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Abstract

We address the challenge of achieving angular

super-resolution in multi-antenna radar systems

that are widely used for localization, navigation,

and automotive perception. A multi-antenna radar

achieves very high resolution by computationally

creating a large virtual sensing system using very

few physical antennas. However, practical con-

straints imposed by hardware, noise, and a limited

number of antennas can impede its performance.

Conventional supervised learning models that rely

on extensive pre-training with large datasets, of-

ten exhibit poor generalization in unseen environ-

ments. To overcome these limitations, we pro-

pose NEAR, an untrained implicit neural repre-

sentation (INR) framework that predicts radar re-

sponses at unseen locations from sparse measure-

ments, by leveraging latent harmonic structures

inherent in radar wave propagation. We establish

new theoretical results linking antenna array re-

sponse to expressive power of INR architectures,

and develop a novel physics-informed and latent

geometry-aware regularizer. Our approach inte-

grates classical signal representation with modern

implicit neural learning, enabling high-resolution

radar sensing that is both interpretable and gen-

eralizable. Extensive simulations and real-world

experiments using radar platforms demonstrate

NEAR’s effectiveness and its ability to adapt to

unseen environments.

1. Introduction

In addition to Lidar and RGB-cameras, Radar has emerged

as a crucial sensing modality for advanced sensing tasks

such as driver assistance systems (ADAS) and autonomous

vehicles (Bijelic et al., 2020; Caesar et al., 2020), especially
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due to its robustness to adverse weather conditions (e.g.

fog, snow, rain). Multiple-Input-Multiple-Output (MIMO)

radar (Li & Stoica, 2008) employs an array of transmit (Tx)

antennas which generate signals that are reflected by tar-

gets of interest, and received at a receiving (Rx) antenna

array. The distance and velocity of these targets are char-

acterized by using the radar’s Range-Doppler (RD) map,

which is computed by applying Discrete-Time Fast Fourier

Transform (FFT) on digitized receiver signals after Analog-

to-Digital Conversion (ADC) (Sun et al., 2020). Direction-

of-Arrival (DOA) estimation is then performed exclusively

on peaks that pass the constant false alarm rate (CFAR) de-

tector (Scharf & Demeure, 1991) to determine the angular

orientation of objects. The angular resolution of MIMO

radar, which reveals how well it can identify two or more

closely spaced sources, is fundamentally constrained by the

number and configuration of the antenna array. For instance,

a device equipped with eight uniformly filled antenna ar-

rays achieves at most an angular resolution of about 15◦

(Instruments, 2017). Thus, it is important to develop innova-

tive technologies to enhance the angular resolution of radar

sensing, without incurring substantial hardware costs.

For MIMO radar, range and Doppler resolution can be im-

proved by adjusting signal bandwidth and frame time, which

correspond to the frequency range and duration of signal

pulses, respectively (Li et al., 2023). However, angular

resolution is strictly dependent on the radar hardware speci-

fications, and cannot be improved through parameter adjust-

ments. Achieving higher angular resolution in both azimuth

and elevation requires a large aperture in both horizontal and

vertical directions, which, for uniformly filled arrays, neces-

sitates a significant number of antennas, resulting in high

hardware costs. An efficient alternative approach, which is

becoming increasingly relevant for next-generation sensing

(such as automotive radars) is to use sparse arrays (Pal &

Vaidyanathan, 2010; Qin et al., 2015; Sarangi et al., 2023).

Sparse arrays deploy a reduced number of transmit and re-

ceive antennas in order to achieve the same aperture as a

standard uniform array (with quadratically larger number of

sensors), which necessitates larger inter-element spacings.

They are designed so that their virtual (sum or difference)

co-arrays are dense uniform arrays filling the available aper-

ture. This property can be utilized in several ways, such

as localization of more sources than sensors, and achieving
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very high resolution with sufficient temporal measurements

(Cheng et al., 2014; Liu & Vaidyanathan, 2017; Wang & Ne-

horai, 2017; Qiao & Pal, 2019). Recently, it has been shown

that sparse arrays are also near-optimal subspace codes,

highlighting their novel connection to channel coding (Mah-

davifar et al., 2024). However, naive processing of sparse

array outputs using traditional or ad-hoc methods, can suffer

from high sidelobes and degrade DOA estimation accuracy

(Sun & Zhang, 2021). Thus, achieving super-resolution

angular resolution with low hardware cost and irregular

sampling geometries, remains a continuing challenge.

In this work, we introduce a machine learning framework

that tackles the challenge of angular super-resolution at low

hardware cost using sparse measurements that employ only

a few antennas. Our goal is to predict complex-valued re-

sponses at any desired location (that can potentially be used

for DOA estimation) within the 2D virtual antenna array

domain using only a sparse set of responses. One straight-

forward approach to accomplish this is to train a machine

learning model that maps a spatial location to the corre-

sponding antenna response. However, this approach may

fail to incorporate the underlying physics of wave signal

propagation, and thus still require very dense measurements

to achieve reasonable performance. As one of the important

breakthroughs in computer vision, NeRF (Mildenhall et al.,

2021) has achieved remarkable success in 3D reconstruc-

tion and view synthesis tasks by learning a scene’s radiance

field from a set of input images and generating photoreal-

istic renderings from novel viewpoints. At its core, NeRF

utilizes implicit neural representations (INRs) (Sitzmann

et al., 2020; Tancik et al., 2020) to parameterize the radi-

ance field as a continuous function, modeled by a multilayer

perceptron (MLP) that maps 3D spatial coordinates to RGB

color and volume density. Leveraging volume-rendering

techniques to synthesize images, NeRF incorporates the

underlying physics of light propagation.

Inspired by recent advances in NeRF and INRs, we pro-

pose Neural Electromagnetic Array Response (NEAR), a

framework utilizing INR, that maps 2D spatial coordinates

to complex-valued antenna response at those locations. Sev-

eral distinguishing features differentiate our task from tradi-

tional NeRF applications, particularly due to fundamental

differences between the ways in which visible light and

radar signals are processed (Zhao et al., 2023). Firstly, we

have access to a limited number of complex-valued mea-

surements, proportional to the number of deployed anten-

nas. Apparently, this conveys significantly less information

compared to an image comprising thousands of pixels. As

a consequence, training a model using off-the-shelf INR-

based algorithms with a limited number of antennas can

fail to reliably predict unseen array response at arbitrary

spatial locations. Secondly, while optical NeRF frameworks

rely solely on light intensity (amplitude), radar signals at

millimeter wavelengths necessitate consideration of phase

information. Unlike visible light, where the phase is often

neglected, the phase in radar signals is crucial for capturing

fine-grained details of wave propagation, such as target lo-

cations. Ignoring phase would result in a significant loss of

critical information. Finally, despite the increasing adoption

of INRs in various domains, the theoretical understanding

of their properties and their implications in specific appli-

cations remain limited. Key aspects, such as the behavior

of deep layers in these networks and role of positional en-

coding (PE) in representing complex signals, are not yet

well-understood.

To address these challenges, our work makes the following

contributions:

• We propose NEAR, the first electromagnetic array re-

sponse prediction framework that implicitly integrates

signal propagation characteristics into INRs. Our ap-

proach enables prediction of array response at unseen

receiver locations, facilitating super-resolution angular

estimation with low hardware requirements.

• We provide tight characterization of the class of func-

tions that INR’s can represent with certain choices

of positional encoding and activation functions. Our

results improve upon existing theoretical analysis of

INRs.

• We evaluate NEAR through both simulation studies

and real-world experiments, achieving superior perfor-

mance in antenna array response prediction and other

downstream tasks such as super-resolution angular esti-

mation compared to existing model-based and machine

learning methods.

Overall, we believe our findings contribute to advancing

research in INRs and their unique applications in radar sens-

ing. Our work also marks the first step towards leveraging

INRs for predicting unseen antenna responses in radar sens-

ing, paving the way for new opportunities to enhance the

performance of future sensing and localization systems.

2. Preliminaries

In this section, we provide background knowledge on

MIMO radar, virtual array, and implicit neural represen-

tation.

MIMO Radar. We consider targets in three-dimensional

Euclidean space, represented by spherical coordi-

nates as depicted in Figure 1. We consider a L-

shaped MIMO radar system (consistent with our

hardware) with Nt physical Tx antennas located at

{(xT,1, 0, 0), · · · , (xT,Nt
, 0, 0)} and Nr physical Rx

antennas located at {(0, yR,1, 0), · · · , (0, yR,Nr
, 0)}. The
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Figure 1. Left: Illustration of the target position in Spherical coor-

dinate system. Right: One sub-Nyquist sampling pattern with 8

indicating missing virtual element response.

Tx antennas emit a set of Nt orthogonal waveforms, which

are reflected byK targets and their superposition is received

at the Rx antenna array. Each Rx antenna of a MIMO

radar is equipped with a bank of Nt matched filters, each

matched to one of the Nt orthogonal waveforms. This

yields a total of NtNr measurements at the output of NtNr

matched filters, which can be used to perform different

spatial sensing tasks such as localization, beamforming and

so forth (Li & Stoica, 2008).

Virtual Array. One of the key features of a MIMO radar is

that by using only Nt +Nr physical Tx and Rx antennas,

it can create the effect of a much larger antenna array with

NtNr virtual sensing elements at the output of the NtNr

matched filters. Consider a far-field point target at direction

(¹, ϕ). It can be shown that the noiseless array response at

the m-th matched filter output in the n-th receiving antenna

can be expressed as

xej
2Ã
¼

(xT,m sinϕk cos ¹k+yR,n sinϕk sin ¹k), (1)

where x is the unknown amplitude of the signal reflected by

the target and ¼ is the wavelength at which the narrowband

radar operates. Therefore, the array response in (1) is the

same as that of a (fictitious) two-dimensional receiving array

with NtNr antenna elements located at

{(xT,m, 0, 0) + (0, xR,n, 0), 1 f m f Nt, 1 f n f Nr}.

This two-dimensional antenna array with NtNm elements

is known as the virtual array (Chen & Vaidyanathan, 2008).

Figure 1 shows a physical Tx-Rx antenna pair and the asso-

ciated two-dimensional virtual array. Notice that depending

on the geometry of the Tx-Rx pair, the 2D virtual array need

not comprise of elements on consecutive locations over a

uniform grid, and there can be missing elements (or holes)

the virtual array, as indicated in Figure 1.

