the real-data study, we set ϵ̄ = 0.05. Step 3 performs
the SVD to estimate the central representation A. Step 4 applies biased regularization as
in Algorithm 1 to prevent negative transfer. The spectral method avoids the complicated
non-convex optimization problems present in the penalized ERM algorithm, making it easy
to implement in practice. In fact, the spectral method can be solved in polynomial time
since the objective function in Step 4, which consists of a sum of a smooth and strongly
convex component and an ℓ2-Lipschitz component, can be minimized in polynomial time
(e.g., via stochastic gradient descent; see Shamir and Zhang, 2013). Moreover, SVD can also
be computed in polynomial time. Besides its simplicity and efficiency, we can show that it
achieves a better upper bound of estimation error for ´(t)∗’s when S = [T].

18

Learning from Similar Linear Representations

Theorem 7 (Upper bound for spectral method) Suppose Assumptions 1-3 hold with

a subset S ¦ [T] satisfying ϵ = |Sc|
T f cr−1 ·

(
·̄

maxt∈S ·(t)

)2
, where c > 0 is a small constant.

By setting µ = C ′√p+ log T with a sufficiently large positive constant C ′, w.p. at least

1− e−C′′(r+log T) and ϵ̄ satisfying ϵ f ϵ̄ f c′′

r ·
(

·̄
maxt∈S ·(t)

)2
with a sufficiently small positive

constant c′′, we have h

∥ ̂́(t) − ´(t)∗∥2 ≲
{
·(t)

·̄

√
pr

nT
+

(
·(t)

·̄
(1

)√
r

n
+

√
log T

n
+ ·(t)h ·

[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S)
'√

r

]

+
·(t)

·̄
max
t∈S

·(t) ·
√
rϵ̄

}
'
√
p+ log T

n
, ∀t ∈ S,

where B∗
S ∈ Rp×|S| is the coefficient matrix whose columns are {´(t)∗}t∈S, A ∈ argminA∈Op×r

maxt∈[T] ∥A(t)∗(A(t)∗)¦ −AA¦∥2 is the central representation, and A
§

is orthogonal to A

in the sense that A
§ ∈ Op×(p−r) and (A

§
)¦A = 0(p−r)×r.

Furthermore, if we assume the data from tasks in Sc satisfies the linear model (2) (without
any latent structure assumption) and Assumption 1, then w.p. at least 1− e−C′(p+log T), we
also have

max
t∈[T]

∥ ̂́(t) − ´(t)∗∥2 ≲
√
p+ log T

n
.

We can similarly discuss when Algorithm 2 improves single-task learning as in Theorem
2, which we do not repeat here. However, it is worth emphasizing that, like Algorithm 1,
Algorithm 2 is also adaptive to the unknown similarity structure and it is also robust
to a small fraction of outlier tasks. Comparing the rates in Theorems 2 and 7, we can see
that the estimation error rate of the spectral method has a better dependence on r when
S = [T], although the last term related to outlier tasks is worse. In the next subsection,
we will see that the spectral method is minimax optimal when S = [T] and the condition

number Ãmax((A
§
)¦B∗

S)/Ãmin((A
§
)¦B∗

S) is bounded by a constant.

As mentioned, Algorithm 2 requires an upper bound ϵ̄ of ϵ for determining the quantile
percentage, and ϵ̄ also appears in the upper bound of estimation error. If ϵ̄ ≍ ϵ, then we can
replace ϵ̄ in the upper bound with the true ϵ.

Besides the intuition provided at the beginning of this subsection, Algorithm 2 also has
connections to average derivative estimation (ADE) and expected gradient outer product
(EGOP) methods used to estimate the index space in single-index models and multi-index
models (e.g., Härdle and Stoker, 1989; Samarov, 1993; Hristache et al., 2001; Yang et al.,
2017; Yuan et al., 2023). For instance, in the multi-index model E[Y |X = x] := g(x) =
f((B∗)¦x) ∈ R with B∗ ∈ Rp×T , x ∈ Rp, g continuously differentiable and unknown, and
E[∇g(X)(∇g(X))¦] existing, we have:

E[∇g(X)(∇g(X))¦] = (B∗)¦E{∇f((B∗)¦X)[∇f((B∗)¦X)]¦}B∗.

h. For convention, we define 0/0 = 0, which is mainly for the case (A
§
)¦B∗ = 0(p−r)×r.

19

Tian, Gu, and Feng

Therefore, it is possible to use SVD or PCA on some estimator of E[∇g(X)(∇g(X))¦]
to recover the column space of B∗

S , and many estimators of the expected gradient outer
product have been proposed in the literature. In the context of representation MTL, when
S = [T], we can view g as a multivariate function x 7→ ((´(1)∗)¦x, . . . , (´(T)∗)¦x)¦ with
f the identity function from RT to RT , implying that E[∇g(X)(∇g(X))¦] = (B∗

S)
¦B∗

S .
Thus, our spectral method, which performs SVD on the estimated B∗

S , can be viewed as a
multi-task variant of the EGOP framework.

The SVD step in our method is also closely related to the SVD-based approaches used in
Kong et al. (2020) and Meunier et al. (2023), where the former considers a mixture model
setting and the latter operates in an infinite-dimensional RKHS framework. Translated into
our terminology, the key difference is that their methods rely on data splitting to estimate
two instances of B∗

S ’s separately in the product (B∗
S)

¦B∗
S . In contrast, our approach applies

SVD directly to the unbiased estimator B̂ rather than to the potentially biased B̂¦B̂ and
thereby eliminates the need for sample splitting.

When there are outlier tasks or contaminations, i.e., S ̸= [T], besides the simple
projection technique, we can also borrow ideas from robust principal component analysis
(PCA) literature (e.g., Wright et al., 2009; Candès et al., 2011; Vidal et al., 2016) to robustify
the SVD procedure in Algorithm 2. For example, instead of conducting SVD on B̂ in Step
3 of Algorithm 2, we may conduct SVD on another p× T matrix L̂ which is the solution of
the convex optimization (Liu et al., 2012; Xu et al., 2012)

min
L,Z

∥L∥∗ + ¼∥Z∥2,1 s.t. B̂ = L+Z,

where ∥L∥∗ =
∑p'T

j=1 Ãj(L) is the nuclear norm, and ∥Z∥2,1 =
∑T

t=1 ∥zt∥2 with zt the t-th
column of Z is the L2,1-norm. This approach might lead to better performance when S ̸= [T].
Given the extensive scope of the current paper, we leave the study of this approach for
future research.

2.4 Lower Bound

In this subsection, we derive lower bounds to explore the information-theoretic hardness of
the representation MTL problem. Consider a collection of all subsets S ¦ [T] as

S = {S ¦ [T] : |Sc|/T f ϵ}.
Given the subset S, define a coefficient matrix BS ∈ Rp×|S|, where each column corresponds
to a coefficient vector in {´(t)}t∈S . Consider the parameter space for the coefficient vectors
{´(t)}t∈S as

B(S, h) =

{
{´(t)}t∈S : ´(t) = A(t)¹(t) for all t ∈ S, {A(t)}t∈S ¦ Op×r, ∥¹(t)∥2 f ·(t),

min
A∈Op×r

max
t∈S

∥A(t)(A(t))¦ −AA
¦∥2 f h, Ãr

(
|S|−1/2BS

)
g c√

r

√
1

|S|
∑

t∈S
∥¹(t)∥22

}

where c can be any fixed positive constant such that B(S, h) ̸= ∅. Given a set S ¦ [T],

denote ·̄ := ·̄(S) =
√

1
|S|
∑

t∈S(·
(t))2. We have the following lower bound.

20

Learning from Similar Linear Representations

Theorem 8 (Lower bound for MTL) Suppose p g 2r, T g r1.01, mint∈[T] ·
(t) g C, and

ϵ f c/r where C and c are some positive constants. We have the following lower bound hold:

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B(S,h)

QSc

P

(
⋃

t∈S

{
∥ ̂́(t) − ´(t)∗∥2 ≳

[
·(t)

·̄

√
pr

nT
+

(
·(t)

·̄
(1

)√
r

n
+

log T

n

+ ·(t)h+
·(t)

·̄

ϵr√
n

]
'
√
p+ log T

n

})
g 1

10
,

where for any given S ¦ S, P = PS ¹ QSc, and PS, QSc are the probability measures on
sample space of tasks in S, Sc, respectively. Furthermore, if tasks in Sc also follow the linear
model (2), then we have the following lower bound, where P is the probability measure on
sample space of all tasks:

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B(S,h)

{β(t)}t∈Sc

P

(
max
t∈[T]

∥ ̂́(t) − ´(t)∗∥2 ≳
√
p+ log T

n

)
g 1

10
.

Similar to the upper bound in Theorem 2, the lower bound of maxt∈S ∥ ̂́(t) − ´(t)∗∥2
contains several terms reflecting the difficulty of learning different components. For example,
·(t)

·̄

√
pr
nT +·(t)h arises from learning the similar representations in S;

(·(t)
·̄

(1
)√

r
n+
√

log T
n is

due to learning the task-specific parameters; ·(t)

·̄
ϵr√
n
is caused by outlier tasks; and

√
p+log T

n

is the single-task rate.
To our knowledge, this is the first lower bound for learning regression parameters in the

context of representation MTL. Tripuraneni et al. (2021) and Duchi et al. (2022) derived
lower bounds for the subspace recovery when ·(t) ≲ 1 for all t ∈ S = [T], with no outlier
tasks (ϵ = 0) and all tasks sharing the same representation (h = 0).

Comparing the upper bound for penalized ERM in Theorem 2 with the lower bound, the
upper bound exhibits a sub-optimal dependence on r compared to the information-theoretic
lower bound. This phenomenon has been noted in Du et al. (2020) and Tripuraneni et al.
(2021) for both the ERM estimator and a method-of-moments estimator. The upper bounds
of estimation errors for both estimators have sub-optimal dependence on r. They related
this to a similar phenomenon observed in other works on linear regression models (Raskutti
et al., 2011), where the upper bounds of estimation errors have sub-optimal dependence

on eigenvalues of design matrices. In addition, the last term in our lower bound, ·(t)

·̄
ϵr√
n
,

does not depend on the full dimension p, whereas the counterpart in the upper bound
does. A similar phenomenon has been noted in several papers (e.g. Tian et al., 2022;
Duan and Wang, 2023). An open question is whether the dependence on p can be removed.
Unfortunately, our ongoing work shows that this is impossible for the penalized ERM method
like Algorithm 1 for a broad class of commonly used regularizers. As pointed out by Tian
et al. (2022), estimators based on techniques in robust statistics like Tukey’s depth function
have been shown to achieve minimax rate under Huber’s contamination model for location
and covariance estimation (Chen et al., 2018), which might help improve the upper bound

21

Tian, Gu, and Feng

in our setting. In summary, when r is bounded, ϵ = 0, and ·(t) ≲ ·̄ for all t ∈ S = [T], the
penalized ERM is optimal. An adaptation of techniques in robust statistics to improve our
estimation algorithm will be an interesting future research direction.

On the other hand, the upper bound for the spectral method in Theorem 7 matches

the lower bound when ϵ = 0 and the condition number Ãmax((A
§
)¦B∗

S)/Ãmin((A
§
)¦B∗

S) in
Theorem 7 is bounded by a constant. To our knowledge, when there is no contamination
(ϵ = 0), no algorithm in the literature could achieve the optimal estimation error rate of
´(t)∗’s before our work, even in the special case h = 0. This demonstrates the power of the
spectral method in the representation MTL. However, the term related to the outlier tasks
does not involve n and is not optimal. It remains unknown what algorithm can achieve the
optimal estimation error rate when ϵ ̸= 0.

Finally, we would like to emphasize that the condition ϵr f c for some constant c > 0
is necessary for representation multi-task learning. As discussed at the end of the proof
of Theorem 8 in Section D.9 of the appendix, when ϵr > 1, the lower bound immediately
deteriorates to

√
p/n. This reduces the multi-task rate to the single-task rate, thereby

eliminating the benefits of data integration in the worst-case scenario.

2.5 Extensions to Generalized Linear Models and Non-linear Regression

We can extend the proposed methods and theoretical framework beyond the linear model
(2). For example, we can consider generalized linear models (GLMs) (McCullagh and Nelder,
1989), where the conditional distribution of Y given X = x for task t has density

p(y
(t)
i = y|x(t)

i = x) = Ä(y) exp
{
y · x¦´(t)∗ − È(x¦´(t)∗)

}
, i = 1 : n, (4)

for t ∈ S, w.r.t. some measure µ on a subset of R, where È is second-order continuously
differentiable on R, and È′ is often called the inverse link function.

In addition to GLMs, we can also extend the linear model (2) to a non-linear regression
model (Yang et al., 2015), where

y
(t)
i = g

(
(x

(t)
i)¦´(t)∗)+ ϵ

(t)
i , i = 1 : n, (5)

for t ∈ S, where g is a monotone function with a continuous second-order derivative on

R and {ϵ(t)i }ni=1 are i.i.d. zero-mean sub-Gaussian variables independent of {x(t)
i }ni=1. In

literature, g is often referred to as the link function.

Given the extensive coverage in the main text, we defer the details of these extensions to
Section A of the appendix.

3 Adaptation to Unknown Intrinsic Dimension r

In Sections 2 and A, the intrinsic dimension r is assumed to be known a priori. To
our knowledge, this assumption is standard in almost all related theoretical literature on
representation multi-task and transfer learning (e.g., Ando et al., 2005; Maurer et al., 2016;
Du et al., 2020; Thekumparampil et al., 2021; Tripuraneni et al., 2021; Chua et al., 2021;
Collins et al., 2021; Deng et al., 2022; Duchi et al., 2022; Duan and Wang, 2023), despite
being potentially unrealistic in practice. In this section, we propose a simple yet effective

22

Learning from Similar Linear Representations

algorithm to adapt the previous MTL algorithms to the case of an unknown r. Recall the

notations ·(t) = ∥¹(t)∗∥2 and ·̄ =
√
|S|−1

∑
t∈S(·

(t))2. Similar to the notations used in

Algorithm 2, we use
∏

R to denote the projection operator to an ℓ2-ball centered at zero
of radius R in Rp, and use quantile({at}Tt=1, 1− ϵ̄) to denote the lower (1− ϵ̄)-quantile of
{at}Tt=1 ¦ R, where ϵ̄ ∈ [0, 1].

The algorithm is based on SVD, and the details are summarized in Algorithm 3.

Algorithm 3: Adaptation to unknown intrinsic dimension r

Input: Data from tasks {X(t),Y (t)}Tt=1 = {{x(t)
i , y

(t)
i }ni=1}Tt=1, threshold parameters

T1, T2 > 0, an upper bound ϵ̄ (for ϵ)
Output: An estimate r̂

1 Step 1: (Single-task regression) ˜́(t) = argminβ∈Rp

{
f (t)(´)

}
for t ∈ [T]

2 Step 2: (Projection and concatenation) Create a p× T matrix B̂ whose t-th column

is
∏

R(
˜́(t)), where R = quantile({∥ ˜́(t)∥2}Tt=1, 1− ϵ̄)

3 Step 3: (Thresholding) Set r̂ = max
{
r′ ∈ [T] : Ãr′(B̂/

√
T) g T1

√
p+log T

n + T2R
√
ϵ̄
}

Algorithm 3 leverages Assumption 2 to determine an appropriate value for r. The
underlying rationale is that when h is small, a significant spectral gap often exists between
the r-th largest singular value and the (r + 1)-th largest singular value of B∗

S/
√
T . For

example, when h = 0, B∗
S is a rank-r matrix, implying that Ãr′(B

∗
S/

√
T) = 0 for r′ g r + 1.

Therefore, thresholding on singular values of an empirical version of B∗
S can be an effective

strategy to estimate r. In Section 2.3, a similar approach based on SVD of the estimated
B∗ was used to develop the spectral method. In fact, Steps 1-2 of Algorithms 2 and 3 are
the same, which construct a robust estimate of B∗

S through projected single-task estimators.
Algorithm 3 is also conceptually similar to the thresholding method often used to determine
the intrinsic dimension in principal component analysis (Onatski, 2010; Fan et al., 2021).

Under almost identical assumptions imposed in previous sections, with proper choices of
tuning parameters, Algorithm 3 is shown to be consistent in estimating the true intrinsic
dimension r, when representation matrices are similar (i.e., h is small). As we will elaborate,
this suffices to ensure the same upper bounds of estimation error for Algorithms 1 and 2
when r is unknown.

Theorem 9 (Consistency of the intrinsic dimension estimation) Suppose we choose

an ϵ̄ such that ϵ f ϵ̄ f c
r

(
·̄

maxt∈S ·(t)

)2
with a small constant c > 0. Assume mint∈S ·(t) ·

h
[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S)
'√

r
]
f c′

√
p+log T

n with a small constant c′ > 0, where B∗
S ∈ Rp×|S| is the

coefficient matrix whose columns are {´(t)∗}t∈S, A ∈ argminA∈Op×r maxt∈[T] ∥A(t)∗(A(t)∗)¦−
AA¦∥2 is the central representation, and A

§
is orthogonal to A in the sense that A

§ ∈
Op×(p−r) and (A

§
)¦A = 0(p−r)×r. Further assume that: i

(i) For the linear model (2), Assumptions 1, 2, and 5 hold;

i. Assumptions 4, 5, 6, and 7 for GLMs and non-linear regression models are presented in Section A of the
appendix.

23

Tian, Gu, and Feng

(ii) For the GLM (4), Assumptions 1, 2, 4, and 5 hold;

(iii) For the non-linear regression model (5), Assumptions 1, 2, 6, 7 hold;

Then there exist constants T1, T2 > 0 such that the output of Algorithm 3 satisfies r̂ = r w.p.
at least 1− e−C′(p+log T) with some constant C ′ > 0.

Remark 10 When mint∈S ·(t) · h
[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S)
' √

r
]
≳

√
p+log T

n in the MTL problem,

estimating r becomes unnecessary as the upper bounds of MTL estimation errors are domi-

nated by the single-task rate
√

p+log T
n for both Algorithms 1 and 2. In such cases, single-task

learning is sufficient to achieve the minimax rate. Specifically, by the proofs of these up-
per bounds, the single-task rate is always guaranteed by biased regularization in Step 2 of
Algorithm 1 and Step 4 of Algorithm 2, regardless of the performance achieved in other steps.

According to Theorem 9 and Remark 10, when r is unknown, we can first run Algorithm
3 to obtain an estimate r̂, then run Algorithms 1 and 2 with r̂. All the previous results
remain valid. This confirms that our full procedure is adaptive to an unknown intrinsic
dimension r.

Similar to Algorithm 2, Algorithm 3 also requires ϵ̄ as an upper bound of the proportion
of outlier tasks ϵ. If we have prior knowledge of ϵ (but not S and Sc), we can set ϵ̄ = ϵ.
Without such information, a small constant such as 0.05 can be chosen for ϵ̄. Similar to
Algorithm 2, we set ϵ̄ to the true ϵ value in simulations, while setting ϵ̄ = 0.05 in the real-data
study. We set the tuning parameters to T1 = 0.5 and T2 = 0.25 in the numerical experiments.
Generally, T1, T2 can be chosen through cross-validation.

Before concluding this section, we would like to highlight that, in addition to the
thresholding method, other approaches have been proposed for selecting the number of factors
in factor models, which may also be beneficial in our context. For example, information
criterion-based methods (Bai and Ng, 2002; Bunea et al., 2011) provide an alternative
approach. Algorithm 3 is naturally motivated by the singular value gap condition in
Assumption 2. However, we believe that an information criterion can also be developed to
consistently select r, leveraging the estimation error bounds we have established. Furthermore,
this selection process can be framed as a hypothesis testing problem (Onatski, 2009).
While all these methods appear promising, it remains unclear how to effectively address
heterogeneity across tasks and mitigate task contamination. We leave these challenges for
future exploration.

4 Numerical Experiments

To validate the theoretical insights discussed in previous sections, we conducted extensive
simulations and one real-data study, and the results are presented in this section.

All the experiments were implemented in Python. For penalized ERM (“pERM”,
Algorithm 1), we used the automatic differentiation implemented in PyTorch (Paszke et al.,
2019) along with the Adam optimizer (Kingma and Ba, 2015) to solve the optimization
problem (3) in Step 1. We set the learning rate equal to 0.01 in torch.optim.Adam function
and kept all the other parameter choices as in default. Step 2 of pERM and Step 4 of the

24

Learning from Similar Linear Representations

spectral method (“Spectral”, Algorithm 2) were also solved by the Adam optimizer with a
learning rate 0.01. Consistent with our theory, we set penalty parameters ¼ =

√
r(p+ log T)

and µ =
√
p+ log T in pERM, and µ = 0.5

√
p+ log T in the spectral method. As mentioned

in Section 2.3, Spectral requires an upper bound ϵ̄ of the contamination proportion ϵ. We
set ϵ̄ = ϵ in simulations and ϵ̄ = 0.05 in the real-data study. Besides pERM and Spectral, we
included the following approaches as benchmarks.

• Empirical risk minimization (“ERM”) in Du et al. (2020); Tripuraneni et al. (2021):
The optimization was also solved by the Adam solver in PyTorch with a learning rate
0.01;

• Method-of-moments (“MoM”) in Tripuraneni et al. (2021);

• Adaptive representation learning (“AdaptRep”) in Chua et al. (2021): We used the
code included in the original paper and kept all the parameter settings as default.

• Adaptive and robust multi-task learning (“ARMUL”) in Duan and Wang (2023):
We used the code included in their paper (https://github.com/kw2934/ARMUL) and
retained all default parameter settings. The tuning parameters were chosen using
5-fold cross-validation as default.

• Group Lasso (“GLasso”) in Yuan and Lin (2006); Lounici et al. (2009, 2011): We
grouped the same coordinate of coefficients from different tasks and applied an L2,1-
matrix penalty. The method was implemented in an R package RMTL (Cao et al.,
2019), and we used the Python package rpy2 to call functions cv.MTL and MTL in the
R package RMTL. The penalty parameter was chosen by a 5-fold cross-validation as
default.

• Data pooling or pooled regression (“Pooled”) in Crammer et al. (2008); Ben-David
et al. (2010): We fitted the linear regression and logistic regression models on the
pooled data from all tasks. Both models were implemented in the Python module
sklearn.linear models.

• Single-task regression (Single-task): In simulations and the real-data study, we run
single-task linear regression and logistic regression on the data of each task, respectively.

In Section 4.1, we present the performance of different approaches under different
simulation settings, such as different heterogeneity parameter h (Section 4.1.1), different
contamination proportion ϵ (Section 4.1.2), and different number of tasks T (Section 4.1.3).
We also change the full dimension p, the intrinsic dimension r, and the per-task sample
size n from setting to setting. To verify the intuition we obtained in Section 2, where we
mentioned that the performance of each task in ERM, pERM, and Spectral depends on the
signal strength ·(t) = ∥¹(t)∗∥2, we conduct a simulation with different ∥¹(t)∗∥2 values across
tasks, and the results are presented in Section 4.1.4. Finally, in Section 4.1.5, we evaluate
Algorithm 3 for estimating r, compare the performance of pERM and Spectral with the
estimated r and the true r, and demonstrate the effectiveness of Algorithm 3.

In Section 4.2, we compare the performance of different approaches on a real dataset.
The code to reproduce the results is available at https://github.com/ytstat/RL-MTL-TL.

25

Tian, Gu, and Feng

4.1 Simulations

4.1.1 Simulation with Different Heterogeneity Parameter h

In this subsection, we investigate the linear model (1) with various values of h. We explore
four distinct settings with different combinations of (n, p, r, T):

(i) n = 100, p = 30, r = 5, T = 50;

(ii) n = 100, p = 50, r = 5, T = 50;

(iii) n = 100, p = 80, r = 5, T = 50;

(iv) n = 150, p = 80, r = 10, T = 50.

In all settings, no outlier tasks are included, implying S = [T] and ϵ = |Sc|/T = 0.

Given each (n, p, r, T) combination, we generated x
(t)
i i.i.d. from N(0p, Ip), ϵ

(t)
i i.i.d. from

N(0, 1), and a random p× r matrix C with i.i.d. standard normal entries. We defined A

as the first r columns of the left singular matrix of C, Ã(t) = A + a(t)(Ir×r,0r×(p−r))
¦,

and A(t)∗ = Ã(t)[(Ã(t))¦Ã(t)]−1(Ã(t))¦ for t ∈ [T], where a(t)’s are i.i.d. sampled from
Unif([−h, h]). We generated each coordinate of ¹(t)∗ ∈ Rr from Unif([−2, 2]) independently.
We considered h from 0 to 0.8 in increments of 0.1 and replicated each setting 100 times.

Figure 5 presents the simulation results. Across all settings, pooled regression and
MoM perform worse than or on par with single-task regression, with their performance
deteriorating as h increases. AdaptRep exhibits slightly better performance than single-task
regression initially, but declines as h increases. GLasso performs similarly to single-task
regression in settings (i), (ii), and (iv), while notably improving upon it in setting (iii). ERM
significantly enhances single-task regression performance when h is small, but performs
worse than single-task regression for large h. In contrast, ARMUL, pERM, and Spectral can
improve the performance of single-task regression when h is small, and their performance
will be comparable to single-task regression for large h.

As one reviewer pointed out, Spectral performs worse than pERM when h is small,
particularly when p/n is large, despite having a sharper theoretical estimation upper bound.
There are several possible explanations for this phenomenon. First, comparing the estimation
errors in Theorems 2 and 7, Spectral outperforms pERM only in the term that depends on
the similarity level h. When h is small, this advantage may be overshadowed by other terms,
making the benefit of Spectral less apparent. However, as h increases, Spectral can catch up
and eventually surpass pERM in performance. Second, our theoretical analysis primarily
focuses on convergence rates while ignoring constant factors, which can significantly impact
practical performance. Third, our analysis does not explicitly account for the effect of p/n
on Spectral’s performance, although we believe it plays a crucial role, particularly when
p/n is large. In such cases, replacing OLS with single-task ridge regression may improve
performance. On the other hand, as discussed at the end of Section 2.2.1, Spectral requires
a more stringent sample size condition, namely n ≳ p+ log T , compared to n ≳ r + log T
for pERM when h is small. An even stronger requirement, n ≳ r2(p+ log T), is needed for
ARMUL. A more refined theoretical analysis in the proportional regime p/n→ µ with some
constant µ > 0 could provide deeper insights into the behaviors of Spectral and ARMUL.
We leave these investigations for future work.

26

Learning from Similar Linear Representations

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

n = 100, p = 30, r = 5, T = 50, ε = 0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

n = 100, p = 50, r = 5, T = 50, ε = 0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

n = 100, p = 80, r = 5, T = 50, ε = 0

2

4

6

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

n = 150, p = 80, r = 10, T = 50, ε = 0

method
AdaptRep

ARMUL

ERM

GLasso

MoM

pERM

Pooled

Single−task

Spectral

Figure 5: Simulation with different heterogeneity parameters h: estimation error
maxt∈[T] ∥ ̂́(t) − ´(t)∗∥2 of different algorithms with different (n, p, r, T) settings. “max

error in S” in the y-axis stands for maxt∈S ∥ ̂́(t) − ´(t)∗∥2 with S = [T]. Each point repre-
sents the average over 100 replications.

4.1.2 Simulation with Different Contamination Proportion ϵ

In this subsection, we considered the linear model (1) with varying contamination proportions
ϵ = |Sc|/T . We explored two settings with different values of (n, p, r, T):

(i) n = 100, p = 50, r = 5, T = 100;

(ii) n = 150, p = 80, r = 10, T = 100.

For each replication in each setting, we randomly selected a subset of size T (1 − ϵ) from
[T] without replacement to form S. We set h = 0 and generated tasks in S using the same
mechanism as in Section 4.1.1. The outlier tasks in Sc were generated by the linear model

with x
(t)
i i.i.d. from N(0p, 2Ip) and each coordinate of the coefficient ´(t)∗ was generated

i.i.d. from Unif([−3, 3]). We varied ϵ from 0 to 10% in increments of 2% and replicated each
setting 100 times.

27

Tian, Gu, and Feng

n = 100, p = 50, r = 5, T = 100, h = 0

1

2

3

4

0% 2% 4% 6% 8% 10%
ε

m
a
x
 e

rr
o
r

in
 S

0

5

10

2% 4% 6% 8% 10%
ε

m
a
x
 e

rr
o
r

in
 S

c

n = 150, p = 80, r = 10, T = 100, h = 0

1

2

3

4

5

0% 2% 4% 6% 8% 10%
ε

m
a
x
 e

rr
o
r

in
 S

0

5

10

15

2% 4% 6% 8% 10%
ε

m
a
x
 e

rr
o
r

in
 S

c

method
AdaptRep

ARMUL

ERM

GLasso

MoM

pERM

Pooled

Single−task

Spectral

Figure 6: Simulation with different contamination proportions ϵ: within-S estimation
error maxt∈S ∥ ̂́(t) − ´(t)∗∥2 and outlier estimation error maxt∈Sc ∥ ̂́(t) − ´(t)∗∥2 of different
algorithms with different (n, p, r, T) settings. “max error in S” and “max error in Sc” in
the y-axis stand for maxt∈S ∥ ̂́(t) − ´(t)∗∥2 and maxt∈Sc ∥ ̂́(t) − ´(t)∗∥2, respectively. Each
point represents the average over 100 replications.

The results are summarized in Figure 6, where we evaluated each method by both
maxt∈S ∥ ̂́(t) − ´(t)∗∥2 and maxt∈Sc ∥ ̂́(t) − ´(t)∗∥2. As the outlier proportion ϵ increases,
the performance of most algorithms deteriorates rapidly. Even with just 2% outlier tasks,
all methods perform similarly to or worse than single-task regression on tasks in S, except
for pERM and Spectral. This demonstrates the robustness of pERM and Spectral against
outlier tasks. On the other hand, ARMUL does perform worse than single-task regression,
even when ϵ is large. Since the outlier tasks were also generated from the linear model,
our theory guarantees that pERM and Spectral can match the single-task performance on
outlier tasks in Sc, which is indeed observed. In contrast, ARMUL performs much worse on
outlier tasks in Sc compared to single-task regression.

28

Learning from Similar Linear Representations

4.1.3 Simulation with Different Number of Tasks T

In this subsection, we explore the impact of the number of tasks T on the performance of
different methods in this subsection. We considered the linear model (1) in two settings,
with different values of (n, p, r, ϵ):

(i) n = 100, p = 50, r = 5, ϵ = 0;

(ii) n = 100, p = 50, r = 5, ϵ = 4%.

For each (n, p, r, ϵ) setting and T value, we set h = 0 and generated data in the same way as
in Section 4.1.2. We increased T from 10 to 190 with increments of 15. The performance of
different methods on tasks in S is summarized in Figure 7.

1

2

3

50 100 150

T

m
a
x
 e

rr
o
r

in
 S

n = 100, p = 50, r = 5, h = 0, ε = 0

1

2

3

4

50 100 150

T

m
a
x
 e

rr
o
r

in
 S

n = 100, p = 50, r = 5, h = 0, ε = 4 %

method
AdaptRep

ARMUL

ERM

GLasso

MoM

pERM

Pooled

Single−task

Spectral

Figure 7: Simulation with different number of tasks T : estimation error maxt∈S ∥ ̂́(t)−´(t)∗∥2
of different algorithms with different (n, p, r, T) settings. “max error in S” in the y-axis
stands for maxt∈S ∥ ̂́(t) − ´(t)∗∥2. Each point represents the average over 100 replications.

In the absence of outlier tasks, ERM, pERM, ARMUL, and Spectral exhibit comparable
performance. As T increases, their estimation errors first decrease gradually and then
stabilize, aligning with the theoretical result. For example, when ·(t) = ∥¹(t)∗∥2 ≲ 1 for
all t ∈ S = [T], p ≳ r2, and h = ϵ = 0, Theorem 2 implies that maxt∈[T] ∥ ̂́(t) − ´(t)∗∥2 ≲

r
√

p
nT + r

√
1
n , up to logarithmic factors with high probability. When T becomes large, the

error is dominated by the second term r
√

1
n , which is independent of T . Besides ERM,

pERM, ARMUL, and Spectral, the performance of MoM also improves as T increases.
Similar to our findings in Sections 4.1.1 and 4.1.2, MoM’s performance improves only when
T is sufficiently large. This aligns with the empirical observations in Tripuraneni et al.
(2021), where they found that ERM always outperforms MoM until T is very large, and the
underlying reason is unclear.

When ϵ = 4% tasks are contaminated, only the performance of pERM and Spectral
improves as T increases, and they outperform all other methods, demonstrating their

29

Tian, Gu, and Feng

robustness against outlier tasks. ARMUL and GLasso perform slightly better than single-
task regression, while the other benchmark methods suffer from severe negative transfer and
are significantly impacted by the outliers.

−5.0

−2.5

0.0

2.5

5.0

50 100 150

T

lo
g
 c

o
m

p
u
ta

ti
o
n
a
l
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

method
AdaptRep

ARMUL

ERM

GLasso

MoM

pERM

Pooled

Single−task

Spectral

n = 100, p = 50, r = 5, h = 0, ε = 0

Figure 8: Computational time of different methods with various numbers of tasks T . The
y-axis is in the log-scale, and the unit is seconds. Each point represents the average over
100 replications.

Finally, we recorded the computational time for different methods in setting (i). The
experiments were run on the Terremoto HPC Cluster of Columbia University with a CPU
Intel Xeon Gold 6126 2.6 GHz. We used a single core with 3 GB of memory when running
each method. The computational time for different methods with different T values is
plotted on a logarithmic scale in Figure 8. We can see that ARMUL and pERM are the most
time-consuming methods, with pERM slightly faster than ARMUL, taking approximately
e6.25 ≈ 500 seconds for T = 190. In contrast, all the other methods can be run within
e3.5 ≈ 30 seconds for all values of T . This demonstrates the computational efficiency of the
spectral method.

4.1.4 Relationship between Task Performance and Signal Strength ∥¹(t)∗∥2
In this subsection, we aim to verify our theoretical findings that the performance of ERM,
pERM, and Spectral on each task can depend on the signal strength in terms of ∥¹(t)∗∥2, a
relationship not previously discussed in the literature.

We generated data by a mechanism similar to that in Section 4.1.1, with n = 100, p = 50,
r = 5, T = 10, h = ϵ = 0. The only change in this section’s data generation mechanism is
that each ¹(t)∗ is uniformly generated from 0.5tSr−1, i.e., the sphere centered at 0 in Rr

with a radius of 0.5t. We replicated this setting 100 times and summarized the average
estimation error of the single-task regression, ERM, pERM, and Spectral on each task with
different ∥¹(t)∗∥2 values in Figure 9.

30

Learning from Similar Linear Representations

0.3

0.5

0.7

0.9

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

||θ(t) ∗ ||
2

e
rr

o
r

o
f
e
a
c
h
 t
a
s
k

method ERM pERM Single−task Spectral

Figure 9: Simulation verifying the relationship between the estimation error ∥ ̂́(t) − ´(t)∗∥2
and signal strength ∥¹(t)∗∥2 on each task for different methods. “error of each task” in the
y-axis stands for ∥ ̂́(t) − ´(t)∗∥2. Each point represents the average over 100 replications.

We can observe that the estimation error of ERM, pERM, and Spectral is approximately
proportional to ∥¹(t)∗∥2, which matches our theoretical findings. Specifically, the Pearson
correlation coefficients between ∥¹(t)∗∥2 and the average ∥ ̂́(t) − ´(t)∗∥2 for ERM, pERM,
and Spectral are 0.977, 0.975, and 0.976, respectively. In contrast, single-task regression
has comparable performance across different tasks, regardless of the signal strength ∥¹(t)∗∥2.
This indicates that the benefit each individual task derives from representation MTL is
highly dependent on the signal strength in terms of ∥¹(t)∗∥2, unlike in single-task linear
regression where the ℓ2-estimation error does not depend on the scale of the coefficient
∥´(t)∗∥2.

4.1.5 Adaptivity to the Intrinsic Dimension r

In the previous simulations, we used the true intrinsic dimension r in different representation
MTL methods. In this subsection, we want to test the performance of our Algorithm 3 for
estimating r and how it enables pERM and Spectral to adapt to unknown r in practice.

We consider the linear model (1) under four settings, with different (n, p, r, T, ϵ) values:

(i) n = 100, p = 50, r = 5, T = 50, ϵ = 0;

(ii) n = 100, p = 50, r = 5, T = 50, ϵ = 4%;

(iii) n = 150, p = 80, r = 10, T = 50, ϵ = 0;

(iv) n = 150, p = 80, r = 10, T = 50, ϵ = 4%.

Given each (n, p, r, T, ϵ), we increased h from 0 to 0.8 in increments of 0.1, generated data
for tasks in S following the same mechanism used in Section 4.1.1, and generated data for

31

Tian, Gu, and Feng

tasks in Sc following the same mechanism used in Section 4.1.2. We first ran Algorithm 3 to
obtain an estimate r̂ of r, then ran pERM and Spectral with r̂. We denote these versions
as pERM-adaptive and Spectral-adaptive, respectively. We also ran pERM and Spectral
with the true r value as benchmarks, and we call them pERM-oracle and Spectral-oracle,
respectively. Each setting was replicated 100 times, and the average estimation error on
tasks in S of different approaches, as well as the average r̂, was plotted in Figure 10.

0.8

1.2

1.6

2

3

4

5

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

r̂

n = 100, p = 50, r = 5, T = 50, ε = 0

0.50

0.75

1.00

1.25

1.50

2

3

4

5

0.0 0.2 0.4 0.6 0.8

h
m

a
x
 e

rr
o
r

in
 S

r̂

n = 100, p = 50, r = 5, T = 50, ε = 4 %

0.6

0.9

1.2

1.5

4

6

8

10

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

r̂

n = 150, p = 80, r = 10, T = 50, ε = 0

0.6

0.8

1.0

1.2

1.4

4

6

8

10

0.0 0.2 0.4 0.6 0.8

h

m
a
x
 e

rr
o
r

in
 S

r̂

n = 150, p = 80, r = 10, T = 50, ε = 4 %

method pERM−adaptive pERM−oracle Spectral−adaptive Spectral−oracle Single−task r̂

Figure 10: Simulation verifying the performance of Algorithm 3 for estimating r and its
impact on helping pERM and Spectral adapt to unknown r. “max error in S” in the
left y-axis stands for maxt∈S ∥ ̂́(t) − ´(t)∗∥2. The red r̂ in the right y-axis stands for the
estimated r value. Each point represents the average over 100 replications.

We can see that the estimate r̂ is very close to the true r in all four settings when h
is small, ensuring that pERM and Spectral using r̂ perform comparably to their oracle
counterparts using the true r. When h becomes large, the estimate r̂ may deviate from the
true r. However, as we mentioned in Remark 10 of Section 3, there is no need to estimate
r precisely when h is large, and biased regularization in Step 2 of pERM and Step 4 of
Spectral can always guarantee the single-task performance.

4.2 A Real-data Study

In this subsection, we applied different approaches to a real data set, Human Activity
Recognition (HAR) Using a Smartphones Data Set. This data set includes data collected

32

Learning from Similar Linear Representations

from 30 volunteers performing six activities (walking, walking upstairs, walking downstairs,
sitting, standing, and laying) with a smartphone (Anguita et al., 2013). Each observation
has p = 561 time and frequency domain variables. We treated each volunteer as a task,
with the sample size per task ranging from 281 to 409. The original data set is available at
UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/human+
activity+recognition+using+smartphones.

