NotebookOS: A Replicated Notebook Platform for
Interactive Training with On-Demand GPUs

Benjamin Carver
George Mason University
Fairfax, Virginia, USA
bcarver2@gmu.edu

Kanak Mahadik
Adobe Inc
San Jose, California, USA
mahadik@adobe.com

Abstract

Interactive notebook programming is universal in modern
ML and Al workflows, with interactive deep learning train-
ing (IDLT) emerging as a dominant use case. To ensure re-
sponsiveness, platforms like Jupyter and Colab reserve GPUs
for long-running notebook sessions, despite their intermit-
tent and sporadic GPU usage, leading to extremely low GPU
utilization and prohibitively high costs. In this paper, we
introduce NotebookOS, a GPU-efficient notebook platform
tailored for the unique requirements of IDLT. NotebookOS
employs replicated notebook kernels with Raft-synchronized
replicas distributed across GPU servers. To optimize GPU
utilization, NotebookOS oversubscribes server resources,
leveraging high inter-arrival times in IDLT workloads, and
allocates GPUs only during active cell execution. It also sup-
ports replica migration and automatic cluster scaling under
high load. Altogether, this design enables interactive training
with minimal delay. In evaluation on production workloads,
NotebookOS saved over 1,187 GPU hours in 17.5 hours of
real-world IDLT, while significantly improving interactivity.

CCS Concepts: « Computer systems organization —
Cloud computing; - Software and its engineering —
Scheduling; - Computing methodologies — Artificial
intelligence.

Keywords: Jupyter Notebook; Interactive Deep Learning
Training; GPU Scheduling; Systems for Al

ACM Reference Format:
Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Ma-
hadik, and Yue Cheng. 2026. NotebookOS: A Replicated Notebook

*Corresponding author

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS °26, Pittsburgh, PA, USA

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2165-6/2026/03
https://doi.org/10.1145/3760250.3762230

Jingyuan Zhang
George Mason University
Fairfax, Virginia, USA
jzhang33@gmu.edu

Haoliang Wang
Adobe Research
San Jose, California, USA
hawang@adobe.com

Yue Cheng*
University of Virginia
Charlottesville, Virginia, USA
mrz7dp@virginia.edu

Platform for Interactive Training with On-Demand GPUs. In Pro-
ceedings of the 31st ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
1 (ASPLOS °26), March 22-26, 2026, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 21 pages. https://doi.org/10.1145/3760250.3762230

1 Introduction

Interactive notebook programming is universal in modern
ML (machine learning) and Al (artificial intelligence) work-
flows. Software such as Jupyter Notebook [58] and Google
Colab [17] provides a user-friendly, interactive, web-based
programming interface, and therefore, they have become the
de facto interface for interactive data-driven programming,
e.g., data analytics, data science, and AI/ML, spanning almost
every science and engineering domain. Take Jupyter Note-
book as an example. To date, Jupyter Notebook has been used
by millions of users world wide [29] in education [51, 52], sci-
entific research [20, 73], and collaborations [18, 59]. A series
of industry initiatives [11, 75, 86], workshops [48, 49], and a
vast array of resources, projects, and libraries [5] underscore
the growing demand for using Notebooks in data-driven
jobs and tasks. In addition, all major cloud providers, along
with an increasing number of startups, now offer commercial
Notebook services [2, 31, 47, 63, 67, 71, 91, 92].
Traditionally, GPU-based, batch deep learning training
(BDLT) features batch-style, long-running workloads [35, 44,
66, 87, 104, 106] that require uninterrupted access to GPU re-
sources over long periods of time, such as large-scale model
training. These traditional systems focus on maximizing
throughput and job-completion time (JCT), often prioritiz-
ing long-running tasks that can afford latency and resource
contention. In contrast, notebook-oriented, interactive deep
learning training (IDLT) workloads—which consist of tasks
like model and program debugging, dynamic/iterative model
adjustments, hyperparameter tuning—demand a different set
of performance characteristics. This set includes low latency,
responsiveness, high interactivity, and efficient management
of many short-running tasks. The short-lived tasks that dom-
inate IDLT workloads are executed within the context of
long-lived user sessions, such as Jupyter Notebook sessions.

https://orcid.org/0000-0002-1574-9300
https://orcid.org/0000-0001-9581-1807
https://orcid.org/0000-0003-2963-8721
https://orcid.org/0009-0007-5176-662X
https://orcid.org/0000-0003-1695-4864
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3760250.3762230
https://doi.org/10.1145/3760250.3762230

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

To guarantee interactivity, today’s notebook services typi-
cally provision and reserve GPU resources during the entire
lifetime of a Notebook session. Although these sessions are
long-running, cell executions are fragmented: IDLT work-
loads exhibit intermittent, sporadic, and often transient GPU
usage. Users simply spend more time developing a notebook
than they do executing the notebook’s tasks. As a result,
notebook sessions spend a majority of their time not using
the reserved GPUs, leading to extremely low GPU utilization
and prohibitively high cost.

We build NotebookOS, a first-of-its-kind notebook platform
designed for the unique requirements of IDLT. NotebookOS
is distinct in both purpose and design from traditional GPU
cluster computing systems [35, 43, 66, 72, 88, 106, 107]. Note-
bookOS prioritizes interactivity, low response time, and effi-
cient management of numerous short-lived GPU tasks. By
addressing these unique needs of users actively working in
notebooks, NotebookOS realizes a novel notebook platform
that uses fine-grained, flexible GPU allocation to effectively
meet the demands of short, dynamic GPU tasks.

At NotebookOS’s core is a collection of novel techniques
and design tenets that enable the efficient support of IDLT
workloads. NotebookOS uses a pluggable notebook task
scheduling and placement mechanism, whose default pol-
icy is designed to maximize interactivity. Specifically, Note-
bookOS uses a replicated kernel design, where each note-
book kernel is replicated across multiple GPU servers. Any
replica can execute CPU or GPU tasks. Small kernel state
is synchronized across replicas using Raft [83], while large
objects are asynchronously replicated via a distributed data
store. This design decouples GPU allocation from notebook
sessions: GPUs are dynamically allocated and assigned to
one of the replicas only during code execution, maximizing
the chances of immediate training upon code submission.
To further improve GPU utilization, NotebookOS oversub-
scribes GPU resources on each server, leveraging the high
task inter-arrival time (IAT) observed in IDLT workloads.
This maximizes kernel availability and minimizes wait times
during user code submission.

In summary, this paper makes the following contributions:

1. Characterization of an important and under-studied
class of DL workloads called IDLT.

2. Design and implementation of NotebookOS tailored
for the unique requirements of notebook IDLT.

3. Comprehensive evaluation of NotebookOS using pro-
totype and simulation on production IDLT workloads.

NotebookOS aims to pave the way for more efficient Al
compute via on-demand GPUs. NotebookOS is available at:
https://github.com/ds2-lab/NotebookOS.

2 Background and Motivation

This section presents an overview of relevant background
and a workload analysis that motivates the need for a new
platform tailored for notebook IDLT workloads.

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

Persistent User Session
e C I<—> S)Notebook
r e File
< —
s < =1 oo ,u
- - @ pyter
Client websockets Jsupyter Kernel
J Notebook erver S50) R d
upyter Noteboo Ggfﬁ;\)/e

Figure 1. Client-server Jupyter Notebook architecture.

2.1 Jupyter Notebook

Jupyter Notebook [58] is an open-source, web-based interac-
tive development environment (IDE) designed for interactive
programming. Jupyter Notebook is most commonly used
with Python and can be used with other languages [46], such
as R [55] and Julia [54]. Jupyter Notebook has become the
de facto development environment for data-driven program-
ming: ML/AI, data science, and data analytics. This is due in
large part to its versatility, ease-of-use, and interactivity.
Terminology. Notebooks are interactive documents that
combine code, text for explaining the code, and visualizations
for displaying the code’s inputs and outputs. These elements
are contained within the cells of the notebook, which are the
basic “units” of a notebook. When a user runs code in some
cell(s), the code is sent to a separate process, called a kernel,
which resides either on the user’s local computer or on a re-
mote server. The kernel executes the code and returns results
back to the notebook document where they are displayed in
the cell(s). We refer to this process as a cell task execution. A
notebook session is a persistent, working instance of a Jupyter
Notebook environment where the state of variables, imports,
and other execution context are maintained and reused by
the associated kernel. Finally, we define an IDLT task as a cell
task execution of GPU operations—such as model training
and inference—during an interactive workload involving de-
bugging and testing, initial model design, and other similar
activities. See Figure 1 for an illustration.
Notebook-as-a-Service In recent years, Jupyter Notebook-
as-a-Service (NaaS) platforms have emerged, providing fully-
managed, configurable, and scalable notebook environments.
NaaS enables users to focus on coding, analysis, and research
by abstracting infrastructure complexities such as server
management and resource scaling. Popular Jupyter-based
NaaS platforms include Google Colab [17], Amazon Sage-
Maker Studio [8], and CoCalc [16].

2.2 Interactive Deep Learning Training

IDLT is a popular type of applications performed using
Jupyter Notebook. Examples of IDLT include interactive
model debugging, exploratory data analysis, hyperparameter
tuning, and fast iteration of ideas, among others. Notebook-
based IDLT is typically deployed and executed on large-scale
GPU clusters [8, 9, 17, 71] and demands high interactivi-
ty/low response time for optimal performance.

IDLT workloads exhibit intermittent and highly variable
GPU usage patterns. In order to guarantee high interactiv-
ity, modern NaaS$ platforms typically provision and reserve

https://github.com/ds2-lab/NotebookOS

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

1.0 1.0 1.00 3.0k --- Allocatable GPUs . is:z
0.75 0.75 0.75 r”/ 2 k| st 20
w S ' g 15k%
8 0.5 0.5 p 0.501 % M\ 10k3
— Adobe Trace £ —— Adobe Trace | o, . . -~ Allocatable CPUs
0.25 ——arelnctl 0.25 ;}f - Aibabazos0 | 0.25{1 —— GPU% ULl 1Ok ™| Diea s 5k
0 ==== Philly Trace 0 f" === Philly Trace O 00 ' Frac. GPU Utilized 0 AL 0
10° 102 10% 10° 109 102 10% 10° @9 25 50 75 100 0 15 30 45 60 75 90

Duration (Seconds)
(a) Task duration CDF.

Inter-Arrival Time (Seconds)
(b) Inter-arrival time CDF.

(c) GPU util. CDF (AdobeTrace).

Days
(d) GPU & CPU usage (AdobeTrace).

Percent

Figure 2. Workload characteristics of three representative GPU cluster traces.

GPU resources for the entire lifetime of the notebook session
(Figure 1). As a result, notebook sessions tend to spend a
majority of their lifetime not using their reserved GPU re-
sources: while users are debugging their code or performing
other similar tasks, the GPUs are idle, and thus resources
are wasted. This pattern ultimately results in extremely low
GPU utilization and prohibitively high monetary costs.

2.3 Real-World IDLT Workload Analysis

Real-world IDLT workloads exhibit distinct behaviors com-
pared to traditional long-running training jobs. In order to
better understand these workloads and their requirements,
we present a workload analysis of the production notebook
IDLT traces collected from an Adobe internal research clus-
ter [1]. Adobe research cluster hosts containerized notebook
sessions within AWS EC2 GPU virtual machine (VM) in-
stances. Adobe research cluster also manages the GPU re-
source allocations for the notebook sessions. To deploy a
notebook container, users specify how many GPUs should
be allocated. Once launched, GPUs are bound to the note-
book container, and the user can interact with the back-end
notebook kernel (i.e., an IPython process) via a web-based
Jupyter Notebook interface.

The IDLT traces (AdobeTrace) include 545,467 individual
training events. We focus on a representative subset span-
ning June 1-August 31. The sample granularity of this trace
is 15 seconds.

For context, we compare AdobeTrace with two other popu-
lar, publicly available GPU cluster traces. First, we use the Al-
ibaba GPU Cluster’20 trace [104] (AlibabaTrace), which cap-
tures both training and inference jobs running state-of-the-
art ML algorithms from July to August 2020. Data were col-
lected from a large production cluster with 6,500 GPUs across
1,800 servers. We also include the Philly GPU trace [44]
(PhillyTrace), a 6.6GB representative subset of first-party
deep learning training (DLT) workloads from Microsoft’s
internal Philly clusters. PhillyTrace consists of 117,325 jobs
collected from a cluster of 2,490 GPUs distributed across 552
servers between August 7 — December 22, 2017.

We chose these two traces for comparison because they
represent typical DLT workloads, which are characterized
by long-running training tasks that are scheduled by a batch

scheduler and span several hours. As we show in our analysis,
the workload captured by AdobeTrace differs considerably
from that of PhillyTrace and AlibabaTrace.

2.3.1 Training Task Duration. Figure 2(a) displays a cu-
mulative distribution function (CDF) of the training task
durations, in seconds, of DLT tasks submitted by users to
the Adobe research cluster. The data used to plot the CDF
were taken from the June, July, and August 2021 trace dataset.
50% of user-submitted tasks are 2 minutes or less, while 75%
are 5 minutes or less. 90% of training tasks are 17 minutes
or less, 95% are 36 minutes or less, and the duration of the
99*h percentile training task is 182 minutes (i.e., 3.03 hours).
Based on this, it is clear that an overwhelming majority of
training tasks are short-lived.