Consider K targets in the far field, with azimuth angle ¹k
and elevation angle ϕk, 1 f k f K. Without loss of gen-

erality, let the reference virtual antenna be located at the

origin of the coordinate system. The array response at a

coordinate (r1, r2)
1 (which may be a virtual array element

location, or the location of a missing sensor), due to signals

impinging from the K targets in absence of noise can be

expressed as:

yr1,r2 =

K
∑

k=1

xke
j 2Ã

¼
(r1 sinϕk cos ¹k+r2 sinϕk sin ¹k), (2)

where xk is the unknown complex-valued reflection coef-

ficient of k-th target. Various algorithms, such as beam-

forming (Van Trees, 2002) and subspace-based methods

(Schmidt, 1986; Roy & Kailath, 1989), can be applied to

estimate {¹k}
K
k=1 and {ϕk}

K
k=1.

Implicit Neural Representations (INR). INRs are used

to model a continuous function g : Rdin → R
dout using

a neural network fΘ : Rdin → R
dout , parameterized by

weights Θ, which map input coordinates r ∈ R
din to signal

values g(r) ∈ R
dout . A significant challenge for INRs is

to accurately reconstruct high-frequency details, which is

needed for radar super-resolution. Classical neural network

architectures are known to exhibit strong spectral bias (Ra-

haman et al., 2019) towards lower frequencies. Recently,

Tancik et al. (2020); Sitzmann et al. (2020) have proposed ar-

chitectural solutions to overcome this spectral bias allowing

faster convergence and higher accuracy of INRs.

Following the formulation of (Yüce et al., 2022), most INR

architectures can be decomposed into a mapping function

µ : RD → R
T followed by a MLP, with weights W (ℓ) ∈

R
Fℓ×Fℓ−1 , bias b(ℓ) ∈ R

Fℓ , and activation function Ä(ℓ) :
R → R applied element-wise at each layer ℓ = 1, . . . , L−1.

Suppose z(ℓ) represents the post activation output at layer ℓ.
The INR input-output relationship is given by

z(0) = µ(r),

z(ℓ) = Ä(ℓ)
(

W (ℓ)z(ℓ−1) + b(ℓ)
)

, ℓ = 1, . . . , L− 1,

fΘ(r) = W (L)z(L−1) + b(L).
(3)

Tancik et al. (2020) introduced Fourier feature networks

(FFNs), which use Fourier-based positional encoding

µ(r) = sin(Ωr + φ), with parameters Ω ∈ R
T×D and

φ ∈ R
T followed by an MLP with Ä(ℓ) = ReLU. They

demonstrated that by initializing Ωi,j ∼ N (0, Ã2) with ran-

dom Fourier features, and choosing large values of Ã, one

can drive the network response towards realizing higher fre-

quencies. SIREN (Sitzmann et al., 2020) can also mitigate

spectral bias in a similar way by choosing a different (sinu-

soidal) activation function and rescaling certain parameters

at initialization.

1In our setting, the 2D virtual array is located in the xy-plane.
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3. Related Work

Hallucinated Antenna Interpolation/Extrapolation. To

mitigate the high sidelobes introduced by the sparse arrays

and enhance the SNR of antenna array response, Sun &

Zhang (2021) propose to recover missing elements or holes

in the sparse arrays by completing a low-rank (Block) Han-

kel matrix (Chen & Chi, 2013). However, the nuclear norm

minimization that they employed often suffers from subop-

timal recovery performance (Lu et al., 2015) and exhibits

sensitivity to the sampling pattern and noise(Bu et al., 2025;

Sarangi et al., 2022). Furthermore, their approach is limited

in its applicability to cases involving non-integer-multiple

sampling. To enhance the azimuth resolution of MIMO

radar, Li et al. (2023) proposed Analog-to-Digital super-

resolution model (ADC-SR) that predicts or hallucinates

additional radar signals using signals from only a few re-

ceivers, essentially implementing a uniformly filled array

extrapolation framework. However, their approach is re-

stricted to 1D MIMO configurations and relies on a large

training dataset, potentially limiting its generalization ca-

pability. In contrast, our method implicitly leverages the

underlying physics of signal propagation and requires only

single-snapshot sparse measurements, eliminating the de-

pendence on extensive training data.

Expressive power of INRs. INRs have emerged as a ver-

satile set of neural architectures for representing and pro-

cessing signals on low-dimensional spaces. Understanding

the function class that an INR architecture can represent is

essential for their application to practical problems. Recog-

nizing that polynomials of sinusoids generate linear combi-

nations of integer harmonics of said sinusoids, Yüce et al.

(2022) analyzed the expressivity of FFN, SIREN and re-

lated architectures in (Fathony et al., 2020). Subsequently

Roddenberry et al. (2023) developed a broader theoretical

understanding of INR architectures with a wider class of

activation functions and provided a superset to which the

integer harmonic frequencies characterizing INR functions

belong. While their superset results provide valuable theo-

retical insights, our work refines this analysis and derives

the exact set (and not a superset) of integer harmonics which

describe the expressive power of INRs, delivering a tight

characterization.

Neural Radio-Frequency Field Reconstruction. Building

on the fact that light is a kind of electro magnetic (EM)

wave, Zhao et al. (2023) and (Lu et al.) proposed two

NeRF-based frameworks, named NeRF2 and NeWRF, re-

spectively, for wireless channel modeling based on implicit

wireless radiation field reconstruction. Chen et al. (2024)

further developed a hybrid model that integrates NeRF-like

object representation with physics-based ray tracing models.

These models enable accurate characterization and predic-

tion of channel properties. Building on the principles of

planar wave propagation, we propose a novel framework

for reconstructing 2D MIMO virtual antenna array response

fields using implicit neural representations. In contrast to

aforementioned approaches that employ ray tracing for EM

waves, our method employs a straightforward yet effective

regularization strategy specifically designed to leverage the

spectral sparsity of antenna array measurements and the

characteristics of planar wave propagation.

4. Neural Electromagnetic Array Response

In this section, we present the design of NEAR. Section 4.1

outlines our problem formulation, followed by theoretical

results on the expressive power of INRs and their connection

to Fourier series in Section 4.2 elucidating why and how

array response function in (2) can be effectively learned.

Section 4.3 details our novel implicit regularization strategy

that integrates signal propagation model while harnessing

harmonic structure. Finally, we describe the response pre-

diction process of NEAR in Section 4.4.

4.1. Problem Formulation

We consider a environment where all objects are located

in the far-field relative to the radar antenna array. In this

setup, the propagation of wireless signals can be modeled

as planar waves that are emitted from the Tx array, reflected

by objects and finally captured by the Rx array. Let Sx and

Sy represent the sparse sets of physical Tx and Rx antennas,

respectively. The coordinate set of available virtual antennas

is given by {(rx, ry)}rx∈Sx,ry∈Sy
as explained in Section 2.

We define the domain of antenna array response field as

D = {(x, y) | 0 f x f max(Sx), 0 f y f max(Sy)}. We

represent the continuous complex-valued response field as a

function y : D → C, where the input is a 2D coordinate r =
[r1, r2]

¦ within the domain D, and the output is a complex-

valued response yr1,r2 that adheres to the signal model in

(2). To approximate this continuous 2D response field, we

employ an INR model that maps the input 2D coordinates to

a vector in R
2, where the two components correspond to the

real and imaginary parts of the complex-valued response,

respectively. Specifically, the model is defined as fΘ :
R

2 → R
2, and the parameters Θ are optimized to map

each input 2D coordinate to its corresponding response. The

goal of this paper is to learn the function fΘ solely from

physical antenna measurements (without using any offline

training data), by exploiting the harmonic structure of array

response in (2). Once the response function is learned, it

enables the prediction of array responses at any unseen

locations within D, facilitating downstream tasks such as

angle estimation and localization.
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4.2. Representational Ability of INRs

While substantial empirical evidence demonstrates the ef-

fectiveness of INRs in representing scenes and various vi-

sual signals, the theoretical underpinnings of their ability

to approximate continuous functions remain underexplored.

In this subsection, we establish that many contemporary

INRs inherently build upon similar underlying structures

and shared fundamental principles, enabling them to repre-

sent a certain class of signals.

To rigorously analyze the expressive power of INRs, we

follow the formulation outlined in (3). Following (Yüce

et al., 2022; Roddenberry et al., 2023; Mehmeti-Göpel et al.,

2020), we restrict our investigation to polynomial activation

functions of the form Ä(x) =
∑Q

q=0 ³qx
q , a widely adopted

approach in the study of the expressive capacity of INRs.

Theorem 4.1. Let fΘ : R
D → R be an INR given by

(3), where the activation function for layers ℓ > 1 is given

by Ä(ℓ)(z) =
∑Q

q=0 ³qz
q. Let ΩT = [ω1, . . . ,ωT ]

¦ ∈

R
T×D represent the frequency matrix and φT ∈ R

T the

phase vector used to map the input coordinate r ∈ R
D

into the feature space via the mapping µ(r) = sin(ΩT r +
φT ). The resulting architecture is capable of representing

functions of the form:

fΘ(r) =
∑

s∈ST

cs sin
(

ïΩ¦
T s, rð+ ϕs

)

, (4)

where

ST =

{

[s1, s2, . . . , sT ]
¦

∣

∣

∣

∣

∣

st ∈ Z,

T
∑

t=1

|st| f QL−1

}

.

Theorem 4.1 gives an exact characterization of the set ST of

all possible integer harmonics of the feature mapping µ(r).
In contrast, Yüce et al. (2022); Roddenberry et al. (2023)

only provide a superset to which ST belongs.

Remark 4.2. Let yR and yI denote the real and imaginary

parts of the response field function (2), respectively. The

function yR(r) can be equivalently represented as (4) by

applying Theorem 4.1 with the following parameterization:

ΩT =
2Ã

¼
[sinϕk cos ¹k sinϕk sin ¹k]1fkfK ∈ R

K×2,

c2k−1 = Re(xk), c2k = −Im(xk), ϕ2k−1 =
Ã

2
,

ϕ2k = 0, sk = ek ∈ R
K , ST = {ek}1fkfK .

Under this parameterization,

yR(r) =

K
∑

k=1

c2k−1 sin
(

ïΩ¦
T sk, rð+ ϕ2k−1

)

+ c2k sin
(

ïΩ¦
T sk, rð+ ϕ2k

)

.

A similar representation also holds for yI.

This shows that our desired array response indeed belongs to

the class of functions representable by INRs. Although the

resulting INR architecture appears deceptively simple, it is

to be noted that the positional encoding requires the ground-

truth DOA and amplitude of each target, which are never

available in practice. Hence it is important to investigate the

class of functions that INR can approximate using a given

mapping µ(r), such as the type of fixed sinusoid positional

encodings employed in NeRF (Mildenhall et al., 2021):

µ(r) =

[

sin(Ωr)
cos(Ωr)

]

, with (5)

Ω =

[

20Ã 0 21Ã 0 · · · 2T−1Ã 0
0 20Ã 0 21Ã · · · 0 2T−1Ã

]¦

.