We focused on the binary classification problem of discriminating between walking and
standing postures (i.e., walking, walking upstairs, walking downstairs, and standing) and
the others (i.e., sitting and laying). We standardized the data of each task before training
different algorithms. For each task, in each replication, we used 50% of the samples as
training data and held 50% of the sample as test data.

We ran single-task logistic regression, pooled logistic regression, ERM, ARMUL, pERM,
the spectral method, and GLasso on this problem, replicated it 100 times, and summarized
the average misclassification test error rates of different methods over T = 30 tasks with
different r values in Table 2. We can see that pERM consistently achieved the lowest error
rate (tied with ERM when r = 15) among all the methods for different r values.

r/Method Single-task Pooled ERM ARMUL pERM Spectral GLasso

r = 5 1.66 (0.20) 1.79 (0.21) 1.62 (1.42) 2.12 (0.27) 1.33 (0.23) 1.85 (0.27) 1.44 (0.25)

r = 10 1.66 (0.20) 1.79 (0.21) 1.42 (0.23) 1.77 (0.23) 1.25 (0.20) 1.47 (0.18) 1.44 (0.25)

r = 15 1.66 (0.20) 1.79 (0.21) 1.36 (0.23) 1.68 (0.21) 1.36 (1.07) 1.50 (0.19) 1.44 (0.25)

Table 2: The average mis-classification test error rates (standard deviations) of different
methods over T = 30 tasks with different r values. All values are in percentages.

5 Discussions

In this work, we investigated the representation multi-task learning (MTL) problem, where
most tasks share similar linear representations, and a small fraction of tasks can be arbitrarily
contaminated. To address this problem, we proposed a penalized empirical risk minimization
(ERM) method and a spectral method, and derived upper bounds for the estimation error.
Our theory demonstrated that both algorithms are adaptive to the unknown similarity level
between tasks and robust to a small fraction of outlier tasks. Additionally, the spectral
method achieves a sharper estimation error bound than the penalized ERM when there
is no contamination. Our theory also reveals the relationship between the performance of
representation MTL methods on each task and the signal strength, which is usually ignored
in the literature. We also presented the first lower bound results for estimating regression
coefficients in the context of representation MTL. Our new spectral method is minimax
optimal when there is no outlier task, and our penalized ERM is nearly optimal in a large
regime with little impact from outlier tasks. We extended the algorithms and theory to
generalized linear models and non-linear regression models. We also proposed a simple
thresholding algorithm to adapt our MTL algorithms to the case of an unknown intrinsic
dimension r. Finally, we conducted extensive numerical experiments to empirically validate
our theoretical findings.

33

Tian, Gu, and Feng

A recent paper (Niu et al., 2024) conducts a sophisticated and sharp analysis for the
case where h = ϵ = 0, accurately characterizing how the estimation error could depend on
the singular values of B∗

S = (´(1)∗ . . . ´(T)∗) ∈ Rp×T . It would be interesting to explore
how their analysis extends to two of our proposed algorithms in the more general regime
considered in our study.

Acknowledgments and Disclosure of Funding

Ye Tian is grateful to Gan Yuan (City University of Hong Kong) and Yasaman Mahdaviyeh
(Columbia University) for their valuable discussions, which greatly improved the quality of
this paper. He also extends his gratitude to Prof. Linjun Zhang (Rutgers University) for his
insightful discussions that initially inspired this work. Additionally, Ye Tian appreciates the
valuable feedback received following his presentations at the 2024 IMS-China International
Conference on Statistics and Probability, at the Department of Statistics, Iowa State
University, and at the Workshop in Operations Research and Data Science (WORDS 2024)
hosted by the Fuqua School of Business, Duke University. All numerical experiments were
conducted on Ginsburg HPC Cluster and Terremoto HPC Cluster of Columbia University.
Yuqi Gu acknowledges the support of the NSF Grant DMS-2210796. Yang Feng’s research
is partially supported by NIH grant 1R21AG074205-01, NSF Grant DMS-2324489, NYU
University Research Challenge Fund, and a grant from NYU School of Global Public Health.
The authors are grateful to the Action Editor and four reviewers for their helpful and
constructive comments.

References

D. Alistarh, Z. Allen-Zhu, and J. Li. Byzantine stochastic gradient descent. Advances in
neural information processing systems, 31, 2018.

R. K. Ando, T. Zhang, and P. Bartlett. A framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of Machine Learning Research, 6(11), 2005.

D. Anguita, A. Ghio, L. Oneto, X. Parra, J. Reyes-Ortiz, et al. A public domain dataset for
human activity recognition using smartphones. In 21th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning (ESANN), pages
437–442. CIACO, 2013.

J. Bai and S. Ng. Determining the number of factors in approximate factor models.
Econometrica, 70(1):191–221, 2002.

M. Bakhshizadeh, A. Maleki, and V. H. de la Pena. Sharp concentration results for heavy-
tailed distributions. arXiv preprint arXiv:2003.13819, 2020.

S. Balakrishnan, M. J. Wainwright, and B. Yu. Statistical guarantees for the em algorithm:
From population to sample-based analysis. The Annals of Statistics, 45(1):77–120, 2017.

H. Bastani. Predicting with proxies: Transfer learning in high dimension. Management
Science, 67(5):2964–2984, 2021.

34

Learning from Similar Linear Representations

J. Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

S. Ben-David and R. S. Borbely. A notion of task relatedness yielding provable multiple-task
learning guarantees. Machine learning, 73:273–287, 2008.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory
of learning from different domains. Machine learning, 79:151–175, 2010.

F. Bunea, Y. She, and M. H. Wegkamp. Optimal selection of reduced rank estimators of
high-dimensional matrices. The Annals of Statistics, 39(2):1282, 2011.

T. T. Cai and H. Wei. Transfer learning for nonparametric classification: Minimax rate and
adaptive classifier. The Annals of Statistics, 49(1), 2021.

T. T. Cai, Z. Ma, and Y. Wu. Sparse pca: Optimal rates and adaptive estimation. Annals
of Statistics, 41(6):3074–3110, 2013.

T. T. Cai, J. Ma, and L. Zhang. Chime: Clustering of high-dimensional gaussian mixtures
with em algorithm and its optimality 1. Annals of Statistics, 47(3):1234–1267, 2019.

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal
of the ACM (JACM), 58(3):1–37, 2011.

H. Cao, J. Zhou, and E. Schwarz. Rmtl: an r library for multi-task learning. Bioinformatics,
35(10):1797–1798, 2019.

A. Chen and Y. Feng. GeoERM: Geometry-aware multi-task representation learning on
riemannian manifolds. arXiv preprint arXiv:2505.02972, 2025.

M. Chen, C. Gao, and Z. Ren. Robust covariance and scatter matrix estimation under
huber’s contamination model. The Annals of Statistics, 46(5):1932–1960, 2018.

S. Chen, K. Crammer, H. He, D. Roth, and W. J. Su. Weighted training for cross-task
learning. arXiv preprint arXiv:2105.14095, 2021a.

X. Chen, M. Chen, C. Fan, A. Uppunda, Y. Sun, and C. Zaniolo. Multilingual knowledge
graph completion via ensemble knowledge transfer. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 3227–3238, 2020.

Y. Chen, L. Su, and J. Xu. Distributed statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 1(2):1–25, 2017.

Y. Chen, Y. Chi, J. Fan, C. Ma, et al. Spectral methods for data science: A statistical
perspective. Foundations and Trends® in Machine Learning, 14(5):566–806, 2021b.

K. Chua, Q. Lei, and J. D. Lee. How fine-tuning allows for effective meta-learning. Advances
in Neural Information Processing Systems, 34:8871–8884, 2021.

35

Tian, Gu, and Feng

L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai. Exploiting shared representations
for personalized federated learning. In International Conference on Machine Learning,
pages 2089–2099. PMLR, 2021.

K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of
Machine Learning Research, 9(8), 2008.

G. Denevi, M. Pontil, and C. Ciliberto. The advantage of conditional meta-learning for
biased regularization and fine tuning. Advances in Neural Information Processing Systems,
33:964–974, 2020.

S. Deng, Y. Guo, D. Hsu, and D. Mandal. Learning tensor representations for meta-learning.
In International Conference on Artificial Intelligence and Statistics, pages 11550–11580.
PMLR, 2022.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In International
conference on machine learning, pages 647–655. PMLR, 2014.

D. Donoho and A. Montanari. High dimensional robust m-estimation: Asymptotic variance
via approximate message passing. Probability Theory and Related Fields, 166:935–969,
2016.

S. S. Du, W. Hu, S. M. Kakade, J. D. Lee, and Q. Lei. Few-shot learning via learning the
representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Y. Duan and K. Wang. Adaptive and robust multi-task learning. The Annals of Statistics,
51(5):2015–2039, 2023.

J. Duchi, V. Feldman, L. Hu, and K. Talwar. Subspace recovery from heterogeneous data
with non-isotropic noise. arXiv preprint arXiv:2210.13497, 2022.

C. Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pages 1–12. Springer, 2006.

C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

J. Fan, K. Wang, Y. Zhong, and Z. Zhu. Robust high dimensional factor models with
applications to statistical machine learning. Statistical science: a review journal of the
Institute of Mathematical Statistics, 36(2):303, 2021.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR,
2017.

C. Finn, A. Rajeswaran, S. Kakade, and S. Levine. Online meta-learning. In International
Conference on Machine Learning, pages 1920–1930. PMLR, 2019.

I. Gannaz. Robust estimation and wavelet thresholding in partially linear models. Statistics
and Computing, 17:293–310, 2007.

36

Learning from Similar Linear Representations

P. Goyal, D. Mahajan, A. Gupta, and I. Misra. Scaling and benchmarking self-supervised
visual representation learning. In Proceedings of the ieee/cvf International Conference on
computer vision, pages 6391–6400, 2019.

T. Gu, P. H. Lee, and R. Duan. Commute: Communication-efficient transfer learning for
multi-site risk prediction. Journal of Biomedical Informatics, 137:104243, 2023.

T. Gu, Y. Han, and R. Duan. Robust angle-based transfer learning in high dimensions.
Journal of the Royal Statistical Society Series B: Statistical Methodology, page qkae111,
2024.

R. Guerraoui, N. Gupta, and R. Pinot. Byzantine machine learning: A primer. ACM
Computing Surveys, 56(7):1–39, 2024.

A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine. Learning invariant feature spaces to
transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949, 2017.

S. Hanneke and S. Kpotufe. On the value of target data in transfer learning. Advances in
Neural Information Processing Systems, 32, 2019.

S. Hanneke and S. Kpotufe. A no-free-lunch theorem for multitask learning. The Annals of
Statistics, 50(6):3119–3143, 2022.

W. Härdle and T. M. Stoker. Investigating smooth multiple regression by the method of
average derivatives. Journal of the American statistical Association, 84(408):986–995,
1989.

T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-learning in neural networks: A
survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169,
2021.

M. Hristache, A. Juditsky, and V. Spokoiny. Direct estimation of the index coefficient in a
single-index model. Annals of Statistics, pages 595–623, 2001.

A. Jalali, S. Sanghavi, C. Ruan, and P. Ravikumar. A dirty model for multi-task learning.
Advances in neural information processing systems, 23, 2010.

T. Kato. Perturbation theory for linear operators, volume 132. Springer Science & Business
Media, 2013.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic gradient descent. In ICLR:
international conference on learning representations, pages 1–15. ICLR US., 2015.

W. Kong, R. Somani, Z. Song, S. Kakade, and S. Oh. Meta-learning for mixed linear
regression. In International Conference on Machine Learning, pages 5394–5404. PMLR,
2020.

N. Konstantinov, E. Frantar, D. Alistarh, and C. Lampert. On the sample complexity of
adversarial multi-source pac learning. In International Conference on Machine Learning,
pages 5416–5425. PMLR, 2020.

37

Tian, Gu, and Feng

S. Kpotufe and G. Martinet. Marginal singularity and the benefits of labels in covariate-shift.
The Annals of Statistics, 49(6):3299–3323, 2021.

I. Kuzborskij and F. Orabona. Stability and hypothesis transfer learning. In International
Conference on Machine Learning, pages 942–950. PMLR, 2013.

I. Kuzborskij and F. Orabona. Fast rates by transferring from auxiliary hypotheses. Machine
Learning, 106:171–195, 2017.

S. Li, T. Cai, and R. Duan. Targeting underrepresented populations in precision medicine:
A federated transfer learning approach. arXiv preprint arXiv:2108.12112, 2021.

S. Li, T. T. Cai, and H. Li. Transfer learning in large-scale gaussian graphical models with
false discovery rate control. Journal of the American Statistical Association, pages 1–13,
2022a.

S. Li, T. T. Cai, H. Li, et al. Transfer learning for high-dimensional linear regression:
Prediction, estimation and minimax optimality. Journal of the Royal Statistical Society
Series B, 84(1):149–173, 2022b.

H. Lin and M. Reimherr. On transfer learning in functional linear regression. arXiv preprint
arXiv:2206.04277, 2022.

G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Robust recovery of subspace structures by
low-rank representation. IEEE transactions on pattern analysis and machine intelligence,
35(1):171–184, 2012.

P.-L. Loh and M. J. Wainwright. Regularized m-estimators with nonconvexity: Statistical
and algorithmic theory for local optima. Journal of Machine Learning Research, 16:
559–616, 2015.

K. Lounici, M. Pontil, A. Tsybakov, and S. Van De Geer. Taking advantage of sparsity in
multi-task learning. In COLT 2009-The 22nd Conference on Learning Theory, 2009.

K. Lounici, M. Pontil, S. van de Geer, and A. B. Tsybakov. Oracle inequalities and optimal
inference under group sparsity. The Annals of Statistics, 39(4):2164–2204, 2011.

G. Lugosi and S. Mendelson. Robust multivariate mean estimation: the optimality of
trimmed mean. The Annals of Statistics, 49(1):393–410, 2021.

A. Maurer, M. Pontil, and B. Romera-Paredes. The benefit of multitask representation
learning. Journal of Machine Learning Research, 17(81):1–32, 2016.

P. McCullagh and J. A. Nelder. Generalized Linear Models, volume 37. CRC Press, 1989.

D. Meunier, Z. Li, A. Gretton, and S. Kpotufe. Nonlinear meta-learning can guarantee
faster rates. arXiv preprint arXiv:2307.10870, 2023.

S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for
high-dimensional analysis of m-estimators with decomposable regularizers. Statistical
Science, 27(4):538, 2012.

38

Learning from Similar Linear Representations

A. Nichol, J. Achiam, and J. Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

X. Niu, L. Su, J. Xu, and P. Yang. Collaborative learning with shared linear representations:
Statistical rates and optimal algorithms. arXiv preprint arXiv:2409.04919, 2024.

A. Onatski. Testing hypotheses about the number of factors in large factor models. Econo-
metrica, 77(5):1447–1479, 2009.

A. Onatski. Determining the number of factors from empirical distribution of eigenvalues.
The Review of Economics and Statistics, 92(4):1004–1016, 2010.

A. Pajor. Metric entropy of the grassmann manifold. Convex Geometric Analysis, 34:
181–188, 1998.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

M. Qiao. Do outliers ruin collaboration? In International Conference on Machine Learning,
pages 4180–4187. PMLR, 2018.

M. Qiao and G. Valiant. Learning discrete distributions from untrusted batches. In 9th
Innovations in Theoretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio. Transfusion: Understanding transfer
learning for medical imaging. Advances in neural information processing systems, 32,
2019.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional
linear regression over ℓq-balls. IEEE transactions on information theory, 57(10):6976–6994,
2011.

M. Rostami, H. He, M. Chen, and D. Roth. Transfer learning via representation learning. In
Federated and Transfer Learning, pages 233–257. Springer International Publishing Cham,
2022.

A. M. Samarov. Exploring regression structure using nonparametric functional estimation.
Journal of the American Statistical Association, 88(423):836–847, 1993.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
International conference on computational learning theory, pages 416–426. Springer, 2001.

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Con-
vergence results and optimal averaging schemes. In International conference on machine
learning, pages 71–79. PMLR, 2013.

Y. She and A. B. Owen. Outlier detection using nonconvex penalized regression. Journal of
the American Statistical Association, 106(494):626–639, 2011.

39

Tian, Gu, and Feng

K. K. Thekumparampil, P. Jain, P. Netrapalli, and S. Oh. Statistically and computationally
efficient linear meta-representation learning. Advances in Neural Information Processing
Systems, 34:18487–18500, 2021.

Y. Tian and Y. Feng. Transfer learning under high-dimensional generalized linear models.
Journal of the American Statistical Association, pages 1–14, 2022.

Y. Tian, H. Weng, L. Xia, and Y. Feng. Unsupervised multi-task and transfer learning on
gaussian mixture models. arXiv preprint arXiv:2209.15224, 2022.

Y. Tian, H. Weng, and Y. Feng. Towards the theory of unsupervised federated learning:
Non-asymptotic analysis of federated em algorithms. Proceedings of Machine Learning
Research, 235:48226–48279, 2024.

N. Tripuraneni, M. Jordan, and C. Jin. On the theory of transfer learning: The importance
of task diversity. Advances in neural information processing systems, 33:7852–7862, 2020.

N. Tripuraneni, C. Jin, and M. Jordan. Provable meta-learning of linear representations. In
International Conference on Machine Learning, pages 10434–10443. PMLR, 2021.

A. B. Tsybakov. Introduction to nonparametric estimation. Springer, New York, 2009.

R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

R. Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

R. Vidal, Y. Ma, S. S. Sastry, R. Vidal, Y. Ma, and S. S. Sastry. Principal component
analysis. Generalized principal component analysis, pages 25–62, 2016.

M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge university press, 2019.

A. Wang, J. Hula, P. Xia, R. Pappagari, R. T. McCoy, R. Patel, N. Kim, I. Tenney, Y. Huang,
K. Yu, et al. Can you tell me how to get past sesame street? sentence-level pretraining
beyond language modeling. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4465–4476, 2019.

P.-Å. Wedin. Perturbation bounds in connection with singular value decomposition. BIT
Numerical Mathematics, 12:99–111, 1972.

K. Weiss, T. M. Khoshgoftaar, and D. Wang. A survey of transfer learning. Journal of Big
data, 3(1):1–40, 2016.

J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. Advances in
neural information processing systems, 22, 2009.

H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit. IEEE Transactions
on Information Theory, 58(5):3047–3064, 2012.

40

Learning from Similar Linear Representations

K. Xu and H. Bastani. Learning across bandits in high dimension via robust statistics. arXiv
preprint arXiv:2112.14233, 2021.

Z. Yang, Z. Wang, H. Liu, Y. C. Eldar, and T. Zhang. Sparse nonlinear regression: Parameter
estimation and asymptotic inference. arXiv preprint arXiv:1511.04514, 2015.

Z. Yang, K. Balasubramanian, Z. Wang, and H. Liu. Learning non-gaussian multi-index
model via second-order stein’s method. Advances in Neural Information Processing
Systems, 30:6097–6106, 2017.

D. Yin, Y. Chen, R. Kannan, and P. Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. In International conference on machine learning, pages
5650–5659. Pmlr, 2018.

Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2015.

G. Yuan, M. Xu, S. Kpotufe, and D. Hsu. Efficient estimation of the central mean subspace
via smoothed gradient outer products. arXiv preprint arXiv:2312.15469, 2023.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67,
2006.

Y. Zhang and Q. Yang. An overview of multi-task learning. National Science Review, 5(1):
30–43, 2018.

Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 34(12):5586–5609, 2021.

D. Zhou, T. Cai, and J. Lu. Multi-source learning via completion of block-wise overlapping
noisy matrices. arXiv preprint arXiv:2105.10360, 2021.

D. Zhou, M. Liu, M. Li, and T. Cai. Doubly robust augmented model accuracy transfer
inference with high dimensional features. arXiv preprint arXiv:2208.05134, 2022.

B. Zhu, L. Wang, Q. Pang, S. Wang, J. Jiao, D. Song, and M. I. Jordan. Byzantine-robust
federated learning with optimal statistical rates. In International Conference on Artificial
Intelligence and Statistics, pages 3151–3178. PMLR, 2023.

41

Content of Appendices

A Extensions to More General Models 43

A.1 Generalized Linear Models . 43

A.2 Non-linear Regression . 45

B Transferring to New Tasks (Learning-to-learn) 45

B.1 Problem Set-up . 45

B.2 Upper Bounds . 46

B.3 Lower Bounds . 48

C General Lemmas 48

C.1 Lemmas . 48

C.2 Proofs of Lemmas . 51

C.2.1 Proof of Lemma 19 . 51

C.2.2 Proof of Lemma 22 . 52

C.2.3 Proof of Lemma 24 . 52

D Proofs for Linear Regression Models 52

D.1 Lemmas . 52

D.2 Proof of Theorem 1 . 54

D.3 Proof of Theorem 2 . 57

D.4 Proof of Theorem 3 . 58

D.5 Proof of Theorem 4 . 58

D.6 Proof of Theorem 5 . 60

D.7 Proof of Theorem 6 . 74

D.8 Proof of Theorem 7 . 75

D.9 Proof of Theorem 8 . 79

D.10 Proof of Theorem 14 . 87

D.11 Proof of Theorem 15 . 88

D.12 Proofs of Lemmas and Propositions . 92

D.12.1 Proof of Lemma 29 . 92

D.12.2 Proof of Lemma 30 . 93

D.12.3 Proof of Lemma 31 . 93

D.12.4 Proof of Lemma 32 . 93

D.12.5 Proof of Lemma 33 . 94

D.12.6 Proof of Lemma 34 . 94

D.12.7 Proof of Lemma 35 . 95

D.12.8 Proof of Lemma 36 . 95

D.12.9 Proof of Lemma 37 . 96

D.12.10 Proof of Lemma 38 . 97

D.12.11 Proof of Lemma 39 . 97

D.12.12 Proof of Lemma 40 . 99

D.12.13 Proof of Lemma 41 . 99

D.12.14 Proof of Proposition 42 . 99

42

Learning from Similar Linear Representations

E Proofs for GLMs 106

E.1 Lemmas . 106

E.2 Proof of Theorem 11 . 108

E.3 Proof of Theorem 16 . 109

E.4 Proofs of Lemmas . 109

E.4.1 Proof of Lemma 43 . 109

E.4.2 Proof of Lemma 44 . 110

E.4.3 Proof of Lemma 45 . 111

E.4.4 Proof of Lemma 46 . 113

E.4.5 Proof of Lemma 47 . 113

E.4.6 Proof of Lemma 48 . 114

E.4.7 Proof of Lemma 49 . 115

E.4.8 Proof of Lemma 50 . 115

E.4.9 Proof of Lemma 51 . 115

F Proofs for Non-linear Regression Models 116

F.1 Lemmas . 116

F.2 Proof of Theorem 12 . 117

F.3 Proof of Theorem 17 . 119

F.4 Proofs of Lemmas . 119

F.4.1 Proof of Lemma 52 . 119

F.4.2 Proof of Lemma 53 . 121

F.4.3 Proof of Lemma 54 . 121

F.4.4 Proof of Lemma 55 . 121

F.4.5 Proof of Lemma 56 . 122

F.4.6 Proof of Lemma 57 . 122

F.4.7 Proof of Lemma 58 . 122

F.4.8 Proof of Lemma 59 . 123

G Proofs for Estimation of Intrinsic Dimension r 123

G.1 Proof of Theorem 9 . 123

Appendix A. Extensions to More General Models

In this section, we consider two extensions to the linear model (2).

A.1 Generalized Linear Models

A generalization to generalized linear models (GLMs) from the linear model (2) is as follows.
Suppose that the conditional distribution of Y given X = x for task t is

p(y
(t)
i = y|x(t)

i = x) = Ä(y) exp
{
y · x¦´(t)∗ − È(x¦´(t)∗)

}
, i = 1 : n, (6)

for t ∈ S, w.r.t. some measure µ on a subset of R, where È is second-order continuously
differentiable on R, and È′ is often called the inverse link function. More discussions on
GLMs can be found in McCullagh and Nelder (1989).

43

Tian, Gu, and Feng

Example 1 Some canonical examples of GLMs include:

(i) Linear models: È(u) = 1
2u

2, È′(u) = u, and µ is Lebesgue measure;

(ii) Logistic regression models: È(u) = u + log(1 + e−u), È′(u) = 1
1+e−u , and µ is the

counting measure on {0, 1};

(iii) Poisson regression models: È(u) = eu, È′(u) = eu, and µ is the counting measure on
N = {0, 1, 2, . . .};

We replace the linear model (2) with the GLM (6) and keep all the other settings the
same as in Section 2. Moreover, we impose the following extra conditions for GLMs.

Assumption 4 È satisfies the following three conditions:

(i) È is strictly convex;

(ii) maxt∈S max∥∆∥2f1 È
′′((´(t)∗)¦x(t) +∆¦x(t)) f C a.s. with a constant C > 0;

(iii) One of the following conditions holds:

(a) There exists a large constant C ′ > 0 such that mint∈S min|u|fC′·(t) È
′′(u) g C ′,

where C ′′ > 0 is another universal constant.

(b) mint∈S min∥∆∥2f1 È
′′((´(t)∗)¦x(t) + ∆¦x(t)) g C ′′′ a.s., where C ′′′ > 0 is a

constant.

Assumption 5 n g Cr(p+ log T) with a sufficiently large constant C > 0.

Assumption 4 is commonly used in the non-asymptotic analysis of GLMs (e.g., see Ne-
gahban et al., 2012; Loh and Wainwright, 2015). The sample size requirement in Assumption
5 is more stringent than that for linear regression, serving as a technical condition needed
for our proof. Specifically, the Hessian matrices of GLMs may not exhibit good spectral
controls when evaluated far from the true parameter value. To ensure that our estimators
avoid these problematic regions, we require the penalty term in Step 1 of the penalized ERM
method in Algorithm 1 (which is upper bounded by ¼/

√
n) to remain reasonably small. For

more details, see the proof of Lemma 51 in Appendix. Note that for the spectral method in
Algorithm 2, n ≳ p+ log T in Assumption 3 is sufficient. For simplicity, we use the stronger
condition in Assumption 4 for both methods.

It is noteworthy that the function È in (6) is allowed to be different across tasks.
Here we assume È is the same for different tasks for simplicity. Additionally, we assume√
r ≳ ·(t) ≳ 1 for all t ∈ S. For the GLM (6), we apply Algorithms 1 and 2 with

f (t)(´) = 1
n

∑n
i=1[−y

(t)
i · (x(t)

i)¦´ + È((x
(t)
i)¦´)] for ´ ∈ Rp. With these GLM assumptions

in place, Algorithms 1 and 2 achieve the same upper bounds of estimation error as in linear
regression models.

Theorem 11 (Upper bound for MTL under GLMs) Suppose Assumptions 4, 5 and
other conditions imposed in Theorems 2 and 7 hold, the same high-probability upper bounds
in Theorems 2 and 7 hold for GLMs.

44

Learning from Similar Linear Representations

A.2 Non-linear Regression

In addition to GLMs, we can extend the linear model (2) to a non-linear regression model
as follows. Suppose

y
(t)
i = g

(
(x

(t)
i)¦´(t)∗)+ ϵ

(t)
i , i = 1 : n, (7)

for t ∈ S, where g is a monotone function with a continuous second-order derivative on

R and {ϵ(t)i }ni=1 are i.i.d. zero-mean sub-Gaussian variables independent of {x(t)
i }ni=1. In

literature, g is often referred to as the link function. More discussions for this model under a
single-task learning setting can be found in Yang et al. (2015). Note that Yang et al. (2015)
considered the case of a fixed design while we considered the random design case, which is
more challenging. Hence, stronger conditions are necessary to guarantee the desired rate.

We replace the linear model (2) with the non-linear regression model (7), and keep
all the other settings the same as in Section 2. Furthermore, we impose the following
assumptions for non-linear regression models. Recall the notation Σ(t) = E[x(t)(x(t))T] and

denote Σ
(t)
ϵ = E[ϵ(t)(ϵ(t))T].

Assumption 6 0 < C1 f [g′(u)]2 f C2 < ∞, for all u ∈ R, and ∥g′′∥∞ f C3 < ∞, where

C3 f cC2
1 ·mint∈S{¼min(Σ

(t))/¼max(Σ
(t))}mint∈S{¼−1/2

max (Σ
(t)
ϵ)} with a small constant c.

Assumption 7 n g C[(p+ log T)3/2] ([r(p+ log T)] with a sufficiently large constant C.

The sample size requirement is stronger than that for linear regression. The first term
(p+log T)3/2 arises due to the heavy-tailed distributions appearing in the analysis. A similar
requirement for the high-dimensional sparse non-linear regression can be found in Yang et al.
(2015). The reason for the term r(p+ log T) is the same as in Section A.1 for GLMs. More
details can be found in the proof of Lemma 59 in Appendix.

Similar to the case of GLMs, the link function g in (7) is also allowed to vary across
tasks. Here we assume g is the same for different tasks for simplicity. We further assume√
r ≳ ·(t) ≳ 1 for all t ∈ S. We apply Algorithms 1 and 2 for the non-linear regression model

(7), by setting f (t)(´) = 1
2n

∑n
i=1[y

(t)
i − g((x

(t)
i)¦´)]2 for ´ ∈ Rp. We have the same upper

bounds of estimation error for Algorithms 1 and 2 as in linear regression models.

Theorem 12 (Upper bound for MTL under non-linear regression models) Suppose
Assumptions 6, 7 and other conditions imposed in Theorems 2 and 7 hold, then the same
high-probability upper bounds in Theorems 2 and 7 hold for non-linear regression models.

Appendix B. Transferring to New Tasks (Learning-to-learn)

In this section, we extend the MTL framework discussed in the main text to a transfer
learning (TL) setting.

B.1 Problem Set-up

In this section, in addition to data from the T tasks, suppose we also observe data

{(x(0)
i , y

(0)
i)}n0

i=1 from a new task

y
(0)
i = (x

(0)
i)¦´(0)∗ + ϵ

(0)
i , i = 1 : n0, (8)

45

Tian, Gu, and Feng

where ´(0)∗ = A(0)∗¹(0)∗, A(0)∗ ∈ Op×r = {A ∈ Rp×r : A¦A = Ir}, ¹(0)∗ ∈ Rr, and

{ϵ(0)i }n0
i=1 are i.i.d. zero-mean sub-Gaussian variables independent of {x(0)

i }n0
i=1. Similar to

Section 2, the intrinsic dimension r is assumed to be known. Under such a transfer learning
(TL) or learning-to-learn setting, the new task is often called the target task, and the T
tasks are called source tasks. Our goal is two-fold:

1. Transfer knowledge from source tasks to improve the learning performance on the
target task, when the source and target share “similar” representations and the number
of outlier source tasks is small;

2. Ensure the learning performance is no worse than the target-only learning performance
to avoid the negative transfer.

To describe the similarity between target and source representations, we assume

max
t∈S

∥A(t)∗(A(t)∗)¦ −A(0)∗(A(0)∗)¦∥2 f h,

where S is a subset of [T]. Similar to the setting in the last section, the joint distribution

QSc of data from source tasks in Sc, i.e., {{x(t)
i , y

(t)
i }ni=1}t∈Sc , is allowed to be arbitrary.

For simplicity, we focus on the regime that ∥¹(t)∗∥2 f C < ∞ for all t ∈ S. Denote
Σ(0) = E[x(0)(x(0))¦]. We impose the following assumptions on the target task.

Assumption 8 For u ∈ Rp, u¦x(0) is sub-Gaussian in the sense that E[e¼u
¦x(0)

] f
eC¼2∥u∥22 for any ¼ ∈ R with some constant C > 0. And there exist constants c, C such that
0 < c f ¼min(Σ

(0)) f ¼max(Σ
(0)) f C <∞.

Assumption 9 n0 g Cp with a sufficiently large constant C > 0.

Remark 13 Similar to our discussion in Section 2.2.1 for the penalized ERM in MTL,
Assumption 9 is imposed to guarantee the target-only rate

√
p/n0. If we do not care about

this safe-net guarantee, then it suffices to require n0 g Cr, the same as the condition imposed
in literature (Tripuraneni et al., 2021; Thekumparampil et al., 2021). The RHS of the

following Theorem 14 shall be replaced by r
√

p
nT +

√
rh+

√
r
√

r+log T
n +

√
p
n · |Sc|

T r3/2+
√

r
n0
,

which allows us for a few-shot learning when both h and |Sc|/T are sufficiently small. See
more details in the proof of Theorem 14 in Appendix.

B.2 Upper Bounds

Similar to the Algorithm 1, a two-step transfer learning method is proposed in Algorithm 4.
We introduce the algorithm with a general loss function f (0) for the target since the same
algorithm with different losses will be extended to other models later. For linear model

(8), define f (0)(´) = 1
2n0

∥Y (0) −X(0)´∥2 = 1
2n0

∑n0
i=1[y

(0)
i − (x

(0)
i)¦´]2 for ´ ∈ Rp, where

X(0) ∈ Rn0×p and Y (0) ∈ Rn0 are corresponding matrix/vector representations of target
data.

In Algorithm 4, the “central representation” Â learned by Algorithm 1 is passed to Step
1 to obtain the estimator ¹̂(0) of the target-specific low-dimensional parameter. The same

46

Learning from Similar Linear Representations

Algorithm 4: Transferring to new tasks

Input: Data from a new task (X(0),Y (0)) = {x(0)
i , y

(0)
i }n0

i=1, estimator Â from
Algorithm 1 or 2, penalty parameter µ

Output: Estimator ̂́(0)
1 Step 1: ¹̂(0) = argminθ∈Rr

{
f (0)(Â¹)

}

2 Step 2: ̂́(0) = argminβ∈Rp

{
f (0)(´) + µ√

n0
∥´ − Â¹̂(0)∥2

}

step has appeared in literature when there are no outliers, and the target and source share
the same representations (Du et al., 2020; Tripuraneni et al., 2021). Step 2 is similar to Step
2 of Algorithm 1, which guarantees the target-only rate even when the representations of
the target and sources are dissimilar.

We have the following upper bounds of target estimation error for Algorithm 4.

Theorem 14 (Upper bound for TL) Suppose Assumptions 1, 2, 3, 8, and 9 hold.

(i) (TL with penalized ERM) By setting ¼ = Cr3/4
√
p+ log T and µ = C ′√p+ log T with

sufficiently large constants C,C ′ > 0 in Algorithm 4 along with Algorithm 1 to learn

Â, for all S ¦ [T] satisfying ϵ = |Sc|
T f cr−3/2 with a small constant c > 0 and an

arbitrary distribution QSc of {{x(t)
i , y

(t)
i }ni=1}t∈Sc, w.p. at least 1 − e−C′′(r+log T), we

have

∥ ̂́(0) − ´(0)∗∥2 ≲
(
r

√
p

nT
+
√
rh+

√
r

√
r + log T

n
+

√
p

n
· ϵr3/2

)
'
√

p

n0
+

√
r

n0
.

(ii) (TL with the spectral method) By setting µ = C ′√p+ log T with a sufficiently large

positive constant C ′, for any subset S ¦ [T] satisfying ϵ = |Sc|
T f cr−1 ·

(
·̄

maxt∈S ·(t)

)2

with c > 0 a small constant, w.p. at least 1 − e−C′′(r+log T) and ϵ̄ satisfying ϵ f ϵ̄ f
c′′

r ·
(

·̄
maxt∈S ·(t)

)2
with a sufficiently small positive constant c′′, we have

∥ ̂́(0)−´(0)∗∥2 ≲
{√

pr

nT
+

√
r

n
+h·

[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S)
'√r

]
+
√
rϵ̄

}
'
√

p

n0
+

√
r

n0
,

where B∗
S ∈ Rp×|S| is the coefficient matrix whose columns are {´(t)∗}t∈S, A ∈

argminA∈Op×r maxt∈[T] ∥A(t)∗(A(t)∗)¦−AA¦∥2 is the central representation, and A
§

is orthogonal to A in the sense that A
§ ∈ Op×(p−r) and (A

§
)¦A = 0(p−r)×r.

Both upper bounds can be seen as the minimum of two terms which represent the rate of

learning target model via data aggregation and the target-only rate
√

p
n0
, respectively. This

rate entails that our algorithm is adaptive to the optimal situation regardless of whether
transferring from source to target is beneficial. Moreover, it is robust to a small fraction of
outlier source tasks, in the sense that TL is still helpful when the outlier proportion ϵ is
sufficiently small.

47

Tian, Gu, and Feng

B.3 Lower Bounds

In this subsection, we explore the lower bound of the TL problem. Consider the space for
all subsets S ¦ [T] as

S = {S ¦ [T] : |Sc|/T f ϵ}.
Given the subset S, consider the parameter spaces for the coefficient vectors {´(t)}t∈{0}∪S as

B0(S, h) =

{
{´(t)}t∈{0}∪S : ´(t) = A(t)¹(t) for all t ∈ {0} ∪ S, {A(t)}t∈{0}∪S ¦ Op×r,

max
t∈{0}∪S

∥¹(t)∥2 f C,max
t∈S

∥A(t)(A(t))¦ −A(0)(A(0))¦∥2 f h, Ãr

(
|S|−1/2B∗

S

)
g c√

r

}

where C and c can be any fixed positive constants such that B0(S, h) ̸= ∅.
Theorem 15 (Lower bound for TL) Suppose p g 2r and ϵ f c/r where c is a small
constant. We have the following lower bound:

inf
β̂(0)

sup
S¦S

sup
{β(t)}t∈{0}∪S∈B0(S,h)

P

(
∥ ̂́(0) − ´(0)∗∥2 ≳

(√
pr

nT
+ h

)
'
√

p

n0
+

√
r

n0
+

ϵr√
n
'
√

1

n0

)
g 1

10
.

To our knowledge, this is the first lower bound for learning regression parameters under
representation transfer learning. Comparing the upper and lower bounds of the representation
TL problem, we can see that the upper bound of penalized ERM has suboptimal dependence
on r and log T . The spectral method has a sharper upper bound when S = [T] (i.e. ϵ = 0)

with ϵ̄ = 0, and is minimax optimal when the condition number
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S
)
is bounded

and n ≳ n0.
Similar to the MTL case, we can extend the upper bound from the linear model to the

GLMs and non-linear regression models.

Theorem 16 (Upper bound for TL under GLMs) Suppose Assumptions 4, 5 and other
conditions imposed in Theorem 14 hold, then the same high-probability upper bounds in
Theorem 14 hold for GLMs.

Theorem 17 (Upper bound for TL under non-linear regression models) Suppose
Assumptions 6, 7, and other conditions imposed in Theorem 14 hold. Let n0 g Cp3/2 with
C > 0 a sufficiently large constant. The same high-probability upper bounds in Theorem 14
hold for non-linear regression models.

Appendix C. General Lemmas

C.1 Lemmas

Lemma 18 (Theorem 6.5 in Wainwright (2019)) Suppose that Assumptions 1 and 3
hold. Then for any ¶ > 0 and any t ∈ [T], w.p. at least 1− C1e

−nC2(¶'¶2),

∥Σ̂(t) −Σ(t)∥2 f C3

√
p

n
+ ¶,

48

Learning from Similar Linear Representations

with some constants C1, C2, C3 > 0. Note that C1, C2, C3 are universal in the sense that
they do not depend on t or ¶. As a consequence, we have

max
t∈[T]

∥Σ̂(t) −Σ(t)∥2 ≲
√
p+ log T

n
,

w.p. at least 1− e−C(p+log T).