The AdobeTrace workload consists of a significantly high
fraction of short training tasks compared to both PhillyTrace
and AlibabaTrace. Specifically, the 50" percentile of task
durations is 120 seconds (2 minutes), 621 seconds (10.35
minutes), and 957 seconds (15.95 minutes) for AdobeTrace,
PhillyTrace, and AlibabaTrace, respectively. This observation
highlights the difference between traditional BDLT work-
loads (i.e., PhillyTrace and AlibabaTrace) and notebook IDLT
workloads (i.e., AdobeTrace). Note that a meaningful com-
parison of task durations less than 15 seconds is impossible
due to the 15-second granularity of AdobeTrace.
Observation 1: IDLT workloads contain a large percentage of
very short tasks—with 75% of tasks completing in 5 minutes or
less—significantly shorter than traditional BDLT workloads.

2.3.2 Training Task Inter-Arrival Time (IAT). Figure
2(b) shows a CDF plot of the IATs of training tasks from
the Adobe research cluster trace. For all three traces, the
IATs were measured within each user session independently,
rather than the cluster-wide IATs of tasks submitted by any
active user session, to ensure a fair comparison. From this
graph, we can see that the 50" percentile of task IATs is
300 seconds (5 minutes), 44 seconds, and 38 seconds for
AdobeTrace, PhillyTrace, and AlibabaTrace, respectively.
The observed AdobeTrace IATs align with the nature of
IDLT workloads, where users intermittently make small,

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

debugging-like changes to their models or Python code be-
fore submitting a short cell task to test the changes. In par-
ticular, AdobeTrace exhibits significantly longer IATs for
more than 50% of tasks compared to PhillyTrace and Aliba-
baTrace. This is likely due to AdobeTrace users engaging
in more extensive interactive cycles, iteratively testing and
refining their code before each submission, rather than exe-
cuting fully tested, production-ready DLT tasks scheduled
by a batch GPU scheduler.

Observation 2: IDLT tasks are submitted less frequently, with
75% having an IAT of at most 480 seconds (8 minutes), as
users do not submit concurrent tasks and often make iterative
modifications and tests after a task completes.

2.3.3 Cluster GPU Utilization. Figure 2(c) plots two dif-
ferent but related data series whose units are a percentage.
The first series, shown as the solid blue line, is a CDF of clus-
ter GPU utilization, measured every 15 seconds across all
reserved GPUs throughout the trace’s duration. The second,
shown as a dashed orange line, is a CDF of the percentage
of each session’s lifetime during which allocated GPUs were
actively utilized: a 50% value means GPUs were actively
utilized for half of the time that their sessions were active.

One key observation from Figure 2(c) is that the reserved
GPU resources were idle over 81% of the time. Moreover,
nearly 70% of GPUs were completely idle throughout the
entire lifetime of the notebook session to which they were
assigned. (The lifetime of the notebook session begins when
the associated container is provisioned and ends when that
container is terminated.) Between 74% and 75% of user ses-
sions actively used their allocated GPUs at most 5% of the
time, and 90% of sessions only used their allocated GPU
resources at most 31.13% of the time.

Figure 2(d) plots the number of GPUs (and CPUs) that
are actively utilized compared to the number of reserved
GPUs (CPUs). There is a significant gap between the number
of utilized GPUs (CPUs) and the number of reserved GPUs
(CPUs). By the conclusion of the 3-month period, only about
15% of all reserved GPUs are actively utilized.

These results highlight the urgent demand for a fundamen-
tally new approach to notebook IDLT resource management
to address the high degree of wasted resources.
Observation 3: Notebook users often underutilize their allo-
cated GPU resources during IDLT: reserved GPU resources were
idle over 81% of the time.

2.4 Insight and Challenges

Key Insight. IDLT workloads fundamentally differ from
traditional BDLT workloads. This difference arises in task
duration, submission frequency (i.e., IATs), and the need
for user feedback or user input. During conventional BDLT
workloads, ML models are trained over long periods of time—
many hours or even days-with minimal intervention, except
in case of failures [102, 104]. In contrast, a key insight is
that IDLT workloads are characterized by intermittent and

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

low GPU usage patterns. This is because, a user’s Jupyter
Notebook session has GPUs bound to it from the beginning,
even though the user may spend a lot of time doing work
(coding, debugging, etc) that does not require a GPU and only
occasionally executing training tasks that require a GPU.
Challenges. This workload analysis highlights key chal-
lenges that must be addressed to design an efficient system
for supporting notebook-based IDLT workloads.

e C1: Resource Utilization. Modern notebook platforms
typically reserve GPUs, delegating their management to
users [17, 53]. Users must manually request GPUs, CPUs,
and host memory, as well as start and shut down their note-
book sessions. To avoid the hassle of termination, many leave
notebooks idling until the provider reclaims resources [50].
This behavior leads to extremely low GPU utilization, as
discussed in §2.3.

o C2: Interactivity. Jupyter Notebook offers a user-friendly,
interactive interface for development, execution, and debug-
ging within a web browser. Some Naa$S providers, like Azure
Machine Learning [9], link the front-end notebook interface
to a backend batch scheduler. However, this setup introduces
high (container startup and batch queueing) delays, degrad-
ing interactivity and user experience [74, 85].

o C3: Resource Elasticity. Low resource utilization stems
from static GPU over-provisioning and a lack of elastic re-
source management in Naa$S platforms. Adobe research clus-
ter, operating roughly 12k V100 GPUs across 3k p3.16xlarge
EC2 instances, incurs roughly $18.3 million in monthly costs
even with long-term reservation discounts. This high TCO
(total cost of ownership), combined with the extremely low
resource utilization, highlights the urgent need for a GPU-
efficient notebook platform that can flexibly adapt based on
real-time workload requirements.

3 NotebookOS Design

Workload Requirements. We present NotebookOS, a GPU-
efficient notebook platform to address the challenges out-
lined in §2. Traditional GPU cluster schedulers are designed
with long-running GPU-intensive tasks in mind. They often
prioritize job completion time (JCT) [35, 87, 106], through-
put [72], and fairness [66, 72] over responsiveness and inter-
activity in that they allocate GPUs in a way that balances
the competing demands of long-running jobs. Therefore,
they are poorly-suited for notebook IDLT. Whereas slight
delays may have been acceptable before, even short delays
can severely impact the user experience when performing
highly interactive tasks. In NotebookOS, the primary goal is
to provide users with fast GPU access for interactive sessions.
This demands flexible and low-latency resource allocation.
Another requirement is user sessions, which traditional
GPU schedulers overlook. They treat each task as an indepen-
dent request competing for resources. This is a poor match
for notebook IDLT where users typically work within a long-
running, stateful notebook session, incrementally modifying

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

the Python code, and intermittently submitting GPU tasks.
NotebookOS addresses this gap by introducing mechanisms
to efficiently schedule short GPU tasks within an ongoing
session, enabling smarter resource allocation based on real-
time user needs rather than isolated batch jobs.

Design Choices. NotebookOS introduces several novel tech-
niques and design decisions that harmonize between long-
running, stateful notebook sessions and elastic GPU alloca-
tions for short-lived notebook tasks, including:

¢ Distributed Notebook Kernels: NotebookOS adopts
a novel distributed notebook design, where each logical
Jupyter kernel is mapped to a NotebookOS distributed kernel,
each of which consists of N kernel replicas scheduled across
NotebookOS’s GPU server cluster. This distributed kernel is
designed to oversubscribe the under-utilized GPU resources.
Its benefit is twofold. (1) Replicated kernels increase the like-
lihood that at least one replica will have immediate access to
GPU resources upon code submission (C2). (2) Significantly
improved resource utilization via GPU oversubscription (C1).
o State Machine Replication: NotebookOS’s kernel repli-
cas use the Raft consensus protocol [83] for leader elections
and State Machine Replication (SMR). SMR enables efficient,
transparent CPU state synchronization between the kernel
replicas that occurs off the critical path. This design is moti-
vated by the observation that interactive Python applications
frequently use global variables to store intermediate state.
These variables can be synchronized using SMR to ensure
state changes are seen by all kernel replicas (C2).

¢ Dynamic GPU Binding: NotebookOS does not exclu-
sively commit GPU resources to notebook kernel replica
containers long-term. Instead, GPUs are exclusively allo-
cated to kernel replica containers only while user-submitted
cell execution tasks are actively-running. Once a task com-
pletes, the GPUs are released, enabling them to be allocated
to another co-located kernel replica. This approach allows
NotebookOS to adapt to fluctuating resource demands, allo-
cating GPUs based on a session’s current needs rather than
its peak requirements. Users performing smaller-scale, less
demanding tasks can request fewer GPUs, improving fine-
grained resource efficiency (C1 and C3).

e Transparent GPU State Checkpointing: Instead of per-
forming SMR, NotebookOS checkpoints large GPU state ob-
jects (model parameters and training datasets) asynchronously
and separately to a distributed storage system, anticipating
that the destination replica may become active (C2).

3.1 NotebookOS Overview

Figure 3 depicts the architecture of NotebookOS. NotebookOS
consists of five core components, described below.

NotebookOS Clients. Like traditional Jupyter environ-
ments, NotebookOS clients interface with NotebookOS by
sending notebook operations via HT'TP or WebSocket mes-
sages to NotebookOS’s Jupyter Server (Step @ of Figure 3).

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Distributed Data Store
Checkpoint large objects / GPU state
(|

External Clients

________________________ Local Standby

\[Jupvter [Gotang |[35 | Python |! Scheduler [~ Kol Agplica
1| Notebook Clients || Clients || Clients |,

1 - o2 o —r e |

; e (& : Stand

f A Kernel Replica
I T —— =~ AST &,

Run cell / submit code for execution

Launch/mig;
forward messages

Jupyter Server Global
Scheduler

Forward messages

y

seoljdal g Jo pasodwiod |auidy T

Figure 3. Architecture overview of NotebookOS.

Jupyter Server. The Jupyter Server provides the core ser-
vices, serving APIs and REST endpoints used by Jupyter web
apps like Jupyter Notebook [58] and JupyterLab [57].
Global Scheduler. The Global Scheduler is responsible for
creating distributed kernels and initiating the provisioning of
their kernel replicas (an operation that is delegated to another
component of NotebookOS, the Local Scheduler). It performs
a majority of the book-keeping required by NotebookOS,
including managing the allocation of compute resources (i.e.,
CPUs, host memory, GPUs) to Distributed Kernel replicas,
handling failures, kernel replica migration, and auto-scaling.
Additionally, the Global Scheduler is responsible for rout-
ing messages from Jupyter clients to the appropriate Dis-
tributed Kernel replicas. Each Jupyter message, sent from a
client and forwarded by the Jupyter Server (Step @), con-
tains information such as the unique identifier of the target
kernel. The Global Scheduler inspects this information and
then routes the message to the replicas of the target kernel.
Note that messages are first forwarded to the target kernel
replica’s Local Scheduler (Step €)).
Local Scheduler. NotebookOS deploys a Local Scheduler
on each GPU server. It forwards messages from the Global
Scheduler to the target kernel replica running on the Local
Scheduler’s server. It is also responsible for provisioning and
managing the containers in which the kernel replicas run. It
also ensures proper cleanup upon kernel termination. Upon
receiving a message from the Global Scheduler, the Local
Scheduler routes it to the target kernel replica (Step @).
Distributed Kernel. NotebookOS’s Distributed Kernel con-
sists of three replicas, which use the Raft SMR protocol
to replicate the CPU-memory state of the IPython process
(Step @ and §3.2.4). NotebookOS designs a lightweight ex-
ecutor election protocol to elect a proper replica with suf-
ficient GPU resources for running GPU tasks (Step @ and
§3.2.2). A replication factor of 5 incurs substantially higher
memory, storage, and network cost without delivering sig-
nificant performance benefit, while a replication factor of 2
is unsupported by the Raft protocol.
Distributed Data Store. NotebookOS offloads large object
(e.g., model parameters) storage and replication to a plug-
gable Distributed Data Store (Step @). These objects are
asynchronously replicated when NotebookOS detects GPU
overload and switches to a new executor replica or migrates

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Jupyter Server | start kernel Global
1 Scheduler

start kernel replicas d ni‘i"w%hf ::ﬁ:
register with

Local Scheduler
Local
Kernel Replica (—% Scheduler
9 launch kernel via Docker

Figure 4. Process of creating a new kernel within Note-
bookOS’s Docker Compose and Docker Swarm modes.

Servers

the current one to a different server (§3.2.4). NotebookOS
supports Redis [89], AWS S3 [7], and HDFS [13, 76, 95].

3.2 Distributed Notebook Kernels

3.2.1 Distributed Kernel Creation. As described in §3.1,
NotebookOS provides a customized Kernel Provisioner to
integrate NotebookOS directly with Jupyter. When a user
creates a new Distributed Kernel, the Jupyter Server will
create a new instance of NotebookOS’s Kernel Provisioner,
which issues a StartKernel RPC request to the Global Sched-
uler (see Step @ in Figure 4).

Upon receiving the StartKernel RPC request, the Global
Scheduler identifies three candidate GPU servers to host the

replicas of the new kernel and then issues a StartKernelReplica

RPC request to the Local Scheduler running on each of the
candidate servers (Step @). The Global Scheduler eventually
receives connection information about the new cluster of
kernel replicas from the associated Local Schedulers and
returns this information back to the Jupyter Server, which
indicates that the new kernel was successfully created.

The Global Scheduler begins the process of identifying vi-
able candidate GPU servers by examining the resource request
argument of the StartKernelReplica RPC. The resource re-
quest, configured by the user, specifies the required resources
for its notebook IDLT tasks, including CPUs (in millicpus,
where 1 millicpu is equal to 1/1000?" of a vCPU), memory
(in megabytes), GPUs, and VRAM (in gigabytes).

The Global Scheduler iterates over the servers in the clus-
ter, checking if each server has sufficient capacity to serve a
replica of the kernel. If a server meets the requirements, this
server becomes a candidate. When more than three viable
candidates (N > 3) are found, a pluggable policy is used to se-
lect the target hosts. By default, the least-loaded hosts—those
with the fewest actively used GPUs—are chosen.