Consider a non-periodic function g : Rdin → R
dout defined

over a bounded domain D (e.g. the height and width of a

image, the aperture of 2D-MIMO array). We can define

its periodic extension g̃ : Rdin → R
dout with period p as

follows (Benbarka et al., 2022):

g̃(x+ n ◦ p) = g(x) ∀x ∈ D, ∀n ∈ Z
din , (6)

where ◦ denotes the Hadamard product. By normalizing the

input domain to its respective bounds, we assume a period

of 2 for each variable, i.e., within the range [−1, 1). The

Fourier series expansion for a periodic extension g̃ : R2 →
R of period 2 is given by (Oppenheim et al., 2010):

∞
∑

m,n=−∞

Am,n cos(Ã(mx+ny))+Bm,n sin(Ã(mx+ny)).

(7)

It can be shown that if the frequency matrix Ω ∈ R
2T×2

of the INR described in Theorem 4.1 is chosen according

to (5), then as the number (L) of layers of the MLP/INR

increases, fΘ approximates to certain period-2 functions g̃
of the form (7). See Appendix A.7 for more details.

4.3. Physics-Informed Implicit Regularization

To model the antenna array response field, we discretize

the domain of interest into a finite set of points in the 2D

plane. Let [0, U1] × [0, U2] represent the antenna array

response field with bounded domain positioned in the x− y
plane, consider a general case of a uniform sampling grid of

dimensions M1 ×M2, with spacing d1 = U1

M1−1 f ¼
2 and

d2 = U2

M2−1 f ¼
2 . Supposing an array snapshot containing

K targets with azimuth angle ¹k and elevation angle ϕk
(k = 1, · · · ,K), and leveraging planar wave propagation

(2), the (m1,m2) th element of the response with respect to

5
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K targets in the absence of noise can be written as

ym1,m2

=

K
∑

k=1

xke
j 2Ã

¼
((m1−1)d1 sinϕk cos ¹k+(m2−1)d2 sinϕk sin ¹k)

(8)

for 1 f m1 fM1 and 1 f m2 fM2. Notably, when d1 =
d2 = ¼

2 , the sampling pattern aligns with the Nyquist sam-

pling. Let Y = [ym1,m2
]1fm1fM1,1fm2fM2

∈ C
M1×M2

be the ground truth response matrix with entries as the an-

tenna array response defined in (8).

Definition 4.3. Given Y = [ym1,m2 ] ∈ C
M1×M2 for

1 f m1 fM1, 1 f m2 fM2, a Block Hankel matrix of

Y, 1 f N1 fM1, 1 f N2 fM2 can be constructed as:

HN1,N2
(Y)

=











HN2(y1) HN2(y2) · · · HN2(yM1−N1+1)
HN2(y2) HN2(y3) · · · HN2(yM1−N1+2)

...
...

. . .
...

HN2
(yN1

) HN2
(yN1+1) · · · HN2

(yM1
)











,

where HN2
(ym), 1 f m fM1 is defined as:

HN2
(ym) =











ym,1 ym,2 · · · ym,M2−N2+1

ym,2 ym,3 · · · ym,M2−N2+2

...
...

. . .
...

ym,N2
ym,N2+1 · · · ym,M2











.

Remark 4.4. Definition 4.3 defines the block Hankel ma-

trix constructed along the row direction. Similarly, a block

Hankel matrix can also be constructed along the column

direction, denoted as H̃Ñ1,Ñ2
(Y) (see definition in Ap-

pendix B.1). Moreover, the rank property remains consistent

for block Hankel matrices constructed along both the row

and column directions.

We emphasize that the number of targets in the same range-

Doppler bin that need angle estimation is small since the

targets are first separated in range-Doppler domain (Sun

et al., 2020). In other words, the targets are sparsely present

in the angular domain and, as a result, HN1,N2
(Y) and

H̃Ñ1,Ñ2
(Y) exhibit low rank, with rank equal to K for

appropriate choice of N1, N2, Ñ1, Ñ2 (see Lemma B.1 in

Appendix). To characterize such a property, numerous

convex/non-convex rank surrogate functions have been ex-

plored in the literature, which include but are not limited

to nuclear norm (Candes & Recht, 2012), schatten-p norm

(Mohan & Fazel, 2012) and truncated nuclear norm (Hu

et al., 2012). However, all of these surrogate functions are

explicit and requires singular value decomposition (SVD),

which can be not only computational expensive but also

sub-optimal. In this work, we propose a novel implicit regu-

larizer that exploits the structure of the block Hankel matrix

and its latent representation. To further justify the effec-

tiveness, we establish the algebraic properties of the block

Hankel matrix corresponding to the ground truth response

Y using its harmonic structure.

Theorem 4.5. Consider the ground truth response matrix

Y as defined in (8). For K f min(+M1

2 ,, +M2

2 ,), there

exists vectors mo
1 ∈ C

K and mo
2 ∈ C

K such that the last

column of HM1,M2−K(Y) can be uniquely represented in

terms of the first K columns of HM1,M2−K(Y) using the

corresponding coefficient vectors mo
1, i.e.

∥HM1,M2−K(Y)Smo
1 −HM1,M2−K(Y)b∥2 = 0,

where S = [IK×K 0K ]
¦ ∈ R

(K+1)×K , and b =
[

0¦
K 1
]¦

∈ R
(K+1)×1. Similarly, an equivalent property

holds for H̃M2,M1−K(Y), given by

∥H̃M2,M1−K(Y)Smo
2 − H̃M2,M1−K(Y)b∥2 = 0.

Building upon the planar wave signal propagation model,

Theorem 4.5 establishes a connection between rank property

and least squares by leveraging harmonic structure of Block

Hankel matrix. However, the global optimizer mo
1 and mo

2

are intrinsically dependent on parameters {(¹k, ϕk)}
K
k=1

(see Lemma B.3 in Appendix), which are part of the radar

sensing task and not known in advance. To address this, as

detailed in the next subsection, we integrate the least squares

term into the loss function and parameterize the unknown

coefficients, enabling them to be learned adaptively.

4.4. Optimizing NEAR

In practice, the model predicts the real and imaginary parts

of the response signal (ℜ{yr1,r2},ℑ{yr1,r2}), instead of

amplitude and phase (A(yr1,r2), È(yr1,r2)). This is because

phase is modulo against 2Ã, which is not differentiable.

We perform uniform inference for fΘ(·) over the bounded

domain, using a pre-chosen grid of M1 ×M2 data points.

Denote the predicted response at the (m1,m2) th element

as ŷm1,m2 = fΘ((m1 − 1) U1

M1−1 , (m2 − 1) U2

M2−1 ), and let

Ŷ represent the predicted response matrix. All the other

notations remain consistent with those introduced in Section

4.3, with an additional ˆ to distinguish predicted quantities.

Consider two sparse sampling pattern Sx,Sy, where the

observed noisy response ỹrx,ry is only available at locations

r = [rx, ry] ∀rx ∈ Sx, ∀ry ∈ Sy . The overall loss function

is defined as

L(Θ,m1,m2) = Ld + ¼Lr, (9)
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with

Ld =
∑

j∈Sy

∑

i∈Sx

∥fΘ(i, j)− ỹi,j∥2,

Lr =∥(HM1,M2−K(Ŷ)Sm1 −HM1,M2−K(Ŷ)b∥2

+ ∥(H̃M2,M1−K(Ŷ)Sm2 − H̃M2,M1−K(Ŷ)b∥2,

Ŷ = [fΘ(i, j)]1fifM1,1fjfM2
.

(10)

Specifically, Ld represents data fitting term, which quanti-

fies the gap between the predicted and acquired responses at

observed locations; Lr corresponds to regularization term,

as elaborated in Section 4.3 and Appendix B. Parameters

are optimized by minimizing the total loss function

Θo,mo
1,m

o
2 = arg min

Θ,m1,m2

Ld + ¼Lr. (11)

Using the optimal parameters Θo, the predicted array re-

sponse can be computed by ŷi,j = fΘo(i, j), ∀i, j ∈ D.

5. Experiments

We evaluate the performance of NEAR on both simulated

(Section 5.1) and real-world (Section 5.2) tasks. All ex-

periments are run on a laptop with CPU AMD Ryzen 9

5900 HS with Radeon Graphics and GPU NVIDIA GeForce

RTX 3050 Ti Laptop. See Appendix C for more ex-

perimental results. The codes are available at: https:

//github.com/J1mmyYu1/NEAR.

Baselines and Benchmark. We compare NEAR against

four representative baselines: Enhanced Matrix Completion

(EMaC) (Chen & Chi, 2013), SIREN (Sitzmann et al., 2020),

NeRF2 (Zhao et al., 2023), and NEAR without Regulariza-

tion (NEAR w/o R), more implementation details and analy-

sis of these baseline methods can be found in Appendix C.2.

For a fair comparison, we adopt the hyperparameters recom-

mended by the original authors. Additionally, we include a

20× 20 full virtual array response (noisy) as a benchmark

reference.

NEAR Architecture. In both simulated and real-world

settings, we employ the architecture described in Equa-

tion (3), with a depth of L = 4, ReLU activation function

Ä(·) = ReLU(·), and positional encoding µ(r) following

NeRF’s formulation in Equation (5) with T = 10. The

hidden layer dimension is set to 256. Additional imple-

mentation details and hyperparameter configurations are

provided in Appendix C.1.

5.1. Simulation Tasks

Response Recovery. We evaluate the response recovery

performance of NEAR against baseline methods and the

full virtual array benchmark, as summarized in Tables 1

- 3. The evaluation metric is the Normalized Root Mean

Square Error (NRMSE), defined as 1
N

∑N

n=1
∥Ŷn−Yn∥F

∥Yn∥F
,

where Ŷn and Yn denote the predicted array response and

the (noiseless) ground truth full virtual array response at

n-th realization, respectively, with ∥ · ∥F representing the

Frobenius norm. Our method consistently outperforms all

baselines across different evaluation settings, demonstrating

superior generalization in response recovery tasks. Notably,

NEAR achieves even lower error than the 20× 20 full vir-

tual array benchmark across different SNR levels with a

fixed sampling number (Table 1). This can be attributed to

the inherent denoising ability of our regularizer that exploits

low-dimensional structure of array response and provides

a cleaner estimate of at a given coordinate, compared to

actual noisy measurement at the same location. The poor

performance of SIREN and NEAR w/o R across all settings

suggests that these models struggle to learn the appropriate

continuous response function in the absence of physics-

informed regularization. This highlights the importance of

incorporating prior knowledge into implicit neural repre-

sentations for structured signal recovery. A more detailed

analysis is provided in the Ablation Study.