Lemma 19 (A variant of Theorem 6.5 in Wainwright (2019)) Suppose that Assump-
tions 8 and 9 hold. Then for any ¶ > 0, for any fixed A,B ∈ Op×r, w.p. at least
1− C1e

−n0C2(¶'¶),

∥A¦Σ̂(t)B −A¦Σ(t)B∥2 f C3

√
r

n0
+ ¶,

with some constants C1, C2, C3 > 0. Note that C1, C2, C3 are universal in the sense that
they do not depend on ¶ or t. As a consequence, for any fixed A,B ∈ Op×r, we have

∥A¦Σ̂(0)B −A¦Σ(0)B∥2 ≲
√

r

n0
,

w.p. at least 1− e−C(r+log T).

Lemma 20 (Lemmas 2.5 and 2.6 in Chen et al. (2021b)) Suppose p g r. Consider
two matrics A, Ã ∈ Op×r. Suppose that (A,A§), (Ã, Ã§) ∈ Rp×p are both orthonormal ma-
trices, which means that A§ and Ã§ are orthonormal complements of A and Ã, respectively.
Then

∥AA¦ − Ã(Ã)¦∥2 = ∥A¦(Ã§)∥2 = ∥(Ã)¦A§∥2,
1√
2
∥AA¦ − Ã(Ã)¦∥F = ∥A¦(Ã§)∥F = ∥(Ã)¦A§∥F,

∥AA¦ − Ã(Ã)¦∥2 f min
R∈Or×r

∥A− ÃR∥2 f
√
2∥AA¦ − Ã(Ã)¦∥2,

1√
2
∥AA¦ − Ã(Ã)¦∥F f min

R∈Or×r
∥A− ÃR∥F f ∥AA¦ − Ã(Ã)¦∥F.

Lemma 21 (Proposition 8 in Pajor (1998)) When p g 2r, for any ¶ > 0, we have

(i) (C1
√
r
¶)r(p−r) f N(Op×r, distF, ¶) f C2(

√
r
8)r(p−r);

(ii) (C1
1
¶)

r(p−r) f N(Op×r, dist2, ¶) f (C2
1
¶)

r(p−r);

(iii) (Consequence of (i)) M(Op×r, distF, ¶) g C(
√
r
¶)r(p−r).

Lemma 22 When p g 2r, for any ¶ > 0 and ³ ∈ (0, 1), ∃A ∈ Op×r, such that

M(B¶(A,Op×r, dist2), distF, ³¶) g
(
C
√
r

³

)r(p−r)

.

49

Tian, Gu, and Feng

Lemma 23 (Fano’s lemma, see Tsybakov (2009) and Wainwright (2019)) Suppose
(Θ, d) is a metric space and each ¹ in this space is associated with a probability measure P¹. If
{¹j}Nj=1 is an s-separated set (i.e. d(¹j , ¹k) g s for any j ≠ k), and KL(P¹j ,P¹k) f ³ logN ,
then

inf
¹̂
sup
¹∈Θ

P¹(d(¹̂, ¹) g s/2) g 1− ³− log 2

logN
.

Lemma 24 Consider the following generative model:

y|x ∼ Py|x,β = N(x¦´, 1), x ∼ Px,

where Px is sub-Gaussian with Σ = E(xx¦). Suppose there exist constants c and C such
that 0 < c f ¼min(Σ) f ¼max(Σ) f C < ∞. Define two distributions P and P̃ of (x, y) as
Px,y = Py|x;β · Px and P̃x,y = P

y|x;β̃ · Px. Then, the KL divergence between Px,y and P̃x,y

can be bounded as

KL(Px,y∥P̃x,y) f C∥´ − ˜́∥22.

Lemma 25 (Theorem 5.1 in Chen et al. (2018)) Given a family of distributions {P¹ :
¹ ∈ Θ}, which is indexed by a parameter ¹ ∈ Θ. Consider x(t) ∼ (1−ϵ′)P¹+ϵ

′Q independently
for t ∈ [T], and x̃ ∼ Px̃. Denote the joint distribution of {x(t)}Tt=1 and x̃ as P(ϵ′,¹,Q) · Px̃.
Then

inf
¹̂
sup
¹∈Θ
Q

(P(ϵ′,¹,Q) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ(ϵ′,Θ)

)
g 1

2
,

where ϖ(ϵ′,Θ) := sup{∥¹1 − ¹2∥ : TV
(
P¹1 ,P¹2

)
f ϵ′/(1− ϵ′), ¹1, ¹2 ∈ Θ}.

Lemma 26 (Lemma 22 in Tian et al. (2022)) Consider two data generating mecha-
nisms:

(i) x(t) ∼ (1− ϵ′)P¹ + ϵ′Q independently for t ∈ [T], where ϵ′ = |Sc|
T , and x̃ ∼ Px̃;

(ii) With a preserved set S ¦ [T], generate {x(t)}t∈Sc ∼ QSc and x(t) ∼ P¹ independently
for t ∈ S, and x̃ ∼ Px̃.

Denote the joint distributions of {x(t)}Tt=1 and x̃ in (i) and (ii) as P(ϵ,¹,Q)·Px̃ and P(S,¹,QSc)·Px̃,
respectively. We claim that if

inf
¹̂
sup
¹∈Θ
Q

(P(ϵ′/50,¹,Q) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ(ϵ′/50,Θ)

)
g 1

2

then

inf
¹̂

sup
S:|S|gT (1−ϵ′)

sup
¹∈Θ
QSc

(P(S,¹,QSc) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ

(
ϵ′/50,Θ

))
g 1

10
,

where ϖ(ϵ′,Θ) := sup{∥¹1 − ¹2∥ : TV
(
P¹1 ,P¹2

)
f ϵ′/(1− ϵ′), ¹1, ¹2 ∈ Θ}.

50

Learning from Similar Linear Representations

Lemma 27 (Lemma 33 in Tian et al. (2022)) Given a family of distributions {P¹ :
¹ ∈ Θ}, which is indexed by a parameter ¹ ∈ Θ. Consider x(t) ∼ (1−ϵ′)P¹+ϵ

′Q independently

for t ∈ [T], and x̃ ∼ Px̃. Consider another family of distributions {P(0)
¹ : ¹ ∈ Θ} indexed by

the same parameter set, and x(0) ∼ P
(0)
¹ . Denote the joint distribution of {x(t)}Tt=0 and x̃ as

P(ϵ′,¹,Q) · Px̃. Then

inf
¹̂
sup
¹∈Θ
Q

(P(ϵ′,¹,Q) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ(ϵ′,Θ)

)
g 9

20
,

where ϖ(ϵ′,Θ) := sup
{
∥¹1 − ¹2∥ : TV

(
P¹1 ,P¹2

)
f ϵ′/(1− ϵ′),TV

(
P
(0)
¹1
,P

(0)
¹2

)
f 1/20, ¹1, ¹2 ∈

Θ
}
.

Lemma 28 (Lemma 34 in Tian et al. (2022)) Consider two data generating mecha-
nisms:

(i) x(t) ∼ (1 − ϵ′)P¹ + ϵ′Q independently for t ∈ [T], x(0) ∼ P
(0)
¹ , and x̃ ∼ Px̃, where

ϵ′ = |Sc|
T ;

(ii) With a preserved set S ¦ [T], generate {x(t)}t∈Sc ∼ QSc and x(t) ∼ P¹ independently

for t ∈ S, x(0) ∼ P
(0)
¹ , and x̃ ∼ Px̃.

Denote the joint distributions of {x(t)}Tt=0 and x̃ in (i) and (ii) as P(ϵ,¹,Q)·Px̃ and P(S,¹,QSc)·Px̃,
respectively. We claim that if

inf
¹̂
sup
¹∈Θ
Q

(P(ϵ′/50,¹,Q) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ′ (ϵ′/50,Θ

))
g 9

20
,

then

inf
¹̂

sup
S:|S|gT (1−ϵ′)

sup
¹∈Θ
QS

(P(S,¹,QS) · Px̃)
(
∥¹̂ − ¹∥ g Cϖ′ (ϵ′/50,Θ

))
g 1

10
,

where ϖ(ϵ′,Θ) := sup
{
∥¹1 − ¹2∥ : TV

(
P¹1∥P¹2

)
f ϵ′/(1− ϵ′),TV

(
P
(0)
¹1

∥P(0)
¹2

)
f 1/20, ¹1, ¹2 ∈

Θ
}
.

C.2 Proofs of Lemmas

Denote Σ̂(t) =
∑n

i=1
1
nx

(t)
i (x

(t)
i)¦.

C.2.1 Proof of Lemma 19

Note that for any fixed A,B ∈ Op×r,

∥A¦(Σ̂(0) −Σ(0))B∥2 = sup
∥u∥2,∥v∥2f1

(Au)¦(Σ̂(0) −Σ(0))(Bv),

where Au,Bv ∈ Rp and ∥Au∥2 = ∥Bv∥2 = 1. Note that both Au and Bv live in
r-dimensional space (isomorphic to the unit ball in Rr). Therefore, by Example 5.8 in

51

Tian, Gu, and Feng

Wainwright (2019), there exist two 1/8-covers (whose components are inside the set to be
covered) of {´ ∈ R : ´ = Au, ∥u∥2 f 1} and {´ ∈ R : ´ = Bu, ∥u∥2 f 1} under Euclidean
norm, denoted as {´u

j }N1
j=1 and {´u

j }N2
j=1, respectively, such that |N1| = |N2| f 17r. Then

we can proceed in the same steps as in the proof of Theorem 6.5 in Wainwright (2019) to
finish the proof.

C.2.2 Proof of Lemma 22

We apply the same trick as in the proof of Proposition 3 in Cai et al. (2013). Suppose
the minimum cover of Op×r under dist2(·) corresponding to N(Op×r, dist2, ¶) is N . By
pigeonhole theorem, for any ³ ∈ (0, 1),

N(Op×r, dist2, ³¶) f N(∪A∈NB¶(A,Op×r, dist2), distF, ³¶)

f |N |max
A∈N

N(B¶(A,Op×r, dist2), distF, ³¶).

Then applying Lemma 21 leads to

max
A∈N

N(B¶(A,Op×r, dist2), distF, ³¶) g
N(Op×r, dist2, ³¶)

N(Op×r, dist2, ¶)
g
(
C
√
r

³

)r(p−r)

.

Since N has only finite elements, there must exist one A ∈ N achieving the maximum of
LHS. Because the packing number is always larger than or equal to the covering number,
the proof is done.

C.2.3 Proof of Lemma 24

By the form of Gaussian density function, it is straightfoward to see that

KL(Px,y∥P̃x,y) =

∫
log

(
Py|x,β
P
y|x,β̃

)
dPy|x,βdPx

f
∫
(y − x¦´) · x¦(´ − ˜́)dPy|x,βdPx

︸ ︷︷ ︸
=0

+

∫
[x¦(´ − ˜́)]2dPx

≲ ∥´ − ˜́∥22.

Appendix D. Proofs for Linear Regression Models

Denote ¹
(t)
A ∈ argminθ∈Rr f (t)(A¹) and f (t)(´) = 1

n∥Y (t) − X(t)´∥22. For A, Ã ∈ Op×r,

define metrics dist2(A, Ã) = ∥AA¦ − Ã(Ã)¦∥2, distF(A, Ã) = ∥AA¦ − Ã(Ã)¦∥F. In any
metric space (X , Ä), denote the ball of radius ¶ with center x under metric Ä as B¶(x,X , Ä).
Denote ·(t) = ∥¹(t)∗∥2 (

√
p+log T

n and ·̄ =
√
|S|−1

∑
t∈S(·

(t))2.

D.1 Lemmas

Lemma 29 Suppose Assumptions 1-3 hold. Then w.p. at least 1 − e−C(r+log T), for all
t ∈ [T] and A ∈ Op×r,

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 ≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2 · ·(t) +

√
r + log T

n
.

52

Learning from Similar Linear Representations

Lemma 30 Suppose Assumptions 1-3 hold. Then w.p. at least 1 − e−C(r+log T), for all
t ∈ S and A ∈ Op×r, there exists a universal constant C ′ > 0 (which does not depend on t

or A), such that ∥A¹
(t)
A ∥2 = ∥¹(t)

A ∥2 f C ′·(t).

Lemma 31 Suppose Assumptions 1-3 hold. Then w.p. at least 1 − e−C(r+log T), for all
t ∈ [T] and A, Ã ∈ Op×r,

∥A¹
(t)
A − Ã¹

(t)

Ã
∥2 ≲ ∥AA¦ − ÃÃ¦∥2(∥¹(t)

Ã
∥2 + ∥∇f (t)(Ã¹

(t)

Ã
)∥2).

Lemma 32 Suppose Assumptions 1-3 hold. For any A ∈ argminA∈Op×r maxt∈S{∥A(t)(A(t))¦−
AA

¦∥2}, denote G =
{
∇f (t)(A¹

(t)

A
)
}
t∈S, then w.p. at least 1− e−C(p+log T),

∥G∥2 ≲
√
p

n
+
√
T

(
h·̄ +

√
r + log T

n

)
.

Lemma 33 Suppose G = {gj}dj=1 ∈ Rp×d and G = {gj}dj=1 ∈ Rp×d with each gj , gj ∈ Rp

and maxj∈[d] ∥gj − gj∥2 f ∆. Then

∥G−G∥2 f
√
d∆.

Lemma 34 Suppose Assumptions 1-3 hold. Consider any Â ∈ Op×r.

(i) When ¼√
n
g C·(t)

[
∥Â¹

(t)
̂
A

−A(t)∗¹(t)∗∥2+∥∇f (t)(A(t)∗¹(t)∗)∥2
]
with a sufficiently large

C and the minimizer (A(t),¹(t)) = argminA∈Op×r,θ∈Rr{ 1
T f

(t)(A¹) +
√
n

nT ¼∥AA¦ −
Â(Â)¦∥2}, we must have A(t)(A(t))¦ = Â(Â)¦.

(ii) As a consequence, by Lemma 29, when ¼√
n
g C·(t)

[
·(t)∥Â(Â)¦ −A(t)∗(A(t)∗)¦∥2 +√

p+log T
n

]
, w.p. at least 1− e−C(r+log T), we have A(t)(A(t))¦ = Â(Â)¦.

Lemma 35 Suppose {¹(t)}t∈S ¦ Rr satisfying |S|−1
∑

t∈S ¹(t)(¹(t))¦ ° c
r ·̄Ir, where c is a

positive constant. For any subset S′ ¦ S with |S′| g (1− ³)|S| and

³ f c

r
· ·̄2

maxt∈S(·(t))2
,

where c is the same positive constant above and ·(t) = ∥¹(t)∥2, we have

1

|S′|
∑

t∈S′

¹(t)(¹(t))¦ ° c

2r
·̄2Ir.

Lemma 36 Under Assumptions 1-3, w.p. at least 1− e−C(r+log T), for all t ∈ S,

∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2 ≲
√
p+ log T

n
+

¼√
n·(t)

.

53

Tian, Gu, and Feng

Lemma 37 Consider the case that r = 1. Suppose that mint∈S |¹(t)∗| g c > 0 with some
constant c > 0. Under Assumptions 1-3, w.p. at least 1 − e−C′(1+log T), for all A ∈ Op×r

and t ∈ S,

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 g C ′·(t)∥AA¦ −A(t)∗(A(t)∗)¦∥2 − C

√
p+ log T

n
.

Lemma 38 (For MTL) Under Assumptions 1-3, we have:

(i) For all t ∈ S, when µ√
n
g ∥∇f (t)(A(t)∗¹(t)∗)∥2+C∥Â(t)¹̂(t)−A(t)∗¹(t)∗∥2, it holds that

̂́(t) = Â(t)¹̂(t) w.p. at least 1− e−C(p+log T);

(ii) maxt∈S ∥ ̂́(t) − ´(t)∗∥2 f C µ√
n
+maxt∈S ∥ ˜́(t) − ´(t)∗∥2 w.p. at least 1− e−C(p+log T),

where ˜́(t) ∈ argminβ∈Rp f (t)(´);

(iii) If the data from tasks in Sc satisfies the linear model (2) (without any latent structure
assumption) and Assumption 1, then w.p. at least 1 − e−C(p+log T), maxt∈Sc ∥ ̂́(t) −
´(t)∗∥2 f C µ√

n
+maxt∈Sc ∥ ˜́(t) − ´(t)∗∥2, where ˜́(t) ∈ argminβ∈Rp f (t)(´).

Lemma 39 Suppose Assumption 8 hold and n g Cr. Then for any fixed A ∈ Op×r, w.p.
at least 1− e−C(r+log T),

∥A¹
(0)
A −A(0)∗¹(0)∗∥2 ≲ ∥AA¦ −A(0)∗(A(0)∗)¦∥2 +

√
r

n
.

Lemma 40 Suppose Assumptions 8-9 hold. Then w.p. at least 1 − e−C(r+log T), for all

A ∈ Op×r,

∥A¹
(0)
A −A(0)∗¹(0)∗∥2 ≲ ∥AA¦ −A(0)∗(A(0)∗)¦∥2 +

√
r

n
.

Lemma 41 (For TL) Under Assumptions 8-9, we have:

(i) When µ√
n0

g ∥∇f (t)(A(0)∗¹(0)∗)∥2 + C∥Σ̂(0)∥2 · ∥Â¹
(0)
̂
A

− A(0)∗¹(0)∗∥2, it holds that

̂́(0) = Â¹
(0)
̂
A

w.p. at least 1− e−C(p+log T); j

(ii) ∥ ̂́(0) − ´(0)∗∥2 f C µ√
n0

+ ∥ ˜́(0) − ´(0)∗∥2 w.p. at least 1− e−C(p+log T), where ˜́(0) ∈
argminβ∈Rp f (0)(´).

D.2 Proof of Theorem 1

(i) ´(t)∗ = A(A)¦A(t)∗¹(t)∗+A
§
(A

§
)¦A(t)∗¹(t)∗ = A¹̄(t)∗+¶(t)∗, where ¹̄(t)∗ = (A)¦A(t)∗¹(t)∗

and ¶(t)∗ = A
§
(A

§
)¦A(t)∗¹(t)∗. Then ∥¶(t)∗∥2 f ∥¹(t)∗∥2∥(A)¦A(t)∗∥2 f h·(t). This shows

how we can transform Setting 1 to Setting 2.
On the other hand, if we denote ∆(t)∗ = ¶(t)∗(¹̄(t)∗)¦ 1

∥θ̄(t)∗∥2 , then ∆(t)∗¹̄(t)∗ = ¶(t)∗,

hence ´(t)∗ = (A + ∆(t)∗)¹̄(t)∗. Note that we have shown that ∥¶(t)∗∥2 f h·(t). Also,

j. For this result to hold, it suffices to require n0 ≥ Cr, which is important for Remark 13 to be true.

54

Learning from Similar Linear Representations

∥¹̄(t)∗∥2 g Ãmin((A)¦A(t)∗)∥¹(t)∗∥2 g
√
1− h2·(t). Therefore ∥∆(t)∗∥F = ∥∆(t)∗∥2 f

∥¶(t)∗∥2/∥¹̄(t)∗∥2 f h/
√
1− h2. This shows how we can transform Setting 1 to Setting

3.
(ii) Let ¯́(t)∗ = A¹̄(t)∗, Ã = (β(t)∗

∥β(t)∗∥2 , Ã−1) with (´(t)∗)¦Ã−1 = 0, Ã¦
−1Ã−1 = I. WLOG,

consider A = (β̄(t)∗

∥β̄(t)∗∥2 ,A−1) with (¯́(t)∗)¦A−1 = 0, A¦
−1A−1 = I. Also, we have

ÃÃ¦ =
´(t)∗(´(t)∗)¦

∥´(t)∗∥22
+ Ã−1Ã

¦
−1, A(A)¦ =

¯́(t)∗(¯́(t)∗)¦

∥ ¯́(t)∗∥22
+A−1A

¦
−1.

And

´(t)∗(´(t)∗)¦

∥´(t)∗∥22
−

¯́(t)∗(¯́(t)∗)¦

∥ ¯́(t)∗∥22

=
¯́(t)∗(¯́(t)∗)¦ + ¶(t)∗(¶(t)∗)¦ + ¯́(t)∗(¶(t)∗)¦ + ¶(t)∗(¯́(t)∗)¦

∥ ¯́(t)∗∥22 + ∥¶(t)∗∥22
−

¯́(t)∗(¯́(t)∗)¦

∥ ¯́(t)∗∥22

=
−∥¶(t)∗∥22 · ¯́(t)∗(¯́(t)∗)¦ + ∥ ¯́(t)∗∥22[¶(t)∗(¶(t)∗)¦ + ¯́(t)∗(¶(t)∗)¦ + ¶(t)∗(¯́(t)∗)¦]

(∥ ¯́(t)∗∥22 + ∥¶(t)∗∥22)∥ ¯́(t)∗∥22
,

which implies that
∥∥∥∥∥
´(t)∗(´(t)∗)¦

∥´(t)∗∥22
−

¯́(t)∗(¯́(t)∗)¦

∥ ¯́(t)∗∥22

∥∥∥∥∥
2

f max

{ ∥¶(t)∗∥22
∥´(t)∗∥22

+ 2
∥ ¯́(t)∗∥2∥¶(t)∗∥2

∥´(t)∗∥22
,
∥¶(t)∗∥22
∥´(t)∗∥22

}

f ∥¶(t)∗∥22
∥´(t)∗∥22

+ 2
∥¶(t)∗∥2
∥´(t)∗∥2

·
√

1−
(∥¶(t)∗∥2
∥´(t)∗∥2

)2

= À2 + 2À
√
1− À2

f 2
√
2À,

where À := ∥¶(t)∗∥2/∥´(t)∗∥2.
Let Pβ = ββ¦

∥β∥22
as a projection matrix onto the linear space spanned by ´ ∈ Rp\{0}, and

Ã−1 = (I − Pβ(t)∗)A−1[(A−1)
¦(I − Pβ(t)∗)A−1]

−1/2. Then

Ã−1Ã
¦
−1−A−1(A−1)

¦ = (I−Pβ(t)∗)A−1[(A−1)
¦(I−Pβ(t)∗)A−1]

−1(A−1)
¦(I−Pβ(t)∗)−A−1(A−1)

¦.

By noticing that A−1 = (I − Pβ̄(t)∗)A, after some simplifications, we have

∥Ã−1Ã
¦
−1 −A−1(A−1)

¦∥2 f 2∥Pβ(t)∗(I − Pβ̄(t)∗)∥2∥[(A−1)
¦(I − Pβ(t)∗)A−1]

−1∥2
+ ∥I − [(A−1)

¦(I − Pβ(t)∗)A−1]
−1∥2,

where

∥Pβ(t)∗(I − Pβ̄(t)∗)∥2 = ∥Pβ(t)∗ − Pβ̄(t)∗∥2 f 2
√
2 · ∥¶

(t)∗∥2
∥´(t)∗∥2

= 2
√
2À,

∥I − [(A−1)
¦(I − Pβ(t)∗)A−1]

−1∥2 = ∥I − (I − (A−1)
¦Pβ(t)∗)A−1)

−1∥2

55

Tian, Gu, and Feng

=

∥∥∥∥∥∥
I −

(
I +

(A−1)
¦Pβ(t)∗)A−1

1− (β(t)∗)¦A−1(A−1)¦β(t)∗

∥β(t)∗∥22

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(A−1)

¦Pβ(t)∗A−1

1− (β(t)∗)¦A−1(A−1)¦β(t)∗

∥β(t)∗∥22

∥∥∥∥∥∥
2

,

∥(A−1)
¦Pβ(t)∗A−1∥2 = ∥(A−1)

¦(I − Pβ̄(t)∗)Pβ(t)∗)(I − Pβ̄(t)∗)A−1∥2
f ∥Pβ(t)∗(I − Pβ̄(t)∗)∥22,∣∣∣∣∣

(´(t)∗)¦A−1(A−1)
¦´(t)∗

∥´(t)∗∥22

∣∣∣∣∣ = ∥(A−1)
¦Pβ(t)∗A−1∥2.

Therefore, we have

∥I − [(A−1)
¦(I − Pβ(t)∗)A−1]

−1∥2 f
∥Pβ(t)∗(I − Pβ̄(t)∗)∥22

1− ∥Pβ(t)∗(I − Pβ̄(t)∗)∥22
,

∥[(A−1)
¦(I − Pβ(t)∗)A−1]

−1∥2 = 1 +

∥∥∥∥∥∥
(A−1)

¦Pβ(t)∗A−1

1− (β(t)∗)¦A−1(A−1)¦β(t)∗

∥β(t)∗∥22

∥∥∥∥∥∥
2

f 1 +
∥Pβ(t)∗(I − Pβ̄(t)∗)∥22

1− ∥Pβ(t)∗(I − Pβ̄(t)∗)∥22
.

Combining all of the results, we have

∥Ã−1Ã
¦
−1 −A−1(A−1)

¦∥2 f 2 · 2
√
2À ·

[
1 +

(2
√
2À)2

1− (2
√
2À)2

]
+

(2
√
2À)2

1− (2
√
2À)2

= 4
√
2À

(
1 +

8À2

1− 8À2

)
+

8À2

1− 8À2
,

which implies that

∥ÃÃ¦ −A(A)¦∥2 f ∥Pβ(t)∗Pβ̄(t)∗∥2 + ∥Ã−1Ã
¦
−1 −A−1(A−1)

¦∥2

f 2
√
2À + 4

√
2À

(
1 +

8À2

1− 8À2

)
+

8À2

1− 8À2
. (∗)

• When À f 1/4: (∗) f 2
√
2À + 4

√
2À · (1 + 1) + 8À · 1/4

1−1/2 = (10
√
2 + 4)À.

• When À > 1/4: ∥ÃÃ¦ −A(A)¦∥2 f 1 f 4À.

Therefore, ∥ÃÃ¦ −A(A)¦∥2 f (10
√
2 + 4)À.

(iii) ´(t)∗ = (A +∆(t)∗)¹̃(t)∗ = A(I + (A)¦∆(t)∗)¹̃(t)∗ +A
§
(A

§
)¦∆(t)∗¹̃(t)∗. Let ¹̄(t)∗ =

(I + (A)¦∆(t)∗)¹̃(t)∗ and ¶(t)∗ = A
§
(A

§
)¦∆(t)∗¹̃(t)∗. By (ii), there exists A(t)∗ ∈ Op×r

such that ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2 f (10
√
2 + 4) ∥δ

(t)∗∥2
∥β(t)∗∥2 .

Since

∥¶(t)∗∥2 f ∥(A§
)¦∆(t)∗∥2∥¹̃(t)∗∥2,

56

Learning from Similar Linear Representations

∥´(t)∗∥2 = ∥¹̃(t)∗∥22 + ∥∆(t)∗¹̃(t)∗∥22 + 2(¹̃(t)∗)¦A
¦
∆(t)∗¹̃(t)∗

g ∥¹̃(t)∗∥22 + ∥A§
(A

§
)¦∆(t)∗¹̃(t)∗∥22 − 2∥¹̃(t)∗∥22∥A

¦
∆(t)∗∥2

= ∥¹̃(t)∗∥22 + ∥¶(t)∗∥22 − 2∥¹̃(t)∗∥22∥A
¦
∆(t)∗∥2,

we have

∥¶(t)∗∥2
∥´(t)∗∥2

f ∥(A§
)¦∆(t)∗∥2√

1 + ∥(A§
)¦∆(t)∗∥22 − 2∥∆(t)∗∥2

f ∥∆(t)∗∥2
1− ∥∆(t)∗∥2

f ∥∆(t)∗∥F
1− ∥∆(t)∗∥F

,

when ∥∆(t)∗∥F < 1. Hence there exists A(t)∗ ∈ Op×r such that ∥A(t)∗(A(t)∗)¦−A(A)¦∥2 f
(10

√
2 + 4) ∥δ

(t)∗∥2
∥β(t)∗∥2 f (10

√
2 + 4) ∥∆(t)∗∥F

1−∥∆(t)∗∥F when ∥∆(t)∗∥F < 1.

D.3 Proof of Theorem 2

First, we have the following proposition holds.

Proposition 42 Suppose Assumptions 1-3 hold. Further assume

(i) mint∈S
{

·(t)

·̄
r
√

p+log T
nT + ·(t)

·̄

√
r
√

r+log T
n + ·(t)

√
rh
}
≲

√
p+log T

n ;

(ii) |Sc|/T f cr−3/2 ·̄
maxt∈S ·(t)

with a small constant c > 0.

Let ¼ g Cmaxt∈S(·
(t))2

mint∈S ·(t)

√
r(p+ log T) with a sufficiently large constant C and ¼ f C ′maxt∈S(·

(t))2

mint∈S ·(t)

√
r(p+ log T)

with another constant C ′. Then w.p. at least 1− e−C′(r+log T),

∥Â(Â)¦ −AA
¦∥2 ≲ r·̄−1

√
p

nT
+
√
rh+ ·̄−1√r

√
r + log T

n
+

¼r√
n·̄2

ϵ.

Proposition 42 provides the bound when the first term is faster than the second term in
the upper bound of Theorem 2. In the other case, a direct application of Lemma 38 leads to
the second term in the upper bound. Combining two situations gives us the disired result
for tasks in S.

Denote ¸(t) = ·(t)

·̄
r
√

p+log T
nT + ·(t)

·̄

√
r
√

r+log T
n + ·(t)

√
rh+ ¼r·(t)√

n·̄2
ϵ.

(i) For any t satisfying ¸(t) f C
√

p+log T
n : By Proposition 42, w.p. at least 1− e−C′(r+log T),

∥Â(Â)¦ −A(t)∗(A(t)∗)¦∥2 ≲ r·̄−1

√
p

nT
+
√
rh+ ·̄−1√r

√
r + log T

n
+

¼r√
n·̄2

ϵ.

By Lemma 34, since ¼√
n
g Cmaxt∈S(·

(t))2

mint∈S ·(t)

√
r(p+log T)

n g Cmaxt∈S ·(t)¸(t) g C·(t)
[
·(t)∥Â(Â)¦−

A(t)∗(A(t)∗)¦∥2 +
√

p+log T
n

]
, we have Â(t)(Â(t))¦ = Â(Â)¦ w.p. at least 1− e−C′(r+log T),

which combining with Lemma 29 implies that

∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2 = ∥Â¹
(t)
̂
A

−A(t)∗¹(t)∗∥2

57

Tian, Gu, and Feng

≲ ∥Â(Â)¦ −A(t)∗(A(t)∗)¦∥2·(t) +
√
r + log T

n

≲ ¸(t) +

√
r + log T

n
,

w.p. at least 1 − e−C′(r+log T). Therefore by our choice µ = C ′√p+ log T with a large
constant C ′ > 0:

∥∇f (t)(A(t)∗¹(t)∗)∥2 + C∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2 ≲
µ√
n
.

Then by Lemma 38.(i) and Proposition 42, w.p. at least 1− e−C′(r+log T), maxt∈S ∥ ̂́(t) −
´(t)∗∥2 ≲ ¸(t) +

√
r+log T

n .

(ii) For any t satisfying ¸(t) > C
√

p+log T
n : by Lemma 38.(ii), w.p. at least 1− e−C′(p+log T),

maxt∈S ∥ ̂́(t)−´(t)∗∥2 ≲ µ√
n
+maxt∈S ∥ ˜́(t)−´(t)∗∥2 ≲

√
p+log T

n , where ˜́(t) ∈ argminβ∈Rp f (t)(´).

The fact that maxt∈S ∥ ˜́(t)−´(t)∗∥2 ≲
√

p+log T
n w.p. at least 1−e−C′(p+log T) is the standard

linear regression result.

(iii) When data from tasks in Sc also satisfies the linear model (2), the result comes from
the same argument as in (ii).

D.4 Proof of Theorem 3

The conclusion follows directly by combining Lemma 36 with the upper bound on ∥Â(t)¹̂(t)−
A(t)∗¹(t)∗∥2 established in the proof of Theorem 2.

D.5 Proof of Theorem 4

First, note that when ¼ = +∞, we have Â(t) ≡ Â for all t ∈ S = [T]. We will prove that

any local minimizer (Â, {¹̂(t)}Tt=1) which minimizes

f(A,Θ) :=
1

T

T∑

t=1

f (t)(A¹(t)).

over A ∈ Op×r and Θ = (¹(1), . . . ,¹(T)) ∈ Rr×T must satisfy

∥Â(Â)¦ −A(A)¦∥F ≲ (·̄−1)r

√
p

nT
+ (·̄−1)

√
r

√
r + log T

n
+
√
rh,

simulteneously w.p. at least 1− e−C′(r+log T). The following the argument in the proof of
Theorem 2, we will obtain the desired result.

We prove the claim above by construction. Consider a local minimizer (Â, {¹̂(t)}Tt=1) of

f and Â’s neightbor Ã = a1A + a2ÂD, where a1 + a2 = 1, a1, a2 g 0, and D ∈ Rr×r is
invertible. Note that

∥((Â)§)¦Ã∥2 = a1∥((Â)§)¦A∥2 f a1.

58

Learning from Similar Linear Representations

Define ¹
(t)
A = argminθ∈Rr f (t)(A¹), Θ̂ = {¹(t)

̂
A
}Tt=1, R̃ ∈ Or×r by

Ã¦Ã = a21Ip + a22D
¦D + a1a2((A)¦ÂD +D¦(Â)¦A) = (R̃−1)¦R̃−1.

Then define A = ÃR̃, hence A¦A = Ir. Let D satisfy DR̃Θ = Θ̂, where Θ = {¹(t)

A
}Tt=1 ∈

Rr×T . Such D must exist. For example, we can take D = (R̃Θ̂Θ̂¦)−1Θ̂Θ
¦
. Consider Θ

s.t. R̃Θ = Θ, then

AΘ = a1AR̃Θ+ a2ÂDR̃Θ = a1AΘ+ a2ÂΘ̂. (9)

Since f (t) is defined through square loss, we have

f(A,Θ)− f(Â, Θ̂) =
1

2T

T∑

t=1

(A¹(t) − Â¹̂(t))¦Σ̂(t)(A¹(t) − Â¹̂(t))

+
1

T

T∑

t=1

[
∇f (t)(Â¹̂(t))

]¦
(A¹(t) − Â¹̂(t))

︸ ︷︷ ︸
(∗)

.

Therefore, (9) implies that

(∗) f 1

T

T∑

t=1

[
∇f (t)(A¹

(t)

A
)
]¦

(A¹(t) − Â¹̂(t))− 1

T
a1

T∑

t=1

(Â¹̂(t) −A¹
(t)

A
)¦Σ̂(t)(Â¹̂(t) −A¹

(t)

A
)

f 1

T
∥{∇f (t)(A(t)∗¹(t)∗)}Tt=1∥2 ·

√
2r∥AΘ− ÂΘ̂∥F

+
1

T
∥{∇f (t)(A(t)∗¹(t)∗)−∇f (t)(A¹

(t)

A
)}Tt=1∥F∥AΘ− ÂΘ̂∥F − C

T
a1∥ÂΘ̂−AΘ∥2F

f 1

T

√
2r

√
p+ T

n
∥AΘ− ÂΘ̂∥F +

C

T

(
√
T

√
r + log T

n
+ h

√√√√
T∑

t=1

(·(t))2

)
∥AΘ− ÂΘ̂∥F

− C

T
a1∥ÂΘ̂−AΘ∥2F

f C

T
a1

(√
pr

n
+

√
r + log T

n

√
T + h

√
T ·̄

)
∥ÂΘ̂−AΘ∥F − C

T
a1∥ÂΘ̂−AΘ∥2F,

w.p. at least 1− e−C′(r+log T). Hence w.p. at least 1− e−C′(r+log T),

f(A,Θ)− f(Â, Θ̂) f C ′′

T
a21 +

C

T
a1

(√
pr

n
+

√
r + log T

n

√
T + h

√
T ·̄

)
∥ÂΘ̂−AΘ∥F

− C

T
a1∥ÂΘ̂−AΘ∥2F. (10)

59

Tian, Gu, and Feng

By (9), as a1 → 0+,

Θ = a1A
¦AΘ+ a2A

¦ÂΘ̂ → R̃¦D¦(Â)¦ÂΘ̂ = R̃¦D¦Θ̂,

where “→” is in the sense of ∥ · ∥max (similar below). On the other hand, as a1 → 0+,

A = a1AR̃+ a2ÂDR̃ → ÂDR̃,

and R̃¦D¦DR̃ → Ir. Therefore, by continuity, as a1 → 0+,

max
t∈[T]

min
R∈Or×r

{
∥A− ÂR∥2 + ∥¹(t) − ¹̂(t)R∥2

}
→ 0.

Due to the local optimality of (Â, Θ̂), when a1 is very close to 0, we must have f(A,Θ)−
f(Â, Θ̂) g 0, hence the RHS of (10) is non-negative. Let a1 ≲

√
pr
n +

√
r+log T

n

√
T + h

√
T ·̄,

we have w.p. at least 1− e−C′(r+log T),

∥ÂΘ̂−AΘ∥F ≲ a1+

√
pr

n
+

√
r + log T

n

√
T +h

√
T ·̄ ≲

√
pr

n
+

√
r + log T

n

√
T +h

√
T ·̄.

By Wedin’s Theorem, w.p. at least 1− e−C′(r+log T),

∥Â(Â)¦ −A(A)¦∥F ≲

√
T

r
·̄∥ÂΘ̂−AΘ∥F ≲ ·̄−1r

√
p

nT
+ ·̄−1√r

√
r + log T

n
+
√
rh.

This proves our previous claim. The remaining argument is the same as in the proof of
Theorem 2.

D.6 Proof of Theorem 5

We prove a slightly stronger version of Theorem 5 by replacing the constraint set

4(1 +
√
2)max

t∈S
∥Â(t)(Â(t))−A(A)¦∥2 + 4

ϵ

1− ϵ
< 1− µ,

√
2max

t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
∥Â(t)(Â(t))¦ −A(t)∗(A(t)∗)¦∥2

}
< 1− µ. (11)

with

2(2 +
√
2)max

t∈S
min

R∈Or×r
∥Â(t) −AR∥2 + 4

ϵ

1− ϵ
< 1− µ,

max
t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
min

R∈Or×r
∥Â(t) −A(t)∗R∥2

}
< 1− µ. (12)

Note that for any matrices A,A′ ∈ Op×r, Lemma 2.6 in Chen et al. (2021b) tells us that

∥AA¦ −A′(A′)¦∥2 f min
R∈Or×r

∥A−A′R∥2 f
√
2∥AA¦ −A′(A′)¦∥2.

60

Learning from Similar Linear Representations

Therefore the current constraint set (11) is indeed weaker than the constraint set (12) in
the main text.

The proof follows the construction idea in the proof of Theorem 4 and the argument in the
proof of Proposition 42. The difference is that here we will first consider a relaxed optimization

problem where we require Â(t) and Â to satisfy ∥Â(t)(Â(t))¦ − Ir∥2, ∥Â(Â)¦ − Ir∥2 f ¶

with a small constant ¶ > 0 instead of Â(t), Â ∈ Op×r. Finally, we will let ¶ → 0+ to obtain
the desired original result.

Denote

G({A(t)}Tt=1,A,Θ) =
1

T

T∑

t=1

f (t)(A(t)¹(t)) +

T∑

t=1

¼√
nT

∥A(t)(A(t))¦ −A(A)¦∥2,

with Θ = (¹(1), . . . ,¹(T)) ∈ Rr×T . First, consider any local minimizer {Â(t)}Tt=1 and Â of

min
{θ(t)}Tt=1¦Rr

G({A(t)}Tt=1,A,Θ),

where ∥Â(t)(Â(t))¦ − Ir∥2, ∥Â(Â)¦ − Ir∥2 f ¶ with a small constant ¶ > 0. Define
A(t) = a1AD(t) + a2Â

(t) with a1 + a2 = 1 and a1, a2 g 0, D(t) ∈ Op×r. Define a
“normalization” operator N (·) such that N (A) := A(A¦A)−1/2 ∈ Op×r for any A ∈ Rp×r

with full column rank. Define two distances between subspaces spanned by columns of A
and B ∈ Rp×r as

d1(A,B) = ∥N (A)(N (A))¦ −N (B)(N (B))¦∥2,
d2(A,B) = min

R∈Or×r
∥N (A)−N (B)R∥2.