Note that, when scheduling a new Distributed Kernel, re-
sources are not exclusively committed to its replicas. Instead,
the kernel replicas “subscribe” to the requested resources
(Figure 3). Each server in the NotebookOS cluster maintains
a subscription ratio with a configurable high watermark that
prevents excessive over-subscription. This mechanism is de-
signed to minimize resource contention among replicas of
different Distributed Kernels scheduled on the same server.

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

All "LEAD" proposals are commited.
Vote for first committed "LEAD" proposal.
_—

Wait for
-@@ ----- commit @ - - - -@commit + @-@ oger U "
g O ® - Oogm @@ UL o
"2 LEAD" "2 LEAD"

ite_reply
execute_request Propose,/Append Vote execu e
"1 LEAD" 2 LEAD" updated state

- oo - @cl’mm"@"'@'gg':'E’é’.,f."."'@'"@ ----- o

Proposal
"2 LEAD" "2 LEAD! updated state done

execute_request propose/Append execute_reply
"2 LEAD"

Voo «
= oo e o

execute_request Propose/Append Vote execute_reply.
"3 LEAD"

Figure 5. NotebookOS’s executor election protocol.

Upon receiving a StartKernelReplica RPC request, the Lo-
cal Scheduler will provision a new container for the kernel
replica (Step @), In Step @, the provisioned replica begins
running by initiating a registration procedure with its Lo-
cal Scheduler. During this procedure, the Local Scheduler
informs the Global Scheduler that the replica has been cre-
ated successfully. Finally, in Step @), the Local Scheduler
concludes this process by returning the replica’s connection
information to the Global Scheduler.

After registering with their Local Schedulers, the three
kernel replica containers establish peer-to-peer (P2P) con-
nections with one another to run the Raft protocol for trans-
parent kernel SMR. Once the Raft cluster is established,
the kernels notify their Local Schedulers, which notify the
Global Scheduler. The Global Scheduler then returns from its
StartKernel RPC handler, and the kernel is officially created.

If the Global Scheduler cannot identify three candidate
servers to host the replicas of the new Distributed Kernel,
then it will invoke a pluggable handler that is set based upon
the configured scheduling policy. This invocation will initiate
a scale-out operation to provision however many additional
servers are required, as detailed in §3.4.2.

3.2.2 Distributed Kernel Raft Protocol. The three repli-
cas of a NotebookOS Distributed Kernel connect to one an-
other directly, forming a peer-to-peer (P2P) network. The
replicas use Raft [83] to perform SMR. The use of Raft is
motivated by the need for high-availability and durable ses-
sions, even for CPU-only notebooks: existing platforms like
Google Colab reclaim idle sessions [32], resulting in the loss
of computed state. While recent progress on GPU state check-
point/restore offers efficient mechanisms for GPU state snap-
shotting [68, 103], coarse-grained CPU state checkpoint/re-
store [19] is often unnecessarily heavyweight. NotebookOS
simplifies fault tolerance, replica migration, failover, and
the prevention of duplicate cell execution by leveraging the
strong consistency guarantees provided by Raft. To this end,
NotebookOS adopts a hybrid approach: it performs online
replication for small CPU state and uses a distributed data
store for asynchronous persistence of large objects.

Kernel replicas perform an executor replica election protocol
to designate an “executor replica” each time a user executes
a notebook cell. This protocol is designed to be efficient and
fault tolerant: progress occurs even when messages between

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

replicas—or from each replica’s respective Local Scheduler—
are dropped or delayed. The executor replica is responsible
for executing user-submitted code while the other replicas
remain idle until the next cell execution request.

Figure 5 provides an overview of the executor election
protocol. When a user submits a cell request, the client sends
an execute_request message to the Jupyter Server. This mes-
sage, which encodes the target kernel’s unique ID, is then
forwarded to the Global Scheduler. The Global Scheduler
then broadcasts a copy of this message to each Local Sched-
uler managing a server where a kernel replica container is
running (see Step @ in Figure 5). When the Global Sched-
uler has sufficient resource information, it directly selects
the executor replica for a given kernel and bypasses the Raft-
based LEAD/YIELD election phase entirely. In this case, it will
convert the execute_request message into a yield_request,
signaling to the recipient kernel replicas that they should
not attempt to participate in the election process and in-
stead defer execution to the designated replica. This message
conversion typically occurs when the Global or Local Sched-
uler determines that a particular server lacks the necessary
resources for that server’s kernel replica to execute code.

Upon receiving an execute or yield message, a kernel
immediately appends a LEAD or YIELD proposal to its Raft
log (Step @). In Step @), the kernel replicas wait for all
Step @'’s proposals to be committed by Raft to the Raft log.
Proposal commitment is handled by the Raft protocol. Kernel
replicas will simply take note of any YIELD proposals that
are committed, as the election will “fail” if all kernel replicas
propose YIELD. This case is described in §3.2.3.

Once the first LEAD proposal is committed by Raft—for
example, in Figure 5, after Step @, Raft commits “2 LEAD”
before “1 LEAD” and “3 LEAD” (Step @)—the kernel replicas
each vote for Replica 2 by appending a VOTE proposal to
the log (Step @). The replicas encode the ID of the replica
(Replica 2) that proposed the LEAD proposal in the VOTE pro-
posal. This ID is used by the replicas in Step @) to determine
if they won the election. The kernel replica who won the
executor election becomes the executor replica and proceeds
to execute the user-submitted code, while the other replicas
become the standby replicas and remain idle (Step @).

Once the executor replica finishes executing the cell task,
it commits a notification to the Raft log to inform its peers
that the execution has finished (Step @)). This notification
is thereby received in Step @. In Step @), all replicas send
a Jupyter execute_reply message to their Local Scheduler,
which forwards the message to the Global Scheduler. These
messages are aggregated and merged together by the Global
Scheduler before being forwarded back to the Jupyter Server
and subsequently the user’s client.

After responding to the user’s code submission, the execu-
tor replica begins replicating any updated notebook state to
the standby replicas. Small state objects are directly repli-
cated using NotebookOS’s Raft SMR protocol. Large objects

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

(model parameters copied from GPU VRAM and training
datasets) are asynchronously written to the Distributed Data
Store. This process occurs entirely outside the user request’s
critical path, avoiding any impact on user experience (§3.2.4).

3.2.3 Handling Failed Executor Elections. In the worst
case, if all kernel replicas YIELD, the Global Scheduler initiates
a migration of one of the kernel replicas to a server with
sufficient resources. Specifically, the Global Scheduler selects
a particular kernel replica for migration and instructs that
replica to persist any important state to the Distributed Data
Store. The kernel replica notifies the Global Scheduler once
it has done so and is ready to migrate.

Meanwhile, the Global Scheduler selects a target server as
the destination of the replica’s migration. The selection crite-
ria depends on the cluster’s configured scheduling policy. In
general, the target server must have sufficient idle resources
to immediately and exclusively bind the required GPUs to
the migrated kernel replica. If a suitable server is found, the
Global Scheduler sends a StartKernelReplica RPC to the Lo-
cal Scheduler on that server, instructing it to provision a new
kernel replica container. If no viable servers are available, the
migration is enqueued and periodically retried, several times
if necessary, before ultimately being aborted if unsuccessful.
In case of an aborted migration, an execute_reply message
with an error is returned to the client.

Once the new kernel replica has started and has read the
persisted state from remote storage, the Global Scheduler
terminates the original kernel replica before instructing the
remaining replicas to reconfigure their Raft cluster to re-
place the terminated kernel replica with the newly-created
replica. Next, the new replica joins its Raft cluster and begins
replaying its Raft log synchronize its state with its peers,
after which the Raft cluster becomes operational again. Fi-
nally, the Global Scheduler resubmits the execution request
to the migrated kernel replica, ensuring that it executes the
user-submitted code while the other replicas yield.
Pre-warmed Container Pool. To reduce migration over-
head, the Global Scheduler maintains a small pool of pre-
warmed containers [28, 94], managed by a component called
the Container Prewarmer. The Container Prewarmer uses a
pluggable policy for provisioning an initial pool of warm
containers, and another pluggable policy for maintaining the
capacity of this pool of warm containers. By default, the Con-
tainer Prewarmer ensures that each server has a specified,
minimum number of pre-warmed containers available.

During kernel replica migrations, the Global Scheduler
will query the Container Prewarmer to see if the selected tar-
get host has any pre-warmed containers available. If so, then
a pre-warmed container will be used. These containers con-
tain a pre-initialized Python runtime with commonly used
dependencies, thereby eliminating the on-demand container
provisioning overhead. Pre-warming containers with var-
ied runtime dependencies is beyond the scope of this work;

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Convert code to AST

[e>

Execute code

Executor
Kernel Replica

Receive an execute_request-:‘-_ Commit updated global

state & AST to Raft Log
Standby Replica f-‘ - .4
1048 -« fa 2k
Standby Replica 0.1 o1
- fL AST & updated
Replicate AST & updated global Raft Log global state
state to standby replicas

Figure 6. Overview of the Raft-based state synchronization
protocol used by NotebookOS’s Distributed Kernel.

however, NotebookOS could leverage existing checkpoint/re-
store [81] or fork-based [100] solutions for this purpose.

3.2.4 Kernel State Replication. NotebookOS’s Distributed
Kernel requires an efficient mechanism to maintain consis-
tency across the kernel replicas. To achieve this, the kernels
leverages Python AST-based code analysis [42] to identify
runtime state that needs to be replicated and synchronized
via the Raft SMR. This procedure can detect and replicate
Python-level state as well as state declared in native (C/C++)
code, as this state is referenced in the kernel namespace (i.e.,
the set of user-defined variables stored within the memory of
a kernel process). State of external processes or 1ibC cannot
be synchronized under the current implementation and is
left as future work. An overview of this protocol is shown
in Figure 6. As shown in Steps @ and @), code submitted
for execution is first transformed into an AST by the execu-
tor replica before being executed in Step €). The executor
replica then analyzes the Python AST to identify variables
that must be synchronized with the executor’s peers, such
as global variables storing intermediate state that are likely
to be referenced later when executing subsequent notebook
cells. After the AST analysis, the executor replica proposes
the AST and any relevant state to the Raft log in Step @.
The Raft consensus protocol replicates the update to the
distributed log across all replicas. Upon commitment of the
newly appended log entry in Step @), the AST is applied by
the standby replicas, and any changes to standby replicas’
global state are applied to the replica-local variables.
Handling Large Objects. During state replication, the ex-
ecutor replica analyzes variable types from AST inspection.
For large variables like models and datasets (hundreds of
MBs to GBs), it avoids direct Raft log replication. Instead, it
appends a pointer to the log while storing the actual data in
the Distributed Data Store (see Step @ in Figure 3). Note-
bookOS supports AWS S3 [7], HDFS [95], and Redis [89].
Pointers in the Raft log encode data retrieval, while kernel
replicas handle persistence and retrieval transparently. If a
user submits an execute_request during state replication, it
is enqueued until replication completes. Large object repli-
cation occurs asynchronously between kernel replicas, but
high task IAT in IDLT workloads hides this latency from

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

users. NotebookOS also employs a simple node-level cache
to limit storage and memory costs.

3.2.5 Handling Failures. Each Distributed Kernel cluster
is able to tolerate a fail-stop [93] failure of a single replica,
as the Raft cluster of Distributed Kernel has 3 servers. If
two or more replicas of a kernel were to fail, then this fail-
ure would be detected by the Global and Local Schedulers.
NotebookOS’s Distributed Kernel uses heartbeat messages
to ensure that all components are active. If a heartbeat or
another message, such as an execute_request, times out, the
Global Scheduler deems that a kernel has failed. In this case,
the kernel’s replicas can be terminated and recreated, and
the replica’s can restore all state from remote storage.

3.3 GPU Management

NotebookOS performs dynamic GPU binding right before
a replica begins executing user-submitted code so as to
optimize resource management by enabling fine-grained,
per-training-task allocations (see step 6 in Figure 3). Note-
bookOS’s approach to dynamic GPU sharing is also designed
to be pluggable, allowing integration with alternative ap-
proaches such as GaiaGPU [34]. We implement a simple
approach in NotebookOS’s prototype, with the intent of
using a full-featured solution in production.

NotebookOS binds all GPUs available on a server to all its
hosted kernel replica containers. Each time a notebook cell
is submitted for execution by a client, the Global Scheduler
embeds the device IDs of the GPUs allocated to the target
kernel replica within the request metadata. NotebookOS
automatically loads model parameters from the host’s main
memory onto all allocated GPUs using the PyTorch API on
the critical path of execution requests. This process typically
only takes up to a couple hundred milliseconds, so it does
not impact performance or interactivity severely. When the
executor replica finishes executing the user-submitted code,
NotebookOS automatically copies the user’s data from the
GPUs to the server’s host memory. The executor replica
returns the result to the user only after the GPU operations
finish and GPU state is copied to host memory.

3.4 Resource Scheduling

3.4.1 NotebookOS’s Default Placement Policy. Note-
bookOS is designed to be highly modular. The system can
support arbitrary resource scheduling policies, and imple-
menting support for a new policy is accomplished by im-
plementing a simple interface. NotebookOS’s default ker-
nel replica placement policy takes several different factors
into account. First, NotebookOS considers the number of
idle GPUs available on each GPU server. In particular, Note-
bookOS favors placing kernel replica containers on servers
with more idle GPUs available.