Table 1. Averaged NRMSE of response at different SNR level.

8×8 sampling is employed for NEAR, EMaC, NEAR w/O R and

SIREN.

METHOD 10 dB 20 dB 30 dB

BENCHMARK 0.2608 0.0825 0.0261
NEAR 0.2248 0.0495 0.0189
EMAC 0.3537 0.1889 0.0921
NEAR W/O R 1.0663 1.0504 1.0485
SIREN 1.0512 1.0277 1.0244

Table 2. Averaged NRMSE of response for different sampling num-

ber at 20 dB with 2 targets.

METHOD 6X6 8X8 10X10

NEAR 0.1884 0.0495 0.0362
EMAC 0.5306 0.1889 0.0724
NEAR W/O R 1.0689 1.0504 1.0030
SIREN 1.0656 1.0277 0.9860

Table 3. Averaged NRMSE of response for different number of

targets at 20 dB. 8×8 sampling is employed for all methods.

METHOD 1 TARGET 2 TARGETS 3 TARGETS

NEAR 0.0382 0.0461 0.0860
EMAC 0.1454 0.1941 0.2503
NEAR W/O R 1.0399 1.0501 1.0308
SIREN 1.0077 1.0262 1.0543

Angular Resolution. The resolution probability (defined

in Appendix C.1.2) of NEAR compared to baselines and

the full virtual array benchmark is illustrated in Figure 2.

Our method consistently achieves the highest resolution

7



NEAR: Neural Electromagnetic Array Response

probability among baselines and closely follows the full

benchmark. While EMaC achieves comparable resolution

probability for larger angle separations, its performance

degrades significantly as the angle separation decreases.

This is because convex relaxation techniques, such as the

Nuclear Norm used in EMaC, impose separation conditions

that inherently limit resolution (even in noise-free scenarios)

(Dai & Milenkovic, 2009). In contrast, NEAR demonstrates

robust resolution across different separations.
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DOA Estimation. The DOA estimation error of NEAR,

compared to baselines and the full virtual array bench-

mark, is presented in Figure 3. Both NEAR and EMaC

achieve similar performance to the benchmark when esti-

mating the DOA of a single target. However, for multiple

targets, NEAR significantly outperforms EMaC, demonstrat-

ing superior robustness in resolving closely spaced sources.

Notably, EMaC’s performance deteriorates as the number

of targets increases, whereas NEAR maintains a lower esti-

mation error, showing its capacity to generalize effectively

to more complex scenarios.

Ablation Study. Tables 1 - 3 present a comprehensive ab-

lation study assessing the impact of the physics-informed

regularizer on NEAR. Without this regularizer, implicit neu-

ral representations (INRs) merely perform data fitting on

the observed array responses but fail to capture the inher-

ent low-rank structure in the Hankel matrix of the noise-

less full virtual array response. This limitation severely

affects the model’s ability to generalize beyond observed

data. The findings confirm that leveraging physics-informed

constraints allows NEAR to achieve superior signal recon-

struction and DOA estimation accuracy, particularly in chal-

lenging multi-target scenarios.

5.2. Real-world Experiments

We further conduct experiments using a commercial MIMO

radar platform (IMAGEVK-74) as shown in Figure 5.

IMAGEVK-74 employs 20 Tx antennas on a vertical line

and 20 Rx antennas on a horizontal line, resulting in a vir-

tual array of 20 × 20. IMAGEVK-74 transmits a Stepped-

Frequency Continuous Wave (SFCW) waveform and the

bandwidth is set to be 67–69 GHz. The antenna spacing

is roughly half of the wavelength. After collecting the 20

× 20 full array response matrix, we select a subset of data

and treat it as a sparse set of measurements. Our proce-

dure for active sensing using NEAR is depicted in Figure 4.

Additional details on radar data processing (such as analog-

to-digital conversion) across range and Doppler cells are

included in the Appendix C.3.

Angular resolution. To measure the angular resolution, we

put two corner reflectors at the boresight of the radar and

gradually reduced the spacing between them. We employ

the same signal processing pipeline (e.g., beamforming) and

record the angular separation when the two targets merge

in the radar angular spectrum. Table 4 shows the measured

angular resolution with different setups. As the distance

increases, the SNR reduces, and the reflected signal becomes

weaker. NEAR achieves similar performance as the full

array across all the range settings, confirming its robustness

at lower SNR conditions in real-world environments.

Table 4. Smallest angular separation that can be resolved across

various distance (SNR).

METHOD 2M 3M 4.5M

BENCHMARK 5.7248◦ 6.6769◦ 6.9941◦

NEAR 5.7248◦ 6.6769◦ 6.9941◦

EMAC 8.5783◦ 9.5273◦ 10.1592◦

NERF2 8.5783◦ 8.5783◦ 8.8948◦

Target localization. We put several corner reflectors (1 –

4) in random positions in the field view of the radar and

perform radar localization. The location of the reflectors

spans 1 to 4 m in range, -45◦ to 45◦ in the azimuth angle,

and -20◦ to 20◦ in the elevation angle. A total of 70 loca-

tion samples are collected and their localization errors are

calculated. Table 5 shows that NEAR outperforms the full

array baseline, NeRF2 and EMaC in terms of mean absolute

error. NEAR exhibits a denoising effect that improves the

localization accuracy compared with the full array baseline.

This denoising was achieved by using only an upper bound

(and not the exact value) on the number of targets to de-

sign the regularizer. The results further confirm NEAR’s

capability to work in a complicated real-world environment

with multiple reflectors. See more experimental results in

Appendix C.4.

Computation Time. Table 6 reports the averaged running

times: NEAR (our approach) finishes in roughly 9 minutes,

whereas EMaC and NeRF2 require about 20 and 21 minutes,

respectively. These results highlight the potential for real-

time implementation of our approach with future advances

in algorithms and computing hardware.
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Figure 4. Radar active sensing workflow.

Figure 5. Left: 2D MIMO radar platform. Right: Real-world

experimental setup.

Table 5. Localization accuracy for different number of targets (K)

in the environment.

METHOD K = 1 K = 2 K = 3 K = 4

BENCHMARK 0.0827 0.0903 0.0965 0.0964
NEAR 0.0744 0.0770 0.0762 0.0718
EMAC 0.1062 0.1158 0.1170 0.1157

NERF2 0.4902 0.5096 0.4346 0.3898

6. Conclusions and Future Work

We proposed NEAR, the first framework that leverages Im-

plicit Neural Representations to model and predict antenna

array responses with sparse measurements without training

data. By integrating harmonic signal structure and planar

wave propagation models, NEAR effectively enables en-

hanced angular resolution and robustness in radar sensing

applications. We believe NEAR represents the first step

towards bridging the gap between deep learning-based neu-

ral fields and classical electromagnetic sensing and signal

processing, unlocking new possibilities for super-resolution

radar, wireless and autonomous sensing applications. Future

work will focus on addressing the following challenges and

improvements:

Computational Efficiency. Optimizing the framework for

real-time inference on embedded radar hardware, reducing

Table 6. Computation time comparison.

METHOD NEAR NERF2 EMAC

AVERAGED TIME COST (S) 550.83 1278.31 1226.15

computational overhead while maintaining accuracy.

Multi-Modal Sensor Fusion. Integrating NEAR with Li-

DAR, camera, and RF-based sensing to enhance robustness

in complex environmental conditions.
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A. Proof of Theorem 4.1

A.1. Notations and Definitions

Let A,B ¦ R
n be two sets in n-dimensional Euclidean space. The Minkowski sum or difference of A and B is denoted by

A+B, A−B respectively, and defined as:

A+B = {a+ b | a ∈ A, b ∈ B}, A−B = {a− b | a ∈ A, b ∈ B}

Additionally, we define D(A,B) as the union of the Minkowski sum and difference of A and B, given by:

D(A,B) := (A+B) ∪ (A−B).

We define U (q) and B(q) as follows:

U (q) =

{

s(q) =
[

s
(q)
1 , · · · , s

(q)
T

]¦
∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | f q

}

,

B(q) =

{

s(q) =
[

s
(q)
1 , · · · , s

(q)
T

]¦
∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | = q

}

.

Recall that we are interested in analyzing the expressive power of INR architectures, which consist of a mapping function

µ : RD → R
T (positional encoding) followed by a multilayer perceptron (MLP). The MLP is parameterized by weights

W (ℓ) ∈ R
Fℓ×Fℓ−1 , biases b(ℓ) ∈ R

Fℓ , and activation functions Ä(ℓ) : R → R applied elementwise at each layer

ℓ = 1, . . . , L− 1. Specifically, denoting the post-activation output of each layer as z(ℓ), most INR architectures compute:

z(0) = µ(r),

z(ℓ) = Ä(ℓ)
(

W (ℓ)z(ℓ−1) + b(ℓ)
)

, ℓ = 1, . . . , L− 1,

fΘ(r) = W (L)z(L−1) + b(L),

where r ∈ R
D is the input coordinate. As it is plausible to normalize the inputs (r) to their bounds, we assume that each

variable’s period is 1 (normalized to [0, 1)) or 2 (normalized to [−1, 1)).

A.2. Lemma A.1 and Proof

Lemma A.1. Let Ω = [ω1, . . . ,ωT ]
¦ ∈ R

T×D be a frequency matrix, and let S1,S2 ¦ R
T denote two sets of weights

corresponding to these frequencies. Additionally, let {ϕs1
∈ R | s1 ∈ S1} and {ϕs2

∈ R | s2 ∈ S2} represent two

collections of scalar phases, and {´s1
∈ R | s1 ∈ S1} and {´s2

∈ R | s2 ∈ S2} two corresponding sets of scalar

coefficients. For any r ∈ R
D, the following holds:

(

∑

s1∈S1

´s1 cos
(

ïΩ¦s1, rð+ ϕs1

)

)(

∑

s2∈S2

´s2 cos
(

ïΩ¦s2, rð+ ϕs2

)

)

=
∑

s′∈D(S1,S2)

˜́
s′ cos

(

ïΩ¦s′, rð+ ϕ̃s′

)

,

(12)

where

D(S1,S2) = (S1 + S2) ∪ (S1 − S2) , (13)

and {ϕ̃s′ ∈ R | s′ ∈ D(S1,S2)} and { ˜́s′ ∈ R | s′ ∈ D(S1,S2)} denote the resulting scalar phases and coefficients,

respectively.