By Lemma 2.6 of Chen et al. (2021b), d1(A,B) f d2(A,B) f
√
2d1(A,B).

Note that

A(t)(A(t))¦ = a21Ir + a22Ir + a1a2[(D
(t))¦(A)¦Â(t) + (Â(t))¦AD(t)].

In addition, there exists a rotation matrix R(t) ∈ Or×r s.t.

¹̂(t) = R(t) ∥¹̂(t)∥2
∥¹(t)

A
∥2

¹
(t)

A
.

Consider ¹(t) ∈ Rr s.t.

¹(t) = ³ · ¹̂(t)

∥¹̂(t)∥2
,

then by taking D(t) = (R(t))−1, we have

A(t)¹(t) = a1A(R(t))−1¹(t) + a2Â
(t)¹(t) = a1

³

∥¹(t)

A
∥2

A¹
(t)

A
+ a2

³

∥¹̂(t)∥2
Â(t)¹̂(t).

61

Tian, Gu, and Feng

Let a1
³

∥θ(t)

A
∥2

+ a2
³

∥θ̂(t)∥2
= 1, we obtain that ³ =

(
a1

∥θ(t)

A
∥2

+ a2
∥θ̂(t)∥2

)−1
, which implies that

A(t)¹(t) − Â(t)¹̂(t) =
a1/∥¹(t)

A
∥2

a1/∥¹(t)

A
∥2 + a2/∥¹̂(t)∥2

︸ ︷︷ ︸
:=a

(t)
1

(A¹
(t)

A
− Â(t)¹̂(t)).

Also define a
(t)
2 = 1− a

(t)
1 . We claim that

C g a
(t)
1

a1
=

1

a1 + a2 ·
∥θ(t)

A
∥2

∥θ̂(t)∥2

≳
∥¹̂(t)∥2
∥¹(t)

A
∥2

g C ′ > 0, ∀t ∈ S, (13)

with some constants C,C ′ > 0. To see this, note that

¹̂(t) = ((Â(t))¦Σ̂(t)Â(t))−1(Â(t))¦Σ̂(t)A(t)∗¹(t)∗−((Â(t))¦Σ̂(t)Â(t))−1(Â(t))¦∇f (t)(A(t)∗¹(t)∗).

Also note that ((Â(t))¦Σ̂(t)Â(t))−1 and (Σ̂(t))−1 share the same eigenvalues. Since Ãmax((Σ̂
(t))−1) ≍

Ãmin((Σ̂
(t))−1) ≍ 1 w.p. at least 1− e−C′(p+log T) by Lemma 18, we have

Ãmax

(
((Â(t))¦Σ̂(t)Â(t))−1

)
≍ Ãmin

(
((Â(t))¦Σ̂(t)Â(t))−1

)
≍ 1,

w.p. at least 1 − e−C′(p+log T). Furthermore, by Weyl’s inequality and Lemma 18, with
R ∈ argminR∈Or×r ∥N (Â(t))−A(t)∗R∥2,

Ãr((Â
(t))¦Σ̂(t)A(t)∗)

g Ãr((Â
(t))¦Σ(t)A(t)∗)− ∥Σ̂(t) −Σ(t)∥2

g Ãr(R
¦(A(t)∗)¦Σ(t)A(t)∗)− Ãmax((R

¦(A(t)∗)¦ −N (Â(t))¦)Σ(t)A(t)∗)− C¶ − C

√
p+ log T

n

g Ãr((A
(t)∗)¦Σ(t)A(t)∗)− ∥N (Â(t))−A(t)∗R∥2∥Σ(t)∥2 − C¶ − C

√
p+ log T

n

g Ãmin(Σ
(t))− ∥N (Â(t))−A(t)∗R∥2 · Ãmax(Σ

(t))− C¶ − C

√
p+ log T

n

> 0,

w.p. at least 1− e−C′(p+log T), if d2(Â
(t),A(t)∗) f Ãmin(Σ

(t))

Ãmax(Σ(t))
(1− µ) with some µ > 0. On the

other hand, by Lemma 18, w.p. at least 1− e−C′(p+log T), for all t ∈ S,

Ãmax((Â
(t))¦Σ̂(t)A(t)∗) ≲ 1.

Hence w.p. at least 1− e−C′(p+log T),

∥¹̂(t)∥2 g CÃr((Â
(t))¦Σ̂(t)A(t)∗)∥¹(t)∗∥2 − C ′∥∇f (t)(A(t)∗¹(t)∗)∥2

62

Learning from Similar Linear Representations

g C ′′∥¹(t)∗∥2 − C ′′′
√
p+ log T

n

g C ′′

2
∥¹(t)∗∥2.

In addition, note that w.p. at least 1− e−C′(r+log T),

|∥¹(t)

A
∥2 − ∥¹(t)∗∥2| f ∥¹(t)

A
− ¹(t)∗∥2 ≲ h·(t) +

√
r + log T

n
,

implying that w.p. at least 1− e−C′(r+log T),

∥¹(t)

A
∥2 f ∥¹(t)∗∥2 + C

(
h·(t) +

√
r + log T

n

)
f ∥¹(t)∗∥2 + C ′

(
r−1/2·(t) +

√
r + log T

n

)
≲ ∥¹(t)∗∥2,

∥¹(t)∗∥2 ≲ ∥¹(t)∗∥2 − C

(
h·(t) +

√
r + log T

n

)
f ∥¹(t)

A
∥2.

Hence w.p. at least 1− e−C′(p+log T),

∥¹̂(t)∥2 g
C ′′

2
∥¹(t)∗∥2 ≳ ∥¹(t)

A
∥2.

This proves the second half of (13). On the other hand, when a1 f 1/2, we must have

a
(t)
1

a1
f 2

∥¹̂(t)∥2
∥¹(t)

A
∥2
,

and it is easy to see that w.p. at least 1− e−C′(r+log T),

∥¹̂(t)∥2 f C∥¹(t)∗∥2 + C

√
p+ log T

n
≲ ∥¹(t)∗∥2 ≲ ∥¹(t)

A
∥2,

which proves the first half of (13). Therefore, our claim (13) holds, and we will use it later
in our proof.

Now similar to the proof of Proposition 42, we divide S into the following two index sets

A1 =

{
t ∈ S : ∥A(t)(A(t))¦ − Â(Â)¦∥2 g c∥Â(Â)¦ −AA

¦∥2 ·
1√
r

}
,

A2 =

{
t ∈ S : ∥A(t)(A(t))¦ − Â(Â)¦∥2 < c∥Â(Â)¦ −AA

¦∥2 ·
1√
r

}
,

where c > 0 is a small constant. For any index set A ¦ [T], define

GA({A(t)}Tt=1,A,Θ) =
1

T

∑

t∈A
f (t)(A(t)¹(t)) +

∑

t∈A

¼√
nT

∥A(t)(A(t))¦ −A(A)¦∥2

63

Tian, Gu, and Feng

=
1

2T

∑

t∈A
∥Y (t) −X(t)A(t)¹(t)∥22 +

¼

T
√
n

∑

t∈A
∥A(t)(A(t))¦ −AA¦∥2.

Note that by basic algebra,

1

2T

∑

t∈A
∥Y (t) −X(t)A(t)¹(t)∥22 −

1

2T

∑

t∈A
∥Y (t) −X(t)Â(t)¹̂(t)∥22

=
1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t)) +

1

T

∑

t∈A
[∇f (t)(Â(t)¹̂(t))]¦(A(t)¹(t) − Â(t)¹̂(t))

=
1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t)) +

1

T

∑

t∈A
[∇f (t)(A¹

(t)

A
)]¦(A(t)¹(t) − Â(t)¹̂(t))

+
1

T

∑

t∈A
(Â(t)¹̂(t) −A¹

(t)

A
)¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t)).

Hence

GA1({A(t)}Tt=1,A,Θ)−GA1({Â(t)}Tt=1, Â, Θ̂)

f 1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t))

+
1

T

∑

t∈A1

∥∇f (t)(A(t)∗¹(t)∗)∥2a(t)1 (∥A¹
(t)

A
− Â¹

(t)
̂
A
∥2 + ∥Â¹

(t)
̂
A

− Â(t)¹̂(t)∥2)

+
1

T

∣∣∣∣
∣∣∣∣
{√

a
(t)
1 [∇f (t)(A¹

(t)

A
)−∇f (t)(A(t)∗¹(t)∗)]

}
t∈A1

∣∣∣∣
∣∣∣∣
F

·
√∑

t∈A1

a
(t)
1 ∥A¹

(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A1

a
(t)
1 ∥A¹

(t)

A
− Â(t)¹̂(t)∥22 +

¼

T
√
n

∑

t∈A1

∥A(t)(A(t))¦ −AA¦∥2

− ¼

T
√
n

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2, (14)

with

[1] =
1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t))

+
1

T

∑

t∈A1

∥∇f (t)(A(t)∗¹(t)∗)∥2a(t)1 (∥A¹
(t)

A
− Â¹

(t)
̂
A
∥2 + ∥Â¹

(t)
̂
A

− Â(t)¹̂(t)∥2)

+
1

T

∣∣∣∣
∣∣∣∣
{√

a
(t)
1 [∇f (t)(A¹

(t)

A
)−∇f (t)(A(t)∗¹(t)∗)]

}
t∈A1

∣∣∣∣
∣∣∣∣
F

·
√∑

t∈A1

a
(t)
1 ∥A¹

(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A1

a
(t)
1 ∥A¹

(t)

A
− Â(t)¹̂(t)∥22,

64

Learning from Similar Linear Representations

and

[2] =
¼

T
√
n

∑

t∈A1

∥A(t)(A(t))¦ −AA¦∥2 −
¼

T
√
n

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2. (15)

Recall that A(t)¹(t) − Â(t)¹̂(t) = a
(t)
1 (A¹

(t)

A
− Â(t)¹̂(t)) and our previous conclusion that w.p.

at least 1− e−C′(r+log T), a
(t)
1 /a1 ≍ 1 for all t ∈ S, hence w.p. at least 1− e−C′(r+log T),

[1] f C

T

∑

t∈A1

a21∥A¹
(t)

A
− Â(t)¹̂(t)∥22

+
1

T

∑

t∈A1

∥∇f (t)(A(t)∗¹(t)∗)∥2a1·(t)
[
d1(Â,A) + d1(Â, Â

(t))
]

+
1

T

(√
T
√
a1

√
r + log T

n
+ h

√∑

t∈A1

(·(t))2a1

)√∑

t∈A1

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A1

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

f C

T

∑

t∈A1

a21∥A¹
(t)

A
− Â(t)¹̂(t)∥22

+
1

T

∑

t∈A1

∥∇f (t)(A(t)∗¹(t)∗)∥2a1·(t)(∥Â(Â)¦ −A(A)¦∥2 + ∥Â(Â)¦ − Â(t)(Â(t))¦∥2 + ¶)

+
1

T

(√
T
√
a1

√
r + log T

n
+ h

√∑

t∈A1

(·(t))2a1

)√∑

t∈A1

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A1

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

f C

T

∑

t∈A1

√
p+ log T

n
a1·

(t)√r · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1

(
r + log T

n
+ h2 · 1

T

∑

t∈A1

(·(t))2
)

+ C
a1
T
¶

√
p+ log T

n

∑

t∈A1

·(t)

To bound [2], we need to do some preparations. Note that

A(t)(A(t))¦ = (a1AD(t) + a2Â
(t))(a1AD(t) + a2Â

(t))¦

= a22Â
(t)(Â(t))¦ + a1a2[AD(t)(Â(t))¦ + Â(t)(D(t))¦(A)¦] +O(a21)

= (1− 2a1)Â
(t)(Â(t))¦ + a1[AD(t)(Â(t))¦ + Â(t)(D(t))¦(A)¦] +O(a21),

65

Tian, Gu, and Feng

where O(a21) here refers to a p×p matrix with each entry of order O(a21). Let A = a1A+a2Â,
then similarly we have

AA¦ = (1− 2a1)Â(Â)¦ + a1[A(Â)¦ + Â(A)¦] +O(a21). (16)

This implies that

A(t)(A(t))¦ −AA¦

= (1− a1)[Â
(t)(Â(t))¦ − Â(Â)¦]− a1

2
(Â(t)(D(t))¦ + Â)(Â(t)(D(t))¦ − Â)¦

− a1
2
(Â(t)(D(t))¦ − Â)(Â(t)(D(t))¦ + Â)¦ + a1A[D(t)(Â(t))¦ − (Â)¦]

+ a1[Â
(t)(D(t))¦ − Â](A)¦ +O(a21)

= (1− a1)[Â
(t)(Â(t))¦ − Â(Â)¦] + a1

[
A− 1

2
(Â(t)(D(t))¦ + Â)

]
(Â(t)(D(t))¦ − Â)¦

+ a1[Â
(t)(D(t))¦ − Â]

[
A− 1

2
(Â(t)(D(t))¦ + Â)

]¦
+O(a21)

= (1− a1)[Â
(t)(Â(t))¦ − Â(Â)¦] + a1(A− Â)[Â(t)(D(t))¦ − Â]¦

− a1[Â
(t)(D(t))¦ − Â][Â(t)(D(t))¦ − Â]¦ + a1[Â

(t)(D(t))¦ − Â](A− Â)¦ +O(a21).

Note that we can multiply A, Â(t), and Â by a rotation matrix from the right without
changing their definitions

A ∈ argmin
A∈Op×r

∥A(t)∗(A(t)∗)¦ −AA¦∥2,

{Â(t)}Tt=1, Â ∈ argmin
{A(t)}Tt=1,A∈Rp×r

∥(A(t))¦A(t)−Ir∥2,∥(A)¦A−Ir∥2f¶

min
Θ∈Rr×T

G[T]({A(t)}Tt=1,A,Θ).

Therefore, WLOG, we assume

∥A−N (Â)∥2 = min
R∈Or×r

∥A−N (Â)R∥2 = d2(A, Â), (17)

∥N (Â(t)(D(t))¦)−N (Â)∥2 = min
R∈Or×r

∥N (Â(t))−N (Â)R∥2 = d2(Â
(t), Â).

Therefore, by the triangle inequality,

∥A(t)(A(t))¦ −AA¦∥2 f (1− a1)∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +max
{
2a1∥A− Â∥2∥Â(t)(D(t))¦ − Â∥2,

a1∥Â(t)(D(t))¦ − Â∥22
}
+ C

√
pa21

f (1− a1)∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +max
{
2
√
2a1 · d2(A, Â)d1(Â

(t), Â),

66

Learning from Similar Linear Representations

√
2a1 · d2(Â(t), Â)d1(Â

(t), Â)
}
+ Ca1¶ + C

√
pa21

f ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +
[
− 1 +

(
2
√
2d2(A, Â)

)
(
(√

2d2(Â
(t), Â)

)]

· a1d1(Â(t), Â) + Ca1¶ + C
√
pa21

f ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +
[
− 2−

1
2 +

(
2d2(A, Â)

)
(
(
d2(A, Â) + d2(Â

(t),A)
)]

·
√
2a1d1(Â

(t), Â) + Ca1¶ + C
√
pa21

f ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +
[
− 2−

1
2 +

(
2d2(A, Â)

)
(
(
d2(A, Â) + d2(Â

(t),A)
)]

·
√
2a1∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1¶ + C

√
pa21.

To further bound the RHS, we claim that d2(A, Â) f (1+
√
2)maxt∈S d2(Â(t),A)+

√
2 ϵ
1−ϵ +

C ′¶ with some constant C ′ > 0. To see this, denote q = maxt∈S d2(Â(t),A), and suppose

d2(Â,A) g q + b with some b g 0, then mint∈S d2(Â, Â(t)) g b. This leads to

T∑

t=1

∥Â(Â)¦ − Â(t)(Â(t))¦∥2 g
1√
2

∑

t∈S
d2(Â, Â

(t))− C¶ g |S|√
2
b− CT¶.

On the other hand, we have

∑

t∈S
d2(Â

(t),A) f |S|q,
∑

t∈Sc

d2(Â
(t),A) f |Sc|,

which implies that

T∑

t=1

∥A(A)¦ − Â(t)(Â(t))¦∥2 f |S|q + |Sc|+ CT¶.

By the optimization procedure, we know that Â ∈ argmin
A∈Rp×r:∥A¦A−Ir∥2f¶

∑T
t=1 ∥AA¦ −

Â(t)(Â(t))¦∥2. Therefore we must have |S|q + |Sc|+ CT¶ g |S|√
2
b− CT¶, i.e.

b f
√
2q +

√
2
|Sc|
|S| + C ′¶ f

√
2q +

√
2

ϵ

1− ϵ
+ C ′¶.

In other words,

d2(A, Â) f q + b f (1 +
√
2)max

t∈S
d2(Â

(t),A) +
√
2

ϵ

1− ϵ
+ C ′¶,

which proves the claim. Therefore, using this claim, we have

∥A(t)(A(t))¦ −AA¦∥2

67

Tian, Gu, and Feng

f ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 +
[
− 2−

1
2 + 2(1 +

√
2)max

t∈S
d2(Â

(t),A) + 2
√
2

ϵ

1− ϵ

]

·
√
2a1∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1¶ + C

√
pa21

f ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 − µa1∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1¶ + C
√
pa21,

when 2(2 +
√
2)maxt∈S d2(Â(t),A) + 4 ϵ

1−ϵ < 1− µ.
Therefore, we can upper bound the term in (15) as

[2] f − ¼

T
√
n
· µ · a1 ·

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21.

Therefore, using the bounds we have proved for [1] and [2], plugging them back in (14), we
have Hence

GA1({A(t)}Tt=1,A,Θ)−GA1({Â(t)}Tt=1, Â, Θ̂)

f C

T

∑

t∈A1

√
p+ log T

n
a1·

(t)√r · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1

(
r + log T

n
+ h2 · 1

T

∑

t∈A1

(·(t))2
)

+ C
a1
T
¶

√
p+ log T

n

∑

t∈A1

·(t) − ¼

T
√
n
· µ · a1 ·

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2

+ C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

f Ca1

(
r + log T

n
+ h2 · 1

T

∑

t∈A1

(·(t))2
)
+ C

a1
T
¶

√
p+ log T

n

∑

t∈A1

·(t)

− ¼

T
√
n
· µ · a1 ·

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21.

Considering GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂), first we have

1

T

∑

t∈A2

[∇f (t)(A(t)∗¹(t)∗)]¦a(t)1 · (A¹
(t)

A
− Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

− Â(t)¹̂(t))

f 1

T

∥∥∥∥
{√

a
(t)
1 ∇f (t)(A(t)∗¹(t)∗)

}
t∈A2

∥∥∥∥
2

√
2r ·

∣∣∣∣
∣∣∣∣
{√

a
(t)
1 (A¹

(t)

A
− Â¹

(t)
̂
A
)
}
t∈A2

∣∣∣∣
∣∣∣∣
F

+
1

T

∑

t∈A2

∥∇f (t)(A(t)∗¹(t)∗)∥2 · a(t)1 · ∥Â¹
(t)
̂
A

− Â(t)¹̂(t)∥2

f 1

T

√
2rC ·

√
p+ T

n
a1

∣∣∣
∣∣∣
{
(A¹

(t)

A
− Â¹

(t)
̂
A
)
}
t∈A2

∣∣∣
∣∣∣
F
+

1

T

∑

t∈A2

√
p+ log T

n
a1 · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2

f C
r(p+ T)

nT
a1 +

C

T
a1

∣∣∣
∣∣∣
{
(A¹

(t)

A
− Â¹

(t)
̂
A
)
}
t∈A2

∣∣∣
∣∣∣
2

F
+

1

T

∑

t∈A2

√
p+ log T

n
a1 · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2,

68

Learning from Similar Linear Representations

where the second inequality holds because

∥∥∥∥
{√

a
(t)
1 ∇f (t)(A(t)∗¹(t)∗)

}
t∈A2

∥∥∥∥
2

≲ max
t∈A2

√
a
(t)
1 ·

√
p+ T

n
,

w.p. at least 1− e−C(p+log T), which is due to Lemma 5.39 in Vershynin (2010). Therefore,

by using the same arguments to bound GA1({A(t)}Tt=1,A,Θ)−GA1({Â(t)}Tt=1, Â, Θ̂), we
can prove that

GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂)

f 1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t))

+ C
r(p+ T)

nT
a21 +

C

T

∣∣∣
∣∣∣
{
(A¹

(t)

A
− Â¹

(t)
̂
A
)
}
t∈A2

∣∣∣
∣∣∣
2

F
+

1

T

∑

t∈A2

√
p+ log T

n
a1 · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2

+
C

T

(√
T
√
a1

√
r + log T

n
+ h

√∑

t∈A2

(·(t))2a1

)√∑

t∈A2

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A2

a1∥Â(t)¹̂(t) −A¹
(t)

A
∥22 −

¼

T
√
n
· µa1 ·

∑

t∈A2

∥Â(t)(Â(t))¦ − Â(Â)¦∥2 (18)

f −C
T

∑

t∈A2

a1∥Â(t)¹̂(t) −A¹
(t)

A
∥22 −

¼

T
√
n
· µa1 ·

∑

t∈A2

∥Â(t)(Â(t))¦ − Â(Â)¦∥2

+ Ca1

(
pr

nT
+
r + log T

n
+ h2 · 1

T

∑

t∈A2

(·(t))2
)
.

Since ∥Â(t)¹̂(t)−Â¹
(t)
̂
A
∥2 f ∥Â(t)(Â(t))¦−Â(Â)¦∥2(∥¹(t)

̂
A
∥2+∥∇f (t)(Â¹

(t)
̂
A
)∥2) f C·(t)∥Â(t)(Â(t))¦−

Â(Â)¦∥2 f C·(t)∥A(A)¦ − Â(Â)¦∥2 c√
r
, we have

∥Â(t)¹̂(t) −A¹
(t)

A
∥22 g

1

2
∥Â¹

(t)
̂
A

−A¹
(t)

A
∥22 − 2∥Â(t)¹̂(t) − Â¹

(t)
̂
A
∥22

g 1

2
∥Â¹

(t)
̂
A

−A¹
(t)

A
∥22 −

2C2c

r
(·(t))2∥A(A)¦ − Â(Â)¦∥22.

This implies that

GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂)

f −C
′

T
a1∥ÂΘ̂−AΘ∥2F +

2C2c

r
a1(·

(t))2∥A(A)¦ − Â(Â)¦∥22

+ Ca1

(
pr

nT
+
r + log T

n
+ h2 · 1

T

∑

t∈A2

(·(t))2
)
.

69

Tian, Gu, and Feng

In addition, by triangle inequality,

GSc({A(t)}Tt=1,A,Θ)−GSc({Â(t)}Tt=1, Â, Θ̂) f ¼√
nT

|Sc|∥Â(Â)¦ −AA¦∥2.

Recall (16):

AA¦ = (1− 2a1)Â(Â)¦ + a1[A(Â)¦ + Â(A)¦] +O(a21).

Hecne we have

∥AA¦ − Â(Â)¦∥2 f a1∥Â(A− Â)¦∥2 + a1∥A(Â−A)¦∥2 + Ca21

f 2a1d2(A, Â) + Ca1¶ + Ca21

f 2
√
2a1∥A(A)¦ − Â(Â)¦∥2 + Ca1¶ + Ca21,

where the second inequality is due to (17). Therefore,

GSc({A(t)}Tt=1,A,Θ)−GSc({Â(t)}Tt=1, Â, Θ̂) f 2
√
2a1

¼√
nT

|Sc|∥A(A)¦−Â(Â)¦∥2+Ca1¶+Ca21.

Case 1: If |A2| g
(
1− cr−1 ·̄2

maxt∈S(·(t))2

)
|S|:

By Wedin’s sinΘ-theorem, we have By Assumption 2, Wedin’s sinΘ-Theorem, and

applying Lemma 35 on {¹(t)

A
}t∈A2 ,

∥N (Â)(N (Â))¦−A(A)¦∥2 f ∥N (Â)(N (Â)¦−A(A)¦∥F ≲

√
r

|S| ·̄
−1·∥{Â¹

(t)
̂
A
−A¹

(t)

A
}t∈A2∥F.

Here we used the fact that 1
|S|
∑

t∈S ¹
(t)

A
(¹

(t)

A
)¦ ° c

r ·̄
2Ip. To see this, notice that

Ãr

(
1√
|S|

{A¹
(t)

A
}t∈S

)
= Ãr

(
1√
|S|

{´(t)∗}t∈S
)

− 1√
|S|

∥{A¹
(t)

A
}t∈S − {´(t)∗}t∈S∥2

g c√
r
·̄ −

(
·̄h+

√
r + log T

n

)

g c′√
r
·̄,

where by Lemmas 29 and 33,

1√
|S|

∥{A¹
(t)

A
}t∈S − {´(t)∗}t∈S∥2 f

√∑

t∈S
∥A¹

(t)

A
−A(t)∗¹(t)∗∥22 ≲ h·̄ +

√
r + log T

n
,

and the last step comes from conditions (i) and (ii) by noticing that
√
r + log T

n
≲

·̄√
r
·
√
p+ log T

n
· 1

·(t)
≲

·̄√
r
.

This leads to

Ãr

(
1

|S|
∑

t∈S
¹
(t)

A
(¹

(t)

A
)¦
)

= Ãr

(
1

|S|
∑

t∈S
¹
(t)

A
(A)¦A(¹

(t)

A
)¦
)

g c′

r
·̄2.

70

Learning from Similar Linear Representations

Hence

G[T]({A(t)}Tt=1,A,Θ)−G[T]({Â(t)}Tt=1, Â, Θ̂)

f [GA1({A(t)}Tt=1,A,Θ)−GA1({Â(t)}Tt=1, Â, Θ̂)] + [GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂)]

+ [GSc({A(t)}Tt=1,A,Θ)−GSc({Â(t)}Tt=1, Â, Θ̂)]

f Ca1

(
r + log T

n
+ h2 · 1

T

∑

t∈A1

(·(t))2
)
+ C

a1
T
¶

√
p+ log T

n

∑

t∈A1

·(t) + C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

− C

T

∑

t∈A2

a1∥Â(t)¹̂(t) −A¹
(t)

A
∥22 + Ca1

(
pr

nT
+
r + log T

n
+ h2 · 1

T

∑

t∈A2

(·(t))2
)

+ 2
√
2a1

¼√
nT

|Sc|∥A(A)¦ − Â(Â)¦∥2

f Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)
− Ca1

·̄2

r
∥Â(Â)¦ −A(A)¦∥22 + 2

√
2a1

¼√
nT

|Sc|∥A(A)¦ − Â(Â)¦∥2

+ Ca1¶
2 + C

a1
T
¶

√
p+ log T

n

∑

t∈S
·(t) + C

¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

< 0, (19)

w.p. at least 1 − e−C′(r+log T), if ∥Â(Â)¦ − A(A)¦∥2 > C·̄−1
(√ pr

nT +
√

r+log T
n

)
+ Ch +

C r¼
·̄2

√
n

|Sc|
T and Ca1¶

2 +C a1
T ¶
√

p+log T
n

∑
t∈S ·

(t) +C ¼√
n
µ · a1¶ +C ¼√

n
· µ · √pa21 < Ca1

pr
nT +

Ca1
r+log T

n . Note that the latter can easily hold because we are free to choose an arbitrary

small a1 and ¶. And as a1 → 0+, we have A(t) → Â(t), A → Â, ¹(t) → ¹̂(t), in the sense of

∥ · ∥max. Therefore (19) contradicts with the local optimality of ({Â(t)}Tt=1, Â, {¹̂(t)}Tt=1) in

terms of G[T]({Â(t)}Tt=1, Â, Θ̂). Therefore, w.p. at least 1− e−C′(r+log T), we must have

∥Â(Â)¦ −A(A)¦∥2 f C·̄−1

(
r

√
p

nT
+
√
r

√
r + log T

n

)
+ C

√
rh+ C

r¼

·̄2
√
n

|Sc|
T
,

when Ca1¶
2+C a1

T ¶
√

p+log T
n

∑
t∈S ·

(t)+C ¼√
n
µ ·a1¶+C ¼√

n
·µ ·√pa21 < Ca1

pr
nT +Ca1

r+log T
n .

Case 2: If |A1| g cr−1 ·̄2

maxt∈S(·(t))2
|S|: Note that by (18), we have

GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂)

f 1

2T
(A(t)¹(t) − Â(t)¹̂(t))¦Σ̂(t)(A(t)¹(t) − Â(t)¹̂(t))

+
C

T
a1

√
p+ T

n

√
r
∣∣∣
∣∣∣
{
A¹

(t)

A
− Â¹

(t)
̂
A

}
t∈A2

∣∣∣
∣∣∣
F
+

1

T

∑

t∈A2

√
p+ log T

n
a1 · ∥Â(t)(Â(t))¦ − Â(Â)¦∥2

71

Tian, Gu, and Feng

+
C

T

(√
T
√
a1

√
r + log T

n
+ h

√∑

t∈A2

(·(t))2a1

)√∑

t∈A2

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

− C

T

∑

t∈A2

a1∥Â(t)¹̂(t) −A¹
(t)

A
∥22 −

¼

T
√
n
· µa1 ·

∑

t∈A2

∥Â(t)(Â(t))¦ − Â(Â)¦∥2

f −C
T

∑

t∈A2

a1∥Â(t)¹̂(t) −A¹
(t)

A
∥22 −

¼

T
√
n
· µa1 ·

∑

t∈A2

∥Â(t)(Â(t))¦ − Â(Â)¦∥2

+
C

T

(√
T
√
a1

√
r + log T

n
+ h

√∑

t∈A2

(·(t))2a1

)√∑

t∈A2

a1∥A¹
(t)

A
− Â(t)¹̂(t)∥22

+
C

T
a1

√
p+ T

n

√
r
∣∣∣
∣∣∣
{
A¹

(t)

A
− Â(t)¹̂(t)

}
t∈A2

∣∣∣
∣∣∣
F
+
C

T
a1

√
p+ T

n

√
r
∣∣∣
∣∣∣
{
Â(t)¹̂(t) − Â¹

(t)
̂
A

}
t∈A2

∣∣∣
∣∣∣
F

f Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)
+
C

T
a1

√
p+ T

n

√
r

√∑

t∈A2

∥Â(t)¹̂(t) − Â¹
(t)
̂
A
∥22

f Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)
+ Ca1

√
p+ T

nT
·̄ · ∥Â(Â)¦ −A(A)¦∥2.

Therefore,

G[T]({A(t)}Tt=1,A,Θ)−G[T]({Â(t)}Tt=1, Â, Θ̂)

f [GA1({A(t)}Tt=1,A,Θ)−GA1({Â(t)}Tt=1, Â, Θ̂)] + [GA2({A(t)}Tt=1,A,Θ)−GA2({Â(t)}Tt=1, Â, Θ̂)]

+ [GSc({A(t)}Tt=1,A,Θ)−GSc({Â(t)}Tt=1, Â, Θ̂)]

f Ca1

(
r + log T

n
+ h2 · 1

T

∑

t∈A1

(·(t))2
)
+ C

a1
T
¶

√
p+ log T

n

∑

t∈A1

·(t) + C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

− ¼

T
√
n
· µ · a1 ·

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)

+ 2
√
2a1

¼√
nT

|Sc|∥A(A)¦ − Â(Â)¦∥2 + Ca1

√
p+ T

nT
·̄ · ∥Â(Â)¦ −A(A)¦∥2

f Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)
+ 2

√
2a1

¼√
nT

|Sc|∥A(A)¦ − Â(Â)¦∥2

− ¼

T
√
n
· µ · a1 ·

∑

t∈A1

∥Â(t)(Â(t))¦ − Â(Â)¦∥2 + C
a1
T
¶

√
p+ log T

n

∑

t∈S
·(t)

+ C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21 + Ca1

√
p+ T

nT
·̄ · ∥Â(Â)¦ −A(A)¦∥2

f Ca1

(
pr

nT
+
r + log T

n
+ h2·̄2

)
+

¼√
nT

a1

(
2
√
2|Sc| − |A1|µ

)
· ∥A(A)¦ − Â(Â)¦∥2

72

Learning from Similar Linear Representations

+ C
¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21 + C

a1
T
¶

√
p+ log T

n

∑

t∈S
·(t) + Ca1

√
p+ T

nT
·̄ · ∥Â(Â)¦ −A(A)¦∥2

f Ca1
p+ log T

n
− C ′ ¼√

nTr
· µ ·̄2

maxt∈S(·(t))2
· ∥A(A)¦ − Â(Â)¦∥2 + C

¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

+ C
a1
T
¶

√
p+ log T

n

∑

t∈S
·(t) + Ca1

√
p+ T

nT
·̄ · ∥Â(Â)¦ −A(A)¦∥2

f Ca1
p+ log T

n
− C ′

2

¼√
nTr

· µ ·̄2

maxt∈S(·(t))2
· ∥A(A)¦ − Â(Â)¦∥2 + C

¼√
n
µ · a1¶ + C

¼√
n
· µ · √pa21

+ C
a1
T
¶

√
p+ log T

n

∑

t∈S
·(t)

< 0,

w.p. at least 1−e−C′(r+log T), when ∥A(A)¦−Â(Â)¦∥2 g C¸, C ¼√
n
µ ·a1¶+C ¼√

n
·µ ·√pa21 <

Ca1
p+log T

n , with a large C ′′ > 0, and mint∈S ·(t) ≳
√

p+log T
n . Note that

mint∈S ·(t)

·̄
· r ≲

√
p+ log T ,

mint∈S ·(t)

·̄
· r√

T
≲ 1. (20)

We used the fact that

¼ ≍
√
r(p+ log T) · maxt∈S(·(t))2

mint∈S ·(t)

≳

[√
pr

·̄

mint∈S ·(t)
+
√
r(p+ log T) · ·̄

mint∈S ·(t)

]
· maxt∈S(·(t))2

·̄
,

where we used (20) in the second inequality. This contradicts with the local optimality of

({Â(t)}Tt=1, Â, {¹̂(t)}Tt=1) in terms of G[T]({Â(t)}Tt=1, Â, Θ̂).

Therefore, w.p. at least 1− e−C′(r+log T), we must have

∥Â(Â)¦ −A(A)¦∥2 f C·̄−1

(
r

√
p

nT
+
√
r

√
r + log T

n

)
+ C

√
rh+ C

r¼

·̄2
√
n

|Sc|
T
,

when C a1
T ¶
√

p+log T
n

∑
t∈S ·

(t) + C ¼√
n
µ · a1¶ + C ¼√

n
· µ · √pa21 < Ca1

pr
nT + Ca1

r+log T
n .

Until now, we have proved that

∥Â(Â)¦ −A(A)¦∥2 f C·̄−1

(
r

√
p

nT
+
√
r

√
r + log T

n

)
+ C

√
rh+ C

r¼

·̄2
√
n

|Sc|
T
,

for any local minimizers ({Â(t)}Tt=1, Â, {¹̂(t)}Tt=1) of G[T]({Â(t)}Tt=1, Â, Θ̂) satisfying

2(2 +
√
2)max

t∈S
d2(Â

(t),A) + 4
ϵ

1− ϵ
< 1− µ,

73

Tian, Gu, and Feng

max
t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
d2(Â

(t),A(t)∗)
}
< 1− µ.

The remaining proof follows the arguments in the proof of Theorem 2 and pushing ¶ → 0.

D.7 Proof of Theorem 6

We briefly point out how the arguments in the proofs of theorems in Section 2.2.1 can be
modified to prove the same results for the revised Algorithm 1 which solves Step 1 in the
entire Rp×r space with the penalty on projection matrices.

We first discuss the results of global minimizers (Theorems 2 and 3).

(i) If rank(Â(t)) = rank(Â) = r for all t ∈ S, then we can replace Â(t)¹
(t)

Â(t)
and Â¹

(t)
̂
A

with

¹
(t)
A

:= argminθ∈Rr f (t)(A¹) used in the proofs by N (Â(t))¹
(t)

N (Â(t))
and N (Â)¹

(t)

N (̂A)
,

where N (Â(t)) := Â(t)[(Â(t))¦Â(t)]−1(Â(t))¦, and N (Â) = Â[(Â)¦Â]−1(Â)¦. It is

straightforward to see that N (Â(t))¹
(t)

N (Â(t))
= Â(t)¹

(t)

Â(t)
and N (Â)¹

(t)

N (̂A)
= Â¹

(t)
̂
A
. We

can also see that P
Â(t) = N (Â(t))(N (Â(t)))¦ and P̂

A
= N (Â)(N (Â))¦. We can

proceed the same proofs of Theorems 2 and 3, with N (Â(t)), N (Â), ¹
(t)

Â(t)
, and ¹

(t)
̂
A
.

(ii) If rank(Â(t)) < r or rank(Â) < r for some t ∈ S, then for those t, we can define N (Â(t))

and N (Â) in a different way. Consider a matrix A ∈ Rp×r with rank(A) = r′ < r
and its SVD Ap×r = Up×r′Λr′×r′V

¦
r′×r′ , where Λr′×r′ is diagonal with positive entries

and U ∈ Op×r′ . Then we can define N (A) = (Up×r′ 0p×(r−r′)) ∈ Rp×r. Note that

N (A)(N (A))¦ = UU¦ = PA = PN (A), and this definition of N (A) can be seen as
an extension of the full-rank case. Then we can proceed the same proofs of Theorems

2 and 3, with N (Â(t)), N (Â), ¹
(t)

Â(t)
, and ¹

(t)
̂
A
.

Then let us discuss the results of local minimizers (Theorems 4 and 5). Recall that we

proved Theorems 4 and 5 by construction based on the local minimizers Â and Â(t). And it

suffices to replace Â and Â(t) in the construction with N (Â) and N Â(t)) as defined above.
In addition, if we want to show the stronger version of Theorem 5 we proved in the proof,
we need to rewrite the constraint set by replacing

2(2 +
√
2)max

t∈S
min

R∈Or×r
∥Â(t) −AR∥2 + 4

ϵ

1− ϵ
< 1− µ,

max
t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
min

R∈Or×r
∥Â(t) −A(t)∗R∥2

}
< 1− µ.

with

2(2 +
√
2)max

t∈S
min

R∈Or×r
∥N (Â(t))−AR∥2 + 4

ϵ

1− ϵ
< 1− µ,

max
t∈S

{
Ãmax(Σ

(t))

Ãmin(Σ(t))
min

R∈Or×r
∥N (Â(t))−A(t)∗R∥2

}
< 1− µ.

All the remaining arguments still hold.

74

Learning from Similar Linear Representations

D.8 Proof of Theorem 7

Let us rewrite ´(t)∗ = A¹̄(t)∗+¶(t)∗, where ¹̄(t)∗ = A(A)¦A(t)∗¹(t)∗ and ¶(t)∗ = A
§
(A

§
)¦A(t)∗¹(t)∗.

Denote D∗
S = {¶(t)∗}t∈S ∈ Rd×|S|.