Second, NotebookOS considers a metric referred to as the
subscription ratio (SR) of a GPU server. The SR of a GPU
server is defined as %, where S stands for the number of

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

subscribed GPUs, which is the sum of all the GPUs requested
by kernel replicas scheduled on that server (including idle
kernel replicas), G is the number of server GPUs (ranging
from 1 to 8), and R is the number of replicas per distributed
kernel (R = 3). R accounts for the fact that, at a given time,
only one out of R replicas per distributed kernel will serve
as the executor and actively use GPUs. Dividing by R adjusts
for the redundancy introduced by NotebookOS’s distributed
kernel, ensuring that the SR captures the effective GPU sub-
scription ratio rather than the total GPU subscription capac-
ity of a single server. For example, if server H with 8 GPUs
is serving 4 kernel containers each requiring 4 GPUs, then
the number of subscribed GPUs S for H is 4 X 4 = 16. Con-
sequently, H’s SR is % = 0.667. A cluster-wide SR of 1 or
lower theoretically ensures that, during GPU code execution,
any kernel replica k can acquire its required number of GPUs
on a server that is hosting k, where k is one of the R replicas
of some distributed kernel.

Third, NotebookOS implements a dynamic, cluster-wide
limit on the SR. While the cluster size is a function of the
number of GPUs used by actively-training kernel replicas
(detailed in §3.4.2), the maximum permissible SR across the

entire cluster is dynamically adjusted. This limit is calculated
o
GPUs for all kernel replicas across all servers, and), G repre-
sents the total GPU count across all servers. If scheduling an
additional kernel replica on a server would cause the server’s
SR to exceed this limit, the server is rejected in favor of an-
other. The effect of this cluster-wide SR limit is illustrated in

the evaluation results discussed in §5.3.4.

as where), S denotes the total number of subscribed

3.4.2 Scale-Out Operations. Scale-out operations involve
provisioning additional servers in a platform-dependent man-
ner, and then waiting for the Local Schedulers that are started
on the new servers to connect and register with the Global
Scheduler. Scale-out operations occur in one of two scenar-
ios. First, they are triggered in response to a failed attempt to
place one or more replicas of a distributed kernel. Such a fail-
ure occurs when there are no viable candidate servers across
the cluster to serve the kernel replicas. Upon triggering the
scale-out operation, the placement of the corresponding ker-
nel replicas is paused. Resources are immediately reserved
for the paused kernel replicas on newly provisioned servers,
i.e., before the servers are fully added to the NotebookOS
server cluster. Once the servers are ready, NotebookOS re-
sumes placing the replicas on them.

Second, scale-out operations can also be triggered by Note-
bookOS’s auto-scaling policy. NotebookOS’s auto-scaler runs
on a configurable interval, monitoring cluster resource uti-
lization and determining whether servers should be added or
removed. To handle bursts of training requests, NotebookOS
maintains a scaling buffer of “extra” servers. To decide if
additional servers should be added, the auto-scaler first ex-
amines the total number of GPUs actively committed (3 C)

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

to kernel replicas (that are actively executing GPU code)
on servers across the NotebookOS cluster, where C is the
number of actively-utilized GPUs on a server. The expected
cluster capacity (3| G’) is defined as 3, G’ = f -}, C, where
f is a scalar multiplier that controls how aggressively Note-
bookOS scales. If the current cluster capacity is smaller than
>, G’, additional GPU servers are provisioned. Intuitively, if
the number of actively-utilized GPUs is low, then the auto-
scaler will not try to add additional servers. If the number of
actively-utilized is GPUs is high and many existing servers
are at capacity, then NotebookOS’s auto-scaler triggers scale-
out. We set f to 1.05, as we have found empirically that this
enables an appropriate degree of auto-scaling during testing.

If cluster resource usage is too low, NotebookOS’s auto-
scaler attempts to release 1-2 idle servers at a time (where
idle servers are those with no active training kernel replicas.)
The auto-scaler determines if scaling-in is appropriate using
a similar approach to scaling-out: if }; G’ is less than the
number of currently-provisioned GPU servers within the
cluster, then NotebookOS gradually releases servers 1 to 2
at a time until this condition is no longer met.

4 NotebookOS Implementation

To demonstrate NotebookOS’s efficacy, we implemented a
fully functional prototype Jupyter Notebook platform. Note-
bookOS maintains compatibility with all Jupyter clients
by reusing the IPython messaging protocol [41]. It lever-
ages Jupyter Server from the official base-notebook Docker
image [10] and introduces custom components for Note-
bookOS-specific functionality. All custom components were
implemented using the official Jupyter Server API extension
methods [56], building on the default Jupyter Server.
NotebookOS is platform-agnostic. We developed and eval-
uated NotebookOS atop Docker Swarm [23] and Docker
Compose [22]; Kubernetes [61] is also supported. To sim-
plify deployment, experimentation, and reproducibility, we
provide a set of Ansible [3] playbooks to automate setup, in-
stallation, and deployment on these container orchestration
platforms. We have implemented NotebookOS in approxi-
mately 282k lines of code over roughly two person-years.
Refer to Appendix C for additional implementation details.

5 Evaluation

In this section, we present our evaluation of NotebookOS.

5.1 Experimental Setup & Methodology

5.1.1 Baselines. We implement three representative base-
line policies within NotebookOS itself, each of which repre-
sents a unique category of alternative solutions.

Reservation emulates the behavior of current notebook
platforms like Adobe research cluster and Google Colab.
Reservation creates one long-running kernel container for
each user session that remains active for the entire duration

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

Table 1. Models and datasets used in the evaluation along
with their associated application domains.

App domain Dataset Model

Computer CIFAR-10, VGG-16,

e CIFAR-100, ResNet-18,
Tiny ImageNet Inception v3

Natural Language IMDb Large Movie

Processing Reviews, CoLA BERT, GPT-2

Speech a4

Recognition LibriSpeech Deep Speech 2

of the user session. Fixed resources, including GPUs, are
exclusively allocated to each long-running kernel container.
Batch is a baseline representing the class of batch GPU
cluster schedulers [35, 66, 72, 88, 106] designed for long-
running GPU training workloads. Batch provisions a kernel
replica container each time a user submits code and a job
request for execution (e.g., to a slurm scheduler). The new
container serves the training request before terminating.
As such, Batch approximates on-demand resource scaling.
While various GPU schedulers differ in their design, imple-
mentation, and scheduling/placement algorithms, they all
share several significant sources of overhead in the context
of notebook scheduling for IDLT workloads. We implemented
Batch using a first-come, first-serve (FCFS) job scheduling
and GPU allocation policy within NotebookOS to approxi-
mate the performance of these GPU schedulers.
NotebookOS (LCP) (large container pool) is an alternative
NotebookOS baseline that sacrifices (some) interactivity in
favor of reduced resource cost. NotebookOS (LCP) serves
as a tool for exploring the trade-off between interactivity
and resource efficiency. NotebookOS (LCP) employs a larger
pool of pre-warmed containers than NotebookOS’s default
configuration, which uses three kernel replicas and a sig-
nificantly smaller pre-warmed container pool used during
replica migrations. When a cell task arrives, NotebookOS
selects a warm container' from the pool to serve the request.
After execution, the container is returned to the pool rather
than being terminated, as in NotebookOS’s default policy.
Addressing security and privacy concerns related to con-
tainer sharing is out of scope for this paper but can leverage
existing research [38, 64, 109].

5.1.2 Setup. We conducted our evaluation on AWS EC2 [26].

We ran each baseline on a cluster of 30 GPU EC2 VMs, each
equipped with 8 GPUs to match the Adobe research clus-
ter production setups. We developed a workload driver and
dashboard to automate workload deployment and execution
on NotebookOS. Following [33], we integrated support for
a diverse set of DL models and datasets across several dif-
ferent application domains (Table 1). The workload driver

'We analyzed the Python dependencies of notebook containers from our
workload and observed substantial overlaps in common dependencies.

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

32 100
%24 r75 ¢
£ 16 50 2
T 8 — Trainings = Sessions '[25 &
Soobdeeepe il @

o 3 6 9 12 15 18
Time (Hour)

Figure 7. The number of active user-submitted training tasks
and active user sessions during the 17.5-hour AdobeTrace.

randomly assigns each client an application domain, after
which a random dataset and model are assigned. Each cell
task request submitted by the client will train its assigned
model on the assigned dataset, which are retrieved by kernel
replicas from an AWS S3 bucket.

We evaluate NotebookOS using a 17.5-hour excerpt of the
Adobe research cluster workload trace. To further elucidate
its performance and monetary cost implications of Note-
bookOS, we also implemented a robust, detailed simulator
that we used to run the full Adobe research cluster trace. The
simulator implemented NotebookOS’s default scheduling/-
placement policy along with the baseline policies described
in §5.1.1. The results of our simulation study on NotebookOS
are presented in §5.5.

5.2 Prototype Evaluation

This section presents the results of our prototype evaluation.

5.3 Active Sessions & Training Events

Figure 7 presents a timeline plot showing the number of
active sessions during the execution of the 17.5-hour work-
load trace excerpt on NotebookOS. This series is plotted on
the secondary (i.e., right) y-axis. The number of active ses-
sions increases from 0 at the beginning of the trace excerpt
to 87 by the end of the excerpt. The maximum number of
active sessions at any given time throughout the 17.5-hour
AdobeTrace excerpt is 90.

Figure 7 also presents a timeline plot showing the num-
ber of user-submitted training events being processed dur-
ing the execution of the 17.5-hour AdobeTrace excerpt on
NotebookOS. This series is plotted on the primary (i.e., left)
y-axis. Initially there are no active, user-submitted train-
ings. At the end of the trace excerpt, there are 26 active
user-submitted trainings. The mean and medium number of
active, user-submitted trainings are 19.5 and 19, respectively.
The maximum number of active user-submitted trainings at
any given time throughout the summer AdobeTrace is 141
(see Figure 20 in appendix A). The maximum number of ac-
tive user-submitted trainings at any given time throughout
the 17.5-hour AdobeTrace excerpt is 34.

5.3.1 Resource Usage & Efficiency. Batch (Figure 8 left),
achieves significantly improved resource utilization com-
pared to Reservation because Batch only provisions con-
tainers and allocates resources in response to training re-
quests. NotebookOS achieves higher GPU utilization than

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

2300 Batch 300 NotebookQOS 300 NotebookQOS (LCP)

[«

© 200 200 200 l/ > vl

3 LK oA

S 100 Oracle == Batch = Reservation 100 100 %/ :

:‘;’ 0 Over-provisioned GPUs | Saved GPUs 0 Oracle == NbOS == Reservation 0 Oracle == NbOS (LCP) = Reservation

f{ 0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18
Time (Hour) Time (Hour) Time (Hour)

Figure 8. Provisioned GPUs timelines. Curves for Batch (left), NotebookOS (middle), and NotebookOS (LCP) (right) represent
the number of GPUs provisioned under each policy, while “oracle” represents an optimal policy that provisions the exact
number of GPUs required to serve training requests. The GPUs saved relative to Reservation is shown in the green-shaded
region, while the number of GPUs over-provisioned compared to “oracle” are represented by the orange-shaded region.

1.00 ;,-{- —_—— 1.00
0.75 /’ 0.75
E 0.50 | = Reservation 0.50
o === Batch
0.25 'i---- NotebookOS 0-25
0.00 f NotebookOS (LCP) 0.00
0 90 180 270 104 10° 106

Delay (seconds) Latency (milliseconds)

(a) Interactivity delay. (b) Task completion time (TCT).

Figure 9. CDFs of (a) interactivity delays and (b) task com-
pletion times (TCT) across different scheduling policies.

Reservation (Figure 8, middle), saving 1,187.66 (NotebookOS)
and 1,662.53 (NotebookOS (LCP)) GPU hours. However, be-
cause NotebookOS maintains three long-running replicas
per kernel as well as a small buffer of “extra” GPU servers for
request bursts, NotebookOS provisions more servers than
Batch, which only allocates GPUs during cell executions.
NotebookOS (LCP) (Figure 8, right) improves resource effi-
ciency, provisioning 23.52% fewer GPUs than NotebookOS
but still 18.18% more than Batch. Note that the oracle curve
shows the number of GPUs required to serve all active train-
ing requests, rather than aggregated GPU bandwidth utiliza-
tion, which is shown in Figure 2(d). NotebookOS provisions
slightly more GPUs than Batch/LCP to account for its use of
replicated kernels and to handle request bursts.

5.3.2 Interactivity. Figure 9(a) plots a CDF of the per-
task interactivity delays incurred by the different schedul-
ing policies. The interactivity delay is the interval between
the instant that a client submits a Jupyter “execute_request”
message to a kernel and the instant that the kernel begins
executing the user-submitted code included within the mes-
sage. Long interactivity delays are perceptible to clients and
degrade the user experience.

The Reservation baseline binds GPUs to a user’s notebook
kernel for its full lifetime, ensuring high interactivity. How-
ever, IDLT workloads often under-utilize GPU resources,
as users frequently debug, edit code, or pause while GPUs
remain idle but reserved.

Effect of Multiple Kernel Replicas. NotebookOS com-
mits GPUs to a kernel replica immediately upon receiving an

o

—kemnel creation — scale out | S

30.0 k:mZI ch\rFQaral(t)ir;n —zﬁzsec?igtion ratio 3.00 =

= 22.5 12.25 ¢
§15.0 11.50 8
7-5 10.75 2

o

0.0 10.00 3

0 4 8 12 17
Timeline (Hour)

Figure 10. Timeline of major events occurred while exe-
cuting the 17.5-hour workload on NotebookOS, with Note-
bookOS’s subscription ratio plotted on the secondary Y-axis.

execution request 89.6% of the time. Similarly, 89.45% of the
time, NotebookOS reused the same executor replica for con-
secutive execution request. NotebookOS’s use of replicated
kernels maximizes the chances that at least one replica has
available resources when a training request arrives, achiev-
ing nearly the same interactivity as the reservation baseline.