12
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Proof.

(

∑

s1∈S1

´s1 cos
(

ïΩ¦s1, rð+ ϕs1

)

)(

∑

s2∈S2

´s2 cos
(

ïΩ¦s2, rð+ ϕs2

)

)

=
∑

s1∈S1

∑

s2∈S2

´s1
´s2

cos
(

ïΩ¦s1, rð+ ϕs1

)

cos
(

ïΩ¦s2, rð+ ϕs2

)

=
∑

s1∈S1

∑

s2∈S2

´s1´s2

1

2

(

cos
(

ïΩ¦(s1 + s2), rð+ ϕs1 + ϕs2

)

+ cos
(

ïΩ¦(s1 − s2), rð+ ϕs1 − ϕs2

))

=
∑

s′∈D(S1,S2)

˜́
s′ cos

(

ïΩ¦s′, rð+ ϕ̃s′

)

.

The last equality combines terms with the same frequency, where ˜́
s′ and ϕ̃s′ represent the resultant magnitude and phase,

respectively, obtained through phasor addition after grouping. This technique will be used repeatedly in the following

subsections to simplify analogous expressions.

A.3. Lemma A.2 and Proof

Lemma A.2. Let Ω = [ω1, . . . ,ωT ]
¦ ∈ R

T×D be a frequency matrix, and letET = {et ∈ R
T | t ∈ Z, 1 f t f T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.

Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {´s(1) ∈ R | s(1) ∈ S(1)} the corresponding

set of scalar coefficients. For any r ∈ R
D and q ∈ N, the following equality holds:





∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





q

=
∑

s(q)∈S(q)

˜́
s(q) cos

(

ïΩ¦s(q), rð+ ϕ̃s(q)

)

, (14)

where

S(q) := D(S(q−1),S(1)), B(q) ¦ S(q) ¦ U (q), (15)

for some {ϕ̃s(q) ∈ R | s(q) ∈ S(q)} and { ˜́s(q) ∈ R | s(q) ∈ S(q)}.

Proof. We will use induction to prove our statement. The statement trivially holds for q = 1 since B(1) = S(1) ¦ U (1).

Assume it also holds for q > 1, we first show that S(q+1) ¦ U (q+1). Using the induction hypothesis and Lemma A.1, we

have:




∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





q+1

=





∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





q



∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





=





∑

s(q)∈S(q)

˜́
s(q) cos

(

ïΩ¦s(q), rð+ ϕ̃s(q)

)









∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





=
∑

s(q+1)∈D(S(q),S(1))

´′
s(q+1) cos

(

ïΩ¦s(q+1), rð+ ϕ′
s(q+1)

)

=
∑

s(q+1)∈S(q+1)

´′
s(q+1) cos

(

ïΩ¦s(q+1), rð+ ϕ′
s(q+1)

)

13



NEAR: Neural Electromagnetic Array Response

Moreover,

S(q+1) = D{S(q),S(1)} =
{

s(q+1) = s(q) ± s(1)
∣

∣

∣ s
(q) ∈ S(q), s(1) ∈ S(1)

}

¦
{

s(q+1) = s(q) ± s(1)
∣

∣

∣ s
(q) ∈ U (q), s(1) ∈ S(1)

}

=

{

s(q+1) =
[

s
(q)
1 , · · · , s

(q)
T

]¦

± et

∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | f q, et ∈ S(1)

}

¦

{

s(q+1) =
[

s
(q+1)
1 , · · · , s

(q+1)
T

]¦
∣

∣

∣

∣

∣

s
(q+1)
t ∈ Z,

T
∑

t=1

|s
(q+1)
t | f q + 1

}

= U (q+1),

where the last line follows from triangle inequality. Next, we show that given the assumption, we have B(q+1) ¦ S(q+1):

S(q+1) = D{S(q),S(1)} =
{

s(q+1) = s(q) ± s(1)
∣

∣

∣ s
(q) ∈ S(q), s(1) ∈ S(1)

}

§
{

s(q+1) = s(q) ± s(1)
∣

∣

∣ s
(q) ∈ B(q), s(1) ∈ S(1)

}

=

{

s(q+1) =
[

s
(q)
1 , · · · , s

(q)
T

]¦

± et

∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | = q, et ∈ S(1)

}

§

{

s(q+1) =
[

s
(q+1)
1 , · · · , s

(q+1)
T

]¦
∣

∣

∣

∣

∣

s
(q+1)
t ∈ Z,

T
∑

t=1

|s
(q+1)
t | = q + 1

}

= B(q+1).

Therefore we have B(q+1) ¦ S(q+1) ¦ U (q+1). Thus by induction (14) holds ∀ q ∈ N.

A.4. Lemma A.3 and Proof

Lemma A.3. Let Ω = [ω1, . . . ,ωT ]
¦ ∈ R

T×D be a frequency matrix, and letET = {et ∈ R
T | t ∈ Z, 1 f t f T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.

Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {´s(1) ∈ R | s(1) ∈ S(1)} the corresponding

set of scalar coefficients. For any r ∈ R
D, Q ∈ N and ³q ∈ R (q = 1, · · · , Q), the following equality holds:

Q
∑

q=0

³q





∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





q

=
∑

s̄(Q)∈S̄(Q)

˜̃
´s̄(Q) cos

(

ïΩ¦s̄(Q), rð+ ˜̃
ϕs̄(Q)

)

, (16)

where

S̄(Q) =

Q
⋃

q=1

S(q) =

{

s̄(Q) =
[

s̄
(Q)
1 , · · · , s̄

(Q)
T

]¦
∣

∣

∣

∣

∣

s̄
(Q)
t ∈ Z '

T
∑

t=1

|s̄
(Q)
t | f Q

}

= U (Q) (17)

for some { ˜̃ϕs̄(Q) ∈ R | s̄(Q) ∈ S̄(Q)} and { ˜̃´s̄(Q) ∈ R | s̄(Q) ∈ S̄(Q)}.

Proof. According to Lemma A.2, we have:

Q
∑

q=0

³q





∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦s(1), rð+ ϕs(1)

)





q

=

Q
∑

q=0

³q

∑

s(q)∈S(q)

˜́
s(q) cos

(

ïΩ¦s(q), rð+ ϕ̃s(q)

)

=
∑

s̄(Q)∈S̄(Q)

˜̃
´s̄(Q) cos

(

ïΩ¦s̄(Q), rð+ ˜̃
ϕs̄(Q)

)

,

where S̄(Q) =
⋃Q

q=1 S
(q). Since B(q) ¦ S(q) ¦ U (q) for q ∈ N, we then have:

Q
⋃

q=1

B(q) ¦ S̄(Q) ¦

Q
⋃

q=1

U (q).

14
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According to the definition of B(q) and U (q), we have:

Q
⋃

q=1

B(q) =

Q
⋃

q=1

{

s(q) =
[

s
(q)
1 , · · · , s

(q)
T

]¦
∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | = q

}

=

{

s(Q) =
[

s
(Q)
1 , · · · , s

(Q)
T

]¦
∣

∣

∣

∣

∣

s
(Q)
t ∈ Z,

T
∑

t=1

|s
(Q)
t | ∈ {1, 2, · · · , Q}

}

;

Q
⋃

q=1

U (q) =

Q
⋃

q=1

{

s(q) =
[

s
(q)
1 , · · · , s

(q)
T

]¦
∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | f q

}

=

{

s(q) =
[

s
(q)
1 , · · · , s

(q)
T

]¦
∣

∣

∣

∣

∣

s
(q)
t ∈ Z,

T
∑

t=1

|s
(q)
t | f Q

}

= U (Q).

Moreover, S̄(Q) £ B(0) =

{

s(0) =
[

s
(0)
1 , · · · , s

(0)
T

]¦
∣

∣

∣

∣

s
(0)
t ∈ Z,

∑T

t=1|s
(0)
t | = 0

}

since it is easy to verify that S(2) £

B(0). Therefore, we have

U (Q) =

Q
⋃

q=1

B(q) ∪ B(0) ¦ S̄(Q) ¦ U (Q) =⇒ S̄(Q) = U (Q).

A.5. Lemma A.4 and Proof

Lemma A.4. Let Ω = [ω1, . . . ,ωT ]
¦ ∈ R

T×D be a frequency matrix, and letET = {et ∈ R
T | t ∈ Z, 1 f t f T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.

Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {´s(1) ∈ R | s(1) ∈ S(1)} the corresponding

set of scalar coefficients. For any r ∈ R
D and q, p ∈ N, the following equality holds:





∑

s(p)∈U(p)

´s(p) cos
(

ïΩ¦s(p), rð+ ϕs(p)

)





q

=





∑

s(qp)∈U(qp)

˜́
s(qp) cos

(

ïΩ¦s(qp), rð+ ϕ̃s(qp)

)



 , (18)

for some { ˜́s(qp) ∈ R | s(qp) ∈ U (qp)} and {ϕ̃s(qp) ∈ R | s(qp) ∈ U (qp)}.

Proof. Again we will use induction to prove the statement. The statement trivially holds for q = 1. Assume it also holds for

q > 1, then





∑

s(p)∈U(p)

´s(p) cos
(

ïΩ¦s(p), rð+ ϕs(p)

)





q+1

=





∑

s(p)∈U(p)

´s(p) cos
(

ïΩ¦s(p), rð+ ϕs(p)

)





q



∑

s(p)∈U(p)

´s(p) cos
(

ïΩ¦s(p), rð+ ϕs(p)

)





=





∑

s(qp)∈U(qp)

´s(qp) cos
(

ïΩ¦s(qp), rð+ ϕs(qp)

)









∑

s(p)∈U(p)

´s(p) cos
(

ïΩ¦s(p), rð+ ϕs(p)

)





=







∑

s′∈D(U(qp), U(p))

˜́
s′ cos

(

ïΩ¦s′, rð+ ϕ̃s′

)






,

15
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where the second equality holds by assumption, and the last equality holds by Lemma A.1. Moreover, we have

D{U (qp),U (p)} =
{

s′ = s(qp) + s(p)
∣

∣

∣
s(qp) ∈ U (qp), s(p) ∈ U (p)

}

=

{

s′ =
[

s
(qp)
t

]¦

1ftfT
+
[

s
(p)
t

]¦

1ftfT

∣

∣

∣

∣

∣

s
(qp)
t , s

(p)
t ∈ Z '

T
∑

t=1

|s
(qp)
t | f qp '

T
∑

t=1

|s
(p)
t | f p

}

¦

{

s′ = [s′t]
¦
1ftfT

∣

∣

∣

∣

∣

s′t ∈ Z '
T
∑

t=1

|s′t| f (q + 1)p

}

= U ((q+1)p),

where the third line follows from triangle inequality. Next, we will show that U ((q+1)p) ¦ D{U (qp),U (p)}. For

u = [u1, · · · , uT ]
¦ ∈ U ((q+1)p), we would like to construct two vectors such that v = [v1, · · · , vT ]

¦ ∈ U (qp),

w = [w1, · · · , wT ]
¦ ∈ U (p), and u = v +w.