First, let us prove a useful result: When nT g Cpr, n g Cp, mint∈S ·(t)

·̄

√
r
T ∥D∗

S∥2 f

c′
√

p+log T
n , and mint∈S ∥¶(t)∗∥2 f c′

√
p+log T

n , with a large constant C and a small constant

c′, we have

∥Â(Â)¦ −A(A)¦∥2 ≲ ·̄−1

√
pr

nT
+ ·̄−1

√
r

n
+ ·̄−1

√
r

T
∥D∗

S∥2 +
maxt∈S ·(t)

·̄

√
rϵ̄, (21)

w.p. at least 1− e−C(p+log T), and

∥Â¹
(t)
̂
A

− ´(t)∗∥2 ≲
·(t)

·̄

√
pr

nT
+

(
·(t)

·̄
(1

)√
r

n
+
·(t)

·̄

√
r

T
∥D∗

S∥2 +
·(t)

·̄
max
t∈S

·(t)
√
rϵ̄

+ ∥¶(t)∗∥2 +
√

log T

n
, ∀t ∈ S, (22)

w.p. at least 1− e−C(r+log T).

Denote BS = {A¹̄(t)∗}t∈S ∈ Rp×|S| and B̃S = { ˜́(t)}t∈S .
Note that when mint∈S ·(t)

·̄

√
r
T ∥D∗

S∥2 f c′
√

p+log T
n , and mint∈S ∥¶(t)∗∥2 f c′

√
p+log T

n ,

we have

1

|S|Ãr(BS)
2 =

1

|S|Ãr(
∑

t∈S
´(t)∗A(A)¦(´(t)∗)¦)

=
1

|S|Ãr(
∑

t∈S
´(t)∗(´(t)∗)¦)− 1

|S|Ãr(
∑

t∈S
´(t)∗A

§
(A

§
)¦(´(t)∗)¦)

g c
·̄2

r
− 1

T (1− ϵ)
∥D∗

S(D
∗
S)

¦∥2

>
c

2

·̄2

r
,

because
√

p+log T
n

1
·̄

√
r
T ∥D∗

S∥2 ≲
mint∈S ·(t)

·̄

√
r
T ∥D∗

S∥2 f c′
√

p+log T
n .

Also, ˜́(t) − ´(t)∗ = (Σ̂(t))−1 1
n(X

(t))¦ϵ(t) is a sub-Gaussian vector with variance proxy

n−1Ãmax((Σ̂
(t))−1) given X(t), and { ˜́(t) − ´(t)∗}t∈[T] are independent of each other. By

Lemma 5.39 in Vershynin (2010), conditioned on {X(t)}t∈S , we have

∥B̃S −B∗
S∥2 ≲

√
p+ T

n
max
t∈S

Ãmax((Σ̂
(t))−1),

w.p. at least 1− e−C(p+log T). Then combining

∥(Σ̂(t))−1∥2 f ∥(Σ(t))−1∥2 + ∥(Σ̂(t))−1∥2∥Σ̂(t) −Σ(t)∥2∥(Σ(t))−1∥2

75

Tian, Gu, and Feng

with Lemma 18, we have Ãmax((Σ̂
(t))−1) = ∥(Σ̂(t))−1∥2 ≲ 1. Therefore, w.p. at least

1− e−C(p+log T),

∥B̃S −B∗
S∥2 ≲

√
p+ T

n
.

Note that B̂S −BS = (B̂S − B̃S) + (B̃S −B∗
S) + (B∗

S −BS). By triangle inequality,

∥B̂ −
(
BS 0

)
p×T

∥2 f ∥B̂Sc∥2 + ∥B̂S − B̃S∥2 + ∥B̃S −B∗
S∥2 + ∥B∗

S −BS∥2
f ∥B̂Sc∥F + ∥B̂S − B̃S∥F + ∥B̃S −B∗

S∥2 + ∥B∗
S −BS∥2

f R
√
ϵT +

√∑

t∈S
∥ΠR(˜́(t))− ˜́(t)∥22 + C

√
p+ T

n
+ ∥D∗

S∥2,

w.p. at least 1− e−C′(p+log T). Since R = quantile({∥ ˜́(t)∥2}Tt=1, 1− ϵ̄), ϵ̄ g ϵ, and

max
t∈S

∥ ˜́(t)∥2 f max
t∈S

∥ ˜́(t)−´(t)∗∥2+max
t∈S

∥´(t)∗∥2 f C

√
p+ log T

n
+max

t∈S
∥´(t)∗∥2 f Cmax

t∈S
∥´(t)∗∥2,

w.p. at least 1− e−C′(p+log T), we have

R f Cmax
t∈S

∥´(t)∗∥2,

w.p. at least 1 − e−C′(p+log T). And there are at most +ϵ̄T , number of t ∈ S satisfying∏
R(
˜́(t)) ̸= ˜́(t). Therefore, w.p. at least 1− e−C′(p+log T),

∥B̂ −
(
BS 0

)
p×T

∥2 f R
√
ϵT + Cmax

t∈S
∥´(t)∗∥2

√
ϵ̄T + C

√
p+ T

n
+ ∥D∗

S∥2

f 2Cmax
t∈S

∥´(t)∗∥2
√
ϵ̄T + C

√
p+ T

n
+ ∥D∗

S∥2.

Similarly, by Weyl’s inequality, w.p. at least 1− e−C′(p+log T),

Ãr(B̂)− Ãr+1(
(
BS 0

)
) = Ãr(B̂)

g Ãr(BS)− ∥B̂Sc∥2 − ∥B̂S − B̃S∥2 − ∥B̃S −B∗
S∥2 − ∥B∗

S −BS∥2

g c·̄

√
T

r
− 2Cmax

t∈S
∥´(t)∗∥2

√
ϵ̄T − C

√
p+ T

n
− ∥D∗

S∥2

g c

2
·̄

√
T

r
,

since maxt∈S ∥´(t)∗∥2
√
ϵ̄ f c

6C
·̄√
r
,
√

p+T
n f c

6C

√
p+log T

n · ·̄
√

T
r f ·̄ c

6C

√
T
r , and ∥D∗

S∥2 f
c
6 ·̄
√

T
r , because ϵ̄ f c′′

r ·
(

·̄
maxt∈S ∥β(t)∗∥2

)2
, nT g C ′′pr, p g r, n g C ′′r, and 1

·̄

√
r
T ∥D∗

S∥2 f
1
·̄

√
r
T ∥D∗

S∥2 ·
mint∈S ·(t)√
(p+log T)/n

f c′′, where c′′ > 0 is a small constant and C ′′ > 0 is a large

constant.

76

Learning from Similar Linear Representations

Then by the SVD and Wedin’s sinΘ-Theorem:

∥Â(Â)¦ −A(A)¦∥2 ≲
∥B̂ −

(
BS 0

)
p×T

∥2
Ãr(B̂)− Ãr+1(

(
BS 0

)
)

≲
maxt∈S ∥´(t)∗∥2

√
ϵ̄T +

√
p+T
n + ∥D∗

S∥2

·̄
√

T
r

≲ ·̄−1

√
pr

nT
+ ·̄−1

√
r

n
+ ·̄−1

√
r

T
∥D∗

S∥2 +
maxt∈S ∥´(t)∗∥2

·̄

√
rϵ̄,

w.p. at least 1− e−C(p+log T). Hence (21) holds.
Next, let us prove (22). By noticing that

¹
(t)
̂
A

= ((Â)¦Σ̂(t)Â)−1(Â)¦Σ̂(t)´(t)∗ − ((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗),

we have

Â¹
(t)
̂
A

− ´(t)∗ =
[
Â((Â)¦Σ̂(t)Â)−1(Â)¦Σ̂(t) − I

]
´(t)∗ − ((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗)

= (Σ̂(t))−1/2
[
(Σ̂(t))1/2Â((Â)¦Σ̂(t)Â)−1(Â)¦(Σ̂(t))−1/2 − I

]
(Σ̂(t))1/2´(t)∗

− ((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗).

Denote the projection matrix of a matrix A ∈ Rp1×p2 (projection onto the column space of
A) with rank(A) = p2 f p1 as

PA = A(A¦A)−1A¦.

Denote B̂ = (Σ̂(t))1/2Â ∈ Rp×r and (B̂)§ = (Σ̂(t))−1/2(Â)§ ∈ Rp×(p−r). Notice that

(B̂)¦(B̂)§ = 0r×(p−r). By definition P ̂
B
+ P

(̂B)§
= Ip. Hence

Â¹
(t)
̂
A

− ´(t)∗ = (Σ̂(t))−1/2(P ̂
B
− I)(Σ̂(t))1/2(A¹(t)∗ + ¶(t)∗)− ((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗)

= −(Σ̂(t))−1/2P
(̂B)§

(Σ̂(t))1/2A¹(t)∗ − (Σ̂(t))−1/2P
(̂B)§

(Σ̂(t))1/2¶(t)∗

− ((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗).

Note that since ∥Σ̂(t)∥2 and ∥(Σ̂(t))−1∥2 are bounded from above by constants w.p. at least
1− e−C′(p+log T), we have

∥(Σ̂(t))−1/2P
(̂B)§

(Σ̂(t))1/2A¹(t)∗∥2 ≲ ∥((Â)§)¦A¹(t)∗∥2 + ∥¶(t)∗∥2 ≲ ∥Â(Â)¦ −A(A)¦∥2·(t) + ∥¶(t)∗∥2,

∥(Σ̂(t))−1/2P
(̂B)§

(Σ̂(t))1/2¶(t)∗∥2 ≲ ∥¶(t)∗∥2,

77

Tian, Gu, and Feng

w.p. at least 1− e−C′(p+log T). Therefore w.p. at least 1− e−C′(p+log T),

∥Â¹
(t)
̂
A

−´(t)∗∥2 ≲ ∥Â(Â)¦−A(A)¦∥2·(t)+∥¶(t)∗∥2+∥((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗)∥2.

Let us handle the last term. Denote R̃ = argminR∈Or×r ∥Â−AR∥2. Therefore

∥((Â)¦Σ̂(t)Â)−1(Â)¦∇f (t)(´(t)∗)∥2
f ∥((Â)¦Σ̂(t)Â)−1(Â−AR̃)¦∇f (t)(´(t)∗)∥2 + ∥((Â)¦Σ̂(t)Â)−1(AR̃)¦∇f (t)(´(t)∗)∥2
f ∥Â−AR̃∥2∥∇f (t)(´(t)∗)∥2 + ∥(AR̃)¦∇f (t)(´(t)∗)∥2

≲ ∥Â(Â)¦ −A(A)¦∥2
√
p+ log T

n
+

√
r + log T

n
,

w.p. at least 1− e−C′(r+log T). Hence, w.p. at least 1− e−C′(r+log T),

∥Â¹
(t)
̂
A

− ´(t)∗∥2 ≲ ∥Â(Â)¦ −A(A)¦∥2·(t) + ∥¶(t)∗∥2 +
√
r + log T

n

≲

(
·̄−1

√
pr

nT
+ ·̄−1

√
r

n
+ ·̄−1

√
r

T
∥D∗

S∥2 +
maxt∈S ∥´(t)∗∥2

·̄

√
rϵ̄

)
·(t)

+ ∥¶(t)∗∥2 +
√
r + log T

n

≲
·(t)

·̄

√
pr

nT
+

(
·(t)

·̄
(1

)√
r

n
+
·(t)

·̄

√
r

T
∥D∗

S∥2 +
·(t)

·̄
max
t∈S

·(t)
√
rϵ̄

+ ∥¶(t)∗∥2 +
√

log T

n

:= ¸(t).

Therefore, (22) holds. Now let us use (21) and (22) to complete the proof of the theorem.

(i) For t ∈ S with ¸(t) f c′
√

p+log T
n with a small c′ > 0: we must have

∥∇f (t)(´(t)∗)∥2 + ∥Â¹
(t)
̂
A

− ´(t)∗∥2 ≲
√
p+ log T

n
+ ¸(t) ≲

µ√
n
,

hence by Lemma 38.(i), ̂́(t) = Â¹
(t)
̂
A

and ∥ ̂́(t)−´(t)∗∥2 ≲ ¸(t) w.p. at least 1− e−C′(r+log T).

Note that we used (22) to obtain the bound ∥Â¹
(t)
̂
A

− ´(t)∗∥2 ≲ ¸(t), w.p. at least 1 −

e−C′(r+log T). We can use it because ¸(t) f c′
√

p+log T
n implies that mint∈S ·(t)

·̄

√
r
T ∥D∗

S∥2 f

c′
√

p+log T
n , hence the condition of (22) applies and (22) holds. Next, let us explain why (22)

implies the bound in our theorem.
Note that

∥¶(t)∗∥2 f ∥(A)§A(t)∗¹(t)∗∥2 ≲ ∥A(t)∗(A(t)∗)¦ −A(A)¦∥2·(t) ≲ h·(t),

78

Learning from Similar Linear Representations

1√
T
∥D∗

S∥2 f
1√
T
∥D∗

S∥F · Ãmax(D
∗
S)√

rÃmin(D∗
S)

≲ ·̄ · Ãmax(D
∗
S)√

rÃmin(D∗
S)

· h, (23)

where D∗
S = (A)§B∗

S and ∥D∗
S∥F f h

√∑
t∈S ∥¶(t)∗∥22 f h

√∑
t∈S(·

(t))2. Regarding the

last inequality (23), there is an alternative way to bound the LHS:

1√
T
∥D∗

S∥2 f
1√
T
∥D∗

S∥F f ·̄h.

Therefore,
1√
T
∥D∗

S∥2 ≲ ·̄h ·
[
Ãmax(D

∗
S)√

rÃmin(D∗
S)

' 1

]
.

Combing all these facts, we obtain the high-probability bound ·(t)

·̄

√
pr
nT +

(
·(t)

·̄
(1

)√
r
n +

√
log T
n + ·(t)h ·

[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S
)
'√

r

]
+ ·(t)

·̄
maxt∈S ·(t) ·

√
rϵ̄ for ∥ ̂́(t) − ´(t)∗∥2.

(ii) For any t ∈ S, by Lemma 38, maxt∈S ∥ ̂́(t) − ´(t)∗∥2 f C µ√
n
+ maxt∈S ∥ ˜́(t) − ´(t)∗∥2

w.p. at least 1− e−C(p+log T), where ˜́(t) ∈ argminβ∈Rp f (t)(´). Since µ ≍ √
p+ log T , this

implies that

max
t∈S

∥ ̂́(t) − ´(t)∗∥2 ≲
√
p+ log T

n
,

w.p. at least 1− e−C′(p+log T).
Combining (i) and (ii), we get the desired bound:

∥ ̂́(t) − ´(t)∗∥2 ≲
{
·(t)

·̄

√
pr

nT
+

(
·(t)

·̄
(1

)√
r

n
+

√
log T

n
+ ·(t)h ·

[
Ãmax((A

§
)¦B∗

S)

Ãmin((A
§
)¦B∗

S)
'√

r

]

+
·(t)

·̄
max
t∈S

·(t)
√
rϵ̄

}
'
√
p+ log T

n
,

for all t ∈ S, w.p. at least 1− e−C′(r+log T).
When the tasks in Sc are generated by the linear model, we can get

max
t∈Sc

∥ ̂́(t) − ´(t)∗∥2 ≲
√
p+ log T

n
,

w.p. at least 1− e−C′(p+log T), similar to the argument in the proof of Theorem 2.

D.9 Proof of Theorem 8

First, when tasks in Sc come from linear models, the term
√
p/n in the lower bound of

maxt∈[T] ∥ ̂́(t) −´(t)∗∥2 is the standard result in linear regression. The other part
√
log T/n

can be shown using the same arguments as in Tian et al. (2022) and Duan and Wang (2023).
See the proof of Theorem 4.3 in Duan and Wang (2023) and the proof of Theorem 2 in Tian

79

Tian, Gu, and Feng

et al. (2022). We omit the proof of lower bound for maxt∈[T] ∥ ̂́(t) − ´(t)∗∥2 when tasks in

Sc come from linear models, and only show the lower bound of maxt∈S ∥ ̂́(t) − ´(t)∗∥2 when
tasks in Sc can be arbitrarily distributed.

Throughout this subsection, we assume the following generative model for tasks in S:

y|x ∼ Py|x,β = N(x¦´, 1), x ∼ Px,

where Px is sub-Gaussian with Σ = E(xx¦). Suppose there exist constants c, C such that
0 < c f ¼min(Σ) f ¼max(Σ) f C < ∞. Then any joint distribution P of (x, y) can be
written as Px,y = Py|x;β · Px.

Recall the parameter space for the coefficient vectors {´(t)}t∈S as

B(S, h) =

{
{´(t)}t∈S : ´(t) = A(t)¹(t) for all t ∈ S, {A(t)}t∈S ¦ Op×r, ∥¹(t)∥2 f ·(t),

min
A∈Op×r

max
t∈S

∥A(t)(A(t))¦ −AA
¦∥2 f h, Ãr

(
|S|−1/2BS

)
g c√

r

√
1

|S|
∑

t∈S
∥¹(t)∥22

}

where c can be any fixed positive constants such that B(S, h) ̸= ∅.
Given S ¦ [T], define

A(S, h) =
{
{A(t)}t∈S ¦ Op×r : min

A∈Op×r

max
t∈S

∥A(t)(A(t))¦ −AA
¦∥2 f h

}
,

Θ(S) =

{
{¹(t)}t∈S ¦ Rr : ∥¹(t)∥2 f ·(t),

1

|S|
∑

t∈S
¹(t)(¹(t))¦ ° c

r

1

|S|
∑

t∈S
∥¹(t)∥22 · Ir

}
,

·̄S =

√
1

|S|
∑

t∈S
(·(t))2.

The proof proceeds as follows. We will first show

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B(S,h)

QSc

P

(
⋃

t∈S

{
∥ ̂́(t) − ´(t)∗∥2 ≳

[
·(t)

·̄S

√
pr

nT
+

(
·(t)

·̄S
(1

)√
r

n
+ ·(t)h

+
·(t)

·̄S

ϵr√
n

]
'
√
p

n

})
g 1

10
, (24)

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B([T],0)

QSc

P

(
max
t∈S

∥ ̂́(t) − ´(t)∗∥2 ≳
√

log T

n

)
g 1

10
. (25)

Then we will discuss how to get the final lower bound by the same arguments.

Part 1: First, let us prove (24) first.

80

Learning from Similar Linear Representations

• If h g 1
·̄[T]

√
pr
nT + 1

·̄[T]

√
r
n + 1

·̄[T]

ϵr√
n
: then ·(t)h g ·(t)

·̄[T]

√
pr
nT + ·(t)

·̄[T]

√
r
n + ·(t)

·̄[T]

ϵr√
n
for all

t ∈ [T].

◦ If
√

r
n f (·(t0)h) '

√
p
n for some t0 ∈ [T]: then we take S = [T] and prove the

lower bound

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],h)

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳ (·(t0)h) '

√
p

n

)
g 1

10
. (26)

WLOG, assume t0 = 1. For all t ∈ [T], fix A(t) = an arbitrary A ∈ Op×r, and

fix {¹(t)}Tt=2 s.t. ∥¹(t)∥2 f ·(t). Let ¹(1) = 1√
r
·(1)1r. Set ¶ = 1

12

[(
1

·(1)

√
p
n

)
' h
]
.

Consider a ¶/2-packing of the ball B¶(0,R
p, ∥ · ∥2) (denoted as M). By Example

5.8 in Wainwright (2019), |M| g 5p. Consider

A = A+
c′√
r
· u1¦r , Ã = A+

c′√
r
· ũ1¦r ,

where u ̸= ũ ∈ M and c′ is a small constant, then

∥(A− Ã)¹(1)∥2 =
1

r
·(t)∥(u− ũ)1¦r 1r∥2 = ∥u− ũ∥2 ∈

[
c′

2
·(1)¶, 2c′·(1)¶

]
,(27)

∥(A− Ã)¹(t)∥2 = ∥(A− Ã)ejk∥2 =
1√
r
·(1)∥u− ũ∥2 f

¶√
r
·(1),

where ¹(t) = ejk . Hence B = {´ ∈ Rp : ´ = A¹(1),A = A+ c′√
r
· u1¦

r ,u ∈ M}
is a c′¶/2-packing in Rp with |B| = |M| g 5p. On the other hand, for any
A ∈ Rp×r with 1 + 2c′¶ g Ã1(A) g Ã2(A) g · · · g Ãr(A) g 1 − 2c′¶ > 0 and
∥A−A∥2 f ¶, consider its SVD whereA = QΛV whereQ ∈ Op×r and V ∈ Or×r.
Denote R = ΛV . Then 0 < 1 − 2c′¶ f Ãmin(R) f Ãmax(R) f 1 + 2c′¶ < ∞,
and A¹(1) = QR¹(1) = Q¹̃(1). Note that Q ∈ Op×r and ¹̃(1) = R¹(1) with
∥¹̃(1)∥2 f ∥R∥2∥¹(1)∥2 f C[1 + 2c′]. And ∥QQ¦ −A(A)¦∥2 f ∥(QR)(QR)¦ −
A(A)¦∥2+∥Q(Ir−RR¦)Q¦∥2 f 4∥A−A∥2+4∥Ir−R∥2 f 4¶+8c′¶ f 12¶ f h.
Therefore,

inf
β̂(1)

sup
{β(t)}t∈S∈B([T],h)

P

(
∥ ̂́(1) − ´(1)∥2 ≳ (·(1)h) '

√
p

n

)

g inf
β̂(1)

sup
0<cfÃmax(A)fÃmax(A)fC

∥θ(1)∥2fC′

P

(
∥ ̂́(1) −A¹(1)∥2 ≳ (·(1)h) '

√
p

n

)

:= (∗),
where all A(t) = an arbitrary A ∈ Op×r, and {¹(t)}Tt=1 ¦ {ej}rj=1 are fixed.

For any ´ = A¹(1) and ˜́ = Ã¹(1) ∈ B with A ≠ Ã, by Lemma 24 and equation
(27),

KL

(
T∏

t=2

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(1)¹n

y|x;Aθ(1) · P(1)¹n
x

∥∥∥∥
T∏

t=2

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(1)¹n

y|x;Ãθ(1)
· P(1)¹n

x

)

81

Tian, Gu, and Feng

= KL
(
P
(1)¹n

y|x;Aθ(1) · P(1)¹n
x

∥∥∥P(1)¹n

y|x;Ãθ(1)
· P(1)¹n

x

)

≲ n∥(A− Ã)¹(1)∥22
≲ n(·(1))2¶2

f c log |B|.

Then by Fano’s lemma (Lemma 23), (∗) g 1− log 2
log |B| − c g 1/10.

◦ If
√

r
n > (·(t)h) '

√
p
n for all t ∈ [T]: then we take S = [T] and prove the lower

bound

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳

√
r

n

)
g 1

10
, (28)

where t0 ∈ argmint∈[T] ·
(t). WLOG, assume t0 = 1. Fix all A(t) = some

A ∈ Op×r. Fixing Θ = {¹(t)}Tt=2 such that 1
T

∑T
t=2 ¹

(t)(¹(t))¦ ° c
rIr (Hence for

any ¹(1) with ∥¹(1)∥2 f C f ·(1), we must have 1
T

∑T
t=1 ¹

(t)(¹(t))¦ ° c
rIr). We

want to show

inf
{β̂(t)}Tt=1

sup
∥θ(1)∥2fC

P

(
∥ ̂́(1) −A¹(1)∥2 g c

√
r

n

)
g 1

10
.

Denote ¶ =
√

r
n . Consider a c¶-packing of B¶(0,R

r, ∥ · ∥2) (denoted as T). By
Example 5.8 in Wainwright (2019), we know that log |T | ≳ r. Note that this also
defines a c¶-packing of the space of ´(1) as M = {´(1) ∈ Rp : ´(1) = A¹,¹ ∈ T },
because for any ¹(1) ̸= ¹̃(1) ∈ T we have ∥A(¹(1) − ¹̃(1))∥2 = ∥¹(1) − ¹̃(1)∥2 g c¶.

Denote the distribution of {y(t)i }ni=1 given {x(t)
i }ni=1 and {´(t)}Tt=1 as P

(t)¹n

y|x;β(t) and

the distribution of {x(t)
i }ni=1 as P

(t)¹n
x . For any ´(1) ̸= ˜́(1) ∈ M :

KL

(
P
(1)¹n

y|x;β(1) · P(1)¹n
x

∥∥∥∥P
(1)¹n

y|x;Aβ̃(1)
· P(1)¹n

x

)
≲ n∥´(1) − ˜́(1)∥22

≲ n¶2

≲ r

f c log |M |,

where c is a small constant. Finally, applying Fano’s Lemma (Lemma 23), we
have

inf
{β̂(t)}Tt=1

sup
∥θ(1)∥2f¶

P

(
∥ ̂́(1) −A¹(1)∥2 g c¶

)
g 1− log 2

log |M | − c g 1

10
.

• If h < 1
·̄[T]

√
pr
nT + 1

·̄[T]

√
r
n + 1

·̄[T]

ϵr√
n
: then ·(t)h < ·(t)

·̄[T]

√
pr
nT + ·(t)

·̄[T]

√
r
n + ·(t)

·̄[T]

ϵr√
n
for all

t ∈ [T].

82

Learning from Similar Linear Representations

◦ If
√

r
n g ·(t0)

·̄[T]

√
pr
nT + ·(t0)

·̄[T]

√
r
n + ·(t0)

·̄[T]

ϵr√
n
for t0 ∈ argmint∈[T] ·

(t): then we take

S = [T] and it suffices to prove the lower bound

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳

√
r

n

)
g 1

10
.

This has already been proved in the previous analysis.

◦ If
√

r
n <

·(t)

·̄[T]

√
pr
nT + ·(t)

·̄[T]

√
r
n + ·(t)

·̄[T]

ϵr√
n
for all t ∈ [T]:

⋆ If
√

r
n g

√
pr
nT + ϵ r√

n
: then we take S = [T] and it suffices to prove

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳

·(t0)

·̄

√
r

n

)
g 1

10
,

with t0 ∈ argmint∈[T] ·
(t), which is automatically true because ·(t0)/·̄ f 1

and (28).

⋆ If
√

r
n <

√
pr
nT + ϵ r√

n
:

▷ If
√

pr
nT g ϵ r√

n
: then we take S = [T] and prove

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
⋃

t∈[T]

{
∥ ̂́(t)−´(t)∗∥2 ≳

·(t)

·̄[T]

√
pr

nT

)
g 1

10
.

Note that it suffices to prove

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
1

T

∑

t∈[T]

∥ ̂́(t) − ´(t)∗∥22 ≳
pr

nT

)
g 1

10
,

because if 1
T

∑
t∈[T] ∥ ̂́(t) − ´(t)∗∥22 ≳ pr

nT , then there must exist t ∈ [T]

such that ∥ ̂́(t) − ´(t)∗∥22 ≳ (·
(t)

·̄[T]
)2 pr

nT .

Now let us prove it. Consider an A ∈ Op×r such that the packing

number M(B¶(A,Op×r, dist2), distF, ³¶) g (C
√
r

³)r(p−r) in Lemma 22

with ¶ = 1
·̄[T]

√
pr
nT . Let M = {Aj}|M|

j=1 be the maximum packing of

B¶(A,Op×r, dist2) corresponding to the packing numberM(B¶(A,Op×r, dist2),
distF, c

√
r¶) with a very small constant c > 0. This leads to a c′·̄[T]¶-

packing M = {{´(t)}Tt=1 : ´(t) := AjRj¹
(t),Rj = argminR∈Or×r ∥A −

AjR∥2, for all t ∈ [T] and the same j ∈ [|M|]} of the space B([T], 0)

w.r.t. distance
√

1
T

∑
t∈[T] ∥´(t) − ˜́(t)∥22. To verify this, notice that

for any j1 ≠ j2 ∈ [|M|], ´(t) = Aj1Rj1¹
(t), ˜́(t) = Aj2Rj2¹

(t), with
Rj1 = argminR∈Or×r ∥A−Aj1R∥2, Rj2 = argminR∈Or×r ∥A−Aj2R∥2,

83

Tian, Gu, and Feng

by Wedin’s sinΘ-Theorem and Assumption 2,

1

T

T∑

t=1

∥´(t) − ˜́(t)∥22 g
1

T
∥Aj1Θj1 −Aj2Θj2∥2F g c

r
∥Aj1A

¦
j1 −Aj2A

¦
j2∥2F g (c′)2·̄2¶2,

where c′ is a small constant, Θj1 = {Rj1¹
(t)}t∈[T], andΘj2 = {Rj2¹

(t)}t∈[T].

On the other hand, notice that for any j ∈ [|M|], ´(t) = AjRj¹
(t) with

Rj = argminR∈Or×r ∥A−AjR∥2, by Lemma 20, for all t ∈ [T], we have

∥´(t) −A¹(t)∥2 f ∥AjRj −A∥2∥¹(t)∥2
= ·(t) min

R∈Or×r
∥AjR−A∥2

f
√
2·(t)∥AjA

¦
j −A(A)¦∥2

f
√
2·(t)¶,

which by triangle inequality leads to

1

T

∑

t∈[T]

∥´(t) − ˜́(t)∥22 f 4C2 · 1
T

∑

t∈[T]

(·(t))2 · ¶2 f 4C2·̄2[T]¶
2, (29)

for any {´(t)}Tt=1 and { ˜́(t)}Tt=1 ∈ M .
By Lemma 21, |M | = |M| ≳ Cr(p−r) g Crp/2. Denote the distribution

of {y(t)i }ni=1 given {x(t)
i }ni=1 as P

(t)¹n
y|x;β and the distribution of {x(t)

i }ni=1

as P
(t)¹n
x . Then for any {´(t)}Tt=1, { ˜́(t)}Tt=1 ∈ M , by Lemma 24 and

equation (29),

KL

(
T∏

t=1

P
(t)¹n

y|x;β(t) · P(t)¹n
x

∥∥∥∥
T∏

t=1

P
(t)¹n

y|x;β̃(t)
· P(t)¹n

x

)
≲ n

T∑

t=1

∥´(t) − ˜́(t)∥22

≲ nT ·̄2[T]¶
2

f c log |M |,
where c is a small constant. Finally, applying Fano’s Lemma (Lemma
23), we have

inf
{β̂(t)}Tt=1

sup
{β(t)}Tt=1∈B([T],0)

P


 1

T

∑

t∈[T]

∥ ̂́(t) − ´(t)∥22 g c2¶2


 g 1− log 2

log |B| − c

g 1

10
.

▷ If
√

pr
nT < ϵ r√

n
: then we consider t0 ∈ argmint∈[T] ·

(t), S ∋ t0, and prove

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈[T]∈B(S,0)

QSc

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳

·(t0)

·̄S
ϵ
r√
n

)
g 1

10
.

84

Learning from Similar Linear Representations

Note that ·(t0)

·̄S
f 1 for any S ¦ [T]. Therefore it suffices to prove

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈[T]∈B(S,0)

QSc

P

(
∥ ̂́(t0) − ´(t0)∥2 ≳ ϵ

r√
n

)
g 1

10
.

WLOG, assume t0 = 1. Fix all A(t) = some A ∈ Op×r and {¹(t)}Tt=1 ¦
mint∈[T] ·

(t)·{ej}rj=1 ¦ Rr s.t. Ãr(T
−1/2{¹(t)}Tt=1) g c√

r
with #{t : ¹(t) =

e1} = +T/r,. Without loss of generality, suppose ¹(t) = mint∈[T] ·
(t) · e1

when t ∈ [+T/r,]. Denote ˜́ = mint∈[T] ·
(t) ·Ae1, and ´(t) = A¹(t) for

t g +T/r,+ 1. Consider two data generating mechanisms in Lemma 26:

(I) {(x(t)
i , y

(t)
i)}ni=1 ∼ (1 − ϵ′)(P¹n

y|x;β̃ · P¹n
x) + ϵ′Q independently for t ∈

[+T/r,], where ϵ′ = Tϵ
50+T/r, , and {{x(t)

i }ni=1}Tt=+T/r,+1 ∼ D =
∏T

t=+T/r,+1(P
¹n
y|x;β(t) ·

P¹n
x);

(II) With a preserved set Sc ¦ [+T/r,], generate {x(t)}t∈Sc ∼ QSc and

{(x(t)
i , y

(t)
i)}ni=1 ∼ P¹n

y|x;β̃ · P¹n
x independently for t ∈ S ∩ [+T/r,], and

{{x(t)
i }ni=1}Tt=+T/r,+1 ∼ D =

∏T
t=+T/r,+1(P

¹n
y|x;β(t) · P¹n

x).

Denote the joint distributions of {x(t)
i }t∈[+T/r,] in (I) and (II) as P(ϵ,¹,Q)

and P(S,¹,QSc), respectively.
Note that by Lemma 24,

ϖ(ϵ′,Θ) := sup{∥´1 − ´2∥2 : TV
(
P¹n
y|x;β1

· P¹n
x ,P¹n

y|x;β2
· P¹n

x

)
f ϵ′/(1− ϵ′)}

g sup{∥´1 − ´2∥2 : KL
(
P¹n
y|x;β1

· P¹n
x ,P¹n

y|x;β2
· P¹n

x

)
f 2[ϵ′/(1− ϵ′)]2}

g sup{∥´1 − ´2∥2 : n∥´1 − ´2∥22 f c[ϵ′/(1− ϵ′)]2}

= c′
ϵ′√
n

≍ rϵ√
n
.

Then by Lemma 25,

inf
β̂(1)

sup
β̃,Q

(P(ϵ,¹,Q) · D)
(
∥ ̂́(1) − ´(1)∗∥2 g ϖ(ϵ′,Θ)

)
g 1

2
.

Therefore, by Lemma 26, it follows that

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B(S,0)

QSc

P

(
∥ ̂́(1) − ´(1)∗∥2 g c

ϵr√
n

)

85

Tian, Gu, and Feng

g inf
β̂(1)

sup
S:|S|gT (1−ϵ)

sup
{β(t)}t∈S∈B(S,0)

QSc

(P(S,¹,QSc) · D)
(
∥ ̂́(1) − ´(1)∗∥2 g ϖ(ϵ/50,Θ)

)

g 1

10
.

Part 2: Next, we want to show (25). Consider the case that S = [T] and h = 0. Fix all
A(t) = some A ∈ Op×r. Fix {¹(t)}Tt=1 ¦ {√cej}rj=1 satisfying 1

T

∑T
t=1 ¹

(t)(¹(t))¦ ° c
rIr. We

want to show

inf
{β̂(t)}Tt=1

sup
{θ(t)}Tt=1∈Θ([T])

P

(
max
t∈[T]

∥ ̂́(t) −A¹(t)∥2 g c

√
log T

n

)
g 1

10
,

where

Θ([T]) =

{
{¹(t)}t∈[T] ¦ Rr : max

t∈[T]
∥¹(t)∥2 f C,

1

T

T∑

t=1

¹(t)(¹(t))¦ ° c

r
Ir

}
.

Denote ¶ =
√

log T
n . Then T = {{¹̃(t)}Tt=1 : ∃t0 s.t. ¹̃(t0) = ¹(t0)(1 + ¶/

√
c), ¹̃(t) =

¹(t) for t ≠ t0} is a
√
2¶-packing of Θ(S) w.r.t. distance maxt∈[T] ∥¹̄(t)− ¹̃(t)∥2 with {¹̄(t)}Tt=1

and {¹̃(t)}Tt=1 ∈ T . Hence B = {{A¹̃(t)}Tt=1 : ∃t0 s.t. ¹̃(t0) = ¹(t0)(1 + ¶/
√
c), ¹̃(t) =

¹(t) for t ≠ t0} is a
√
2¶-packing in Rp w.r.t. distance maxt∈[T] ∥´(t) − ˜́(t)∥2 with {´(t)}Tt=1

and { ˜́(t)}Tt=1 ∈ T . Apparently |T | = |B| = T . And for any {´(t)}Tt=1 and { ˜́(t)}Tt=1 ∈ T ,
they only differ by two components. WLOG, suppose the indices of different components
are t1 and t2. Then we have

KL

(
T∏

t=1

P
(t)¹n

y|x;β(t) · P
(t)¹n
x

∥∥∥∥
T∏

t=1

P
(t)¹n

y|x;β̃(t)
· P(t)¹n

x

)

= KL

(
P
(t1)¹n

y|x;Aθ(t1)(1+¶/
√
c)
· P(t1)¹n

x · P(t2)¹n

y|x;Aθ(t2)
· P(t2)¹n

x

∥∥∥∥P
(t1)¹n

y|x;Aθ̃(t1)
· P(t1)¹n

x · P(t2)¹n

y|x;Aθ(t2)(1+¶/
√
c)
· P(t2)¹n

x

)

≲ n∥A¹(t1)(1 + ¶/
√
c)−A¹(t1)∥22 + n∥A¹(t2) −A¹(t2)(1 + ¶/

√
c)∥22

≲ n¶2

f c′ log |T |,

where c is a small constant. By Fano’s Lemma (Lemma 23), we have

inf
{β̂(t)}Tt=1

sup
{θ(t)}Tt=1∈Θ([T])

P

(
max
t∈[T]

∥ ̂́(t) −A¹(t)∥2 g c

√
log T

n

)
g 1− log 2

log |T | − c′ g 1

10
.

Part 3: Finally, let us discuss how to obtain the final desired lower bound by similar
arguments to prove (24) and (25). Denote S′ as the index set of t ∈ [T] where ·(t) is among
the largest T (1− c′

r) ones of {·(t)}Tt=1.

86

Learning from Similar Linear Representations

• If
√

log T
n f mint∈S′

{[
·(t)

·̄S′

√
pr
nT +

(·(t)
·̄S′

(1
)√

r
n + ·(t)h+ ·(t)

·̄S′
ϵ r√

n

]
'
√

p
n

}
: then by the

same arguments we used to prove (24), we can get a lower bound similar to (24) by

replacing [T] and ·̄[T] =
√

1
T

∑
t∈[T](·

(t))2 with S′ and ·̄S′ =
√

1
|S′|
∑

t∈S′(·(t))2. Then

notice that by definition of S′, ·̄S′ ≳ ·̄[T], hence we can get the bound

inf
{β̂(t)}Tt=1

sup
S¦S

sup
{β(t)}t∈S∈B(S,h)

QSc

P

(
⋃

t∈S′

{
∥ ̂́(t) − ´(t)∥2 ≳

[
·(t)

·̄S′

√
pr

nT
+

(
·(t)

·̄S′
(1

)√
r

n
+ ·(t)h

+
·(t)

·̄S′

ϵr√
n

]
'
√
p

n

})
g 1

10
,

which implies the desired lower bound because
√

log T
n f mint∈S′

{[
·(t)

·̄

√
pr
nT +

(·(t)
·̄

(

1
)√

r
n + ·(t)h+ ·(t)

·̄
ϵ r√

n

]
'
√

p
n

}
.

• If
√

log T
n > mint∈S′

{[
·(t)

·̄S′

√
pr
nT +

(·(t)
·̄S′

(1
)√

r
n + ·(t)h+ ·(t)

·̄S′
ϵ r√

n

]
'
√

p
n

}
: by definition

of S′, automatically we have
√

log T
n > mint∈[T]\S′

{[
·(t)

·̄S′

√
pr
nT +

(·(t)
·̄S′

(1
)√

r
n + ·(t)h+

·(t)

·̄S′
ϵ r√

n

]
'
√

p
n

}
. Then by the same argument we used to prove (25), we can get the

following bound by replacing [T] in (25) with [T]\S′:

inf
{β̂(t)}Tt=1

sup
{β(t)}t∈[T]∈B([T],0)

P

(
max

t∈[T]\S′
∥ ̂́(t) − ´(t)∥2 ≳

√
log(T − |S′|)

n

)
g 1

10
.

This implies the desired lower bound, because when T g r1.01 we have log(T − |S′|) ≳
log(T/r) ≳ log T

0.01
1.01 ≳ log T .