5.3.3 Task Completion Time (TCT). TCT measures the
interval between cell submission and the instant the cell’s ex-
ecution is completed. As shown in Figure 9(b), NotebookOS
achieves a TCT distribution comparable to Reservation, with
slightly higher TCTs from the 38" to the 90*" percentile.
This is because some sessions were not able to find avail-
able GPUs on their servers (due to oversubscription and
server’s full GPU usage) and thus are migrated to different
servers. When NotebookOS’s pre-warmed containers were
exhausted, new containers were created on demand, incur-
ring long cold startup delays. This can also be observed from
the tail of NotebookOS’s interactivity delays in Figure 9(a).
NotebookOS (LCP) sees much longer TCTs as a submitted
cell request triggered a warming-up operation to download
model parameters and datasets. FCFS yields the highest TCTs
due to on-demand notebook kernel provisioning and manda-
tory pre- and post-processing data I/O (model parameters
and datasets) for each submission.

5.3.4 Subscription Ratio. The relationship between the
cluster-wide subscription ratio (SR, described in §3.4) and the
triggering of scale-out events by NotebookOS’s auto-scaling
policy (§3.4.2) are clearly shown in Figure 10. Specifically, the
SR increases sharply at the beginning of the workload when

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

1.00
w 0.75
0 0.50 m \Nrit@s == Sync
©0.25 == Reads === Event |ATs
0.00 1

107! 10t 103 10° 10’
Latency (Milliseconds)
Figure 11. CDF of the latency of reading and writing large
objects and synchronizing smaller object state via the Raft
synchronization protocol. Note that the x-axis is log-scale.

many new Distributed Kernels are created. To accommodate
these kernel replicas, NotebookOS triggers scale-out events.
As new servers are provisioned, the cluster-wide SR falls.
Around hour two, there is another burst of kernel replica cre-
ations, leading to another increase in the SR. Subsequently,
additional servers are provisioned to serve the new kernel
replicas shortly after hour four, leading to another drop in
the SR. A similar pattern occurs before hour twelve. Similarly,
there is an increase in the frequency of kernel migrations
when the SR begins to climb, reflecting growing GPU re-
source saturation and potential contention when training
requests arrive. Notably, a spike in migrations coincides with
the first spike in the SR, followed by additional migrations
after hours four and twelve of workload execution.

5.4 Object Synchronization Overhead

Figure 11 presents a timeline plot showing the number of
active sessions during the execution on NotebookOS of the
17.5-hour AdobeTrace excerpt. The “Sync” curve corresponds
to the end-to-end latency of synchronizing small objects via
the Raft protocol (§3.2.4). The “Sync” latency is typically ex-
tremely short: the 90%%, 95" and 99" percentile values are
54.79ms, 66.69ms, and 268.25ms, respectively. The “Reads”
and “Writes” curves correspond to the latencies observed
when reading and writing large objects from and to the Dis-
tributed Data Store, respectively. These operations are rea-
sonably short, as 99% of read and write operations complete
within roughly 3.95 and 7.07 seconds, respectively.

As discussed in §2.3, the 50" and 75" percentile of task
IATs are 300 seconds (5 minutes) and 480 seconds (8 minutes)
for the AdobeTrace, respectively. The shortest event IAT
within the AdobeTrace is 240 seconds, or 4 minutes. Notably,
the overhead of writing and reading large objects to and from
the Distributed Data Store is completely contained within
event IATs. As a result, this overhead is almost completely
hidden from users in IDLT workloads such as the Adobe
research cluster workload.

5.5 Simulation Study
This section present the results of our simulation study.
5.5.1 Monetary Cost. To understand the cost implica-

tions of NotebookOS, we compare it with Reservation in
terms of provider costs—specifically, the operational cost

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

015 1ok e ;\? 50 == Reservation
%12 ma= Res. (Provider Cost) — 40 o= NotebookOS
9 === NotebookOS (Revenug) C 30 - ote000

"'6 mm NotebookOS (Provider Cost) o))

° g . 20

5 3 #2101 N a——

= +

=0 = O

= 0 30 61 92 o 0 30 61 92
[a

Day Day

(a) Provider-side cost and revenue. (b) Profit margin.

Figure 12. Timeline of provider cost (provisioned EC2 re-
sources), revenue, and profit margin.

4 1.2 G{ —— 15-Min
33 900 M { - 30-Min
£ 5 00w | i
2 Y 300 M { = 120-Min
(] 0 : :
6l 92
Time (Day)

Figure 13. The number of GPU-hours saved by NotebookOS
by avoiding unnecessary re-execution of notebook cells fol-
lowing idle reclamations of user sessions.

of provisioning EC2 resources, as done by production note-
book platforms like Adobe research cluster—and the revenue
generated by the notebook service provider.

We implemented a simple billing model, assuming the
provider covers AWS EC2 VM costs. Users pay 1.15x the
provider’s rate, proportional to resource usage. Standby Dis-
tributed Kernel replicas are charged 12.5% of the base rate.
For example, if a provider pays $10/hour for an 8-GPU EC2
VM, each standby replica is billed $1.44/hour (10 X 1.15 X
0.125). When a replica runs a training task using 4 GPUs,
the charge increases to $5.75/hour (10 X 1.15 X 0.5). Reserva-
tion follows the same 1.15x multiplier for on-demand GPU
usage. As shown in Figure 12(a), NotebookOS achieves a
provider-side $-cost reduction of up to 69.87% compared
to Reservation by the end of the trace, thanks to its GPU
resource savings. NotebookOS also offer a higher profit mar-
gin (Figure 12(b)) by significantly lowering provider costs
and modestly increasing revenue through minimal charges
on idle replicas. The increased profit comes with the added
benefit of guaranteed programming interactivity.

5.5.2 GPU Hours Saved. Figure 13 illustrates the number
of GPU hours saved by NotebookOS by avoiding unneces-
sary re-execution of notebook cells following idle session
reclamations across the entire AdobeTrace. Each of the five
lines in the plot represents a different configuration of the
idle reclamation interval—the duration for which a Jupyter
Notebook session may remain idle before its associated ker-
nel is reclaimed. In the absence of NotebookOS’s state repli-
cation and persistence mechanisms, reclaiming idle sessions
would result in the loss of in-memory state, requiring cell
re-execution and additional GPU usage when users return.

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

By preserving session state, NotebookOS prevents this re-
dundant computation and significantly reduces GPU waste.

6 Related Work

Notebook Platforms. Commercial notebook services such
as Google Colab [17], NaaS [71], Lentiq [63], and Jupyter-
Hub [53] allow users to reserve GPUs for however long they
like with great flexibility but low GPU utilization. These
platforms add keep-alive and timeout strategies so that the
platform can automatically terminate a notebook instance
if the user does not interact with it for a configurable pe-
riod of time. The keep-alive strategy can help save unused
GPU resources to some extent but does not fundamentally
address the low GPU utilization issue. Azure Machine Learn-
ing [9], Open OnDemand [84, 85], among others [74, 91, 92],
offer “batch-connect” notebook services to allow users to
submit GPU jobs through a batch scheduler. This approach
introduces significant runtime cold startup cost and batch
scheduling delays during request bursts, undermining the
interactive nature of notebook programming.

GPU Cluster Schedulers. State-of-the-art batch GPU clus-
ter schedulers [35, 66, 72, 88, 106] aim to balance the compet-
ing demands of long-running GPU training jobs but overlook
responsiveness and interactivity, making them poorly suited
for notebook IDLT workloads. Gandiva [106] is a GPU clus-
ter scheduler that leverages domain-specific knowledge and
an introspective scheduler to dynamically optimize BDLT
workloads. Tiresias [35] is a GPU cluster manager that min-
imizes job completion time by prioritizing jobs with par-
tial information and tasks with the least service received.
Themis [66] employs a 2-tiered, “finish-time fair” approach
where workloads bid for GPUs in an auction, balancing short-
term efficiency with long-term fairness.

Serverless. Optimized snapshot-loading reduces cold start
costs for CPU [4, 6, 81, 100] and GPU [27, 39, 111] serverless
functions. Locality-driven keep-alive [28, 65, 101, 109] opti-
mize container caching for minimizing cold start costs. Note-
bookOS’s pre-warmed container pool can leverage these
methods to further cut GPU startup cost.

GPU Virtualization. Existing solutions for GPU virtualiza-
tion and sharing leverage NVIDIA MIG [79] / MPS [80] as
well as user-space CUDA API interposition and remoting
techniques for GPU kernel performance isolation [105, 112],
memory isolation [110], and parallel executions within a
single remote GPU [25]. Currently, NotebookOS supports
only coarse-grained, exclusive GPU time-sharing via kernel
replication and executor replica election but does not sup-
port fine-grained, concurrent, spatial GPU sharing. Enabling
fine-grained GPU sharing is part of our future work.
Consensus Protocols and Leader Election Algorithms.
Raft [83] is a widely-adopted consensus algorithm designed
for understandability while providing strong consistency,
featuring leader elections with randomized timeouts (to pre-
vent ties) and log replication via heartbeats. NotebookOS’s

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

state synchronization and executor selection protocols are
implemented atop Raft, as they require more complex logic
than what is provided directly by Raft’s leader elections.
The use of Raft provides robust, off-the-shelf consistency
and fault tolerance support. Alternative consensus proto-
cols, such as Viewstamped Replication [82], EPaxos [69], and
Zab [45], offer tradeoffs in latency, leader dependence, and
throughput. The Bully algorithm [30] targets crash-recovery
systems and elects the node with the highest ID, while the
Ring algorithm [15, 62] organizes nodes into a logical ring in
which communication occurs only between adjacent neigh-
bors. Systems like ZooKeeper [40] and Chubby [12] offer
practical leader election mechanisms, informing the design
of resilient control planes in NotebookOS.

7 Limitations and Future Work

NotebookOS does not yet support GPU sharing or fractional
allocations. Future work will incorporate GPU virtualization
using tools such as HAMi [36]. While multi-server training
is also not supported, it can be enabled through integration
with distributed training frameworks like Ray [70]. These
capabilities are largely orthogonal to NotebookOS’s core
abstractions, and NotebookOS’s mechanisms for scheduling
and execution would remain largely unchanged. Lastly, Note-
bookOS could further optimize CPU-only notebook cells by
enabling elastic burst-parallel executions through the inte-
gration of stateful serverless scheduling techniques [14, 96].

8 Conclusion

The key insight of this paper is that notebooks are long-
running but with fragmented executions, rendering intermit-
tent, sporadic, and often low GPU utilization. We built Note-
bookOS, a GPU-efficient notebook platform designed to meet
the unique notebook workload requirements and prioritizes
interactivity. NotebookOS oversubscribes and multiplexes
GPUs using a novel replicated kernel design. NotebookOS
dynamically allocates GPUs only for notebook cell execu-
tions that involve GPU training. We evaluated NotebookOS
using production notebook workloads. Results show that
NotebookOS reduces cluster GPU resource cost significantly
compared to existing notebook platforms. Integrating Note-
bookOS in production is part of our future work.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Ro-
drigo Bruno, for their valuable feedback and comments,
which improved the paper. This research was supported
in part by NSF grants OAC-2411009 and CNS-2322860 (NSF
CAREER Award). We also acknowledge support from NSF
CloudBank for providing AWS credits, and thank Adobe for
their generous research gift. Benjamin Carver was supported
by a Presidential Scholarship from George Mason University.

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

References

[1] Adobe. https://www.adobe.com/.

[2] Adobe Experience Platform: A supercharged engine, finely tuned
to make customer experiences hum. https://business.adobe.com/
products/experience-platform/adobe-experience-platform.html.
Ansible. https://www.ansible.com/.

Lixiang Ao, George Porter, and Geoffrey M. Voelker. Faasnap: Faas
made fast using snapshot-based vms. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys ’22, page 730-746,
New York, NY, USA, 2022. Association for Computing Machinery.
[5] Awesome Jupyter: A curated list of awesome Jupyter projects, li-

[26] Amazon EC2. https://aws.amazon.com/ec2/.

[27] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian Brabete, Dmitrii
Ustiugov, Yuvraj Patel, and Luo Mai. ServerlessLLM: Low-Latency
serverless inference for large language models. In 18th USENLX
Symposium on Operating Systems Design and Implementation (OSDI
24), pages 135-153, Santa Clara, CA, July 2024. USENIX Association.
Alexander Fuerst and Prateek Sharma. Faascache: keeping serverless
computing alive with greedy-dual caching. In Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS °21, page 386-400,
New York, NY, USA, 2021. Association for Computing Machinery.
The past, present and future of the Jupyter. https://youtu.be/
G6guUzERa9w?si=DESPWvrp4qxcCiPS.

Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, C-31(1):48-59, 1982.

w
[t

[28

—
N
[l
=

[29

—

braries and resources. https://github.com/markusschanta/awesome-
jupyter.

[6] Improving startup performance with Lambda SnapStart. https://docs.
aws.amazon.com/lambda/latest/dg/snapstart.html.

(30

-

[7] AWS S3. https://aws.amazon.com/s3/. [31] Google Cloud Vertex AI Notebooks. https://cloud.google.com/vertex-
[8] Amazon SageMaker Studio. https://aws.amazon.com/sagemaker- ai-notebooks.
ai/studio/. [32] Google Colaboratory: Frequently Asked Questions . https://research.
[9] Run Jupyter notebooks in your workspace. https://learn. g(?ogle..com/co]a'boratory/faq‘.htm.l.))
microsoft.com/en-us/azure/machine-learning/how-to-run-jupyter- (33] Diandian Gu, Yihao Zhao, Yinmin Zhong, Yifan Xiong, Zhenhua

Han, Peng Cheng, Fan Yang, Gang Huang, Xin Jin, and Xuanzhe Liu.
Elasticflow: An elastic serverless training platform for distributed
deep learning. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, ASPLOS 2023, page 266—280, New York, NY, USA,
2023. Association for Computing Machinery.