Let ũ =
∑T

t=1|ut| and ṽ = min(ũ, qp). It is easy to see ũ f (q + 1)p by definition. Suppose t′ f T is the largest integer

that satisfies
∑t′

t=1|ut| f ṽ. If t′ = T , it follows that v = u,w = 0, and hence the statement holds. If t′ < T , we can

argue that |ut′+1| > ṽ −
∑t′

t=1|ut|
△
= u′, otherwise

∑t′+1
t=1 |ut| f ṽ contradicts the assumption that t′ f T is the largest

integer that satisfies
∑t′

t=1|ut| f ṽ. Thus, we can construct such v and w as:

vt = 1{tft′}ut + 1{t=t′+1} sgn(ut′+1)u
′ ∀t ∈ N+, t f T

wt = 1{t=t′+1} sgn(ut′+1)(|ut′+1| − u′) + 1{t>t′+1}ut ∀t ∈ N+, t f T,

where 1{·} denotes the indicator function and sgn(·) represents the sign function. It is easy to follow that ṽ =
∑T

t=1|vt| and

ũ = ṽ+
∑T

t=1|wt|. Then we will verify that v ∈ U (qp) and w ∈ U (p). By construction,
∑T

t=1|vt| =
∑t′

t=1|ut|+u′ = ṽ f

min(ũ, qp) f qp, and
∑T

t=1|wt| = ũ− ṽ = ũ−min(ũ, qp) = max(0, ũ− qp) f p since ũ f (q + 1)p, which completes

the construction rule. Therefore, we have U ((q+1)p) ¦ D{U (qp),U (p)}, and hence U ((q+1)p) = D{U (qp),U (p)}.

A.6. Main Proof of Theorem 4.1

Proof. To begin with the proof of Theorem 4.1, we will prove the following two statements first.

Define z̃(1) = W (1)z(0) + b(1) as the pre-activation output of the first layer, where z(0) = µ(r) = sin(ΩT r + φT ). Let

{ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {´s(1) ∈ R | s(1) ∈ S(1)} the corresponding set of scalar

coefficients. Let z̃
(1)
i and b

(1)
i denote the ith entries of z̃(1) and b(1), respectively, and let W

(1)
i represent the ith row of

W (1). We first would like to show that given {ϕs(1) ∈ R | s(1) ∈ S(1)} and {´s(1) ∈ R | s(1) ∈ S(1)} (S(1) is defined in

Lemma A.2):

∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦
T s

(1), rð+ ϕs(1)

)

+ · = z̃
(1)
i = W

(1)
i sin(ΩT r + φT ) + b

(1)
i

for some W
(1)
i ∈ R

1×T and b
(1)
i ∈ R. Note that adding constant does not affect frequency and interchanging sines with

cosines only affects the phase terms. We can express the summation as follows:

∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦
T s

(1), rð+ ϕs(1)

)

=

T
∑

t=1

´t cos(ïωt, rð+ ϕt) + ´−t cos(ï−ωt, rð+ ϕ−t)

=

T
∑

t=1

´t sin
(

ïωt, rð+ ϕt +
Ã

2

)

+ ´−t cos (ïωt, rð − ϕ−t)

=

T
∑

t=1

Rt sin (ïωt, rð+ ϕ′t) .

16
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The final line follows from the Auxiliary Angle Formula, with:

Rt =
√

A2
t +B2

t , ϕ
′
t = arctan

(

Bt

At

)

,

At = ´t cos(ϕt +
Ã

2
) + ´−t sin(ϕ−t), Bt = ´t sin(ϕt +

Ã

2
) + ´−t cos(ϕ−t),

where we assume At > 0 for all t = 1, 2, . . . , T , Rt represents the magnitude, and ϕ′t is the adjusted phase angle. For the

case where At f 0, we leave the derivation as an exercise for the reader. Let W
(1)
i = [Rt]

¦
1ftfT , φT = [ϕ′t]1ftfT , and

b
(1)
i = ·. Then, we can conclude that the statement holds for i = 1, . . . , F1. Second, we would like to show that given

W
(1)
i ∈ R

1×T and b
(1)
i ∈ R,

W
(1)
i sin(ΩT r + φT ) + b

(1)
i = z̃

(1)
i =

∑

s(1)∈S(1)

´s(1) cos
(

ïΩ¦
T s

(1), rð+ ϕs(1)

)

+ ·

for some {´s(1)} , {ϕs(1)} with cardinality 2T and ·. We can re-express the summation as follows:

W
(1)
i sin(ΩT r + φT ) + b

(1)
i = W

(1)
i cos(ΩT r + φT −

π

2
) + b

(1)
i

=

T
∑

t=1

[W
(1)
i ]t cos(ïωt, rð+ ϕt −

Ã

2
) + b

(1)
i

=

T
∑

t=1

([W
(1)
i ]t − À) cos(ïωt, rð+ ϕt −

Ã

2
) +

T
∑

t=1

À cos(ï−ωt, rð − ϕt +
Ã

2
) + b

(1)
i

for ∀ À ∈ R. Let · = b
(1)
i , {´s(1) ∈ R | s(1) ∈ S(1)} = {À, · · · , À, [W

(1)
i ]1 − À, · · · , [W

(1)
i ]T − À} and {ϕs(1) ∈ R |

s(1) ∈ S(1)} = {−ϕ1 +
Ã
2 , · · · ,−ϕT + Ã

2 , ϕ1 −
Ã
2 , · · · , ϕT − Ã

2 } be two ordered sets. Then, we can conclude that the

statement holds for i = 1, . . . , F1.

Next, we will prove Theorem 4.1 by induction using the previous statement.

Base case Let us denote the pre-activation vector at layer ℓ as z̃(ℓ), i.e., z(ℓ) = Ä(ℓ)(z̃(ℓ)). Consider the pre-activation of a

node at the first layer of the neural network for any mapping of the form in (3). Then

z̃
(1)
i = W

(1)
i µ(r) =

T
∑

t=1

wit cos (ïωt, rð+ ϕt) ,

with some wit ∈ R depending on the first layer weights connected to that node and ϕt ∈ R. Also note that interchanging

sines with cosines only affects the phase terms. After applying the activation function, and using the previous statement and

the result of Lemma A.3, the output of each node at the first layer is given by

z
(1)
i = Ä(1)

(

z̃
(1)
i

)

=

Q
∑

q=0

³q

(

z̃
(1)
i

)q

=

Q
∑

q=0

³q

(

T
∑

t=1

wit cos (ïωt, rð+ ϕt)

)q

=
∑

s̄(Q)∈S̄(Q)

˜́
s̄(Q) cos

(

ïΩ¦
T s̄

(Q), rð+ ϕ̃s̄(Q)

)

,

where S̄(Q) =
⋃Q

q=1 S
(q) = U (Q) is defined in Lemma A.3. Therefore, the statement trivially holds, i.e.,

S̄(Q) =

{

[

s̄
(Q)
1 , · · · , s̄

(Q)
T

]¦
∣

∣

∣

∣

∣

s̄
(Q)
t ∈ Z '

T
∑

t=1

|s̄
(Q)
t | f Q

}

.

Induction step Assume the output of the nodes at layer ℓ satisfy the following expression:

z
(ℓ)
i =

∑

s̄(Qℓ)∈S̄(Qℓ)

˜́
s̄(Qℓ),i

cos
(

ïΩ¦
T s̄

(Qℓ), rð+ ϕ̃
s̄(Qℓ)

)

,

17
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where

S̄(Qℓ) =

{

[

s̄
(Qℓ)
1 , · · · , s̄

(Qℓ)
T

]¦
∣

∣

∣

∣

∣

s̄
(Qℓ)
t ∈ Z '

T
∑

t=1

|s̄
(Qℓ)
t | f Qℓ

}

.

Then, the pre-activation of any node at the (ℓ+ 1)th layer can be expressed as:

z̃
(ℓ+1)
i =

∑

s̄(Qℓ)∈S̄(Qℓ)

˜̃
´
s̄(Qℓ),i

cos
(

ïΩ¦
T s̄

(Qℓ), rð+ ˜̃
ϕ
s̄(Qℓ)

)

,

since the sum of sines/cosines with the same frequency only result in a sine/cosine with the same frequency but with a

modified phase and amplitude. Hence, after applying the activation function, the output of the ith node at the (ℓ+ 1)th layer

can be written as:

z
(ℓ+1)
i = Ä(ℓ+1)

(

z̃
(ℓ+1)
i

)

=

Q
∑

q=0

³q





∑

s̄(Qℓ)∈S̄(Qℓ)

˜̃
´
s̄(Qℓ),i

cos
(

ïΩ¦
T s̄

(Qℓ), rð+ ˜̃
ϕ
s̄(Qℓ)

)





q

.

By using Lemma A.4, we have:





∑

s̄(Qℓ)∈S̄(Qℓ)

˜̃
´
s̄(Qℓ),i

cos
(

ïΩ¦
T s̄

(Qℓ), rð+ ˜̃
ϕ
s̄(Qℓ)

)





q

=
∑

s̄(qQℓ)∈S̄(qQℓ)

´′
s̄(qQℓ),i

cos
(

ïΩ¦
T s̄

(qQℓ), rð+ ϕ′
s̄(qQℓ)

)

,

where S̄(qQℓ) =

{

[

s̄
(qQℓ)
1 , · · · , s̄

(qQℓ)
T

]¦
∣

∣

∣

∣

s̄
(qQℓ)
t ∈ Z '

∑T

t=1 |s̄
(qQℓ)
t | f qQℓ

}

.

Now, let us use the above result to complete the proof of the inductive step. In particular, we can now express z
(ℓ+1)
i as:

z
(ℓ+1)
i =

Q
∑

q=0

³q

∑

s̄(qQℓ)∈S̄(qQℓ)

´′
s̄(qQℓ),i

cos
(

ïΩ¦
T s̄

(qQℓ), rð+ ϕ′
s̄(qQℓ)

)

=
∑

s′∈S′

´′′
s′,i sin

(

ïΩ¦
T s

′, rð+ ϕ′′
s′,i

)

,

where

S ′ :=

Q
⋃

q=1

S̄(qQℓ) = S̄(QQℓ) = S̄(Qℓ+1) =

{

[

s̄
(Qℓ+1)
1 , · · · , s̄

(Qℓ+1)
T

]¦
∣

∣

∣

∣

∣

s̄
(Qℓ+1)
t ∈ Z '

T
∑

t=1

|s̄
(Qℓ+1)
t | f Qℓ+1

}

.