A comment: In Part 1, when we derive the term ·(t)

·̄
ϵ r√

n
in the lower bound, if ϵr > 1, the

lower bound can be strengthened to
√

p
n . This follows by contaminating all but one of the

+T/r, tasks such that ¹(t) = mint∈[T] ·
(t) ·e1. We can then apply the same reasoning used in

Part 1 to derive (26), which leads to the lower bound
√

p
n . This result is quite intuitive: the

problem effectively reduces to estimating a p-dimensional parameter using only n samples,
since the coefficients of the other tasks are orthogonal to the current task. This phenomenon
justifies the condition ϵr ≲ 1 for the lower and upper bounds of both proposed methods.

D.10 Proof of Theorem 14

If Algorithm 4 is coupled with Algorithm 1, the proof idea is very similar to the proof of
Theorem 2. When the representation learning helps, an argument based on Lemma 39,
Proposition 42, and Lemma 41.(i) lead to the corresponding term. In the other case, Lemma
41.(ii) guarantees that the single-task rate holds all the time. A combination of these two
situations entails the final TL upper bound. The details are as follows.

87

Tian, Gu, and Feng

Denote ¸ = r
√

p
nT +

√
rh+

√
r
√

r+log T
n + |Sc|

T · r · ¼√
n
.

(i) When ¸ f C
√

p
n0
: note that Â is independent of {x(0)

i , y
(0)
i }n0

i=1, which is the key for

part (i) to be correct by only requiring n g Cr (see Remark 13). Hence by Lemma 39 and

an argument by first conditioning on Â then taking the expectation,

∥Â¹
(0)
̂
A

−A(0)∗¹(0)∗∥2 ≲ ∥Â(Â)¦ −A(0)∗(A(0)∗)¦∥2 +
√

r

n0

f ∥Â(Â)¦ −A(A)¦∥2 + ∥A(A)¦ −A(0)∗(A(0)∗)¦∥2 +
√

r

n0

≲ ¸ +

√
r

n0

w.p. at least 1−e−C(r+log T), where we used Proposision 42 in the last step. Then by Lemma

41.(i), µ√
n0

≳
√

p
n0

g ∥∇f (t)(A(0)∗¹(0)∗)∥2 + C∥Â¹
(0)
̂
A

−A(0)∗¹(0)∗∥2, which implies that

∥ ̂́(0) − ´(0)∗∥2 = ∥Â¹
(0)
̂
A

−A(0)∗¹(0)∗∥2 f ¸,

w.p. at least 1− e−C(r+log T).

(ii) By Lemma 41.(ii), we always have ∥ ̂́(0)−´(0)∗∥2 ≲
√
p/n0 w.p. at least 1− e−C(p+log T).

If Algorithm 4 is coupled with Algorithm 2, we can follow the discussions above and the
proof of Theorem 7 to get the desired result.

D.11 Proof of Theorem 15

Similar to the proof of Theorem 8, we prove the following parts one by one. Combining
them together entails the lower bound. Throughout this subsection, we assume the following
generative model for tasks in {0} ∪ S:

y|x ∼ Py|x,β = N(x¦´, 1), x ∼ Px,

where Px is sub-Gaussian with Σ = E(xx¦). Suppose there exist constants c, C such that
0 < c f ¼min(Σ) f ¼max(Σ) f C < ∞. Then any joint distribution P of (x, y) can be
written as Px,y = Py|x;β · Px.

Denote

A0(S, h) =
{
{A(t)}t∈{0}∪S ¦ Op×r : max

t∈S
∥A(t)(A(t))¦ −A(0)(A(0))¦∥2 f h

}
,

Θ0(S) =

{
{¹(t)}t∈{0}∪S ¦ Rr : max

t∈{0}∪S
∥¹(t)∥2 f C,

1

|S|
∑

t∈S
¹(t)(¹(t))¦ ° c

r
Ir

}
.

(i) Consider the case S = [T] and h = 0. For any A ∈ Rp×r with C g Ã1(A) g Ã2(A) g
· · · g Ãr(A) g c > 0, consider its SVD where A = QΛV where Q ∈ Op×r and V ∈
Or×r. Denote R = ΛV . Then 0 < c f Ãmin(R) f Ãmax(R) f C < ∞, and A¹(t) =
QR¹(t) = Q¹̃(t). Note that Q ∈ Op×r and ¹̃(t) = R¹(t) with ∥¹̃(t)∥2 f ∥R∥2∥¹(t)∥2 f C ′

88

Learning from Similar Linear Representations

and 1
T

∑T
t=1 ¹̃

(t)(¹̃(t))¦ = R
[
1
T

∑T
t=1 ¹

(t)(¹(t))¦
]
R¦ ° cc′

r Ir if 1
T

∑T
t=1 ¹

(t)(¹(t))¦ ° c′

r Ir.

Therefore, fixing ¹(t) ∈ {ej}rj=1 and ¹(0) = 1√
r
1r s.t. {¹(t)}Tt=0 ∈ Θ0([T]), we know that

inf
β̂(0)

sup
{β(t)}Tt=1∈B0([T],0)

P

(
∥ ̂́(0) −A(0)¹(0)∥2 ≳

√
pr

nT
'
√

p

n0

)

g inf
β̂(0)

sup
0<cfÃmax(A)fÃmax(A)fC

∥θ(0)∥2fC′

P

(
∥ ̂́(0) −A¹(0)∥2 ≳

√
pr

nT
'
√

p

n0

)

:= (∗),

where A(t) = A for all t ∈ {0} ∪ [T]. Let ¶ =
√

pr
nT '

√
p
n0
. Consider a ¶/2-packing of the

ball B¶(0,R
p, ∥ · ∥2) (denoted as M). By Example 5.8 in Wainwright (2019), |M| g 5p.

Consider

A = A+
c′√
r
· u1¦r , Ã = A+

c′√
r
· ũ1¦r ,

where u ≠ ũ ∈ M, c′ > 0 is a small constant such that Ãmin(A), Ãmin(Ã) g 1− c′ g c and
Ãmax(A), Ãmax(Ã) f 1 + c′ f C. Then

∥(A− Ã)¹(0)∥2 =
1

r
∥(u− ũ)1¦r 1r∥2 = ∥u− ũ∥2 ∈

[
1

2
¶, 2¶

]
, (30)

∥(A− Ã)¹(t)∥2 = ∥(A− Ã)ejk∥2 =
1√
r
∥u− ũ∥2 f

¶√
r
. (31)

where ¹(t) = ejk with jt ∈ [r]. Therefore B = {´ ∈ Rp : ´ = A¹(0),A = A+ 1√
r
· u1¦r ,u ∈

M} becomes a ¶/2-packing in Rp with |B| = |M| g 5p. Furthermore, for any ´ = A¹(0)

and ˜́ = Ã¹(0) ∈ B with A ̸= Ã, by Lemma 24 and equations (30) and (31),

KL

(
T∏

t=1

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(0)¹n0

y|x;Aθ(0) · P
(0)¹n0
x

∥∥∥∥
T∏

t=1

P
(t)¹n

y|x;Ãθ(t)
· P(t)¹n

x · P(0)¹n0

y|x;Ãθ(0)
· P(0)¹n0

x

)

≲ n
T∑

t=1

∥(A− Ã)¹(t)∥22 + n0∥(A− Ã)¹(0)∥22

≲ nT · ¶
2

r
+ n0¶

2

f c log |B|.

Then by Fano’s lemma (Lemma 23), (∗) g 1− log 2
log |B| − c g 1/10.

(ii) Consider the case S = [T]. For all t ∈ [T], fix A(t) = an arbitrary A ∈ Op×r. Fix

{¹(t)}Tt=1 ¦ {ej}rj=1 and ¹(0) = 1√
r
1r s.t. {¹(t)}Tt=0 ∈ Θ0([T]). Set ¶ =

h
12 '

√
p
n0
. Consider

a ¶/2-packing of the ball B¶(0,R
p, ∥ · ∥2) (denoted as M). By Example 5.8 in Wainwright

(2019), |M| g 5p. Consider

A = A+
c′√
r
· u1¦r , Ã = A+

c′√
r
· ũ1¦r ,

89

Tian, Gu, and Feng

where u ̸= ũ ∈ M and c′ is a small constant, then

∥(A− Ã)¹(0)∥2 =
1

r
∥(u− ũ)1¦r 1r∥2 = ∥u− ũ∥2 ∈

[
c′

2
¶, 2c′¶

]
, (32)

hence B = {´ ∈ Rp : ´ = A¹(0),A = A+ c′√
r
· u1¦r ,u ∈ M} is a c′¶/2-packing in Rp with

|B| = |M| g 5p. On the other hand, for any A ∈ Rp×r with 1 + 2c′¶ g Ã1(A) g Ã2(A) g
· · · g Ãr(A) g 1− 2c′¶ > 0 and ∥A−A∥2 f ¶, consider its SVD where A = QΛV where
Q ∈ Op×r and V ∈ Or×r. Denote R = ΛV . Then 0 < 1 − 2c′¶ f Ãmin(R) f Ãmax(R) f
1 + 2c′¶ < ∞, and A¹(0) = QR¹(0) = Q¹̃(0). Note that Q ∈ Op×r and ¹̃(0) = R¹(0) with
∥¹̃(0)∥2 f ∥R∥2∥¹(0)∥2 f C[1 + 2c′]. And ∥QQ¦ −A(A)¦∥2 f ∥(QR)(QR)¦ −A(A)¦∥2 +
∥Q(Ir −RR¦)Q¦∥2 f 4∥A−A∥2 + 4∥Ir −R∥2 f 4¶ + 8c′¶ f 12¶ f h. Therefore,

inf
β̂(0)

sup
{A(t)}t∈{0}∪S∈A0([T],h)

{θ(t)}t∈{0}∪S∈Θ0([T])

P

(
∥ ̂́(0) −A(0)¹(0)∥2 ≳ h '

√
p

n0

)

g inf
β̂(0)

sup
0<cfÃmax(A)fÃmax(A)fC

∥θ(0)∥2fC′

P

(
∥ ̂́(0) −A¹(0)∥2 ≳ h '

√
p

n0

)

:= (∗),

where all A(t) = an arbitrary A ∈ Op×r, and {¹(t)}Tt=1 ¦ {ej}rj=1 are fixed.

For any ´ = A¹(0) and ˜́ = Ã¹(0) ∈ B with A ̸= Ã, by Lemma 24 and equation (32),

KL

(
T∏

t=1

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(0)¹n0

y|x;Aθ(0) · P
(0)¹n0
x

∥∥∥∥
T∏

t=1

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(0)¹n0

y|x;Ãθ(0)
· P(0)¹n0

x

)

= KL
(
P
(0)¹n0

y|x;Aθ(0) · P
(0)¹n0
x

∥∥∥P(0)¹n0

y|x;Ãθ(0)
· P(0)¹n0

x

)

≲ n0∥(A− Ã)¹(0)∥22
≲ n0¶

2

f c log |B|.

Then by Fano’s lemma (Lemma 23), (∗) g 1− log 2
log |B| − c g 1/10.

(iii) Consider the case that S = [T] and h = 0. Fix all A(t) = some A ∈ Op×r. Fixing
{¹(t)}Tt=1 such that 1

T

∑T
t=1 ¹

(t)(¹(t))¦ ° c
rIr. We want to show

inf
β̂(0)

sup
∥θ(0)∥2fC

P

(
∥ ̂́(0) −A¹(0)∥2 g c

√
r

n0

)
g 1

10
.

Denote ¶ =
√

r
n0
. Consider a c¶-packing of B¶(0,R

r, ∥ · ∥2) (denoted as T). By Example 5.8

in Wainwright (2019), we know that log |T | ≳ r. Denote the distribution of {y(0)i }n0
i=1 given

{x(0)
i }n0

i=1 as P
(0)¹n0

y|x;β and the distribution of {x(0)
i }n0

i=1 as P
(0)¹n0
x . For any ¹(0) ̸= ¹̃(0) ∈ T :

KL

(
T∏

t=1

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(0)¹n0

y|x;Aθ(0) · P
(0)¹n0
x

∥∥∥∥
T∏

t=1

P
(t)¹n

y|x;Aθ(t) · P
(t)¹n
x · P(0)¹n0

y|x;Aθ̃(0)
· P(0)¹n0

x

)

90

Learning from Similar Linear Representations

KL

(
P
(0)¹n0

y|x;Aθ(0) · P
(0)¹n0
x

∥∥∥∥P
(0)¹n0

y|x;Aθ̃(0)
· P(0)¹n0

x

)

≲ n0∥A¹(0) −A¹̃(0)∥22
≲ r

f c log |T |,

where c is a small constant. Finally, applying Fano’s Lemma (Lemma 23), we have

inf
β̂(0)

sup
∥θ(0)∥2f¶

P

(
∥ ̂́(0) −A¹(0)∥2 g c¶

)
g 1− log 2

log |T | − c g 1

10
.

(iv) We follow a similar analysis in part (v) of the proof of Theorem 8. Consider the case h = 0.
Fix all A(t) = some A ∈ Op×r and {¹(t)}Tt=1 ¦ {ej}rj=1 ¦ Rr s.t. Ãr(T

−1/2{¹(t)}Tt=1) g c√
r

with #{t : ¹(t) = e1} = +T/r,. Without loss of generality, suppose ¹(t) = e1 when
t ∈ {0} ∪ [+T/r,]. Denote ˜́ = Ae1, and ´(t) = A¹(t) for t g +T/r,+ 1. Consider two data
generating mechanisms in Lemma 26:

(I) {(x(t)
i , y

(t)
i)}ni=1 ∼ (1− ϵ′)(P¹n

y|x;β̃ ·P¹n
x)+ ϵ′Q independently for t ∈ [+T/r,], where ϵ′ =

Tϵ
50+T/r, , {(x

(0)
i , y

(0)
i)}n0

i=1, and {{x(t)
i }ni=1}Tt=+T/r,+1 ∼ D =

∏T
t=+T/r,+1(P

¹n
y|x;β(t) · P¹n

x);

(II) With a preserved set Sc ¦ [+T/r,], generate {x(t)}t∈Sc ∼ QSc and {(x(t)
i , y

(t)
i)}ni=1 ∼

P¹n

y|x;β̃ · P¹n
x independently for t ∈ {0} ∪ (S ∩ [+T/r,]), and {{x(t)

i }ni=1}Tt=+T/r,+1 ∼

D{{x(t)
i }ni=1}Tt=+T/r,+1 ∼ D =

∏T
t=+T/r,+1(P

¹n
y|x;β(t) · P¹n

x).

Denote the joint distributions of {x(t)
i }t∈{0}∪[+T/r,] in (I) and (II) as P(ϵ,¹,Q) and P(S,¹,QSc),

respectively.
Note that by Lemma 24,

ϖ(ϵ′,Θ)

:= sup{∥´1 − ´2∥2 : TV
(
P¹n
y|x;β1

· P¹n
x ,P¹n

y|x;β2
· P¹n

x

)
f ϵ′/(1− ϵ′),

TV
(
P
¹n0

y|x;β1
· P¹n

x ,P¹n0

y|x;β2
· P¹n0

x

)
f 1/20}

g sup{∥´1 − ´2∥2 : KL
(
P¹n
y|x;β1

· P¹n
x ,P¹n

y|x;β2
· P¹n

x

)
f 2[ϵ′/(1− ϵ′)]2,

KL
(
P
¹n0

y|x;β1
· P¹n

x ,P¹n0

y|x;β2
· P¹n0

x

)
f 1/200}

g sup{∥´1 − ´2∥2 : n∥´1 − ´2∥22 f c[ϵ′/(1− ϵ′)]2, n0∥´1 − ´2∥22 f c}

= c′
ϵ′√
n
' 1√

n0

≍ rϵ√
n
' 1√

n0
.

Then by Lemma 27,

inf
β̂(0)

sup
β̃,Q

(P(ϵ,¹,Q) · D)
(
∥ ̂́(0) − ´(0)∗∥2 g ϖ(ϵ′,Θ)

)
g 1

2
.

91

Tian, Gu, and Feng

Therefore, by Lemma 28, it follows that

inf
β̂(0)

sup
S¦S

sup
{β(t)}t∈{0}∪S∈B(S,0)

QSc

P

(
∥ ̂́(0) − ´(0)∗∥2 g c

ϵr√
n
' 1√

n0

)

g inf
β̂(0)

sup
S:|S|gT (1−ϵ)

sup
{β(t)}t∈{0}∪S∈B(S,0)

QSc

(P(S,¹,QSc) · D)
(
∥ ̂́(0) − ´(0)∗∥2 g ϖ(ϵ/50,Θ)

)

g 1

10
.

D.12 Proofs of Lemmas and Propositions

Denote Σ̂(t) =
∑n

i=1
1
nx

(t)
i (x

(t)
i)¦.

D.12.1 Proof of Lemma 29

By optimality of ¹
(t)
A and ¹

(t)

A(t)∗ ,

A¦∇f (t)(A¹
(t)
A) = (A(t)∗)¦∇f (t)(A(t)∗¹(t)

A(t)∗) = 0r, (33)

which entails

A¦
[
∇f (t)(A(t)∗¹(t)∗) + Σ̂(t)(A¹

(t)
A −A(t)∗¹(t)∗)

]
= 0,

¹
(t)
A = (A¦Σ̂(t)A)−1A¦Σ̂(t)A(t)∗¹(t)∗ − (A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗).

Therefore,

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f ∥[I −A(A¦Σ̂(t)A)−1A¦Σ̂(t)]A(t)∗¹(t)∗∥2︸ ︷︷ ︸

[1]

+ ∥A(A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗)∥2︸ ︷︷ ︸
[2]

.

Note that

[1] ≲ ∥[I −A(A¦Σ̂(t)A)−1A¦Σ̂(t)]A(t)∗∥2∥¹(t)∗∥2
≲ ∥(Σ̂(t))−1/2∥2 · ∥(Σ̂(t))1/2A(t)∗ − (Σ̂(t))1/2A(A¦Σ̂(t)A)−1A¦(Σ̂(t))1/2(Σ̂(t))1/2A(t)∗∥2∥¹(t)∗∥2 k

≲ ∥[I −B(B¦B)−1B¦]B(t)∗∥2∥¹(t)∗∥2
≲ ∥PB§B(t)∗∥2∥¹(t)∗∥2, (34)

w.p. at least 1 − e−Cp, where B = (Σ̂(t))1/2A, B(t)∗ = (Σ̂(t))1/2A(t)∗, A§ ∈ {Ã ∈
Op×(p−r)} : ÃÃ¦ +AA¦ = Ip}, B§ = (Σ̂(t))−1/2A§, PB§ = B§((B§)¦B§)−1(B§)¦ =
I − PB. Further, notice that

∥PB§B(t)∗∥2 = ∥(Σ̂(t))−1/2A§[(A§)¦(Σ̂(t))−1A§]−1(A§)¦A(t)∗∥2
k. This step holds because of Lemma 18, which shows that λmin(Σ̂

(t)) > 0 (so that Σ̂(t) is invertible) w.p.
at least 1− e

−C(p+log T).

92

Learning from Similar Linear Representations

f ∥(Σ̂(t))−1/2∥2 · ¼−1
min((A

§)¦(Σ̂(t))−1A§) · ∥(A§)¦A(t)∗∥2
≲ ∥(A§)¦A(t)∗∥2
≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2, (35)

w.p. at least 1− e−C(p+log T). And

[2] f ∥A(A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)

A(t)∗)∥2
+ ∥A(A¦Σ̂(t)A)−1A¦[∇f (t)(A(t)∗¹(t)∗)−∇f (t)(A(t)∗¹(t)

A(t)∗)]∥2
≲ ∥A¦(A(t)∗)§∥2 · ∥∇f (t)(A(t)∗¹(t)

A(t)∗)∥2 + ∥¹(t)∗ − ¹
(t)

A(t)∗∥2 (36)

≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2(∥∇f (t)(A(t)∗¹(t)∗)∥2 + C∥¹(t)∗ − ¹
(t)

A(t)∗∥2) + ∥¹(t)∗ − ¹
(t)

A(t)∗∥2

≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2
√
p+ log T

n
+

√
r + log T

n
, (37)

w.p. at least 1− e−C(r+log T), where we used the fact that ∥¹(t)∗ − ¹
(t)

A(t)∗∥2 ≲
√

r+log T
n for

all t ∈ S w.p. at least 1− e−C(r+log T) (which is the standard rate of r-dimensional linear
regression). Inequality (36) holds because there exists a ∈ Rr such that ∇f (t)(A(t)∗¹(t)∗) =

(A(t)∗)§a (due to (33)) and ∥a∥2 = ∥∇f (t)(A(t)∗¹(t)∗)∥2 ≲

√
p+log T

n w.p. at least 1 −
eC(p+log T). Putting (34), (35), and (37) together, we complete the proof.

D.12.2 Proof of Lemma 30

By Lemma 29, w.p. at least 1− e−C(r+log T),

∥A¹
(t)
A ∥2 − ∥A(t)∗¹(t)∗∥2 f ∥A¹

(t)
A −A(t)∗¹(t)∗∥2 · ·(t)

≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2 · ·(t) +
√
r + log T

n

f C ′·(t).

Note that ∥A¹
(t)
A ∥2 = ∥¹(t)

A ∥2 and ∥A(t)∗¹(t)∗∥2 = ∥¹(t)∗∥2 f ·(t).

D.12.3 Proof of Lemma 31

The proof is almost the same as the proof of Lemma 29, thus omitted.

D.12.4 Proof of Lemma 32

Denote G =
{
∇f (t)(A(t)∗¹(t)∗)

}
t∈S and ∆(t) = A¹

(t)

A
−A(t)∗¹(t)∗. By Lemma 29, w.p. at

least 1− e−C(r+log T), for all t ∈ S,

∥∆(t)∥2 ≲ h·(t) +

√
r + log T

n
,

93

Tian, Gu, and Feng

leading to

∥{∆(t)}t∈S∥2 = sup
∥u∥2=∥v∥2=1

∣∣∣∣∣
∑

t∈S
ut(∆

(t))¦v

∣∣∣∣∣

f sup
∥u∥2=∥v∥2=1

∥u∥2 ·
√∑

t∈S
((∆(t))¦v)2

≲
√
T

(
h·̄ +

√
r + log T

n

)
. (38)

By Lemma D.3 in Duan and Wang (2023) or Theorem 5.39 in Vershynin (2010), w.p. at
least 1− e−C(p+log T),

∥G∥2 ≲
√
p+ T

n
. (39)

Combining (38), (39), and the fact that ∥G∥2 f ∥G∥2 + ∥{∆(t)}t∈S∥2 implies the desired
result.

D.12.5 Proof of Lemma 33

Note that

∥G−G∥2 = sup
∥u∥2=∥v∥2=1

∣∣∣∣∣∣

d∑

j=1

uj(gj − gj)
¦v

∣∣∣∣∣∣

f sup
∥u∥2=∥v∥2=1

∥u∥2 ·

√√√√
d∑

j=1

[(gj − gj)¦v]2

f
√
d∆,

which completes the proof.

D.12.6 Proof of Lemma 34

By convexity of f (t),

f (t)(A(t)¹
(t)

A(t))− f (t)(Â¹
(t)
̂
A
) +

¼√
n
∥A(t)(A(t))¦ − Â(Â)¦∥2

g ¼√
n
∥A(t)(A(t))¦ − Â(Â)¦∥2 +∇f (t)(Â¹

(t)
̂
A
)¦(A(t)¹

(t)

A(t) − Â¹
(t)
̂
A
)

g ¼√
n
∥A(t)(A(t))¦ − Â(Â)¦∥2 − ∥∇f (t)(Â¹

(t)
̂
A
)¦A(t)¹

(t)

A(t)∥2 (40)

g ¼√
n
∥A(t)(A(t))¦ − Â(Â)¦∥2 − ∥∇f (t)(Â¹

(t)
̂
A
)∥2 · ∥((Â)§)¦A(t)∥2 · ∥¹(t)

A(t)∥2 (41)

g
(
¼√
n
− C∥∇f (t)(Â¹

(t)
̂
A
)∥2 · ·(t)

)
· ∥A(t)(A(t))¦ − Â(Â)¦∥2 (42)

94

Learning from Similar Linear Representations

> 0,

when A(t)(A(t))¦ ≠ Â(Â)¦, where (40) and (41) are due to the definition of ¹
(t)
̂
A

(which

leads to ∇f (t)(Â¹
(t)
̂
A
)¦Â = 0 and ∇f (t)(Â¹

(t)
̂
A
) = (Â)§u with ∥u∥2 = ∥f (t)(Â¹

(t)
̂
A
)∥2), and

(42) is due to Lemma 20. Note that the above strict inequality leads to a contradiction with

the fact that (A(t),¹(t)) is a minimizer, therefore we must have A(t)(A(t))¦ ̸= Â(Â)¦ for
all t ∈ S.

D.12.7 Proof of Lemma 35

It is straightforward to see that

1

|S′|
∑

t∈S′

¹(t)∗(¹(t)∗)¦ =
|S|
|S′|


 1

|S|
∑

t∈S
¹(t)∗(¹(t)∗)¦ − 1

|S|
∑

t∈S\S′

¹(t)∗(¹(t)∗)¦




° |S|
|S′|

(
c

r
·̄2 − ³max

t∈S
(·(t))2

)
Ir

° c

2r
·̄2,

because |S|/|S′| g 1 and ³ f c/r · ·̄2/[2maxt∈S(·(t))2] with a very small c′′ > 0.

D.12.8 Proof of Lemma 36

By definition, we have

0 f f (t)(A(t)∗¹(t)∗)−f (t)(Â(t)¹̂(t))+
¼√
n
∥A(t)∗(A(t)∗)¦−Â(Â)¦∥2−

¼√
n
∥Â(t)(Â(t))¦−Â(Â)¦∥2,

which implies

¼√
n
∥A(t)∗(A(t)∗)¦ − Â(t)(Â(t))¦∥2 g f (t)(Â(t)¹̂(t))− f (t)(A(t)∗¹(t)∗)

g 1

2
(Â(t)¹̂(t) −A(t)∗¹(t)∗)¦Σ̂(t)(Â(t)¹̂(t) −A(t)∗¹(t)∗)

− ∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2

g c∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥22 − C

√
p+ log T

n
∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2,

(43)

w.p. at least 1− e−C′(p+log T).
Next, we will argue how to upper bound ∥A(t)∗(A(t)∗)¦ − Â(t)(Â(t))¦∥2 by ∥Â(t)¹̂(t) −

A(t)∗¹(t)∗∥2 so that solving the inequality can lead to the desired conclusion. Note that
upper bounding ∥A(t)∗(A(t)∗)¦ − Â(t)(Â(t))¦∥2 by ∥Â(t)¹̂(t) − A(t)∗¹(t)∗∥2 is not always
applicable. Fortunately, for the analysis purpose, we can pick any A(t)∗ whose column
space is the same and the corresponding ¹(t)∗ without changing their product ´(t)∗. The
same argument holds for Â(t) and ¹̂(t) as well. So WLOG, we denote Â(t) = (â1, Â−1),

95

Tian, Gu, and Feng

A(t)∗ = (a∗
1,A

∗
−1), and consider ¹̂ = (¹̂1,0

¦
r−1)

¦, ¹(t)∗ = (¹∗1,0
¦
r−1)

¦, where ¹̂1â1 = ̂́(t) and
¹∗1a

∗
1 = ´(t)∗, no matter which Â−1 and A∗

−1 we pick to encode Col(Â(t)) and Col(A(t)∗).

Consider A∗
−1 = (I − Pa∗

1
)Â−1R, where R = (Â¦

−1(I − Pa∗
1
)Â−1)

−1/2 serving as a

normalization matrix which makes (A∗
−1)

¦A∗
−1 = Ir. Here Pa∗

1
= a∗

1(a
∗
1)

¦/∥a∗
1∥22 is the

projection matrix corresponding to a∗
1.

Putting everything together, note that

∥Â(t)(Â(t))¦ −A(t)∗(A(t)∗)¦∥2 f ∥a∗
1(a

∗
1)

¦ − â1(â1)
¦∥2 + ∥Â−1(Â−1)

¦ −A∗
−1(A

∗
−1)

¦∥2,
(44)

where

∥Â−1(Â−1)
¦ −A∗

−1(A
∗
−1)

¦∥2
f ∥(I − Pâ1

)Â−1(Â−1)
¦(I − Pâ1

)− (I − Pa∗
1
)Â−1RR¦(Â−1)

¦(I − Pa∗
1
)∥2

f ∥Pa∗
1
(I − Pâ1

)∥2 + ∥(I − Pâ1
)Pa∗

1
∥2 + ∥(I − Pa∗

1
)Â−1(I −RR¦)(Â−1)

¦(I − Pa∗
1
)∥2

≲ ∥a∗
1(a

∗
1)

¦ − â1(â1)
¦∥2 + ∥I −RR¦∥2.

Recall that RR¦ = [Â¦
−1(I − Pa∗

1
)Â−1]

−1 = (I − Â¦
−1Pa∗

1
Â−1)

−1. Therefore,

∥I−RR¦∥2 ≲ ∥(I−Â¦
−1Pa∗

1
Â−1)

−1∥2 ·∥I−Â¦
−1Pa∗

1
Â−1−I∥2 ≲ ∥a∗

1(a
∗
1)

¦−â1(â1)
¦∥2.

Plugging these bounds back to (44), we have

∥Â(t)(Â(t))¦ −A(t)∗(A(t)∗)¦∥2 ≲ ∥a∗
1(a

∗
1)

¦ − â1(â1)
¦∥2.

Then by Lemma 37, w.p. at least 1− e−C′(p+log T), for all t ∈ S,

·(t)∥a∗
1(a

∗
1)

¦−â1(â1)
¦∥2 ≲ ∥¹̂1â1−¹∗1a∗

1∥2+
√
p+ log T

n
= ∥Â(t)¹̂(t)−A(t)∗¹(t)∗∥2+

√
p+ log T

n
.

Plugging it back to (43), we have

∥Â(t)¹̂(t) −A(t)∗¹(t)∗∥2 ≲
√
p+ log T

n
+

¼√
n·(t)

+
(p+ log T

n

)1/4(¼

·(t)
√
n

)1/2

for all t ∈ S, w.p. at least 1− e−C′(p+log T).

D.12.9 Proof of Lemma 37

The proof idea is very similar to the proof of Lemma 29. By the optimality condition,

A¦∇f (t)(A¹
(t)
A) = 0, implying that

A¦
[
∇f (t)(A(t)∗¹(t)∗) + Σ̂(t)(A¹

(t)
A −A(t)∗¹(t)∗)

]
= 0,

¹
(t)
A = (A¦Σ̂(t)A)−1A¦Σ̂(t)A(t)∗¹(t)∗ − (A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗).

96

Learning from Similar Linear Representations

Note that ¹(t)∗ ∈ R and A(t)∗ ∈ Rp when r = 1. Hence, w.p. at least 1− e−C′(p+log T), we
have

∥A¹
(A)
A −A(t)¹(t)∗∥2

g ∥[I −A(A¦Σ̂(t)A)−1A¦Σ̂(t)]A(t)∗¹(t)∗∥2 − ∥A(A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗)∥2
g ∥[I −A(A¦Σ̂(t)A)−1A¦Σ̂(t)]A(t)∗∥2·(t) − ∥A∥2 · ∥A(A¦Σ̂(t)A)−1∥2 · ∥A∥2 · ∥∇f (t)(A(t)∗¹(t)∗)∥2

g ·(t)¼min((Σ̂
(t))−1/2) · ∥(Σ̂(t))1/2A(t)∗ − (Σ̂(t))1/2A(A¦Σ̂(t)A)−1A¦Σ̂(t)A(t)∗∥2 − C

√
p+ log T

n

g C ′·(t)∥[I −B(B¦B)−1)B¦]B(t)∗∥2 − C

√
p+ log T

n
, (45)

where B = (Σ̂(t))1/2A, B(t)∗ = (Σ̂(t))1/2A(t)∗, A§ ∈ {Ã ∈ Op×(p−1)} : ÃÃ¦ +AA¦ = Ip},
B§ = (Σ̂(t))−1/2A§, PB§ = B§((B§)¦B§)−1(B§)¦ = I − PB. Further, notice that

∥PB§B(t)∗∥2 = ∥(Σ̂(t))−1/2A§[(A§)¦(Σ̂(t))−1A§]−1(A§)¦A(t)∗∥2
g ¼

1/2
min([(A

§)¦(Σ̂(t))−1A§]−1) · ∥(A§)¦A(t)∗∥2
= ∥(A§)¦(Σ̂(t))−1A§∥−1/2

2 · ∥(A§)¦A(t)∗∥2
≳ ∥AA¦ −A(t)∗(A(t)∗)¦∥2, (46)

w.p. at least 1− e−C(p+log T). Combining (45) and (46) completes the proof.

D.12.10 Proof of Lemma 38

First, by Lemma 18, 0 < c f mint∈S ¼min(Σ̂
(t)) f maxt∈S ¼max(Σ̂

(t)) f C < ∞ w.p. at
least 1− e−C′(p+log T). Then (i) is the direct consequence of Lemmas E.3 in Duan and Wang
(2023). (ii) and (iii) come from Lemma E.2 in Duan and Wang (2023).

D.12.11 Proof of Lemma 39

We modify a few steps in the proof of Lemma 29. The key point here is that A ∈ Op×r is
fixed.

By optimality of ¹
(t)
A and ¹

(t)

A(t)∗ ,

A¦∇f (t)(A¹
(t)
A) = (A(t)∗)¦∇f (t)(A(t)∗¹(t)

A(t)∗) = 0r,

which entails

A¦
[
∇f (t)(A(t)∗¹(t)∗) + Σ̂(t)(A¹

(t)
A −A(t)∗¹(t)∗)

]
= 0,

¹
(t)
A = (A¦Σ̂(t)A)−1A¦Σ̂(t)A(t)∗¹(t)∗ − (A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗).

Therefore,

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f ∥[I −A(A¦Σ̂(t)A)−1A¦Σ̂(t)]A(t)∗¹(t)∗∥2︸ ︷︷ ︸

[1]

97

Tian, Gu, and Feng

+ ∥A(A¦Σ̂(t)A)−1A¦∇f (t)(A(t)∗¹(t)∗)∥2︸ ︷︷ ︸
[2]

.

Note that

[1] ≲ ∥A(t)∗ −A(A¦Σ̂(t)A)−1A¦Σ̂(t)A(t)∗∥2
= ∥A(t)∗ −A(A¦Σ̂(t)A)−1A¦Σ̂(t)(AA¦ +A§(A§)¦)A(t)∗∥2
f ∥(I −AA¦)A(t)∗∥2 + ∥A(A¦Σ̂(t)A)−1A¦Σ̂(t)A§(A§)¦A(t)∗∥2
≲ ∥(A§)¦A(t)∗∥2 + ∥(A¦Σ̂(t)A)−1∥2 · ∥A¦Σ̂(t)A§∥2 · ∥(A§)¦A(t)∗∥2

By Lemma 19 and the condition n0 g Cr,

∥(A¦Σ̂(t)A)−1∥2 = ¼−1
min(A

¦Σ̂(t)A)

f [¼min(A
¦Σ(t)A)− ∥A¦Σ̂(t)A−A¦Σ(t)A∥2]−1

f
[
¼min(A

¦Σ(t)A)− C
√
r/n0

]−1

≲ C ′′,

w.p. at least 1− e−C′(r+log T). And similarly

∥A¦Σ̂(t)A§∥2 ≲ ∥A¦Σ(t)A§∥2 + ∥A¦(Σ̂(t) −Σ(t))A§∥2 ≲ C,

w.p. at least 1− e−C′(r+log T). Therefore by Lemma 20, w.p. at least 1− e−C(r+log T),

[1] ≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2. (47)

And w.p. at least 1− e−C(r+log T),

[2] ≲ ∥(A¦Σ̂(t)A)−1∥2 · ∥A¦∇f (t)(A(t)∗¹(t)∗)∥2 ≲
√

r

n0
, (48)

Denote {´j}Nj=1 as a 1/2-cover (whose components are inside the set to be covered) of
B = {´ ∈ Rp : ´ = Au, ∥u∥2 f 1} (which is isomorphic to the unit ball in Rr), with N f 5r

(by Example 5.8 in Wainwright (2019)). The second inequality in (48) holds because

∥A¦∇f (t)(A(t)∗¹(t)∗)∥2 = sup
∥u∥2f1

(Au)¦
[
2

n0
(X(0))¦ϵ(0)

]

= sup
β∈B

´¦
[
2

n0
(X(0))¦ϵ(0)

]

f sup
β∈B

(´ − ´¦
j0)

¦
[
2

n0
(X(0))¦ϵ(0)

]
+ max

j∈[N]
´¦
j

[
2

n0
(X(0))¦ϵ(0)

]

f sup
β=Au∈B

(u− uj0)
¦A∇f (t)(A(t)∗¹(t)∗) + max

j∈[N]
´¦
j

[
2

n0
(X(0))¦ϵ(0)

]

f 1

2
∥A∇f (t)(A(t)∗¹(t)∗)∥2 + max

j∈[N]
´¦
j

[
2

n0
(X(0))¦ϵ(0)

]
,

98

Learning from Similar Linear Representations

leading to

∥A¦∇f (t)(A(t)∗¹(t)∗)∥2 f 2 max
j∈[N]

´¦
j

[
2

n0
(X(0))¦ϵ(0)

]
,

where ´j0 = Auj0 with some ∥uj0∥2 f 1 is the one which is closest to ´ = Au in the cover (de-
pending on ´). Hence, ∥uj0−u∥2 = ∥´j0−´∥2 f 1/2. Showing maxj∈[N] ´

¦
j

[
2
n0
(X(0))¦ϵ(0)

]
≲√

r/n0 w.p. at least 1− e−C(r+log T) is standard.
Finally, combining (47) and (48), we complete the proof.

D.12.12 Proof of Lemma 40

The proof is exactly the same as the proof of Lemma 29, so omitted.

D.12.13 Proof of Lemma 41

The proof is the same as the proof of Lemma 38, so we omit it here.

D.12.14 Proof of Proposition 42

Define the random event E1 as the event that Lemmas 29, 30, 31, 32, and 34 hold, hence
P(E1) g 1− Ce−(r+log T) with some constant C > 0. Define another event

E2 =
{
max
t∈[T]

∥Σ̂(t) −Σ(t)∥2 ≲
√
p+ log T

n

}
.

By Lemma 18, we have P(E2) g 1− Ce−(p+log T) with some constant C > 0. It suffices to
prove the upper bounds in Proposition 42 conditioned on E1 ∩ E2, therefore we condition
on E1 ∩ E2 in the remaining proof without stating it explicitly and all the arguments are
deterministic.

Define

G(A) =

T∑

t=1

min
A(t)∈Op×r,θ(t)∈Rr

{
1

T
f (t)(A(t)¹(t)) +

√
n

nT
¼∥A(t)(A(t))¦ −AA¦∥2

}
,

GS(A) =
∑

t∈S
min

A(t)∈Op×r,θ(t)∈Rr

{
1

T
f (t)(A(t)¹(t)) +

√
n

nT
¼∥A(t)(A(t))¦ −AA¦∥2

}
,

GSc(A) =
∑

t∈Sc

min
A(t)∈Op×r,θ(t)∈Rr

{
1

T
f (t)(A(t)¹(t)) +

√
n

nT
¼∥A(t)(A(t))¦ −AA¦∥2

}
,

Â ∈ argmin
A∈Op×r

G(A).