Jing Gu, Shengbo Song, Ying Li, and Hanmei Luo. Gaiagpu: Shar-
ing gpus in container clouds. In 2018 IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social Computing &
Networking, Sustainable Computing & Communications (ISPA/IUCC/B-
DCloud/SocialCom/SustainCom), pages 469-476, 2018.

notebooks?view=azureml-api-2.

[10] DockerHub: jupyter/base-notebook. https://hub.docker.com/r/
jupyter/base-notebook/.

[11] Bloomberg BQuant (BQNT). https://mingze-gao.com/posts/
bloomberg-bquant/.

[12] Mike Burrows. The chubby lock service for Loosely-Coupled dis-
tributed systems. In 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 06), Seattle, WA, November 2006.
USENIX Association.

[13] Benjamin Carver, Runzhou Han, Jingyaun Zhang, Mai Zheng, and
Yue Cheng. Afs: A scalable and elastic distributed file system metadata
service using serverless functions. In Proceedings of the 28th ACM

[34

flan)

(35

=

International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2023, New York, NY, USA,
2023. Association for Computing Machinery.

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu,
Myeongjae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo.
Tiresias: A GPU cluster manager for distributed deep learning. In 16th

USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 485-500, Boston, MA, feb 2019. USENIX Association.
[36] HAMi: Heterogeneous Al Computing Virtualization Middleware.
https://github.com/Project-HAMi/HAMi.
[37] Daniel Howley. These 169 industries are being hit by the global chip
shortage.
[38] Jialiang Huang, MingXing Zhang, Teng Ma, Zheng Liu, Sixing Lin,
Kang Chen, Jinlei Jiang, Xia Liao, Yingdi Shan, Ning Zhang, Mengting
Lu, Tao Ma, Haifeng Gong, and YongWei Wu. Trenv: Transparently
share serverless execution environments across different functions
and nodes. In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, SOSP ’24, page 421-437, New York, NY,
USA, 2024. Association for Computing Machinery.
Zhuobin Huang, Xingda Wei, Yingyi Hao, Rong Chen, Mingcong
Han, Jinyu Gu, and Haibo Chen. Parallelgpuos: A concurrent os-level
gpu checkpoint and restore system using validated speculation, 2024.
Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free coordination for internet-scale systems. In
2010 USENIX Annual Technical Conference (USENIX ATC 10). USENIX
Association, jun 2010.
IPython Messaging Protocol. https://jupyter-client.readthedocs.io/
en/latest/messaging.html.

[14] Benjamin Carver, Jingyuan Zhang, Ao Wang, Ali Anwar, Panruo
Wu, and Yue Cheng. Wukong: A scalable and locality-enhanced
framework for serverless parallel computing. In ACM Symposium on
Cloud Computing 2020 (SoCC’20), 2020.

[15] Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281-283, May 1979.

[16] CoCalc: Collaborative Calculation and Data Science. https://cocalc.
com/.

[17] Google Colaboratory. https://github.com/googlecolab.

[18] The easiest way to collaborate on Jupyter. https://youtu.be/
ecl48qKyREE?si=cRsCDTMsV 1hstf76.

[19] CRIU: A project to implement checkpoint/restore functionality for
Linux. https://criv.org/Main_Page.

[20] Data Driven Science & Engineering: Machine Learning, Dynamical
Systems, and Control. https://github.com/dynamicslab/databook_
python.

[21] Data center operators must lower risk as GPU costs rise: Future-
proof your data center (presented by DDC solutions) | GTC 25 2025 |
NVIDIA on-demand.

[22] Docker Compose. https://docs.docker.com/compose/.

[23] Docker Swarm. https://docs.docker.com/engine/swarm/.

(39

[

(40

=

[41

—

[24] Dozzle: Realtime log viewer for containers. Supports Docker, Swarm [42] Python ast: Abstract Syntax Tree. https://docs.python.org/3/library/
and K8s. https://github.com/amir20/dozzle. ast.html.)))
[25] José Duato, Antonio J. Pefia, Federico Silla, Rafael Mayo, and En- [43] Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick

rique S. Quintana-Orti. rcuda: Reducing the number of gpu-based Qiao, Zhihao Jia, and Gregory R. Ganger. Sia: Heterogeneity-aware,

accelerators in high performance clusters. In 2010 International Con-
ference on High Performance Computing & Simulation, pages 224-231,
2010.

goodput-optimized ml-cluster scheduling. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP °23, page 642-657,
New York, NY, USA, 2023. Association for Computing Machinery.

https://www.adobe.com/
https://business.adobe.com/products/experience-platform/adobe-experience-platform.html
https://business.adobe.com/products/experience-platform/adobe-experience-platform.html
https://www.ansible.com/
https://github.com/markusschanta/awesome-jupyter
https://github.com/markusschanta/awesome-jupyter
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker-ai/studio/
https://aws.amazon.com/sagemaker-ai/studio/
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-run-jupyter-notebooks?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-run-jupyter-notebooks?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-run-jupyter-notebooks?view=azureml-api-2
https://hub.docker.com/r/jupyter/base-notebook/
https://hub.docker.com/r/jupyter/base-notebook/
https://mingze-gao.com/posts/bloomberg-bquant/
https://mingze-gao.com/posts/bloomberg-bquant/
https://cocalc.com/
https://cocalc.com/
https://github.com/googlecolab
https://youtu.be/ecl48qKyREE?si=cRsCDTMsV1hstf76
https://youtu.be/ecl48qKyREE?si=cRsCDTMsV1hstf76
https://criu.org/Main_Page
https://github.com/dynamicslab/databook_python
https://github.com/dynamicslab/databook_python
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://github.com/amir20/dozzle
https://aws.amazon.com/ec2/
https://youtu.be/G6guUzERa9w?si=DESPWvrp4qxcCiPS
https://youtu.be/G6guUzERa9w?si=DESPWvrp4qxcCiPS
https://cloud.google.com/vertex-ai-notebooks
https://cloud.google.com/vertex-ai-notebooks
https://research.google.com/colaboratory/faq.html
https://research.google.com/colaboratory/faq.html
https://github.com/Project-HAMi/HAMi
https://jupyter-client.readthedocs.io/en/latest/messaging.html
https://jupyter-client.readthedocs.io/en/latest/messaging.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html

—

—

[44] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie

Qian, Wencong Xiao, and Fan Yang. Analysis of large-scale multi-
tenant gpu clusters for dnn training workloads. In Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical Conference,
USENIX ATC ’19, page 947-960, USA, 2019. USENIX Association.
Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In Proceedings of
the 2011 IEEE/IFIP 41st International Conference on Dependable Systems
and Networks, DSN ’11, page 245-256, USA, 2011. IEEE Computer
Society.

Available Jupyter Kernels. https://github.com/jupyter/jupyter/wiki/
Jupyter-kernels.

Jupyter on AWS: A secure, scalable, and collaborative Jupyter experi-
ence on AWS. https://aws.amazon.com/jupyter/.

Jupyter Community Workshop (2019). https://jupyter-workshop-
2019.Ibl.gov/.

JupyterCon: Expand your knowledge, explore new possibilities, and
connect with fellow pioneers. https://www.jupytercon.com/.
Jupyter Enterprise Gateway documentation: Culling idle kernels.
https://github.com/ds2-lab/LambdaFS-Benchmark- Utility.
Teaching and Learning with Jupyter. https://jupyterdedu.github.io/
jupyter-edu-book/.

Jupyter Education Projects. https://docs.jupyter.org/en/latest/
projects/education.html.

Jupter Hub: A multi-user version of the notebook designed for com-
panies, classrooms and research labs. https://jupyter.org/hub.
Dulia.jl. https://github.com/JuliaLang/IJulia.jl.

IRKernel. https://github.com/IRkernel/IRkernel.

Jupyter Kernel Provisioning. https://jupyter-client.readthedocs.io/
en/latest/provisioning.html.

[t

—_

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

[68] Modal: GPU Memory Snapshots: Supercharging Sub-second Startup.

https://modal.com/blog/gpu-mem-snapshots.

Tulian Moraru, David G. Andersen, and Michael Kaminsky. There
is more consensus in egalitarian parliaments. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, page 358-372, New York, NY, USA, 2013. Association for Com-
puting Machinery.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. Ray: A distributed framework for
emerging Al applications. In 13th USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI 18), pages 561-577,
Carlsbad, CA, oct 2018. USENIX Association.

NaaS: Jupyter Notebooks as a Service. https://home.naas.ai/.
Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. Heterogeneity-Aware cluster sched-
uling policies for deep learning workloads. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20),
pages 481-498. USENIX Association, November 2020.

Accelerating Discovery for NASA Cryosphere Communities with
JupyterHub. https://youtu.be/9itR-_EXa5c?si=cod7BLXGljeSPT_8.
Batch Processing Jupyter Notebooks with Papermill. https:
//ncar.github.io/esds/posts/2022/batch-processing-notebooks-with-
papermill/.

Beyond Interactive: Notebook Innovation at Netflix. https://
netflixtechblog.com/notebook-innovation-591ee3221233.

Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen
Grohsschmiedt, and Mikael Ronstrom. Hopsfs: Scaling hierarchical
file system metadata using newsql databases. In 15th USENLX Confer-
ence on File and Storage Technologies (FAST 17), pages 89-104, Santa
Clara, CA, feb 2017. USENIX Association.

[57] Jupyterlab: Real time collaboration. https://jupyterlab.readthedocs.

io/en/latest/user/rtc.html. [77] NotebookOS Dashboard GitHub Repository. https://github.com/ds2-
[58] Jupyter Notebook. https://jupyter.org/. lab/NotebookOS-Dashboard.
[59] JupyterLab: Real Time Collaboration. https://jupyterlab.readthedocs. [78] NotebookOS GitHub Repository. https://github.com/ds2-lab/
io/en/latest/user/rtc.html. NotebookOS/.
[60] Anton Korinek and Jai Vipra. Concentrating intelligence: Scaling [79] NVIDIA GPU Multi-Instance GPU. https://www.nvidia.com/en-us/
and market structure in artificial intelligence. Working Paper 33139, technologies/multi-instance-gpu/.
National Bureau of Economic Research, November 2024. [80] NVIDIA GPU Multi-Process Service. https://docs.nvidia.com/deploy/
[61] kubernetes: Production-Grade Container Orchestration. https:// mps/index.html.
kubernetes.io/. [81] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

—

Gérard Le Lann. Distributed systems - towards a formal approach. In
Bruce Gilchrist, editor, Information Processing, Proceedings of the 7th
IFIP Congress 1977, Toronto, Canada, August 8-12, 1977, pages 155-160.
North-Holland, 1977.

Jupyter as a Service on Lentiq. https://lentiq.com/jupyter-as-a-
service.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze
Zeng, Zhuo Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help
rather than recycle: Alleviating cold startup in serverless computing
through Inter-Function container sharing. In 2022 USENIX Annual
Technical Conference (USENLX ATC 22), pages 69-84, Carlsbad, CA,
July 2022. USENIX Association.

Qichang Liu, Yue Cheng, Haiying Shen, Ao Wang, and Bharathan Bal-
aji. Concurrency-informed orchestration for serverless functions. In
Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2, ASPLOS 25, page 147-161, New York, NY, USA, 2025. Association
for Computing Machinery.

Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
Themis: Fair and efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI

20), pages 289-304, Santa Clara, CA, feb 2020. USENIX Association.
Notebooks at Microsoft. https://visualstudio.microsoft.com/vs/

features/notebooks-at-microsoft/.

—

=

=

=

—

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid
task provisioning with serverless-optimized containers. In USENIX
ATC 18, Boston, MA, 2018. USENIX Association.

Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A
new primary copy method to support highly-available distributed
systems. In Proceedings of the Seventh Annual ACM Symposium on
Principles of Distributed Computing, PODC ’88, page 8-17, New York,
NY, USA, 1988. Association for Computing Machinery.

Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 305-319, Philadelphia, PA, jun 2014. USENIX
Association.

Open OnDemand. https://openondemand.org/.

Batch Connect - OSC Jupyter. https://github.com/OSC/bc_osc_
jupyter.

PayPal Notebooks: Data science and machine learning at scale,
powered by Jupyter. https://conferences.oreilly.com/jupyter/jup-
ny/public/schedule/detail/68405.html.

Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: an efficient dynamic resource scheduler for deep
learning clusters. In Proceedings of the Thirteenth EuroSys Conference,
EuroSys 18, New York, NY, USA, 2018. Association for Computing
Machinery.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://aws.amazon.com/jupyter/
https://jupyter-workshop-2019.lbl.gov/
https://jupyter-workshop-2019.lbl.gov/
https://www.jupytercon.com/
https://github.com/ds2-lab/LambdaFS-Benchmark-Utility
https://jupyter4edu.github.io/jupyter-edu-book/
https://jupyter4edu.github.io/jupyter-edu-book/
https://docs.jupyter.org/en/latest/projects/education.html
https://docs.jupyter.org/en/latest/projects/education.html
https://jupyter.org/hub
https://github.com/JuliaLang/IJulia.jl
https://github.com/IRkernel/IRkernel
https://jupyter-client.readthedocs.io/en/latest/provisioning.html
https://jupyter-client.readthedocs.io/en/latest/provisioning.html
https://jupyterlab.readthedocs.io/en/latest/user/rtc.html
https://jupyterlab.readthedocs.io/en/latest/user/rtc.html
https://jupyter.org/
https://jupyterlab.readthedocs.io/en/latest/user/rtc.html
https://jupyterlab.readthedocs.io/en/latest/user/rtc.html
https://kubernetes.io/
https://kubernetes.io/
https://lentiq.com/jupyter-as-a-service
https://lentiq.com/jupyter-as-a-service
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
https://visualstudio.microsoft.com/vs/features/notebooks-at-microsoft/
https://modal.com/blog/gpu-mem-snapshots
https://home.naas.ai/
https://youtu.be/9itR-_EXa5c?si=cod7BLXGljeSPT_8
https://ncar.github.io/esds/posts/2022/batch-processing-notebooks-with-papermill/
https://ncar.github.io/esds/posts/2022/batch-processing-notebooks-with-papermill/
https://ncar.github.io/esds/posts/2022/batch-processing-notebooks-with-papermill/
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://github.com/ds2-lab/NotebookOS-Dashboard
https://github.com/ds2-lab/NotebookOS-Dashboard
https://github.com/ds2-lab/NotebookOS/
https://github.com/ds2-lab/NotebookOS/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://openondemand.org/
https://github.com/OSC/bc_osc_jupyter
https://github.com/OSC/bc_osc_jupyter
https://conferences.oreilly.com/jupyter/jup-ny/public/schedule/detail/68405.html
https://conferences.oreilly.com/jupyter/jup-ny/public/schedule/detail/68405.html

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

(88]

[95]

[96]

[97

—

(98]

[99]

[100]

[101]

[102]

Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. Pollux: Co-adaptive cluster scheduling for goodput-optimized
deep learning. In 15th USENLX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), pages 1-18. USENIX Association,
July 2021.

Redis. https://redis.io/.

https://www.reportsinsights.com ReportsInsights. Graphic Proces-
sors Market 2022 | Size | Forecast By 2030.

Amazon SageMaker Notebooks: Fully managed notebooks for ex-
ploring data and building ML models. https://aws.amazon.com/
sagemaker/notebooks/.

SageMaker Studio Lab: Learn and experiment with machine learning.
https://studiolab.sagemaker.aws/.

Richard D. Schlichting and Fred B. Schneider. Fail-stop processors:
an approach to designing fault-tolerant computing systems. ACM
Trans. Comput. Syst., 1(3):222-238, August 1983.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Char-
acterizing and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX Annual Technical Conference (USENIX ATC
20), pages 205-218. USENIX Association, July 2020.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies (MSST), MSST ’10, pages 1-10, Washington, DC, USA, 2010. IEEE
Computer Society.

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Jose M. Faleiro, Joseph E. Gonzalez, Joseph M. Heller-
stein, and Alexey Tumanov. Cloudburst: Stateful Functions-as-a-
Service. Proceedings of the VLDB Endowment, 13(12):2438-2452, 2020.
Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic. Ml
training with cloud gpu shortages: Is cross-region the answer? In
Proceedings of the 4th Workshop on Machine Learning and Systems,
EuroMLSys "24, page 107-116, New York, NY, USA, 2024. Association
for Computing Machinery.

Mark Sweney. Global shortage in computer chips ‘reaches crisis
point’. https://www.theguardian.com/business/2021/mar/21/global-
shortage-in-computer-chips-reaches-crisis-point.

Traefik: The Cloud Native Application Proxy. https://traefik.io/
traefik.

Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. Benchmarking, analysis, and optimization of server-
less function snapshots. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS °21, page 559-572, New York, NY, USA,
2021. Association for Computing Machinery.

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENLX ATC 18), pages
133-146, Boston, MA, 2018. USENIX Association.

Zhuang Wang, Zhen Jia, Shuai Zheng, Zhen Zhang, Xinwei Fu,
T. S. Eugene Ng, and Yida Wang. Gemini: Fast failure recovery
in distributed training with in-memory checkpoints. In Proceedings
of the 29th Symposium on Operating Systems Principles, SOSP ’23,

[103

[104

[105

[106

[107

[108

[109

[110

[111

[112

[t

flan?

=

=

—

=

—

-

]

—

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

page 364-381, New York, NY, USA, 2023. Association for Computing
Machinery.

Xingda Wei, Zhuobin Huang, Tianle Sun, Yingyi Hao, Rong Chen,
Mingcong Han, Jinyu Gu, and Haibo Chen. Phoenixos: Concurrent
os-level gpu checkpoint and restore with validated speculation. In
Proceedings of the ACM SIGOPS 31th Symposium on Operating Systems

Principles, 2025.
Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang,

Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. MLaaS$ in the
wild: Workload analysis and scheduling in Large-Scale heterogeneous
GPU clusters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 945-960, Renton, WA,
apr 2022. USENIX Association.

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin.
Transparent GPU sharing in container clouds for deep learning work-
loads. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23), pages 69-85, Boston, MA, apr 2023.
USENIX Association.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. Gandiva:
Introspective cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 595-610, Carlsbad, CA, oct 2018. USENIX Association.
Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yanggqing Jia. AntMan: Dynamic scaling
on GPU clusters for deep learning. In 14th USENLX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 533—
548. USENIX Association, nov 2020.

Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil
Bhardwaj, Woosuk Kwon, Siyuan Zhuang, Frank Sifei Luan, Gautam
Mittal, Scott Shenker, and Ion Stoica. SkyPilot: An intercloud broker
for sky computing. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 437-455, Boston, MA,
April 2023. USENIX Association.

Hanfei Yu, Rohan Basu Roy, Christian Fontenot, Devesh Tiwari, Jian
Li, Hong Zhang, Hao Wang, and Seung-Jong Park. Rainbowcake:
Mitigating cold-starts in serverless with layer-wise container caching
and sharing. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 1, ASPLOS ’24, page 335-350, New York, NY, USA,
2024. Association for Computing Machinery.

Minchen Yu, Ao Wang, Dong Chen, Haoxuan Yu, Xiaonan Luo, Zhuo-
hao Li, Wei Wang, Ruichuan Chen, Dapeng Nie, and Haoran Yang.
Faaswap: Slo-aware, gpu-efficient serverless inference via model
swapping, 2024.

Minchen Yu, Rui Yang, Chaobo Jia, Zhaoyuan Su, Sheng Yao, Tingfeng
Lan, Yuchen Yang, Yue Cheng, Wei Wang, Ao Wang, and Ruichuan
Chen. Ascale: Enabling fast scaling for serverless large language
model inference, 2025.

Wei Zhao, Anand Jayarajan, and Gennady Pekhimenko. Tally: Non-
intrusive performance isolation for concurrent deep learning work-
loads. In Proceedings of the 30th ACM International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, Volume 1, ASPLOS 25, page 1052-1068, New York, NY, USA,
2025. Association for Computing Machinery.

https://redis.io/
https://aws.amazon.com/sagemaker/notebooks/
https://aws.amazon.com/sagemaker/notebooks/
https://studiolab.sagemaker.aws/
https://traefik.io/traefik
https://traefik.io/traefik

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

A Artifact Appendix
A.1 Abstract

This section presents supplementary materials and guidance
intended to support the reproducibility of NotebookOS and
its experimental evaluation. Provided resources include the
source code, dataset/model names, config files, and tools used
in the experimental framework. Comprehensive instructions
for deployment and carrying out the experiments are avail-
able within the linked GitHub repositories [77, 78].

A.2 Artifact Check-List (Meta-Information)

e Model: VGG-16, ResNet-18, Inception v3, BERT, GPT-2,

Deep Speech 2.

Data set: CIFAR-10, CIFAR-100, Tiny ImageNet, IMDb Large

Movie Reviews, CoLA, LibriSpeech.

¢ Run-time environment: AWS, Linux, Ubuntu, WSL 2.

Hardware: AWS EC2 virtual machines.

e Metrics: Interactivity delay, task completion time, number
of GPUs provisioned, number of GPUs actively used, profit,
profit margin, GPU-hours saved.

e Output: Numerical statistics.

Experiments: Execution of real-world workload trace ex-

cerpt on prototype implementation, extension of real-world

experiments using simulation study.

e How much disk space is required (approximately)?:
10’s of GB across multiple virtual machines.

e How much time is needed to prepare workflow (ap-
proximately)?: Several hours.

e How much time is needed to complete experiments
(approximately)?: Several hours.

o Publicly available?: Yes.

e Code licenses (if publicly available)?: Pending.

e Archived (provide DOI)?: 10.5281/zenodo.15832098.

A.3 Description

A.3.1 How to Access. NotebookOS can be deployed using
a set of Ansible [3] playbooks and shell scripts that we have
provided. These tools support deployment across an arbitrary
number of AWS EC2 virtual machines, allowing users to
customize the scale of their infrastructure. The latest versions
of the Ansible playbooks are available in the NotebookOS
GitHub repository.

A.3.2 Hardware and Software Dependencies. NotebookOS

was developed, tested, and evaluated on WSL 2 (Windows
Subsystem for Linux 2) and Ubuntu on AWS EC2. The WSL 2
environment used Ubuntu 22.04.5 LTS (Jammy) with Docker
27.2.0, Go 1.22.9 (1inux/amd64), Python 3.12.6, Protoc 27.2,
and CUDA 12.7 (via NVIDIA driver v566.36, NVML v565.77,
and NVIDIA-SMI v565.77.01). The host OS was Windows
10 v22H2 (OS build 19045.5487), with WSL 2 kernel version
5.15.167.4-1 and WSLg version 1.0.65. The AWS EC2 envi-
ronment ran Ubuntu 24.04.1 LTS (Noble) with Docker 27.3.1
(build ce12230) with matching versions of Golang, Python,
and Protoc. Currently, the glibc version in the Global and

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

Local Scheduler Docker containers is 1dd (Debian GLIBC
2.36-9+deb12u7) 2.36; within the Jupyter Docker container,
it is 1dd (Ubuntu GLIBC 2.35-Qubuntu3.8) 2.35.

Remote Storage. NotebookOS persists intermediate work-
load data to remote storage and currently supports AWS S3
(recommended), Redis and HDFS. For S3, one must create an
AWS IAM role with access to the necessary AWS S3 buckets.
When provisioning the AWS EC2 virtual machines, be sure
that they are assigned an AWS IAM role with access to the
AWS S3 buckets intended for use by the distributed kernels.

A.3.3 Models and Datasets. To ensure a thorough evalua-
tion of NotebookOS and the various other baselines, we inte-
grated support for a variety of different deep learning models
and datasets across several different application domains. Ta-
ble 1 displays the complete set of models and datasets.

A.4 Installation

NotebookOS is deployed on AWS EC2 instances using pro-
vided Ansible playbooks (in setup/ansible [78]). After provi-
sioning VMs with IAM roles granting S3 access (see the AWS
documentation), the playbooks automate dependency instal-
lation, patching, and experiment orchestration across the
cluster. The source code, as well as additional documentation,
is available in the following GitHub repositories:
1. NotebookOS source code (primary artifact).

2. Administrative dashboard and workload orchestrator
for NotebookOS.

A.4.1 Multi-Node Deployments. The recommended way
to deploy NotebookOS across multiple AWS EC2 virtual
machines is using the provided Ansible playbooks (located
in the setup/ansible directory). Before running any play-
books, there are a few configuration-related steps that must
be performed. First, create a file called “all.yaml” in the
setup/ansible/group_vars directory. The “all. template.yaml”
file is provided as a starting point. There are five configura-
tion parameters that must be specified explicitly:

e ansible_ssh_private_key_file: Path to a private SSH
key on the computer used to run the Ansible play-
book(s). Used to enable access to the other VMs in the
NotebookOS cluster.

e private_key_to_upload: Path to a private SSH key on
the computer used to run the Ansible playbook(s). This
SSH key will be uploaded to the VMs in the Note-
bookOS cluster to enable SSH connectivity between
them. This is useful because you may want to run some
scripts or Ansible playbooks from one of the VMs once
NotebookOS has been deployed.

e public_key_to_upload: Path to a public SSH key on the
computer used to run the Ansible playbook(s). This
SSH key will be uploaded to the VMs in the Note-
bookOS cluster to enable SSH connectivity between
them. This is useful because you may want to run some

https://zenodo.org/records/15832099
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/security_iam_service-with-iam.html
https://github.com/ds2-lab/NotebookOS/
https://github.com/ds2-lab/NotebookOS-Dashboard
https://github.com/ds2-lab/NotebookOS-Dashboard

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

scripts or Ansible playbooks from one of the VMs once
NotebookOS has been deployed.

e gitbranch: the branch of the NotebookOS GitHub repos-
itory to use when deploying NotebookOS. You can
default to using “main”.

e git_personal_access_token: GitHub personal access
token (PAT) with read access to the NotebookOS GitHub
repository (or the fork of the NotebookOS source code
that is being used).

To use Docker images built manually (rather than the
provided images), there are several configuration parameters
that must be changed. Please consult the documentation in
the GitHub repository for additional details.

Once the “all.yaml” file has been created in the correct
directory (i.e., “setup/ansible/group_vars”), you can begin
deploying NotebookOS. First, run the playbook to create the
Docker Swarm cluster:

$ ansible-playbook -i inventory_file.ini create_docker

_swarm_cluster.yaml --tags ~“swarm''

Next, deploy the Traefik [99] Docker Stack onto the Docker
Swarm cluster. Traefik is an open source reverse proxy and
ingress controller that NotebookOS uses to route external
web traffic to the appropriate internal component. Traefik
can be deployed onto the Docker Swarm cluster by executing
the following command:

$ ansible-playbook -i inventory_file.ini redeploy\

_traefik_docker_stack.yaml

Finally, deploy the NotebookOS Docker Stack onto the
Docker Swarm cluster:

$ ansible-playbook -i inventory_file.ini

deploy_distributed_notebook_docker_stack.yaml

If desired, verbose Ansible logging can be enabled by set-
ting the ANSIBLE_STDOUT_CALLBACK environment variable to
“debug”. For example:

$ ANSIBLE_STDOUT_CALLBACK=debug ansible-playbook -i
inventory_file.ini deploy_distributed_notebook\
_docker_stack.yaml

A.4.2 Single-Node and Development Deployments.

