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ABSTRACT

Measuring Internet outages is important to allow ISPs to im-
prove their services, users to choose providers by reliability,
and governments to understand the reliability of their in-
frastructure. Today’s active outage detection provides good
accuracy with tight temporal and spatial precision (around 10
minutes and IPv4 /24 blocks), but cannot see behind firewalls
or into IPv6. Systems using passive methods can see behind
firewalls, but usually, relax spatial or temporal precision, re-
porting on whole countries or ASes at 5 minute precision, or
/24 IPv4 blocks with 25 minute precision. We propose Durbin,
a new approach to passive outage detection that adapts spa-
tial and temporal precision to each network they study, thus
providing good accuracy and wide coverage with the best
possible spatial and temporal precision. Durbin observes data
from Internet services or network telescopes. Durbin studies
/24 blocks to provide fine spatial precision, and we show it
provides good accuracy even for short outages (5 minutes) in
600k blocks with frequent data sources. To retain accuracy
for the 400k blocks with less activity, Durbin uses a coarser
temporal precision of 25 minutes. Including short outages
is important: omitting short outages underestimates overall
outage duration by 15%, because 5% of all blocks have at
least one short outage. Finally, passive data allows Durbin
to report this results for outage detection in IPv6 for 15k
/48 blocks. Durbin’s use of per-block adaptivity is the key to
providing good accuracy and broad coverage across a diverse
Internet.

1 INTRODUCTION

Internet outages are an economic and societal challenge. An
outage costs Amazon $66k on 2013-08-19 [2]. Data-centers
lose $5k per minute when users can not reach them [1]. Nat-
ural disasters, political events, software and hardware failure,
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human error, and malicious activity can cause Internet out-
ages [3, 7, 9, 28]. Prior outage detection has shown outages
are rare but ubiquitous [9, 10, 24, 26, 37].

Monitoring approaches use active measurement or passive
traffic analysis. Active monitoring has vantage points (VPs)
query destinations, responders prove reachability [17, 18, 23,
27, 33]. Passive methods instead infer outages by the absence
of prior network traffic [14, 19, 29, 34].

Today’s active outage detection provides good accuracy
with tight temporal and spatial precision (around 10 minutes
and IPv4 /24 network blocks), but they face two limitations.
First, traffic from active observations draws abuse complaints
and blocking from those who consider it intrusive. Second,
active methods cannot see behind firewalls.

Passive outage detection today usually relaxes spatial or
temporal precision, reporting on whole countries or ASes at
5 minute precision [14], or /24 IPv4 blocks with 30 minute
precision [29], or require physical devices and so have limited
coverage [34]. However, passive systems have some advan-
tages: they pose no additional traffic on targets and so do not
draw abuse complaints or blocking. In addition, they can see
networks behind firewalls when those networks send traffic.

This paper proposes Durbin, a system that detects Internet
outages based on passive analysis of data sources. Unlike
prior passive systems, Durbin’s detection algorithm is param-
eterized based on the historical data of each block, allowing it
to cover both /24 IPv4 blocks and extend coverage to /48 IPv6
blocks. Durbin can vary the spatial and temporal precision
of detection which provides high accuracy, even in networks
with weaker signals, enhancing Durbin’s effectiveness across
a wider range of network conditions. Our approach provides
a new, systematic approach to passive analysis to address
these problems, making the following three contributions:

Detecting short outages: We know brief outages oc-
cur (short-burst DDoS attacks or pulse attacks, but prior
systems do not detect outages shorter than 10 minutes for in-
dividual /24 blocks. Prior active detection systems use active
probing and probes every 11 minutes, and cannot increase
temporal precision without becoming excessively intrusive
(which could result in abuse complaints or silent discard of



measurements). Prior passive detection systems detect short-
duration outages, but at the cost of providing only much
coarser, AS-level spatial precision.

Our new approach interprets passive data and can employ
exact timestamps of observed data, allowing both fine spatial
and temporal precision when possible. Our measurements
show in §5.6 that around 5% of total blocks have 5 minute
outages that were not seen in prior work. These short outages
add up—when we add the outages from 5 to 10 minutes that
were previously omitted to observations, we see that total
outage duration increases by 20%.

Optimizing across a diverse Internet: Variation in Inter-
net use means that outage detection systems should be tuned
to operate well in each region. Our second contribution is to
describe the first passive system that optimizes parameters
for each block to provide fine spatial and temporal preci-
sion when possible, but can fall back to coarser temporal
precision when necessary. By contrast, although prior pas-
sive systems optimize some parameters, they operate with a
homogeneous global sensitivity, and therefore provide only
coarse spatial coverage (at the country or AS level [14], or de-
creasing coverage). We instead exploit the ability to trade-off
between spatial and temporal precision (§5.5), allowing some
blocks to have less temporal precision. This flexibility means
we can retain accuracy and increase coverage by reporting
coarser results for blocks that otherwise would be ignored
as unmeasurable. Our hybrid approach detects around 20%
more outage duration than fixed parameters (§5.5).