Our first step is to prove the same bound for ∥ÂÂ
¦
−AA

¦∥2. Let’s prove it by contradiction.
Denote the desired rate as

¸ = ·̄−1r

√
p

nT
+ ·̄−1√r

√
r + log T

n
+

√
rh+

¼r√
n·̄2

ϵ.

Suppose ∥ÂÂ
¦
−AA

¦∥2 > C¸ with some constant C > 0.

99

Tian, Gu, and Feng

Consider any minimizer (A(t),¹(t)) = argminA∈Op×r,θ∈Rr{ 1
T f

(t)(A¹) +
√
n

nT ¼∥AA¦ −
Â(Â)¦∥2}. Define two index sets

A1 =

{
t ∈ S : ∥A(t)(A(t))¦ − Â(Â)¦∥2 g c∥Â(Â)¦ −AA

¦∥2 ·
1√
r

}
,

A2 =

{
t ∈ S : ∥A(t)(A(t))¦ − Â(Â)¦∥2 < c∥Â(Â)¦ −AA

¦∥2 ·
1√
r

}
,

where c > 0 is a small constant. Then we have

∑

t∈A1

1

T
[f (t)(A(t)¹(t))− f (t)(A¹

(t)

A
)] +

∑

t∈A1

√
n

nT
∥A(t)(A(t))¦ − Â(Â)¦∥2

g − 1

T

∣∣∣
〈
{∇f (t)(A¹

(t)

A
)}t∈A1 , {A(t)¹(t) −A¹

(t)

A
}t∈A1

〉∣∣∣

+
1

2

1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F +

∑

t∈A1

1√
nT

¼∥A(t)(A(t))¦ − Â(Â)¦∥2

g − 1

T

∣∣∣
〈
{∇f (t)(A(t)∗¹(t)∗)}t∈A1 , {A(t)¹(t) − Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

−A¹
(t)

A
}t∈A1

〉∣∣∣

− 1

T
∥{∇f (t)(A¹

(t)

A
)−∇f (t)(A(t)∗¹(t)∗)}∥F∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥F

+
1

2

1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F +

∑

t∈A1

1√
nT

¼∥A(t)(A(t))¦ − Â(Â)¦∥2

g − 1

T

∑

t∈A1

∥∇f (t)(A(t)∗¹(t)∗)∥2 · (∥A(t)¹(t) − Â¹
(t)
̂
A
∥2 + ∥Â¹

(t)
̂
A

−A¹
(t)

A
∥2)

− 1

T
C


√T

√
r + log T

n
+ h

√∑

t∈A1

(·(t))2


 · ∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥F

+
1

2

1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F +

∑

t∈A1

1√
nT

¼∥A(t)(A(t))¦ − Â(Â)¦∥2 (49)

g −C
T

∑

t∈A1

√
p+ log T

n
· ·(t)(∥A(t)(A(t))¦ − Â(Â)¦∥2 + ∥Â(Â)¦ −AA

¦∥2)

− 1

T
C


√T

√
r + log T

n
+ h

√∑

t∈A1

(·(t))2


 · ∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥F

+
1

2

1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F +

∑

t∈A1

1√
nT

¼∥A(t)(A(t))¦ − Â(Â)¦∥2 (50)

g −C


h2 · 1

T

∑

t∈A1

(·(t))2 +
r + log T

n


+

|A1|
2
√
nT

¼ · 1√
r
∥Â(Â)¦ −AA

¦∥2, (51)

where (49) holds because ∥{∇f (t)(A(t)∗¹(t)∗)}t∈A1∥2 f
√

p
n+h

√∑
t∈A1

(·(t))2+
√
T
√

r+log T
n

(Lemma 32) and ∥{∇f (t)(A¹
(t)

A
)−∇f (t)(A(t)∗¹(t)∗)}∥F =

100

Learning from Similar Linear Representations

√∑
t∈A1

∥Σ̂(t)(A¹
(t)

A
−A(t)∗¹(t)∗)∥22 ≲

√∑
t∈A1

∥A¹
(t)

A
−A(t)∗¹(t)∗∥22 ≲

√
h2
∑

t∈A1
(·(t))2 + T · r+log T

n

(Lemma 29). Inequality (50) holds because

∥A(t)¹(t)∥2 ≲ ∥A(t)(A(t))¦ − Â(Â)¦∥2(∥¹(t)
̂
A
∥2 + ∥∇f (t)(Â¹

(t)
̂
A
)∥2)

≲ ∥A(t)(A(t))¦ − Â(Â)¦∥2
(
·(t) + ∥Â¹

(t)
̂
A

−A(t)∗¹(t)∗∥2 + ∥∇f (t)(A(t)∗¹(t)∗)∥2
)

≲ ∥A(t)(A(t))¦ − Â(Â)¦∥2·(t),

where we used Lemmas 29, 30, and 31. Inequality (51) holds because

1√
nT

¼
∑

t∈A1

∥A(t)(A(t))¦ − Â(Â)¦∥2

− 1

T

∑

t∈A1

√
p+ log T

n
· ·(t)(∥A(t)(A(t))¦ − Â(Â)¦∥2 + ∥Â(Â)¦ −AA

¦∥2)

g 1√
nT

¼
∑

t∈A1

∥A(t)(A(t))¦ − Â(Â)¦∥2 −
1

T

∑

t∈A1

C

√
r(p+ log T)

n
· ·(t)∥A(t)(A(t))¦ − Â(Â)¦∥2

g 1

2
√
nT

¼
∑

t∈A1

∥A(t)(A(t))¦ − Â(Â)¦∥2

g |A1|
2
√
nT

¼ · 1√
r
∥Â(Â)¦ −AA

¦∥2,

when ¼√
n
g 2Cmaxt∈S ·(t) ·

√
r(p+log T)

n .

For any t ∈ A2, since ∥A(t)¹
(t)

A(t)−Â¹
(t)
̂
A
∥2 f ∥A(t)(A(t))¦−Â(Â)¦∥2(∥¹(t)

̂
A
∥2+∥∇f (t)(Â¹

(t)
̂
A
)∥2) f

c·(t)∥Â(Â)¦ −AA
¦∥2 1√

r
, by triangle inequality, we have

∥A(t)¹
(t)

A(t) −A¹
(t)

A
∥2 g ∥Â¹

(t)
̂
A

−A¹
(t)

A
∥2 −

c√
r
·(t)∥Â(Â)¦ −AA

¦∥2.

With similar arguments to obtain (51), here we have

∑

t∈A2

1

T
[f (t)(A(t)¹(t))− f (t)(A¹

(t)

A
)] +

∑

t∈A2

√
n

nT
∥A(t)(A(t))¦ − Â(Â)¦∥2

g 1

2T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A2∥2F − 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F

− C ′

T



√
pr

n
+
√
T

√
r + log T

n
+ h

√∑

t∈A2

(·(t))2


 · ∥{A(t)¹(t) −A¹

(t)

A
}t∈A2∥F

+
1

T

∑

t∈A2

¼√
n
∥A(t)(A(t))¦ − Â(Â)¦∥2 −

C

T

∑

t∈A2

√
p+ log T

n
· ·(t)∥A(t)(A(t))¦ − Â(Â)¦∥2

(52)

101

Tian, Gu, and Feng

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A2∥2F

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F

= −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T

∑

t∈A2

∥A(t)¹(t) −A¹
(t)

A
∥22

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F

(53)

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C ′

T

∑

t∈A2

∥Â¹
(t)
̂
A

−A¹
(t)

A
∥22

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F
− c

Tr

∑

t∈A2

(·(t))2 · ∥Â(Â)¦ −AA
¦∥22

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C ′

2T

∑

t∈A2

∥Â¹
(t)
̂
A

−A¹
(t)

A
∥22

+
C ′

2T

∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
2

F
− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F

− c

Tr

∑

t∈A2

(·(t))2 · ∥Â(Â)¦ −AA
¦∥22.

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C ′

2T

∑

t∈A2

∥Â¹
(t)
̂
A

−A¹
(t)

A
∥22

− c

Tr

∑

t∈A2

(·(t))2 · ∥Â(Â)¦ −AA
¦∥22. (54)

Compared to the derivation of (51), here we used a different way to bound the intermediate

term 1
T |ï{∇f (t)(A(t)∗¹(t)∗)}t∈A2 , {A(t)¹(t) − Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

− A¹
(t)

A
}t∈A2ð| to obtain (52).

More specifically,

1

T

∣∣∣
〈
{∇f (t)(A(t)∗¹(t)∗)}t∈A2 , {A(t)¹(t) − Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

−A¹
(t)

A
}t∈A2

〉∣∣∣

f 1

T

∑

t∈A2

∥∇f (t)(A(t)∗¹(t)∗)∥2∥A(t)¹(t) − Â¹
(t)
̂
A
∥2 +

1

T
∥{∇f (t)(A(t)∗¹(t)∗)}t∈A2∥2

∥∥{Â¹
(t)
̂
A

−A¹
(t)

A
}t∈A2

∥∥
∗

f 1

T

∑

t∈A2

√
p+ log T

n
·(t)∥A(t)(A(t))¦ − Â(Â)¦∥2 +

1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F
,

102

Learning from Similar Linear Representations

where we used the fact that |ïA,Bð| f ∥A∥2∥B∥∗ f ∥A∥2∥B∥F · rank(B) for any matrix

A and B of the same dimension and rank
(
{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

)
f 2r.

Finally, notice that by triangle inequality,

GSc(Â)−GSc(A) g
∑

t∈Sc

min
A(t)∈Op×r,θ(t)∈Rr

{√
n

nT
¼(∥A(t)(A(t))¦ − Â(Â)¦∥2 − ∥A(t)(A(t))¦ −A(A)¦∥2)

}

g −
√
n

nT
¼|Sc| · ∥Â(Â)¦ −A(A)¦∥2. (55)

Case 1: |A2| g (1− c/r · ·̄2/maxt∈S(·(t))2)|S| with some small constant c > 0:
Then by (51), (54), and (55),

G(Â)−G(A) = GS(Â)−GS(A) +GSc(Â)−GSc(A)

g −C
(
pr

nT
+ h2·̄2 +

r + log T

n

)
+
C ′

T

∑

t∈A2

∥Â¹
(t)
̂
A

−A¹
(t)

A
∥22

− c

Tr

∑

t∈A2

(·(t))2 · ∥Â(Â)¦ −AA
¦∥22

−
√
n

nT
¼|Sc| · ∥Â(Â)¦ −AA

¦∥2. (56)

By Assumption 2, Wedin’s sinΘ-Theorem, and applying Lemma 35 on {¹(t)

A
}t∈A2 ,

∥Â(Â)¦ −A(A)¦∥2 f ∥Â(Â)¦ −A(A)¦∥F ≲

√
r

|S| ·̄
−1 · ∥{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2∥F. (57)

Here we used the fact that 1
|S|
∑

t∈S ¹
(t)

A
(¹

(t)

A
)¦ ° c

r ·̄
2Ip. To see this, notice that

Ãr

(
1√
|S|

{A¹
(t)

A
}t∈S

)
= Ãr

(
1√
|S|

{´(t)∗}t∈S
)

− 1√
|S|

∥{A¹
(t)

A
}t∈S − {´(t)∗}t∈S∥2

g c√
r
·̄ −

(
·̄h+

√
r + log T

n

)

g c′√
r
·̄,

where by Lemmas 29 and 33,

1√
|S|

∥{A¹
(t)

A
}t∈S − {´(t)∗}t∈S∥2 f

√∑

t∈S
∥A¹

(t)

A
−A(t)∗¹(t)∗∥22 ≲ h·̄ +

√
r + log T

n
,

and the last step comes from conditions (i) and (ii) by noticing that

√
r + log T

n
≲

·̄√
r
·
√
p+ log T

n
· 1

·(t)
≲

·̄√
r
.

103

Tian, Gu, and Feng

This leads to

¼r

(
1

|S|
∑

t∈S
¹
(t)

A
(¹

(t)

A
)¦
)

= ¼r

(
1

|S|
∑

t∈S
¹
(t)

A
(A)¦A(¹

(t)

A
)¦
)

g c′

r
·̄2.

Plugging (57) into (56), we have

G(Â)−G(A) g −C
(
h2·̄2 +

r + log T

n

)
+
C ′

T
· |S|
r
·̄2∥Â(Â)¦ −AA

¦∥22

− c|S|
Tr

·̄2∥Â(Â)¦ −AA
¦∥22 − C

√
r(p+ T)

nT
· ∥Â(Â)¦ −AA

¦∥2
√

1

T

∑

t∈A2

(·(t))2

−
√
n

nT
¼|Sc| · ∥Â(Â)¦ −AA

¦∥2

g C

T
· |S|
r
·̄2∥Â(Â)¦ −A(A)¦∥22 −

√
n

nT
¼|Sc| · ∥Â(Â)¦ −A(A)¦∥2

− C

(
pr

nT
+ h2·̄2 +

r + log T

n

)
− C

√
r(p+ T)

nT
·̄·

> 0,

because ∥Â(Â)¦ −AA
¦∥2 g C¸ with some constant C > 0.

Case 2: |A1| g c/r · ·̄2/maxt∈S(·(t))2 · |S| with some small constant c > 0:

By inequality (53) and triangle inequality, we have

∑

t∈A2

1

T
[f (t)(A(t)¹(t))− f (t)(A¹

(t)

A
)] +

∑

t∈A2

√
n

nT
∥A(t)(A(t))¦ − Â(Â)¦∥2

= −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T

∑

t∈A2

∥A(t)¹(t) −A¹
(t)

A
∥22

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{Â¹

(t)
̂
A

−A¹
(t)

A
}t∈A2

∣∣∣
∣∣∣
F

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T

∑

t∈A2

∥A(t)¹(t) −A¹
(t)

A
∥22

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{A(t)¹(t) −A¹

(t)

A
}t∈A2

∣∣∣
∣∣∣
F
− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{A(t)¹(t) − Â¹

(t)
̂
A
}t∈A2

∣∣∣
∣∣∣
F

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T

∣∣∣
∣∣∣{A(t)¹(t) −A¹

(t)

A
}t∈A2

∣∣∣
∣∣∣
2

F

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{A(t)¹(t) −A¹

(t)

A
}t∈A2

∣∣∣
∣∣∣
F

104

Learning from Similar Linear Representations

−
√
p+ T

nT
·
√
2r ·

√
1

T

∑

t∈A2

∥A(t)(A(t))¦ − Â(Â)¦∥22(·(t))2

g −C


 pr

nT
+ h2 · 1

T

∑

t∈A2

(·(t))2 +
r + log T

n


+

C

T

∣∣∣
∣∣∣{A(t)¹(t) −A¹

(t)

A
}t∈A2

∣∣∣
∣∣∣
2

F

− 1

T

√
p+ T

n
·
√
2r
∣∣∣
∣∣∣{A(t)¹(t) −A¹

(t)

A
}t∈A2

∣∣∣
∣∣∣
F
−
√
p+ T

nT
· ·̄∥Â(Â)¦ −AA

¦∥2

g −C
(
pr

nT
+ h2·̄2 +

r + log T

n

)
−
√
p+ T

nT
· ·̄∥Â(Â)¦ −AA

¦∥2 (58)

By the condition of the proposition, we must have

mint∈S ·(t)

·̄
· r ≲

√
p+ log T ,

mint∈S ·(t)

·̄
· r√

T
≲ 1. (59)

By (51), (55), and (58), we have

G(Â)−G(A)

g C¼√
nT

(|A1|√
r

− |Sc|
)
· ∥Â(Â)¦ −AA

¦∥2 −
√
p+ T

nT
· ·̄∥Â(Â)¦ −AA

¦∥2

− C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)

g C¼√
nT

(|S|
r3/2

· ·̄2

maxt∈S(·(t))2
− |Sc|

)
· ∥Â(Â)¦ −AA

¦∥2 −
√
p+ T

nT
· ·̄∥Â(Â)¦ −AA

¦∥2

− C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)

g C¼√
n
r−3/2 · ·̄2

maxt∈S(·(t))2
· ∥Â(Â)¦ −AA

¦∥2 −
√
p+ T

nT
· ·̄∥Â(Â)¦ −AA

¦∥2

− C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)

g C¼

2
√
n
r−3/2 · ·̄2

maxt∈S(·(t))2
· ∥Â(Â)¦ −AA

¦∥2 − C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)

due to the assumption that |Sc|/T f cr−3/2·̄/maxt∈S ·(t) with a small constant c > 0 and

¼ ≍
√
r(p+ log T) · maxt∈S(·(t))2

mint∈S ·(t)

≳

[√
pr

·̄

mint∈S ·(t)
+
√
r(p+ log T) · ·̄

mint∈S ·(t)

]
· maxt∈S(·(t))2

·̄
,

where we used (59) in the second inequality. Furthermore, by mint∈S ·(t) ≳
√

p+log T
n , we

have

G(Â)−G(A)

105

Tian, Gu, and Feng

g C ′′
√
p+ log T

n
r−1 · ·̄2

mint∈S ·(t)
· ∥Â(Â)¦ −AA

¦∥2 − C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)

g C ′′r−1 · ·̄2 · ∥Â(Â)¦ −AA
¦∥2 − C

(
pr

nT
+ h2 · ·̄2 + r + log T

n

)
.

Therefore, if ∥Â(Â)¦ −AA
¦∥2 g C¸, we must have

G(Â)−G(A) > 0,

which implies that Â is not a minimizer of G and contradicts with the optimality of Â.

Hence we must have ∥Â(Â)¦−AA
¦∥2 f C¸ ≍ ·̄−1r

√
p
nT + ·̄−1√r

√
r+log T

n +
√
rh+ ¼r√

n·̄2
ϵ

with some constant C > 0. This completes our proof.

Appendix E. Proofs for GLMs

E.1 Lemmas

Lemma 43 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then when ¶ f C with some constant C > 0,

∥∇f (t)(´(t)∗)∥2 ≲ ¶,

w.p. at least 1− exp{−Cn¶2 + C ′p}. By taking ¶ ≍
√

p+log T
n , this implies that:

(i) maxt∈S ∥∇f (t)(´(t)∗)∥2 ≲
√

p+log T
n , w.p. at least 1− e−C(p+log T);

(ii) ∥∇f (0)(´(0)∗)∥2 ≲
√

p
n0
, w.p. at least 1− e−C(p+log T).

Lemma 44 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then when t f C ′ with some constant C ′ > 0, for any S ¦ [T],

∥{∇f (t)(´(t)∗)}t∈S∥2 ≲
√
p+ |S|+ ¶

n
,

w.p. at least 1− e−C′¶.

Lemma 45 (A revised version of Proposition 1 in Loh and Wainwright (2015))
Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently large C. Then
there exist constants C1, C2, such that w.p. at least 1− e−C′(p+log T), for all ´ ∈ Rp, t ∈ [T],
we have

f (t)(´)−f (t)(´(t)∗)−∇f (t)(´(t)∗)¦(´−´(t)∗) g
{
C1∥´ − ´(t)∗∥22, when ∥´ − ´(t)∗∥2 f 1;

C2∥´ − ´(t)∗∥2, when ∥´ − ´(t)∗∥2 > 1.

(60)

106

Learning from Similar Linear Representations

Lemma 46 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then there exist constants C1, C2, C3, C4, such that for all ´, ˜́ ∈ Rp, t ∈ [T], w.p.
at least 1− e−C(p+log T),

f (t)(´)−f (t)(˜́)−∇f (t)(´(t)∗)¦(´− ˜́) g
{
C1∥´ − ˜́∥22 − C2∥ ˜́− ´(t)∗∥22, if ∥´ − ´(t)∗∥2 f 1;

C3∥´ − ˜́∥2 − C4∥ ˜́− ´(t)∗∥22, if ∥´ − ´(t)∗∥2 > 1.

Lemma 47 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then w.p. at least 1 − e−C′(p+log T), for all t ∈ S, for all A ∈ Op×r with
∥AA¦ −A(t)∗(A(t)∗)¦∥2 f c(·(t))−1, where c > 0 is a small constant, we have

(i) ∥¹(t)
A ∥2 f C ′′·(t);

(ii) ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′ with a small constant c′ > 0.

Lemma 48 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently

large C. Assume there exists Ã ∈ Op×r such that ∥Ã¹
(t)

Ã
−A(t)∗¹(t)∗∥2 f c with a small

constant c. Then w.p. at least 1 − e−C′(p+log T), for all t ∈ S, for all A ∈ Op×r with
∥AA¦ − Ã(Ã)¦∥2 f c′(·(t))−1, where c′ > 0 is a small constant, we have

(i) ∥¹(t)
A ∥2 f C ′′·(t);

(ii) ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′′ with a small constant c′′ > 0.

Lemma 49 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then w.p. at least 1 − e−C′(p+log T), for all t ∈ S, for all A, Ã ∈ Op×r with

∥A¹
(t)
A −A(t)∗¹(t)∗∥2, ∥Ã¹

(t)

Ã
−A(t)∗¹(t)∗∥2 f c′, where c′ > 0 is a small constant, we have

∥A¹
(t)
A − Ã¹

(t)

Ã
∥2 ≲ ∥AA¦ − Ã(Ã)¦∥2(∥¹(t)

Ã
∥2 + ∥∇f (t)(Ã¹

(t)

Ã
)∥2).

Lemma 50 Suppose Assumptions 1 and 4 hold, and n g C(p+ log T) with a sufficiently
large C. Then w.p. at least 1 − e−C′(p+log T), for all t ∈ S, for all A, Ã ∈ Op×r with

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′, where c′ > 0 is a small constant, we have

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 ≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2·(t) +

√
r + log T

n
.

Lemma 51 Suppose Assumptions 1 and 4 hold, and n g C[(p+log T)(¼2] with a sufficiently
large C. Given Ã ∈ Op×r, denote (A(t),¹(t)) = argminA∈Op×r,θ∈Rr{f (t)(A¹) + ¼√

n
∥AA¦−

Ã(Ã)¦∥2}. Then w.p. at least 1 − e−C(p+log T), for any Ã ∈ Op×r, we have ∥A(t)¹(t) −
´(t)∗∥2 f c, where c > 0 is a small constant.

107

Tian, Gu, and Feng

E.2 Proof of Theorem 11

For the penalized ERM, the proof logic is almost the same as the logic underlying the proofs
of Proposition 42 and Theorem 2. We only point out the difference and skip the details

here. We need to bound ∥Â(Â)¦−A(A)¦∥2 first. Then we know that ∥Â(Â)¦−A(A)¦∥2
and ∥Â¹

(t)
̂
A

−A(t)∗¹(t)∗∥2 are small w.h.p. Then a direct application of Lemma 48 implies

that ∥Â¹
(t)∗
̂
A

−A(t)∗¹(t)∗∥2 is small w.h.p. Finally, applying Lemma 49, we have ∥Â¹
(t)∗
̂
A

−

A¹
(t)

A
∥2 ≲ ∥Â(Â)¦ − A(A)¦∥2(·(t) + ∥∇f (t)(A¹

(t)

A
)∥2) ≲ ∥Â(Â)¦ − A(A)¦∥2·(t) w.h.p.

which gives us the ideal bound for ∥Â¹
(t)∗
̂
A

−A¹
(t)

A
∥2 for all t ∈ S.

(i) In the proof of Proposition 42, for t ∈ A1, we know ∥A(t)¹(t) −A(t)∗¹(t)∗∥2 f a small
constant c w.h.p. by Lemma 51. Then by Lemmas 44, 46, and 50, w.p. at least 1 −
e−C′(r+log T),

1

T

∑

t∈A1

[
f (t)(A(t)¹(t))− f (t)(A¹

(t)

A
)
]

g − 1

T

∣∣∣
〈
{∇f (t)(A(t)∗¹(t)∗)}t∈A1 , {A(t)¹(t) − Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

−A¹
(t)

A
}t∈A1

〉∣∣∣

+
C1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F − C2

T
∥{A(t)∗¹(t)∗ −A¹

(t)

A
}t∈A1∥2F

g −C
T

∑

t∈A1

√
p+ log T

n
· ·(t)(∥A(t)(A(t))¦ − Â(Â)¦∥2 + ∥Â(Â)¦ −AA

¦∥2)

+
C1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F − C


h2 · 1

T

∑

t∈A1

(·(t))2 +
r + log T

n




g −C


h2 · 1

T

∑

t∈A1

(·(t))2 +
r + log T

n


− C ′

T

∑

t∈A1

√
p+ log T

n
· ·(t)

√
r∥A(t)(A(t))¦ − Â(Â)¦∥2.

Therefore, the calculations in (51) are still correct under GLMs.

(ii) In the proof of Proposition 42, for t ∈ A2, we used the fact that w.p. at least 1 −
e−C(r+log T),

∥A(t)¹
(t)

A(t) − Â¹
(t)
̂
A
∥2 ≲ ∥A(t)(A(t))¦ − Â(Â)¦∥2(∥¹(t)

̂
A
∥2 + ∥∇f (t)(Â¹

(t)
̂
A
)∥2). (61)

Here, this still holds because

• ∥A(t)¹
(t)

A(t) −A(t)∗¹(t)∗∥2 f a small constant c by Lemma 51;

• For t ∈ A2, we know that ∥A(t)(A(t))¦ − Â(Â)¦∥2 f c√
r
f c′(·(t))−1 with a small

constant c′ > 0. Then by Lemma 48, ∥¹(t)
̂
A
∥2 f C·(t) and ∥Â¹

(t)
̂
A

−A(t)∗¹(t)∗∥2 f Cc′

with a small constant c′ > 0.

108

Learning from Similar Linear Representations

Then (61) holds by Lemma 49.
Finally, Lemma 38 still holds for the case of GLMs. Note that in Lemma 38, (i) only

requires the maximum eigenvalue of the Hessian to be upper bounded (see Lemma E.3 in
Duan and Wang (2023)), which is true by Assumptions 1 and 4. By Lemma E.2 in Duan and
Wang (2023), (ii) and (iii) require the minimum eigenvalue of Hessian to be lower bounded
when ∥´(t) − ´(t)∗∥2 f C with some constant C > 0 w.h.p. and µ/

√
n0 f C, both of which

are true.
For the spectral method, the proof is almost the same as the proof of Theorem 7, hence

we do not repeat it here.

E.3 Proof of Theorem 16

We only outline the proof when Algorithm 4 is coupled with Algorithm 1. If Algorithm 4 is
coupled with Algorithm 2, we can follow a similar argument with the proof of Theorem 7.

Denote ¸ = r
√

p
nT +

√
rh+

√
r
√

r+log T
n + |Sc|

T · r · ¼√
n
.

(i) When ¸ f C
√

p
n0
: since ∥Â(Â)¦ − A(0)∗(A(0)∗)¦∥2 f a small constant c, by Lemma

51, w.p. at least 1 − e−C(p+log T), ∥Â¹
(t)
̂
A

− A(0)∗¹(0)∗∥2 f a small constant c′. Then

by Lemma 50 and Theorem 11, w.p. at least 1 − e−C(r+log T), ∥Â¹
(t)
̂
A

− A(0)∗¹(0)∗∥2 ≲

∥Â(Â)¦ − A(0)∗(A(0)∗)¦∥2 ≲ ¸. As we commented in the proof of Theorem 11, Lemma
41.(i) still holds for GLMs because the maximum eigenvalue of the Hessian is upper bounded
w.h.p.

(ii) When ¸ > C
√

p
n0
: the result comes from Lemma 41.(ii), which still holds when µ/

√
n0 ≲

some constant C because of Lemma E.2 in Duan and Wang (2023).

E.4 Proofs of Lemmas

E.4.1 Proof of Lemma 43

First, note that ∇f (t)(´(t)∗) = 2
n

∑n
i=1 x

(t)
i [y

(t)
i − È′((x(t)

i)¦´(t)∗)]. Consider a 1/2-cover of
the unit ball in Rp w.r.t Euclidean norm {uj}Nj=1 with N f 5p (Example 5.8 in Wainwright
(2019)). By a standard argument (see the proof of Theorem 6.5 in Wainwright (2019)), we
have

∥∇f (t)(´(t)∗)∥2 f 2 max
j∈[N]

{
2

n

n∑

i=1

u¦
j x

(t)
i [y

(t)
i − È′((x(t)

i)¦´(t)∗)]

}
.

By union bound,

E exp{¼∥∇f (t)(´(t)∗)∥2} f N max
j∈[N]

E exp

{
4¼

n

n∑

i=1

u¦
j x

(t)
i [y

(t)
i − È′((x(t)

i)¦´(t)∗)]

}
= (∗).

Note that by the GLM density function, for any a ∈ R,

E exp
{
a[y

(t)
i − È′((x(t)

i)¦´(t)∗)]
}
f
∫
Ä(y) exp

{
[a+ (x

(t)
i)¦´(t)∗]y(t)i − È(a+ (x

(t)
i)¦´(t)∗)

}
dµ(y)

109

Tian, Gu, and Feng

· exp
{
È(a+ (x

(t)
i)¦´(t)∗)− È((x

(t)
i)¦´(t)∗)− aÈ′((x(t)

i)¦´(t)∗)
}

f exp

{
1

2
a2È′′(¶[a+ (x

(t)
i)¦´(t)∗] + (1− ¶)(x

(t)
i)¦´(t)∗)

}

f exp
{
Ca2

}
, (62)

where ¶ ∈ [0, 1]. Therefore, for any positive ¼ f Cn with some C > 0,

(∗) f N max
j∈[N]

E exp

{
C ′¼

2

n2

n∑

i=1

(u¦
j x

(t)
i)2

}
f exp

{
C ′′¼2

n
+ C ′′′p

}
,

where the second inequality comes from the property of sub-exponential variables (see
property 3 in Proposition 2.7.1 of Vershynin (2018)). Finally, for any ¶ > 0, by Chernoff’s
bound,

P(∥∇f (t)(´(t)∗)∥2 > ¶) f e−¼tE exp{¼∥∇f (t)(´(t)∗)∥2} f exp

{
C ′′¼2

n
+ C ′′′p− ¼¶

}
.

Let ¼ = C ′′n¶/2 (¶ < some constant C), leading to

P(∥∇f (t)(´(t)∗)∥2 > ¶) f exp
{
−Cn¶2 + C ′p

}
,

for all t ∈ S.

E.4.2 Proof of Lemma 44

Note that ∇f (t)(´(t)∗) = 2
n

∑n
i=1 x

(t)
i [y

(t)
i − È′((x(t)

i)¦´(t)∗)] := g(t) ∈ Rp. Denote {g(t)}t∈S
as G ∈ Rp×|S|. Consider two 1/4-covers of the unit ball in Rp and R|S| w.r.t Euclidean norm,
as {u(j1)}N1

j1=1 and {v(j2)}N2
j2=1 respectively, with N1 f 9p and N2 f 9|S| (Example 5.8 in

Wainwright (2019)). By a standard argument (see the proof of Theorem 6.5 in Wainwright
(2019)) , we have

∥G∥2 ≲ max
j1∈[N1]
j2∈[N2]

|(u(j1))¦Gv(j2)| = max
j1∈[N1]
j2∈[N2]

∣∣∣∣∣
∑

t∈S
(u(j1))¦g(t)vj2k

∣∣∣∣∣ .

It follows that for any ¼ ∈ R,

Ee¼∥G∥2 ≲

N1∑

j1=1

N2∑

j2=1

|S|∏

t=1

E exp{¼|(u(j1))¦g(t)vj2k |}

f
N1∑

j1=1

N2∑

j2=1

|S|∏

t=1

[
E exp{¼(u(j1))¦g(t)vj2k }+ E exp{−¼(u(j1))¦g(t)vj2k }

]
.

Similar to the calculations in (62), we can obtain that

E exp{¼(u(j1))¦g(t)v
(j2)
k },E exp{−¼(u(j1))¦g(t)v

(j2)
k } ≲ exp

{
C

n
¼2 · |v(j2)k |2

}
,

110

Learning from Similar Linear Representations

hence

Ee¼∥G∥2 ≲

N1∑

j1=1

N2∑

j2=1

2|S| · exp
{
C

n
¼2
}

≲ exp

{
C

n
¼2 + C ′p+ C ′|S|

}
.

Then similar to the proof of Lemma 43, the proof can be finished by Chernoff’s bound.

E.4.3 Proof of Lemma 45

The proof of part (i) follows the idea in the proof of Theorem 9.36 in Wainwright (2019),
and the proof of part (ii) is the same as the proof of equation (39b) in Proposition 1 of Loh
and Wainwright (2015).

(i) If ∥´−´(t)∗∥2 f 1: Denote ∆ = ´−´(t)∗, φÄ (u) = u21(|u| f Ä) with any Ä > 0. By
Taylor expansion, with some ¶ ∈ [0, 1] and any constant T > 0,

LHS of (60) =
1

n

n∑

i=1

È′′((´(t)∗)¦x(t)
i + ¶∆¦x(t)

i) · (∆¦x(t)
i)2

g 1

n

n∑

i=1

È′′((´(t)∗)¦x(t)
i + ¶∆¦x(t)

i)φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i | f T)

g min
|u|fÄ+T

È′′(u) · 1
n

n∑

i=1

φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i | f T)

︸ ︷︷ ︸
(∗)

It suffices to show that by fixing some Ä, T > 0, (∗) g C∥∆∥22 w.p. at least 1−e−C′n. In fact,
we only need to consider the case ∥∆∥2 = 1. If the results hold when ∥∆∥2 = 1, then when
∥∆∥2 ∈ (0, 1), since φÄ is non-decreasing on Ä , plugging in ∆/∥∆∥2 implies (∗) g C∥∆∥22.
So in the following analysis, we consider ∥∆∥2 = 1.

Define

Zn = sup
∥∆∥2=1

{
1

n

n∑

i=1

φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i | f T)− E[φÄ (∆

¦x(t)
i)1(|(´(t)∗)¦x(t)

i | f T)]

}
.

By bounded difference inequality (Corollary 2.21 in Wainwright (2019)) or functional
Hoeffding inequality (Theorem 3.26 in Wainwright (2019)),

P(Zn g EZn + ¶) f exp{−Cn¶2/Ä4}. (63)

Denote {ϵi}ni=1 as independent Rademacher variables. By symmetrization,

EZn ≲ Ex(t),ϵ

[
sup

∥∆∥2=1

∣∣∣∣∣
1

n

n∑

i=1

φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i | f T) · ϵi

∣∣∣∣∣

]

≲ ÄEx(t),ϵ

[
sup

∥∆∥2=1

∣∣∣∣∣
1

n

n∑

i=1

(∆¦x(t)
i)ϵi

∣∣∣∣∣

]
(64)

≲ Ä · 1
n
Ex(t),ϵ

√√√√ sup
∥∆∥2=1

n∑

i=1

(∆¦x(t)
i)2ϵ2i

111

Tian, Gu, and Feng

≲ Ä · 1
n

√
nE∥x(t)

i ∥22 (65)

≲ Ä

√
p

n
, (66)

where (64) and (65) are due to Rademacher contraction inequality (equation (5.61) in

Wainwright (2019), because the function φÄ (·)1(|(´(t)∗)¦x(t)
i | f T) is 2Ä -Lipschitz) and

Jensen’s inequality. On the other hand,

sup
∥∆∥2=1

E[φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i |] f T)]

g sup
∥∆∥2=1

{
E[(∆¦x(t)

i)2 · 1(|(´(t)∗)¦x(t)
i |] f T)]− E[(∆¦x(t)

i)2 · 1(|∆¦x(t)
i | > Ä) · 1(|(´(t)∗)¦x(t)

i | f T)]
}

g sup
∥∆∥2=1

E(∆¦x(t)
i)2 − P(|(´(t)∗)¦x(t)

i | > T)− sup
∥∆∥2=1

√
E(∆¦x(t)

i)4 ·
√
P(|∆¦x(t)

i | > Ä)

g C − exp{−C ′T 2/(·(t))2} − e−C′′Ä2

g C/2, (67)

when T and Ä are large.

Putting (63), (66), and (67) together, and setting ¶ = a small constant c, w.p. at least
1− e−C′′n, we have

(∗) g sup
∥∆∥2=1

E[φÄ (∆
¦x(t)

i)1(|(´(t)∗)¦x(t)
i |] f T)]− Zn

g C/2− C ′
√
p

n
− ¶

g C/4,

when n ≳ p+ log T .

(ii) If ∥´ − ´(t)∗∥2 > 1: Denote ∆ = ´ − ´(t)∗, ¶ = 1
∥∆∥2 . By convexity of f (t),

f (t)(¶´ + (1− ¶)´(t)∗) f ¶f (t)(´) + (1− ¶)f (t)(´(t)∗),

which combining with part (i) implies that w.p. at least 1− e−C′′n,

f (t)(´)− f (t)(´(t)∗)−∇f (t)(´(t)∗)¦(´ − ´(t)∗) g f (t)(´(t)∗ + ¶∆)− f (t)(´(t)∗)− ¶∇f (t)(´(t)∗)¦∆
¶

g ¶C∥∆∥22
= C∥∆∥2,

because ∥¶∆∥2 = 1.

112

Learning from Similar Linear Representations

E.4.4 Proof of Lemma 46

It is easy to see that

f (t)(´)− f (t)(˜́)−∇f (t)(´(t)∗)¦(´ − ˜́) = f (t)(´)− f (t)(´(t)∗)−∇f (t)(´(t)∗)¦(´ − ´(t)∗)︸ ︷︷ ︸
[1]

+ f (t)(´(t)∗)− f (t)(˜́) +∇f (t)(´(t)∗)¦(˜́− ´(t)∗)︸ ︷︷ ︸
[2]

.

By Lemma 45, w.p. at least 1− e−C′′n,

[1] g C∥´ − ´(t)∗∥22.

And with some ¶, ¶′ ∈ [0, 1], by Assumption 4, w.p. at least 1− e−C(p+log T),

[2] f ∇f (t)(¶´(t)∗ + (1− ¶) ˜́)¦(´(t)∗ − ˜́) +∇f (t)(´(t)∗)¦(˜́− ´(t)∗)

= (˜́− ´(t)∗)¦∇2f (t)(¶′[¶´(t)∗ + (1− ¶) ˜́] + (1− ¶′)´(t)∗)¦(˜́− ´(t)∗)

≲
1

n

n∑

i=1

[(˜́− ´(t)∗)¦x(t)
i]2

≲ ∥ ˜́− ´(t)∗∥22,

where the last inequality comes from the fact that ∥Σ̂(t)∥2 f C w.p. at least 1 −
e−C′(p+log T)(by Lemma 18). Putting all pieces together leads to the desired conclusion.

E.4.5 Proof of Lemma 47

Define ¹̃
(t)
A = A¦A(t)∗¹(t)∗. It is easy to see that

∥A¹̃
(t)
A −A(t)∗¹(t)∗∥2 f ∥(AA¦ − I)A(t)∗¹(t)∗∥2 ≲ ∥(A§)¦A(t)∗∥2·(t) f c.

If ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 > 1, then by Lemma 46, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g −∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥A¹

(t)
A −A¹̃

(t)
A ∥2 + C∥A¹

(t)
A −A(t)∗¹(t)∗∥2

− C ′∥A¹̃
(t)
A −A(t)∗¹(t)∗∥22

g (C − ∥∇f (t)(A(t)∗¹(t)∗)∥2) · ∥A¹
(t)
A −A¹̃

(t)
A ∥2

− C∥A¹̃
(t)
A −A(t)∗¹(t)∗∥2 − C ′∥A¹̃

(t)
A −A(t)∗¹(t)∗∥22

g 1

2
C∥A¹

(t)
A −A¹̃

(t)
A ∥2 − Cc− C ′c2

g 1

2
C∥A¹

(t)
A −A(t)∗¹(t)∗∥2 −

1

2
Cc− Cc− C ′c2

> 0,

113

Tian, Gu, and Feng

which is contradicted with the definition of ¹
(t)
A . Therefore, we must have ∥A¹

(t)
A −

A(t)∗¹(t)∗∥2 f 1. By Lemma 46, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g −∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥A¹

(t)
A −A¹̃

(t)
A ∥2 + C∥A¹

(t)
A −A¹̃

(t)
A ∥22

− C ′∥A¹̃
(t)
A −A(t)∗¹(t)∗∥22

g −C ′′
√
p+ log T

n
+ C∥A¹

(t)
A −A¹̃

(t)
A ∥22 − C ′c2.