For development, NotebookOS supports Docker Compose [22].

Run setup/install.sh to install host dependencies. A tem-
plate for the Docker Compose yml file is provided in the
deploy/docker-WSL2/ directory; generate it via the “generate-
docker-compose-file.sh” script. Helper scripts and usage de-
tails are documented in the directory’s README. Once the
docker-compose.yml file is generated, you can deploy Note-
bookOS via Docker Compose using the following command:

$ docker compose up -d --build --scale daemon=4

In order for NotebookOS to operate correctly with 3 repli-
cas per distributed kernel, the minimum value of the “-scale
daemon=" argument is 3; however, the recommended mini-
mum is 4 to enable kernel replica migrations to occur.

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

When deploying NotebookOS for development, we recom-
mend specifying a few additional configuration parameters.
First, the system expects that the core dumps will be written
to a /cores directory. We recommend mounting a Docker vol-
ume so that data written to the /cores directory are persisted
and can be accessed later. We also recommend deploying
Dozzle [24] for easier log monitoring.

$ docker run --name dozzle -d \
-v /var/run/docker.sock:/var/run/docker.sock:ro \
-p 7744:8080 amir20/dozzle:latest

A.4.3 Running the Dashboard Locally or Indepen-
dently. After cloning the dashboard repository, execute the
following command from within the driver-frontend direc-
tory:

$ npm install && npm run start:dev

Note that unless the above command is modified, the front-
end server will become the active process for the terminal.

Next, to run the backend server, execute the following
command from within the driver-backend directory:

$ make run-server

Note that unless the avove command is modified, the back-
end server will become the active process for the terminal.

A.4.4 AWS Configuration. To deploy NotebookOS on
AWS, designate one internet-accessible EC2 VM with a public
IPv4 address as the “primary VM”. This VM, which should be
named “Jupyter NaaS Leader”, hosts NotebookOS’s Traefik
service, which routes external traffic (e.g., to the workload
dashboard). Use the generate_inventory_file_aws.py file in
the setup/ansible/ directory to generate an inventory.ini
from inventory_file.template.ini. The script requires the
primary VM to be named as above, and all other VMs in the
NotebookOS cluster should be tagged with key “swarm” and
value “follower”. It assumes Ubuntu VMs with the “ubuntu”
root username.

A.5 Experiment Workflow

The experiments for NotebookOS and the other baselines are
primarily orchestrated using NotebookOS’s administrative
dashboard [77]. The dashboard provides a browser-based
interface to view and manage NotebookOS itself, as well as
workloads running on NotebookOS.

A.6 Evaluation and Expected Results

The results presented in Section 5 correspond to the execu-
tion of a real-world workload trace on NotebookOS. We are
working to open-source our workload trace. Executing the
same workload on NotebookOS multiple times will generate
approximately the same results, with small differences re-
sulting from scheduling decisions and other random factors.

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs

== Reservation 1 OO
2.5K {feReseo < YRR Aoy
2.0K == NotebookOS |
" = NotebookOS (LCP) \ 0 75 — Reservation
v q 5K Saved,GPUs o Oracle
2 Over-provisioned GPUs ™\ | ¢y ~ =~ | NotebookOS

----- NotebookOS (LCP)

GPU Usage Ratio (%)
o
ul
o

© 1.0k @\\\\\s
500 M
0

0.25 | pArWM
o 30 60 90 °°°9 30 60 90
Day Day

(a) Cluster-wide allocatable GPUs. (b) GPU usage ratio.

Figure 14. Simulated GPU usage timeline over a 90-day
snippet of the AdobeTrace spanning June through August.

_-===a . Asynchronous
4 Legend 0“')’ n (Not on the critical
1 1 N 0S path in Notebookos)
1 noqu-.l 1
' ' © Q
: ﬂ I P'. P"""’y

Path Process Ihnllu
1 1 noquuc Protocol c‘“" ""’“"
- e o owm

Q@»

r
Request Path Response Path

Figure 15. Workflow steps of notebook cell execution re-
quests in NotebookOS and other baselines.

2108
5104 ‘*‘ L —_—
> e
2102

® 100 -
310
g2Ee s® Ra m\(oo RA ®) " oRP \6:(or? erec \’l\\(exec @)) asp Q) _Sk\(Q0

Figure 16. Detailed end-to-end latency breakdown of exe-
cute requests messages processed by Reservation.

@108
T 00| =8 <= L :
< ==
2102
3z
g10° !
g2e s? Ra m\(op RO o) \(pR? \62(or® exec g‘l\\4 exe C(a\ KP‘*SP \9\ “10\

Figure 17. Detailed end-to-end latency breakdown of exe-
cute requests messages processed by Batch.

B Limited GPU Resource Availability

The demand for GPUs has surged in recent years, driven by
the rapid growth of machine learning, deep learning, and
high-performance computing applications [60, 90]. However,
cloud providers such as Amazon Web Services (AWS), Google
Cloud, and Microsoft Azure are struggling to meet this in-
creasing demand due to limited GPU resources [21, 60, 97,
108]. This scarcity is further compounded by global supply
chain challenges and the growing competition from sectors
like gaming, cryptocurrency mining, and scientific research,
all of which intensify the pressure on cloud infrastructure
providers to allocate GPU resources efficiently [37, 60, 98].
The low availability of GPUs serves as further motivation of
NotebookOS.

ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

C Implementation

To demonstrate NotebookOS’s efficacy, we implemented a
fully functional prototype Jupyter Notebook platform. Note-
bookOS reuses the existing IPython messaging protocol used
by standard Jupyter clients and kernels, ensuring compati-
bility with all Jupyter clients. NotebookOS uses the Jupyter
Server from the official base-notebook Docker image. Note-
bookOS uses a custom kernel provisioner, referred to as the
GatewayProvisioner, as well as a custom SessionManager and
KernelManager. All custom components were implemented
using the official Jupyter Server API extension methods,
building on the default implementations provided by Jupyter
Server. NotebookOS also implements a custom Jupyter Ker-
nel Provisioner, GatewayProvisioner to integrate directly
with standard/vanilla Jupyter deployments. Jupyter Kernel
Provisioners enable third parties to manage the life-cycle
of a kernel’s runtime environment. NotebookOS’s Global
Scheduler and Local Schedulers communicate using gRPC,
while kernel-replica-related messages use ZMQ.

Table 2. Lines of code required for the development and
evaluation of NotebookOS by its components.

Component LoC ‘ Component LoC
Simulator (Go/Python) 40,395 | Prototype (Go/Python) 175,239
Cluster Dashboard (TypeScript) 23,038 | Misc. scripts 4,322

Workload Orchestrator (Go) 43,043 | Total: 285,037

We have implemented NotebookOS in approximately 282k
lines of code over roughly two person-years. See Table 2 for
a summary of our implementation efforts.

D Simulation Study: Resource Usage

Our simulation study of the 3-month trace confirms the
significantly improved GPU efficiency over Reservation (Fig-
ure 14(b)). This is because NotebookOS oversubscribes server
resources and consequently requires fewer servers to be pro-
visioned. Figure 14(b) plots the ratio of allocatable GPUs
that are actively utilized by kernel containers during the
simulated 3-month workload. NotebookOS uses a signifi-

cantly higher fraction of the available GPUs compared to
the reservation baseline, again illustrating NotebookOS’s

resource efficiency.

E Detailed Latency & Overhead Breakdown

Figure 15 presents an overview of the individual steps along
the critical path of execution requests within NotebookOS
and other baselines. Some steps are unique to NotebookOS
and do not exist in other baselines, and therefore, they have
zero delay in other baselines.

Step @ corresponds to the processing performed by the
Global Scheduler when an execution request is received.
This may include on-demand docker container provisioning,
queuing delays, and the overhead associated with making

ASPLOS 26, March 22-26, 2026, Pittsburgh, PA, USA

150 450
100 | 300 2
g 5

7]
S 50 1150 &
= . — Trainings — Sessions 0 «
0 30 60 90
Time (Day)

Figure 20. The number of active user-submitted trainings
and active user sessions during the full summer portion
(i.e., June, July, and August) of the Adobe research cluster

workload trace.
@10°

sl | ¢$. <
g10® <> =N —_—

e s? Ra m\(¢p RQ o) « oRP \62(- exec g‘l\\(exec [t) ® asp Q) s a0

Figure 18. Detailed end-to-end latency breakdown of exe-
cute requests messages processed by NotebookOS.

2108 .
o &
N ——
9102 »
g -
710° !
5= s? Ra m\(op RO o) « PRP \6; ey e (!\\(exeC @) (PRSP [C)) (s a0

Figure 19. Detailed end-to-end latency breakdown of exe-
cute requests messages processed by NotebookOS (LCP).

placement decisions. Step @ is the latency of the network
hop between the Global Scheduler and the Local Scheduler.
Step @) is any processing performed by the Local Sched-
uler. Step @ is the latency of the network hop between
the Local Scheduler and the kernel replica. Step @ includes
pre-processing performed by the kernel replica, which may
involve extracting metadata. Step @, which only occurs
while using NotebookOS, is the executor replica selection
protocol. Step @ includes the time between the selection
of the executor replica and the beginning of code execu-
tion, and Step @ is the execution of the user-submitted cell
task by the kernel replica. Step @) involves post-processing
by the kernel replica, which in NotebookOS may include
state synchronization via Raft SMR and writing large objects
to the Distributed Data Store. In NotebookOS, this step is
asynchronous and does not affect the user experience. The
remaining steps largely just involve forwarding the response
back to the client. Steps that appear more lightly-colored
in Figure 15 are omitted from the detailed request latency
figures discussed next. These steps are omitted because their
latency is near zero for all baselines.

Figure 16 presents a detailed breakdown and overview
of the steps along the critical path of execution requests as
observed by the Reservation baseline. Execution requests
processed by the Reservation baseline spend the most time in
Step @), which corresponds to the kernel replica executing

Benjamin Carver, Jingyuan Zhang, Haoliang Wang, Kanak Mahadik, and Yue Cheng

the user-submitted code. Step 9 also incurs some latency,
as the kernel replica persists the updated state to remote
storage during this step.

Figure 17 presents a detailed breakdown and overview
of the steps along the critical path of execution requests
as observed by the Batch baseline. Execution requests pro-
cessed by the Batch baseline encounter significant delays dur-
ing Step @), which includes queuing delays and on-demand
docker container provisioning. The same is true for Note-
bookOS (LCP), though NotebookOS (LCP) observes shorter
latencies during this step because many requests can simply

be processed by an existing, pre-warmed container.
Figure 18 presents a detailed breakdown and overview

of the steps along the critical path of execution requests
as observed by NotebookOS. NotebookOS incurs slightly
increased overhead in many steps compared to the other
baselines; however, the small amount of additional overhead
incurred in these steps does not outweigh the savings (in
terms of interactivity and task completion time) enabled
by NotebookOS. NotebookOS primarily incurs additional
overhead when execution requests are being processed by
the kernel replicas. This is because the executor replica se-
lection protocol must be performed (Step @ in Figure 15).
This protocol typically takes tens of milliseconds at most,
however, and so it does not contribute significantly to the
overall end-to-end latency.

E.1 Active Sessions & Training Events

Figure 20 presents a timeline plot showing the number of
active sessions during the “summer portion” of the Adobe
research cluster workload trace. Specifically, the number of
active sessions is plotted on the secondary (i.e., right) y-axis.
The summer portion includes data from the entirety of the
months of June, July, and August. Initially, there are 0 active
user sessions. By the end of June, July, and August, there
are 206, 312, and 397 active user sessions, respectively. For
June, the mean and median number of active user sessions
are 115 and 130, respectively. For July, the mean and median
number of active user sessions are 233 and 234, respectively.
Finally, for August, the mean and median number of active
user sessions are 379 and 385, respectively. The maximum
number of active sessions at any given time throughout the
summer Adobe research cluster workload trace is 433.
Figure 20 also presents a timeline plot showing the number
of user-submitted training events being processed during the
“summer portion” of the Adobe research cluster workload
trace. Specifically, the number of active sessions is plotted on
the primary (i.e., left) y-axis. By the end of June, July, and Au-
gust, there are 58, 83, and 73 active user-submitted trainings,
respectively. The mean and median number of active user-
submitted trainings for the entire summer are 67.63 and 68,
respectively. For June, the mean and median number of ac-
tive user-submitted trainings are 31 and 30, respectively. For
July, the mean and median number of active user-submitted

NotebookOS: A Replicated Notebook Platform for Interactive Training with On-Demand GPUs ASPLOS °26, March 22-26, 2026, Pittsburgh, PA, USA

trainings are 65 and 67, respectively. Finally, for August, the

are 105 and 108, respectively. The maximum number of ac-
mean and median number of active user-submitted trainings

tive user-submitted trainings at any given time throughout
the summer AdobeTrace is 141.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Jupyter Notebook
	2.2 Interactive Deep Learning Training
	2.3 Real-World IDLT Workload Analysis
	2.4 Insight and Challenges

	3 NotebookOS Design
	3.1 NotebookOS Overview
	3.2 Distributed Notebook Kernels
	3.3 GPU Management
	3.4 Resource Scheduling

	4 NotebookOS Implementation
	5 Evaluation
	5.1 Experimental Setup & Methodology
	5.2 Prototype Evaluation
	5.3 Active Sessions & Training Events
	5.4 Object Synchronization Overhead
	5.5 Simulation Study

	6 Related Work
	7 Limitations and Future Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results

	B Limited GPU Resource Availability
	C Implementation
	D Simulation Study: Resource Usage
	E Detailed Latency & Overhead Breakdown
	E.1 Active Sessions & Training Events