This sequence of inclusions concludes the proof of induction. Thus, considering µ(r) = sin(ΩT r + φT ), the INR

architecture of the form (3) can only represent functions of the form:

fΘ(r) =
∑

s∈ST

cs sin
(

ïΩ¦
T s, rð+ ϕs

)

,

where ST =
{

[s1, s2, . . . , sT ]
¦
∣

∣

∣ st ∈ Z,
∑T

t=1|st| f QL−1
}

.

A.7. Proof of the connection between the expressive power of INRs and certain period-2 functions.

Proof. As we previously mentioned, interchanging sines with cosines only affects the phase term, we can rewrite the

positional encoding in (5) as

µ(r) =

[

sin(Ωr)
cos(Ωr)

]

=

[

sin(Ωr)
sin(Ωr + Ã

212T×1)

]

= sin(Ω̃r + φ),
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where Ω̃ =
[

ΩT ΩT
]T

∈ R
4T×2, and φ =

[

02T×1
T Ã

212T×1
T
]T

∈ R
4T×1. We use the same architecture of the form (3).

Directly using the result of Theorem 4.1, the expressive power of this architecture is of the form:

fΘ(r) =
∑

s′∈S′
T

cs′ sin
(

ïΩ̃¦s′, rð+ ϕs′

)

,

where

S ′
T =

{

[s′1, s
′
2, . . . , s

′
4T ]

¦

∣

∣

∣

∣

∣

s′t ∈ Z,

4T
∑

t=1

|s′t| f QL−1

}

.

Using the Trigonometric Sum and Difference Formulas, we can rewrite the above as:

fΘ(r) =
∑

s′∈S′
T

cs′ sin
(

ïΩ̃¦s′, rð+ ϕs′

)

=
∑

s′∈S′
T

cs′ cos (ϕs′) sin
(

ïΩ̃¦s′, rð
)

+ cs′ sin (ϕs′) cos
(

ïΩ̃¦s′, rð
)

=
∑

s′∈S′
T

ds′ sin
(

ïΩ̃¦s′, rð
)

+ fs′ cos
(

ïΩ̃¦s′, rð
)

.

The inner product ïΩ̃¦s′, rð, where r = [x, y]¦, can be expressed as a linear combination of the corresponding components,

involving coordinate x and y scaled by the respective elements of Ω̃¦s′. Then, we have

fΘ(r) =
∑

|i|+|j|fN,i,j∈Z

Di,j sin (Ã(ix+ jy)) + Fi,j cos (Ã(ix+ jy)) , (19)

where Di,j , Fi,j are some constants with respect to i, j, and N = O(2T−1QL−1). This can be easily verified using the idea

of binary representation, since the frequency matrix Ω only contains coordinate-wise frequencies 2tÃ, t = 0, . . . , T − 1.

Hence, as the layer of MLPs/INRs goes to infinity, i.e. L→ ∞, we have fΘ(r) approaching to (7).

B. Proof of Theorem 4.5

B.1. Notations and Definitions

Consider an array snapshot containing K targets with azimuth angle ¹k and elevation angle ϕk (k = 1, · · · ,K). Let

[0, U1]× [0, U2] represent the antenna array response field with bounded domain positioned in the x− y plane, consider a

general case of an uniform sampling grid of dimensions M1 ×M2, with spacing d1 = U1

M1−1 f ¼
2 and d2 = U2

M2−1 f ¼
2 .

According to (2), the (m1,m2) th element of the response with respect to K targets in absence of noise can be written as

ym1,m2
=

K
∑

k=1

xke
j 2Ã

¼
((m1−1)d1 sinϕk cos ¹k+(m2−1)d2 sinϕk sin ¹k)

for 1 f m1 fM1 and 1 f m2 fM2. Notably, when d1 = d2 = ¼
2 , the sampling pattern aligns with the Nyquist sampling.

Let Y = [ym1,m2 ]1fm1fM1,1fm2fM2 ∈ C
M1×M2 be the response matrix with entries as the antenna array response defined

in (8).

Given Y = [ym1,m2 ] ∈ C
M1×M2 for 1 f m1 fM1, 1 f m2 fM2, a Block Hankel matrix of Y can be constructed as:

HN1,N2(Y) =











HN2(y1) HN2(y2) · · · HN2(yM1−N1+1)
HN2(y2) HN2(y3) · · · HN2(yM1−N1+2)

...
...

. . .
...

HN2
(yN1

) HN2
(yN1+1) · · · HN2

(yM1
)











,
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where HN2
(ym) is defined as:

HN2
(ym) =











ym,1 ym,2 · · · ym,M2−N2+1

ym,2 ym,3 · · · ym,M2−N2+2

...
...

. . .
...

ym,N2
ym,N2+1 · · · ym,M2











.

A block Hankel matrix can also be constructed along the column direction, which is defined as:

H̃Ñ1,Ñ2
(Y) =













H̃Ñ2
(y(1)) H̃Ñ2

(y(2)) · · · H̃Ñ2
(y(M2−Ñ1+1))

H̃Ñ2
(y(2)) H̃Ñ2

(y(3)) · · · H̃Ñ2
(y(M2−Ñ1+2))

...
...

. . .
...

H̃Ñ2
(y(Ñ1)) H̃Ñ2

(y(Ñ1+1)) · · · H̃Ñ2
(y(M2))













,

where H̃Ñ2
(y(m)) is defined as:

H̃Ñ2
(y(m)) =











y1,m y2,m · · · yM1−Ñ2+1,m

y2,m y3,m · · · yM1−Ñ2+2,m
...

...
. . .

...

yÑ2,m
yÑ2+1,m · · · yM1,m











.

Note that H̃N2,N1
(Y ¦) = HN1,N2

(Y ). Moreover, we have rank(HN1,N2
(Y)) = rank(H̃Ñ1,Ñ2

(Y)) based on the condi-

tions in Lemma B.1.

For the sake of clarity, we define

S =

[

IK×K

0K

]

∈ R
(K+1)×K , b =

[

0K

1

]

∈ R
(K+1)×1.

The matrices S and b are column selection matrices, selecting the first K columns and the last column, respectively.

B.2. Lemma B.1, Lemma B.2, Lemma B.3 and their Proofs

Lemma B.1. For the Block Hankel matrix in Definition 4.3, if K f N1 fM1 −K + 1 and K f N2 fM2 −K + 1, then

we have rank(HN1,N2
(Y)) = K, and the first K columns of HN1,N2

(Y) serve as a basis of R(HN1,N2
(Y)). Similarly,

if K f Ñ1 f M2 −K + 1 and K f Ñ2 f M1 −K + 1, we have rank(H̃Ñ1,Ñ2
(Y)) = K, and the first K columns of

H̃Ñ1,Ñ2
(Y) serve as a basis of R(H̃Ñ1,Ñ2

(Y)).

Proof. Proof followed by (Hua, 1992).

Lemma B.2. For Hankel matrix HN2(ym) (1 f m fM1), ifK f N2 fM2−K+1, then rank(HN2(ym)) = K, and the

first K columns of HN2
(ym) serve as a basis of R(HN2

(ym)). Similarly, for Hankel matrix H̃Ñ2
(y(m)) (1 f m fM2), if

K f Ñ2 fM1−K+1, rank(H̃Ñ2
(y(m))) = K, and the firstK columns of H̃Ñ2

(y(m)) serve as a basis of R(H̃Ñ2
(y(m))).

Proof. We will prove the statement for HN2(ym), while the proof for H̃Ñ2
(y(m)) follows the same way therefore omitted

here. According to (8), we have

ym =











1 1 · · · 1

ej
2Ã
¼

d1 sinϕ1 sin ¹1 ej
2Ã
¼

d1 sinϕ2 sin ¹2 · · · ej
2Ã
¼

d1 sinϕK sin ¹K

...
...

. . .
...

ej
2Ã
¼

(M2−1)d1 sinϕ1 sin ¹1 ej
2Ã
¼

(M2−1)d1 sinϕ2 sin ¹2 · · · ej
2Ã
¼

(M2−1)d1 sinϕK sin ¹K





















x1e
j 2Ã

¼
(m−1)d1 sinϕ1 cos ¹1

x2e
j 2Ã

¼
(m−1)d1 sinϕ2 cos ¹2

...

xKe
j 2Ã

¼
(m−1)d1 sinϕK cos ¹K











= AM2
(θ,φ)sm.
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It can be shown that HN2
(ym) admits a Vandermonde decomposition

HN2(ym) = AN2(θ,φ)diag(sm)(AM2−N2+1(θ,φ))
T ,

where AN2(θ,φ) and AM2−N2+1(θ,φ) are both Vandermonde matrix. It is easy to verify that if K f N2 fM2 −K + 1,

rank(HN2
(ym)) = K. And the first K columns of HN2

(ym) have the form AN2
(θ,φ)diag(sm)(AK(θ,φ))T , which can

be verified to be rank-K due to the Vandermonde structure. Thus, the first K columns form a linearly independent set,

therefore serve as a basis for R(HN2
(ym)).

Lemma B.3. Consider Hankel matrix HM2−K(ym) (1 f m fM1) generated using (8), there exists a unique m1 ∈ C
K

such that
M1
∑

m=1

∥HM2−K(ym)Sm1 −HM2−K(ym)b∥2 = 0. (20)

Similarly, consider Hankel matrix H̃M1−K(y(m)) (1 f m fM2) generated using (8), there exists a unique m2 ∈ C
K such

that
M2
∑

m=1

∥H̃M1−K(y(m))Sm2 − H̃M1−K(y(m))b∥2 = 0. (21)

Proof. We will prove the statement for HM2−K(ym) (1 f m fM1), while the proof for H̃M1−K(y(m)) follows the same

way therefore omitted here. According to Lemma B.2, we have rank(HM2−K(ym)) = K where its first K columns serve

as a basis of R(HM2−K(ym)). This means there exists α = [³1, · · · , ³K ]T such that HM2−K(ym)Sα = HM2−K(ym)b.