We know that f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g 0 by optimality, so we must have

−C ′′
√
p+ log T

n
+ C∥A¹

(t)
A −A¹̃

(t)
A ∥22 − C ′c2 f 0,

i.e., ∥A¹
(t)
A − A¹̃

(t)
A ∥2 f

√
C′

C c + (C ′′)1/2(p+log T
n)1/4 f a small constant c′, w.p. at least

1 − e−C(p+log T). This implies that ∥¹(t)
A ∥2 = ∥A¹

(t)
A ∥2 f ∥A¹

(t)
A − A¹̃

(t)
A ∥2 + ∥A¹̃

(t)
A −

A(t)∗¹(t)∗∥2 + ∥A(t)∗¹(t)∗∥2 f C·(t), w.p. at least 1 − e−C(p+log T), which completes the
proof.

E.4.6 Proof of Lemma 48

Define ¹̃
(t)
A = A¦Ã¹

(t)

Ã
. It is easy to see that

∥A¹̃
(t)
A − Ã¹

(t)

Ã
∥2 f ∥(AA¦ − I)Ã¹

(t)

Ã
∥2 ≲ ∥(A§)¦Ã∥2·(t) f c.

If ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 > 1, then by Lemma 46, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g −∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥A¹

(t)
A −A¹̃

(t)
A ∥2 + C∥A¹

(t)
A −A(t)∗¹(t)∗∥2

− C ′∥A¹̃
(t)
A −A(t)∗¹(t)∗∥22

g (C − ∥∇f (t)(A(t)∗¹(t)∗)∥2) · ∥A¹
(t)
A −A¹̃

(t)
A ∥2

− C∥A¹̃
(t)
A −A(t)∗¹(t)∗∥2 − C ′∥A¹̃

(t)
A −A(t)∗¹(t)∗∥22

g 1

2
C∥A¹

(t)
A −A¹̃

(t)
A ∥2 − C∥A¹̃

(t)
A − Ã¹

(t)

Ã
∥2 − C∥Ã¹

(t)

Ã
−A(t)∗¹(t)∗∥2

− C ′∥A¹̃
(t)
A − Ã¹

(t)

Ã
∥22 − C ′∥Ã¹

(t)

Ã
−A(t)∗¹(t)∗∥22

g 1

2
C∥A¹

(t)
A −A¹̃

(t)
A ∥2 − Cc− C ′c2

g 1

2
C∥A¹

(t)
A −A(t)∗¹(t)∗∥2 −

1

2
Cc− Cc− C ′c2

> 0,

114

Learning from Similar Linear Representations

which is contradicted with the definition of ¹
(t)
A . Therefore, we must have ∥A¹

(t)
A −

A(t)∗¹(t)∗∥2 f 1. By Lemma 46, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g −∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥A¹

(t)
A −A¹̃

(t)
A ∥2 + C∥A¹

(t)
A −A¹̃

(t)
A ∥22

− C ′∥A¹̃
(t)
A −A(t)∗¹(t)∗∥22

g −∥∇f (t)(A(t)∗¹(t)∗)∥2 · ∥A¹
(t)
A −A¹̃

(t)
A ∥2 + C∥A¹

(t)
A −A¹̃

(t)
A ∥22

− 1

2
C∥A¹̃

(t)
A − Ã¹

(t)

Ã
∥22 − C ′′∥Ã¹

(t)

Ã
−A(t)∗¹(t)∗∥22

g −C ′′
√
p+ log T

n
+

1

2
C∥A¹

(t)
A −A¹̃

(t)
A ∥22 − 4Cc2.

We know that f (t)(A¹
(t)
A)− f (t)(A¹̃

(t)
A) g 0 by optimality, so we must have

−C ′′
√
p+ log T

n
+ C∥A¹

(t)
A −A¹̃

(t)
A ∥22 − C ′c2 f 0,

i.e., ∥A¹
(t)
A − A¹̃

(t)
A ∥2 f

√
C′

C c + (C ′′)1/2(p+log T
n)1/4 f a small constant c′, w.p. at least

1 − e−C(p+log T). This implies that ∥¹(t)
A ∥2 = ∥A¹

(t)
A ∥2 f ∥A¹

(t)
A − A¹̃

(t)
A ∥2 + ∥A¹̃

(t)
A −

A(t)∗¹(t)∗∥2 + ∥A(t)∗¹(t)∗∥2 f C·(t), w.p. at least 1 − e−C(p+log T), which completes the
proof.

E.4.7 Proof of Lemma 49

Similar to the proof of Lemma 31, by the optimality of ¹
(t)
A ,

A¦(∇f (t)(Ã¹
(t)

Ã
) + Σ̃(t)(A¹

(t)
A − Ã¹

(t)

Ã
)) = 0,

where Σ̃(t) = 1
n

∑n
i=1 x

(t)
i (x

(t)
i)¦È′′((x(t)

i)¦Ã¹
(t)

Ã
+ ¶(x

(t)
i)¦(A¹

(t)
A − Ã¹

(t)

Ã
)
)
, ¶ ∈ [0, 1]. With

similar arguments used in the proof of Lemma 45, it can be shown that ¼min(Σ̃
(t)) > 0 w.p.

at least 1 − e−C(p+log T). The remaining steps are the same as the steps in the proof of
Lemma 31.

E.4.8 Proof of Lemma 50

The proof is almost the same as the proof of Lemma 49, so we omit it here.

E.4.9 Proof of Lemma 51

If ∥A(t)¹(t) −A(t)∗¹(t)∗∥2 > 1, by Lemmas 43 and 45, w.p. at least 1− e−C′(p+log T), for any
Ã ∈ Op×r,

f (t)(A(t)¹(t)) +
¼√
n
∥A(t)(A(t))¦ − Ã(Ã)¦∥2 − f (t)(A(t)∗¹(t)∗)− ¼√

n
∥A(t)∗(A(t)∗)¦ − Ã(Ã)¦∥2

115

Tian, Gu, and Feng

g ∇f (t)(A(t)∗¹(t)∗)¦(A(t)¹(t) −A(t)∗¹(t)∗)− 2
¼√
n
+ C∥A(t)¹(t) −A(t)∗¹(t)∗∥2

g
(
C − C ′

√
p+ log T

n

)
∥A(t)¹(t) −A(t)∗¹(t)∗∥2 − 2

¼√
n

g 1

2
C − 1

4
C

> 0,

which contradicts to the definitions of A(t) and ¹(t). Hence ∥A(t)¹(t) −A(t)∗¹(t)∗∥2 f 1, w.p.
at least 1− e−C′(p+log T). Then by Lemmas 43 and 45 again, w.p. at least 1− e−C′(p+log T),
for any Ã ∈ Op×r,

f (t)(A(t)¹(t)) +
¼√
n
∥A(t)(A(t))¦ − Ã(Ã)¦∥2 − f (t)(A(t)∗¹(t)∗)− ¼√

n
∥A(t)∗(A(t)∗)¦ − Ã(Ã)¦∥2

g ∇f (t)(A(t)∗¹(t)∗)¦(A(t)¹(t) −A(t)∗¹(t)∗)− 2
¼√
n
+ C∥A(t)¹(t) −A(t)∗¹(t)∗∥22

g C∥A(t)¹(t) −A(t)∗¹(t)∗∥22 − C ′
√
p+ log T

n
∥A(t)¹(t) −A(t)∗¹(t)∗∥2 − 2

¼√
n
.

By the optimality of A(t)¹(t), we must have the RHS of above f 0 w.p. at least 1 −
e−C′(p+log T), which entails that ∥A(t)¹(t) −A(t)∗¹(t)∗∥2 ≲

√
p+log T

n + ¼1/2n−1/4 f a small

constant c, which completes the proof.

Appendix F. Proofs for Non-linear Regression Models

F.1 Lemmas

Lemma 52 Suppose Assumptions 1, 6, and 7 hold. Then w.p. at least 1− e−C(p+log T), for
any ´, ˜́ ∈ Rp, for any t ∈ S,

f (t)(´)− f (t)(˜́)−∇f (t)(´(t)∗)¦(´ − ˜́) g C ′∥´ − ˜́∥22 − C ′′∥ ˜́− ´(t)∗∥22.

Lemma 53 Suppose Assumptions 1, 6, and 7 hold. Then when ¶ f C with some constant
C > 0,

∥∇f (t)(´(t)∗)∥2 ≲ ¶,

w.p. at least 1− exp{−Cn¶2 + C ′p}. By taking t ≍
√

p+log T
n , this implies that:

(i) maxt∈S ∥∇f (t)(´(t)∗)∥2 ≲
√

p+log T
n , w.p. at least 1− e−C(p+log T);

(ii) ∥∇f (0)(´(0)∗)∥2 ≲
√

p
n0
, w.p. at least 1− e−C(p+log T).

Lemma 54 Suppose Assumptions 1, 6, and 7 hold. Then when t f C with some constant
C > 0, for any S ¦ [T],

∥{∇f (t)(´(t)∗)}t∈S∥2 ≲
√
p+ |S|+ ¶

n
,

116

Learning from Similar Linear Representations

w.p. at least 1− e−C′¶.

Lemma 55 Suppose Assumptions 1, 6, and 7 hold. Then w.p. at least 1− e−C′(p+log T), for

all t ∈ S, for all A, Ã ∈ Op×r with ∥A¹
(t)
A −A(t)∗¹(t)∗∥2, ∥Ã¹

(t)

Ã
−A(t)∗¹(t)∗∥2 f c′, where

c′ > 0 is a small constant, we have

∥A¹
(t)
A − Ã¹

(t)

Ã
∥2 ≲ ∥AA¦ − Ã(Ã)¦∥2(∥¹(t)

Ã
∥2 + ∥∇f (t)(Ã¹

(t)

Ã
)∥2).

Lemma 56 Suppose Assumptions 1, 6, and 7 hold. Then w.p. at least 1 − e−C′(p+log T),

for all t ∈ S, for all A, Ã ∈ Op×r with ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′, where c′ > 0 is a small

constant, we have

∥A¹
(t)
A −A(t)∗¹(t)∗∥2 ≲ ∥AA¦ −A(t)∗(A(t)∗)¦∥2·(t) +

√
r + log T

n
.

Lemma 57 Suppose Assumptions 1, 6, and 7 hold. Then w.p. at least 1 − e−C′(p+log T),
for all t ∈ S, for all A ∈ Op×r with ∥AA¦ −A(t)∗(A(t)∗)¦∥2 f c(·(t))−1, where c > 0 is a
small constant, we have

(i) ∥¹(t)
A ∥2 f C ′′·(t);

(ii) ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′ with a small constant c′ > 0.

Lemma 58 Suppose Assumptions 1, 6, and 7 hold. Assume there exists Ã ∈ Op×r such that

∥Ã¹
(t)

Ã
−A(t)∗¹(t)∗∥2 f c, where c > 0 is a small constant. Then w.p. at least 1−e−C′(p+log T),

for all t ∈ S, for all A ∈ Op×r with ∥AA¦ − Ã(Ã)¦∥2 f c′(·(t))−1, where c′ > 0 is a small
constant, we have

(i) ∥¹(t)
A ∥2 f C ′′·(t);

(ii) ∥A¹
(t)
A −A(t)∗¹(t)∗∥2 f c′′ with a small constant c′′ > 0.

Lemma 59 Suppose Assumptions 1, 6, and 7 hold. Let n g C¼2 with a sufficiently large
C. Given Ã ∈ Op×r, denote (A(t),¹(t)) = argminA∈Op×r,θ∈Rr{f (t)(A¹) + ¼√

n
∥AA¦ −

Ã(Ã)¦∥2}. Then w.p. at least 1 − e−C(p+log T), for any Ã ∈ Op×r, we have ∥A(t)¹(t) −
´(t)∗∥2 f c with a small constant c > 0.

F.2 Proof of Theorem 12

For the penalized ERM, the proof logic is almost the same as the logic underlying the proofs
of Proposition 42 and Theorem 2. Similar to the proof of Theorem 11, we only point out

the differences and skip the details. We need to bound ∥Â(Â)¦ −A(A)¦∥2 first. Then we

know that ∥Â(Â)¦ −A(A)¦∥2 and ∥Â¹
(t)
̂
A

−A(t)∗¹(t)∗∥2 are small w.h.p. Then a direct

application of Lemma 58 implies that ∥Â¹
(t)∗
̂
A

−A(t)∗¹(t)∗∥2 is small w.h.p. Finally, applying

Lemma 55, we have ∥Â¹
(t)∗
̂
A

−A¹
(t)

A
∥2 ≲ ∥Â(Â)¦ −A(A)¦∥2(∥¹(t)

A
∥2 + ∥∇f (t)(A¹

(t)

A
)∥2) ≲

117

Tian, Gu, and Feng

∥Â(Â)¦ −A(A)¦∥2·(t) w.h.p. which gives us the ideal bound for ∥Â¹
(t)∗
̂
A

−A¹
(t)

A
∥2 for all

t ∈ S.
(i) In the proof of Proposition 42, for t ∈ A1, we know ∥A(t)¹(t) −A(t)∗¹(t)∗∥2 f c with a
small constant c > 0 w.h.p. by Lemma 59. Then by Lemmas 52, 54, and 56, w.p. at least
1− e−C′(r+log T),

1

T

∑

t∈A1

[
f (t)(A(t)¹(t))− f (t)(A¹

(t)

A
)
]

g − 1

T

∣∣∣
〈
{∇f (t)(A(t)∗¹(t)∗)}t∈A1 , {A(t)¹(t) − Â¹

(t)
̂
A

+ Â¹
(t)
̂
A

−A¹
(t)

A
}t∈A1

〉∣∣∣

+
C1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F − C2

T
∥{A(t)∗¹(t)∗ −A¹

(t)

A
}t∈A1∥2F

g −C
T

∑

t∈A1

√
p+ log T

n
· ·(t)(∥A(t)(A(t))¦ − Â(Â)¦∥2 + ∥Â(Â)¦ −AA

¦∥2)

+
C1

T
∥{A(t)¹(t) −A¹

(t)

A
}t∈A1∥2F − C


h2 · 1

T

∑

t∈A1

(·(t))2 +
r + log T

n




g −C


h2 · 1

T

∑

t∈A1

(·(t))2 +
r + log T

n


− C ′

T

∑

t∈A1

√
p+ log T

n
· ·(t)

√
r∥A(t)(A(t))¦ − Â(Â)¦∥2.

Therefore the calculations in (51) are still correct under non-linear regression model (7).
(ii) In the proof of Proposition 42, for t ∈ A2, we used the fact that w.p. at least 1 −
e−C(r+log T),

∥A(t)¹
(t)

A(t) − Â¹
(t)
̂
A
∥2 ≲ ∥A(t)(A(t))¦ − Â(Â)¦∥2(∥¹(t)

̂
A
∥2 + ∥∇f (t)(Â¹

(t)
̂
A
)∥2). (68)

Here this still holds because

• ∥A(t)¹
(t)

A(t) −A(t)∗¹(t)∗∥2 f c with a small constant c > 0, by Lemma 59;

• For t ∈ A2, we know that ∥A(t)(A(t))¦ − Â(Â)¦∥2 f c√
r
f c′(·(t))−1 with a small

constant c′ > 0. Then by Lemma 58, ∥¹(t)
̂
A
∥2 f C·(t) and ∥Â¹

(t)
̂
A

−A(t)∗¹(t)∗∥2 f Cc′

with a small constant c′ > 0.

Then (68) holds by Lemma 55.
Finally, Lemma 38 still holds for non-linear regression model (7). Note that in Lemma

38, (i) only requires the maximum eigenvalue of Hessian to be upper bounded when the
evaluation point is close to the true ´(t)∗ (see Lemma E.3 in Duan and Wang (2023)), which
is true by Assumptions 1 and 6 (see our analysis in the proof of Lemma 55). By Lemma
E.2 in Duan and Wang (2023), (ii) and (iii) require the minimum eigenvalue of Hessian to
be lower bounded when ∥´(t) − ´(t)∗∥2 f some constant C w.h.p. and µ/

√
n0 f C, both of

which are true.
For the spectral method, the proof is almost the same as the proof of Theorem 7, hence

we do not repeat it here..

118

Learning from Similar Linear Representations

F.3 Proof of Theorem 17

We only outline the proof when Algorithm 4 is coupled with Algorithm 1. If Algorithm 4 is
coupled with Algorithm 2, we can follow a similar argument with the proof of Theorem 7.

Denote ¸ = r
√

p
nT +

√
rh+

√
r
√

r+log T
n + |Sc|

T · r · ¼√
n
.

(i) When ¸ f C
√

p
n0
: since ∥Â(Â)¦ − A(0)∗(A(0)∗)¦∥2 f a small constant c, by Lemma

59, w.p. at least 1 − e−C(p+log T), ∥Â¹
(t)
̂
A

− A(0)∗¹(0)∗∥2 f a small constant c′. Then

by Lemma 56 and Theorem 12, w.p. at least 1 − e−C(r+log T), ∥Â¹
(t)
̂
A

− A(0)∗¹(0)∗∥2 ≲

∥Â(Â)¦ − A(0)∗(A(0)∗)¦∥2 ≲ ¸. As we commented in the proof of Theorem 12, Lemma
41.(i) still holds for non-linear regression model (7) because the maximum eigenvalue of
Hessian is upper bounded w.h.p. when the evaluation point is close to the true ´(t)∗

(ii) When ¸ > C
√

p
n0
: the result comes from Lemma 41.(ii), which still holds when µ/

√
n0 ≲

some constant C because of Lemma E.2 in Duan and Wang (2023).

F.4 Proofs of Lemmas

F.4.1 Proof of Lemma 52

First,

f (t)(´)− f (t)(˜́)−∇f (t)(˜́)¦(´ − ˜́) g f (t)(´)− f (t)(´(t)∗)−∇f (t)(´(t)∗)¦(´ − ´(t)∗)︸ ︷︷ ︸
[1]

+ f (t)(´(t)∗)− f (t)(˜́)−∇f (t)(´(t)∗)¦(´(t)∗ − ˜́)︸ ︷︷ ︸
[2]

.

By Taylor expansion,

[1] =

〈∫ 1

0
∇f (t)(¶´ + (1− ¶)´(t)∗)dt−∇f (t)(´(t)∗),´ − ´(t)∗

〉

=
2

n

n∑

i=1

∫ 1

0
[g(¶(x

(t)
i)¦´ + (1− ¶)(x

(t)
i)¦´(t)∗)− g((x

(t)
i)¦´(t)∗)]g′((x(t)

i)¦¶´ + (1− ¶)´(t)∗)d¶

· [(x(t)
i)¦(´ − ´(t)∗)]− 2

n

n∑

i=1

ϵ
(t)
i ·

∫ 1

0
[g′(¶(x(t)

i)¦´ + (1− ¶)(x
(t)
i)¦´(t)∗)− g′((x(t)

i)¦´(t)∗)]d¶

· [(x(t)
i)¦(´ − ´(t)∗)]

=
2

n

n∑

i=1

∫ 1

0
g′((x(t)

i)¦´i)︸ ︷︷ ︸
gC

· g′(¶(x(t)
i)¦´ + (1− ¶)(x

(t)
i)¦´(t)∗)︸ ︷︷ ︸

gC

¶d¶ · [(x(t)
i)¦(´ − ´(t)∗)]2

119

Tian, Gu, and Feng

− 2

n

n∑

i=1

ϵ
(t)
i ·

∫ 1

0

∫ 1

0
g′′(w(¶(x(t)

i)¦´ + (1− ¶)(x
(t)
i)¦´(t)∗) + (1− w)(x

(t)
i)¦´(t)∗)¶d¶dw

· [(x(t)
i)¦(´ − ´(t)∗)]2

g C(´ − ´(t)∗)¦Σ̂(t)(´ − ´(t)∗)− 2

n

n∑

i=1

ϵ
(t)
i b

(t)
i [(x

(t)
i)¦(´ − ´(t)∗)]2,

where b
(t)
i =

∫ 1
0

∫ 1
0 g

′′(w(¶(x(t)
i)¦´ + (1 − ¶)(x

(t)
i)¦´(t)∗) + (1 − w)(x

(t)
i)¦´(t)∗)¶d¶dw and

|b(t)i | f C ′. Therefore, by Hölder’s inequality,

∣∣∣∣∣
2

n

n∑

i=1

ϵ
(t)
i b

(t)
i [(x

(t)
i)¦(´ − ´(t)∗)]2

∣∣∣∣∣ f
2C ′

n

n∑

i=1

|ϵ(t)i |[(x(t)
i)¦(´ − ´(t)∗)]2

f 2C ′

n
sup

∥u∥2f1

∥∥∥∥∥

n∑

i=1

|ϵ(t)i | · [(x(t)
i)¦u]2

∥∥∥∥∥
2

· ∥´ − ´(t)∗∥22.

Suppose {uj}Nj=1 is a 1/64-packing of the unit ball in Rp, with N ≲ 129p. By standard
arguments,

1

n
sup

∥u∥2f1

∥∥∥∥∥

n∑

i=1

|ϵ(t)i | · [(x(t)
i)¦u]2

∥∥∥∥∥
2

≲
1

n
max
j∈[N]

{
n∑

i=1

|ϵ(t)i | · [(x(t)
i)¦uj]

2

}
.

It is easy to see that for any ¶ > 0,

P

(
|ϵ(t)i | · [(x(t)

i)¦uj]
2 − E{|ϵ(t)i | · [(x(t)

i)¦uj]
2} > ¶

)
f P

(
|ϵ(t)i | · [(x(t)

i)¦uj]
2 > ¶

)

f P(|ϵ(t)i | > ¶1/3) + P(|(x(t)
i)¦uj | > ¶1/3)

≲ exp{−C¶2/3},

and E

{
{|ϵ(t)i |[(x(t)

i)¦uj]
2 − E[|ϵ(t)i |[(x(t)

i)¦uj]
2]}2 · 1

(
|ϵ(t)i |[(x(t)

i)¦uj]
2 − E[|ϵ(t)i |[(x(t)

i)¦uj]
2] < 0

)}
f

√
E
{
|ϵ(t)i |2[(x(t)

i)¦uj]4
}
f C <∞. By Corollary 2 in Bakhshizadeh et al. (2020),

P

(
|ϵ(t)i | · [(x(t)

i)¦uj]
2 − E{|ϵ(t)i | · [(x(t)

i)¦uj]
2} > ¶

)
f exp{−Cn¶}+ exp{−C(n¶)2/3},

which entails that w.p. at least 1− e−C′(p+log T),

1

n
max
j∈[N]

{
n∑

i=1

|ϵ(t)i | · [(x(t)
i)¦uj]

2

}
≲ max

j∈[N]
E{|ϵ(t)i | · [(x(t)

i)¦uj]
2}+

√
p+ log T

n
((p+ log T)3/2

n

f C ′′.

120

Learning from Similar Linear Representations

Hence by Lemma 18 and the assumption on g′′, w.p. at least 1− e−C′(p+log T),

[1] g C∥´ − ´(t)∗∥22 g
C

2
∥´ − ˜́∥22 − C∥ ˜́− ´(t)∗∥22. (69)

On the other hand, similarly, we can show that w.p. at least 1− e−C′(p+log T),

[2] ≲ ∥ ˜́− ´(t)∗∥22. (70)

Combining (69) and (70) completes the proof.

F.4.2 Proof of Lemma 53

Note that ∇f (t)(´(t)∗) = − 2
n

∑n
i=1 ϵ

(t)
i g′((x(t)

i)¦´(t)∗)x(t)
i , where ϵ

(t)
i g′((x(t)

i)¦´(t)∗)x(t)
i is

sub-exponential in the sense that E exp{¼ϵ(t)i g′((x(t)
i)¦´(t)∗)(x(t)

i)¦u} f exp{C2¼2∥u∥22} for
any u ∈ Rp and ¼ ∈ R with |¼|∥u∥2 f C ′. Then the proof is very similar to the proof of
Lemma 43, so we omit the details.

F.4.3 Proof of Lemma 54

The proof is very similar to the proof of Lemma 44, so omitted.

F.4.4 Proof of Lemma 55

Denote ´¶ = ¶´ + (1 − ¶) ˜́ with some t ∈ [0, 1]. It suffices to show that w.h.p, for all
t ∈ [0, 1] and all t ∈ S, the minimum and maximum eigenvalues of ∇2f (t)(´¶) are bounded
away from zero and infinity.

Note that

∇2f (t)(´¶) =
1

n

n∑

i=1

[g′((x(t)
i)¦´¶)]

2 · x(t)
i (x

(t)
i)¦

+
1

n

n∑

i=1

[g((x
(t)
i)¦´¶)− y

(t)
i] · g′′((x(t)

i)¦´¶) · x(t)
i (x

(t)
i)¦

=
1

n

n∑

i=1

[g′((x(t)
i)¦´¶)]

2 · x(t)
i (x

(t)
i)¦

︸ ︷︷ ︸
[1]

+
1

n

n∑

i=1

[g((x
(t)
i)¦´¶)− g((x

(t)
i)¦´(t)∗)] · g′′((x(t)

i)¦´¶) · x(t)
i (x

(t)
i)¦

︸ ︷︷ ︸
[2]

− 1

n

n∑

i=1

ϵ
(t)
i · g′′((x(t)

i)¦´¶) · x(t)
i (x

(t)
i)¦

︸ ︷︷ ︸
[3]

.

It is straightforward to see that w.p. at least 1− e−C′(p+log T),

0 < C f min
t∈S

¼min([1]) f max
t∈S

¼max([1]) f C ′ <∞,

121

Tian, Gu, and Feng

by the condition on g′ and Lemma 18. And similar to the analysis in the proof of Lemma
52, w.p. at least 1− e−C′(p+log T),

¼max([3]) f c,

where c is small. Similarly, it can be shown that

[2] =
1

n

n∑

i=1

∫ 1

0
g′(w(x(t)

i)¦´¶ + (1− w)(x
(t)
i)¦´(t)∗)dw · g′′((x(t)

i)¦´¶) · x(t)
i (x

(t)
i)¦ · (x(t)

i)¦(´¶ − ´(t)∗),

¼max([2]) f C∥´¶ − ´(t)∗∥2 ≲ ∥´ − ´(t)∗∥2 + ∥ ˜́− ´(t)∗∥2 f c,

w.p. at least 1− e−C′(p+log T), where c is small. Putting all the pieces together, we have

0 < C f min
t∈S

¼min(∇2f (t)(´¶)) f max
t∈S

¼max(∇2f (t)(´¶)) f C ′ <∞,

w.p. at least 1− e−C(p+log T). The remaining steps are the same as in the proof of Lemma
31.

F.4.5 Proof of Lemma 56

The proof is similar to the proofs of Lemmas 55 and 29, so omitted.

F.4.6 Proof of Lemma 57

Define ¹̃
(t)
A = A¦A(t)∗¹(t)∗. It is easy to see that

∥A¹̃
(t)
A −A(t)∗¹(t)∗∥2 f ∥(AA¦ − I)A(t)∗¹(t)∗∥2 ≲ ∥(A§)¦A(t)∗∥2·(t) f c.

Then by Lemma 52, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)−f (t)(A¹̃

(t)
A) g C∥A¹

(t)
A −A¹̃

(t)
A ∥22−C ′∥A¹̃

(t)
A −´(t)∗∥22−C ′∥∇f (t)(´(t)∗)∥2·∥A¹

(t)
A −A¹̃

(t)
A ∥2,

where the RHS must be non-positive, otherwise it is contradicted by the definition of ¹
(t)
A .

Therefore, ∥A¹
(t)
A − A¹̃

(t)
A ∥2 ≲ ∥A¹̃

(t)
A − ´(t)∗∥2 + ∥∇f (t)(´(t)∗)∥1/22 f c, where c > 0 is a

small constant, w.p. at least 1− e−C(p+log T). This also implies that ∥¹(t)
A ∥2 f C·(t) w.p. at

least 1− e−C′(p+log T).

F.4.7 Proof of Lemma 58

Define ¹̃
(t)
A = A¦Ã¹

(t)

Ã
. It is easy to see that

∥A¹̃
(t)
A − Ã¹

(t)

Ã
∥2 f ∥(AA¦ − I)Ã¹

(t)

Ã
∥2 ≲ ∥(A§)¦Ã∥2·(t) f c.

Then by Lemma 52, w.p. at least 1− e−C(p+log T),

f (t)(A¹
(t)
A)−f (t)(A¹̃

(t)
A) g C∥A¹

(t)
A −A¹̃

(t)
A ∥22−C ′∥A¹̃

(t)
A −´(t)∗∥22−C ′∥∇f (t)(´(t)∗)∥2·∥A¹

(t)
A −A¹̃

(t)
A ∥2,

122

Learning from Similar Linear Representations

where the RHS must be non-positive, otherwise it is contradicted by the definition of ¹
(t)
A .

Therefore, ∥A¹
(t)
A − A¹̃

(t)
A ∥2 ≲ ∥A¹̃

(t)
A − ´(t)∗∥2 + ∥∇f (t)(´(t)∗)∥1/22 f a small constant c

w.p. at least 1− e−C(p+log T). This also implies that ∥A¹
(t)
A − ´(t)∗∥2 f ∥A¹

(t)
A −A¹̃

(t)
A ∥2 +

∥A¹̃
(t)
A − Ã¹

(t)

Ã
∥2 + ∥Ã¹

(t)

Ã
− ´(t)∗∥2 f a small constant c and ∥¹(t)

A ∥2 f C w.p. at least

1− e−C′(p+log T), which completes the proof.

F.4.8 Proof of Lemma 59

By Lemmas 52 and 54, w.p. at least 1− e−C(p+log T), for any Ã ∈ Op×r,

f (t)(A(t)¹(t)) +
¼√
n
∥A(t)(A(t))¦ − Ã(Ã)¦∥2 − f (t)(A(t)∗¹(t)∗)− ¼√

n
∥A(t)∗(A(t)∗)¦ − Ã(Ã)¦∥2

g ∇f (t)(A(t)∗¹(t)∗)¦(A(t)¹(t) −A(t)∗¹(t)∗)− 2
¼√
n
+ C∥A(t)¹(t) −A(t)∗¹(t)∗∥22

g C∥A(t)¹(t) −A(t)∗¹(t)∗∥22 − C ′
√
p+ log T

n
∥A(t)¹(t) −A(t)∗¹(t)∗∥2 − 2

¼√
n
.

By definition of A(t)¹(t), the RHS must be non-positive, which gives us

∥A(t)¹(t) −A(t)∗¹(t)∗∥2 ≲
√
p+ log T

n
+
¼1/2

n1/4
f c,

where c > 0 is a small constant, w.p. at least 1− e−C′(p+log T).

Appendix G. Proofs for Estimation of Intrinsic Dimension r

G.1 Proof of Theorem 9

We already mentioned the motivation of the thresholding strategy briefly in Section 3.
Intuitively, there is a gap between Ãr(B

∗
S) and Ãr+1(B

∗
S) when h and |Sc| are small. But in

practice, we do not have access to the singular values of B∗
S . We have to estimate B∗

S first,
then use the singular value of this estimate. As long as the singular values of the estimate
are not far from the singular values of B∗

S , thresholding can work well. We give a rigorous
proof in the following. Most parts of the proof follow the arguments in the proof of Theorem
7.

Consider the decomposition

´(t)∗ = PA´(t)∗ + P
A

§´(t)∗ = A(A)¦´(t)∗ +A
§
(A

§
)¦´(t)∗ := A¹

(t)∗
A

+ ¶(t)∗, ∀t ∈ S.

Denote ΘS = {¹(t)∗
A

}t∈S , BS = {A¹
(t)∗
A

}t∈S , B = AΘ = (BS 0p×|Sc|), B
∗
S = {´(t)∗}t∈S ,

B̃S = { ˜́(t)}t∈S , B̂S = {
∏

R(
˜́(t))}t∈S , B̂ = {

∏
R(
˜́(t))}Tt=1, and D∗

S = {¶(t)∗}t∈S . By a
similar argument as in the proof of Theorem 7,

∥BS/
√
T −B∗

S/
√
T∥2 =

1√
T
∥D∗

S∥2

123

Tian, Gu, and Feng

≲ ·̄h ·
[
Ãmax(D

∗
S)√

rÃmin(D∗
S)

' 1

]

≲
·̄√
r

[
Ãmax(D

∗
S)

Ãmin(D∗
S)

'
√
r

]
· h · mint∈S ·(t)√

(p+ log T)/n

≲
·̄√
r

f C̃

√
p+ log T

n
,

when mint∈S ·(t) · h
[
Ãmax(D∗

S)

Ãmin(D
∗
S
) '

√
r
]
≲

√
p+log T

n . Because n ≳ p+ log T , we have

∥BS/
√
T −B∗

S/
√
T∥2 f C̃

√
p+ log T

n
, (71)

w.p. at least 1−e−C′(p+log T). Since R = quantile({ ˜́(t)}Tt=1, 1− ϵ̄), we have
∏

R(
˜́(t)) = ˜́(t)

for ϵ̄-proportion of S among all t ∈ S. In addition, by the fact that maxt∈S ∥ ˜́(t) −´(t)∗∥2 ≲√
p+log T

n , w.p. at least 1− e−C′(p+log T), the assumption mint∈S ·(t) ≳
√

p+log T
n , and ϵ̄ g ϵ,

we have
R f max

t∈S
∥ ˜́(t)∥2 ≲ max

t∈S
·(t), (72)

w.p. at least 1− e−C′(p+log T). Therefore,

∥B̂S/
√
T − B̃S/

√
T∥2 f ∥B̂S/

√
T − B̃S/

√
T∥F =

√
1

T

∑

t∈S
∥ΠR(˜́(t))− ˜́(t)∥22 f C

√
ϵ̄R.

By Lemma 5.39 in Vershynin (2010), we have

∥B̃S/
√
T −B∗

S/
√
T∥2 f C ′′

√
p+ T

nT
f C

√
p+ log T

n
,

w.p. at least 1− e−C′(p+log T). By the equation (71), and the single-task rate, w.p. at least
1− e−C′(p+log T),

∥B̂S/
√
T −B∗

S/
√
T∥2 f ∥B̂S/

√
T − B̃S/

√
T∥2 + ∥B̃S/

√
T −B∗

S/
√
T∥2

f C
√
ϵ̄R+ C

√
p+ log T

n
.

Moreover, by the projection, ∥B̂Sc/
√
T∥2 f ∥B̂Sc/

√
T∥F f

√
|Sc|
T ·R f

√
ϵ̄R, w.p. at least

1− e−C′(p+log T). Hence w.p. at least 1− e−C′(p+log T),

∥B̂/
√
T −B/

√
T∥2 f ∥B̂S/

√
T −BS/

√
T∥2 + ∥B̂Sc/

√
T∥2

f ∥B̂S/
√
T −B∗

S/
√
T∥2 + ∥B∗

S/
√
T −BS/

√
T∥2 + ∥B̂Sc/

√
T∥2

f (C̃ + C)

√
p+ log T

n
+ (C + 1)

√
ϵ̄R.

124

Learning from Similar Linear Representations

Then by Weyl’s inequality, for all r′ f r,

Ãr′(B̂/
√
T) g Ãr′(B/

√
T)− (C̃ + C)

√
p+ log T

n
− (C + 1)

√
ϵ̄R

g Ãr′(B
∗
S/

√
T)− (2C̃ + C)

√
p+ log T

n
− (C + 1)

√
ϵ̄R

g c√
r
·̄ − (2C̃ + C)

√
p+ log T

n
− (C + 1)

√
ϵ̄R

g 2(2C̃ + C)

√
p+ log T

n
+ 2(C + 1)

√
ϵ̄R,

w.p. at least 1 − e−C′(p+log T), when n g 36(2C̃+C)2

c2·̄2
r(p+ log T) and c

2
√
r
·̄ g 3(C + 1)

√
ϵ̄R.

The second condition holds because of ϵ̄ f c′

r

(
·̄

maxt∈S ·(t)

)2
and (72).

On the other hand, by Weyl’s inequality, for all r′ > r, w.p. at least 1− e−C′(p+log T),

Ãr′(B̂/
√
T) f Ãr′(B/

√
T)+(C̃+C)

√
p+ log T

n
+(C+1)

√
ϵ̄R = (2C̃+C)

√
p+ log T

n
+(C+1)

√
ϵ̄R,

because Ãr′(B/
√
T) = 0 when r′ > r. Finally, by setting T1 ∈ (2C̃ + C, 4C̃ + 2C] and

T2 ∈ (C + 1, 2C + 2], we complete the proof.

125

	Introduction
	Representation Multi-task Learning
	Related Works
	Multi-task and Transfer Learning
	Beyond the Assumption of the Same Representation

	Our Contributions
	Notations and Organization

	Multi-task Learning with Similar Representations
	Problem Set-up
	The First Algorithm: Penalized ERM
	Algorithm and Upper Bounds
	Discussions on Local Minimizers
	Implementation

	The Second Algorithm: Spectral Method
	Lower Bound
	Extensions to Generalized Linear Models and Non-linear Regression

	Adaptation to Unknown Intrinsic Dimension r
	Numerical Experiments
	Simulations
	Simulation with Different Heterogeneity Parameter h
	Simulation with Different Contamination Proportion
	Simulation with Different Number of Tasks T
	Relationship between Task Performance and Signal Strength p
	Adaptivity to the Intrinsic Dimension r

	A Real-data Study

	Discussions
	Extensions to More General Models
	Generalized Linear Models
	Non-linear Regression

	Transferring to New Tasks (Learning-to-learn)
	Problem Set-up
	Upper Bounds
	Lower Bounds

	General Lemmas
	Lemmas
	Proofs of Lemmas
	Proof of Lemma 19
	Proof of Lemma 22
	Proof of Lemma 24

	Proofs for Linear Regression Models
	Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 14
	Proof of Theorem 15
	Proofs of Lemmas and Propositions
	Proof of Lemma 29
	Proof of Lemma 30
	Proof of Lemma 31
	Proof of Lemma 32
	Proof of Lemma 33
	Proof of Lemma 34
	Proof of Lemma 35
	Proof of Lemma 36
	Proof of Lemma 37
	Proof of Lemma 38
	Proof of Lemma 39
	Proof of Lemma 40
	Proof of Lemma 41
	Proof of Proposition 42

	Proofs for GLMs
	Lemmas
	Proof of Theorem 11
	Proof of Theorem 16
	Proofs of Lemmas
	Proof of Lemma 43
	Proof of Lemma 44
	Proof of Lemma 45
	Proof of Lemma 46
	Proof of Lemma 47
	Proof of Lemma 48
	Proof of Lemma 49
	Proof of Lemma 50
	Proof of Lemma 51

	Proofs for Non-linear Regression Models
	Lemmas
	Proof of Theorem 12
	Proof of Theorem 17
	Proofs of Lemmas
	Proof of Lemma 52
	Proof of Lemma 53
	Proof of Lemma 54
	Proof of Lemma 55
	Proof of Lemma 56
	Proof of Lemma 57
	Proof of Lemma 58
	Proof of Lemma 59

	Proofs for Estimation of Intrinsic Dimension r
	Proof of Theorem 9