Now let us analyze whether α depend on m. Using Vandermonde decomposition and explicit form of least squares solution,

we have
HM2−K(ym)S = AM2−K(θ,φ)diag(sm)(AK(θ,φ))T ,

HM2−K(ym)b = AM2−K(θ,φ)diag(sm)







ej
2Ã
¼

Kd1 sinϕ1 sin ¹1

...

ej
2Ã
¼

Kd1 sinϕK sin ¹K






,

α =
(

(HM2−K(ym)S)H(HM2−K(ym)S)
)−1

(HM2−K(ym)S)HHM2−K(ym)b

= (AT
K(θ,φ))−1







ej
2Ã
¼

Kd1 sinϕ1 sin ¹1

...

ej
2Ã
¼

Kd1 sinϕK sin ¹K






.

And we can see that α ∈ C
K does not depend onm but only depend on θ and φ. This means for Hankel matrix HM2−K(ym)

(1 f m fM1), there exists a unique m1 ∈ C
K such that

M1
∑

m=1

∥HM2−K(ym)Sm1 −HM2−K(ym)b∥2 = 0.

B.3. Main Proof of Theorem 4.5

Proof. We will prove the statement for HN1,N2
(Y), while the proof for H̃Ñ1,Ñ2

(Y) follows the same way therefore omitted

here. Let N1 =M1 −K +1 and N2 =M2 −K, consider the matrix HM1−K+1,M2−K(Y). According to Lemma B.1, we

have rank(HM1−K+1,M2−K(Y)) = K, and its first K columns

HM1−K+1,M2−K(Y)S =











HM2−K(y1)S
HM2−K(y2)S

...

HM2−K(yM1−K+1)S










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are linear independent. If we keep appending columns at the bottom of HM1−K+1,M2−K(Y)S, the columns of the resulting

matrix

HM1,M2−K(Y)S =





















HM2−K(y1)S
...

HM2−K(yM1−K+1)S
HM2−K(yM1−K+2)S

...

HM2−K(yM1
)S





















is still linear independent. Using Lemma B.2 and Lemma B.3, if we add the K + 1-th column at the right of the above

matrix, the resulting matrix HM1,M2−K(Y) is still rank-K with its first K columns serve as a basis of R(HM1,M2−K(Y)).
Thus, there exists a unique global optimizer mo

1 such that

∥HM1,M2−K(Y)Smo
1 −HM1,M2−K(Y)b∥2 = 0.

C. Further Experimental Results and Details

C.1. Experimental Setup

C.1.1. SIMULATION DATA GENERATION

For the signal model in (2), we assume the reflection coefficients follow a circularly symmetric complex Gaussian distribution,

given by xk ∼ CN (0, Ã2
x) with Ãx = 1 for k = 1, . . . ,K. The additive noise is modeled as ni,j ∼ CN (0, Ã2

n), where Ãn is

determined by the specified SNR levels. The SNR is defined as:

SNRdB = 10 log10
Px

Pn

= 10 log10
Ã2
x

Ã2
n

.

For tasks with different sampling configurations, we use the following selected indices for sub-sampling:

• 6× 6: Sx = Sy = {0, 1, 2, 3, 11, 19},

• 8× 8: Sx = Sy = {0, 1, 2, 3, 4, 9, 14, 19},

• 10× 10: Sx = Sy = {0, 1, 2, 3, 4, 7, 10, 13, 16, 19}.

Remark. When the index sets are mapped to the world coordinate system, each discrete index (i, j) corresponds to the

physical position

rij =
(

i ¼
2 , j

¼
2

)

,

where ¼ is the wavelength.

For angle resolution experiments, we define the azimuth and elevation angles of two targets as [10, 20] and [10+∆, 20+∆]
degrees, where ∆ represents the angular separation, which varies from 3 to 10 degrees. For the other tasks, the azimuth and

elevation angles of each target are randomly sampled from a uniform distribution over [−60, 60] degrees. Each experiment

is conducted with N = 50 Monte-Carlo trails.

C.1.2. EVALUATION METRICS

The Normalized Root Mean Square Error (NRMSE) is defined as:

NRMSE =
1

N

N
∑

n=1

∥Ŷn − Yn∥F
∥Yn∥F

,

where Ŷ and Y denote the predicted array response and the ground truth full virtual array, respectively, and ∥ · ∥F represents

the Frobenius norm.
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The Resolution Probability is defined as:

RP =
1

N

N
∑

n=1

1{Ea'Ee},with

Ea =

{

¹̂na,1 ∈

[

¹a,1 −
∆

2
, ¹a,1 +

∆

2

]

, ¹̂na,2 ∈

[

¹a,2 −
∆

2
, ¹a,2 +

∆

2

]}

,

Ee =

{

¹̂ne,1 ∈

[

¹e,1 −
∆

2
, ¹e,1 +

∆

2

]

, ¹̂ne,2 ∈

[

¹e,2 −
∆

2
, ¹e,2 +

∆

2

]}

,

where θ̂n
i = [¹̂na,i, ¹̂

n
e,i], i = 1, 2 denote the prediction azimuth and elevation angles for each target in n-th Monte-Carlo

trail, θi = [¹a,i, ¹e,i], i = 1, 2 represent the ground truth azimuth and elevation angles, 1{·} is the indicator function, and

separation ∆
△
= ¹a,2 − ¹a,1 = ¹e,2 − ¹e,1.

C.1.3. OPTIMIZATION AND HYPERPARAMETERS

We optimize the loss function defined in (11) through a two-stage training process. In the initial warm-up stage, we set ¼ = 0
and optimize using the Adam optimizer with ´ = (0.9, 0.999) and a weight decay of 10−4. Letting Θ0 = argminΘ Ld, we

use the obtained parameters as the initialization for the next stage. In the adaptation/training stage, we optimize Θ, m1, and

m2 using Adam with the same configuration as in the warm-up stage. In both the simulation and real-world experiments,

we normalized the input coordinates to the range (−1, 1].

We provide detail hyperparameter settings for both simulation and real-world experiments. The model architecture remains

consistent with that described in the Experiments section. For simulation tasks, we use a learning rate of 10−4 and train for

5, 000 epochs in the warm-up stage. In the adaptation stage, we set ¼ = 0.5, lrΘ = 10−3, lrm1,m2
= 3× 10−3, and train

for 25, 000 epochs, with K max set to the exact number of targets for each scenario.

For real-world experiments, we adopt a learning rate of 10−4 and train for 10, 000 epochs in the warm-up stage. In the

adaptation stage, we set ¼ = 1, lrΘ = 10−3, lrm1,m2
= 3× 10−3, and train for 50, 000 epochs. Here, we set K max = 4

as an upper bound on the number of targets in each range bin, as typically, the number of targets within a single range bin is

very small (Sun et al., 2020).

C.2. Implementation Details and Analysis of Baseline Methods

EMaC. We adopt equation (9) from the original paper (Chen & Chi, 2013) as the optimization problem, which can be

solved using CVX (CVX Research, 2012; Grant & Boyd, 2008) toolbox.

SIREN. We adopt the same architecture and recommended hyperparameters from the original paper (Sitzmann et al., 2020).

For a fair comparison, we match NEAR’s network size, using a depth of L = 4 and a hidden layer width of 256.

NeRF2. We adopt the same architecture and recommended hyperparameters from the original paper (Zhao et al., 2023).

To match our experimental setup, the location of TX is fixed (co-located with RX), and the unknown antenna response

is inferred based on their spatial coordinates. The loss function is calculated as the mean-squared error (MSE) between

predicted array responses and observed array response, rather than using RSSI values.

Remark. The inferior performance of NeRF2 is attributed to some important distinctions between radiance-field reconstruc-

tion and our method, which are listed below:

• Our setting uses far fewer measurements (see below) in the form of a antenna array response, compared to NeRF2.

This renders measurement-heavy methods like NeRF2 somewhat inferior in our settings. Hence we need to heavily

utilize the underlying wave propagation model and the harmonic structure of measurements received at antenna arrays,

in order to successfully regularize the problem with so few measurements. This is a major contribution of our work

which sets us apart from direct use of NeRF2.

• In fact, NEAR targets a different objective than NeRF2. Our approach emphasizes more on the (super-resolution)

localization of the targets, while NeRF2 cares more about the physical property of all objects in a 3D scene in order

to model signal propagation. This also serves a crucial reason why we opt to directly predict the response from the

antenna coordinates rather than modeling all the voxels’ properties as a continuous volumetric function.
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• As explained earlier, NeRF2 requires a large set of measurements for training. According to (Zhao et al., 2023), it uses

around 6000× 21 measurements and 80%/20% for training/testing splitting, while we only use a sparse set of 8× 8
measurements for training. Under the same setting of training, NEAR uses less than half of the training time of NeRF2

due to our proposed regularization rather than the ray tracing strategy, which is well known for its heavy computational

cost.

C.3. Additional Details on Radar Data Processing

To sense the environment, the system emits a sequence of waveforms, commonly referred to as chirp signals, through the

Tx within a short time interval. These signals propagate, interact with objects in the environment, and are subsequently

reflected back to be captured by the Rx. The received signals are then processed to generate an intermediate frequency (IF)

signal by mixing the transmitted and received signals from each Tx-Rx antenna pair. This mixed signal is then sampled by

an ADC to generate discrete samples for each chirp. By aggregating ADC samples across all chirps and Tx-Rx antenna

pairs, the sensing system constructs a three-dimensional (3D) complex data cube for each frame. This data cube is organized

into three dimensions: fast time, slow time, and channel, which correspond to range, range rate, and angle, respectively

(Kramer et al., 2022).

To process the acquired ADC samples, fourier techniques are applied along the fast time and slow time dimensions to

extract detailed information. The first range processing is performed across the fast time axis to isolate objects at different

distances into distinct frequency responses within range bins defined by hardware specifications. Subsequently, a Doppler

processing along the slow time axis decodes phase variances—Doppler bins—to derive relative radial velocities, producing

a range-Doppler (RD) map (Ding et al., 2024). An additional CFAR target detector is usually employed to detect peaks that

stand out prominently from their surroundings in the range-Doppler velocity heat-map by comparing local signal power to

an adaptive threshold. DOA processing is then performed only for the peaks detected by the CFAR detector.

C.4. More Experimental Results

Some more experimental results of target localization are shown below.

Figure 6. Point cloud visualizations for target localization with K = 1 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 7. Point cloud visualizations for target localization with K = 1 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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Figure 8. Point cloud visualizations for target localization with K = 2 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 9. Point cloud visualizations for target localization with K = 2 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 10. Point cloud visualizations for target localization with K = 3 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 11. Point cloud visualizations for target localization with K = 3 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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Figure 12. Point cloud visualizations for target localization with K = 4 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 13. Point cloud visualizations for target localization with K = 4 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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