Extending to IPv6: Our third contribution is to show
that our new approach applies to IPv6 (§6). Since passive
data comes from live networks, we avoid the active methods
requirement for an accurate IPv6 hitlist. Although there has
been considerable work on IPv6 hitlists [5, 6, 11, 12, 22, 36],
their IPv6 coverage remains incomplete, particularly in the
face of client preference for privacy-preserving addresses
that are intentionally hard to discover. We show that cover-
age using passive data from B-root and an example of net-
work services like DNS, is about 17% of the Gasser hitlist [12],
and our approach could cover 5x more than Gasser if it used
data from Wikipedia or 10°X more if using NTP [31].

Data availability and ethics: Our work uses publicly
available datasets. Datasets for the input and results from our
experiments are available at no charge [41]. Our analysis uses
data from services, not individuals, so it poses no privacy
concerns. We discuss research ethics in detail in Appendix A.

2 RELATED WORK

Internet outage detection systems can use either active data
monitoring or passive data monitoring. We highlight how
the outage detection system we propose compares to existing
active and passive monitoring techniques for both IPv4 and
IPv6 address blocks.

Outage Detection Systems using Active Monitoring
probe the Internet from a set of vantage points, typically dis-
tributed across different networks, sending pings or tracer-
outes to most or all of the Internet.

ThunderPing first used active measurement to track weather-
related outages [33]. They probe many individual addresses
in areas with severe weather from around ten vantage points
and report outages for individual addresses. Padmanabhan
et al. later showed that outages sometimes occur at spatial
scales smaller than a /24 block [24]. Like this prior work,
we are interested in edge networks, but our goal is wide
coverage, not just areas under severe weather.

Hubble finds potential Internet outages by probing all .1
addresses,triggering traceroutes to localize a potential out-
age [17]. LIFEGUARD extends Hubble to work around lo-
cal outages caused by routing [18], detecting outages per
routable prefix. We instead do passive traffic observations
from network-wide services, and target outages in edge net-
works, using finer IPv4 /24s and also adding IPv6.

Trinocular provides precise measurements of Internet re-
liability to all “measurable” edge networks, 5.1 million /24
blocks in current datasets [27]. It uses adaptive ICMP probing
every 11 minutes dynamically adapting how many probes
are sent to balance traffic and accuracy. Our passive work
adds coverage for firewalled regions and extends to IPvé.

Our passive monitoring technique does not increase traffic
on target networks, unlike active systems. It also supports
outage detection behind firewalls and we are the first to
report results for IPv6. Finally, we support finer temporal
resolution (up to 5 minutes) when possible, while retaining
fine spatial resolution (IPv4 /24s).

Outage Detection Systems using Passive Monitoring
infer outages by the disappearance of previously observed
traffic. Passive systems watch traffic from some global net-
work service such as a CDN, a DNS service, or Internet
background radiation seen in network telescopes.

Dainotti et al. examined outages from censorship [9] as
detected in observations from both BGP and Internet back-
ground radiation (IBR) as seen in network telescope traf-
fic [21]. Chocolatine [14] formalizes this approach, uses
SARIMA models to detect outages in IBR [25]. Each of these
passive systems improves temporal resolution, either by us-
ing more input traffic or by growing spatial precision. For
example, Chocolatine has 5 minute temporal precision, but
only at the scale of entire ASes. We instead infer outages
using data from passive sources which provide important
insight into networks that block active probes.

CDN-based analysis provides /24 spatial precision at 1 hour
temporal precision [29]. As a passive approach, it also pro-
vides global results for firewalled blocks, with broad cover-
age (2M /24 blocks). It optimizes expected response from the
history of each block, but sets overall detection parameters



globally. We provide good spatial and temporal precision,
in part with additional per-block customization, and our
approach could apply to CDN data to similar coverage.

Fontugne et al. use RIPE Atlas data to identify network
outages [38]. Blink detects failures without controller inter-
action by analyzing TCP retransmissions [16]. Blink creates
a characteristic failure signal when multiple flows aggregate
retransmission information.

Our proposal differs from prior passive systems for several
reasons. First, protocols such as DNS or NTP can provide
much larger coverage than RIPE: we infer outages from ex-
isting networks instead of explicit status provided by the
network service providers. Second, we can ensure finer tem-
poral precision (5 minutes or less) by interpreting passive
data and using exact timestamps of observed data. We op-
timize parameters for each block to provide precise results
but may use coarser temporal precision when required. We
discuss precision in detail in §5.4 and §5.5.

Hybrid Active and Passive Detection Systems: Disco
detects outages by passively detecting correlated disconnec-
tion events across actively maintained connections from
about 10k sites [34]. We instead detect outages by analyz-
ing passive traffic with IP and timestamps and search for a
gap in that traffic without injecting excess traffic. Our sys-
tem customizes parameters for each block to optimize the
performance of our model.

IPv6 Coverage: Prior work on outage detection only con-
siders IPv4. IPv6 hitlists [5, 11-13, 22, 36] are a potential step
towards IPv6 outage detection. Gasser et al. reported the first
large IPv6 hitlist [13] using prior data and traceroutes to find
25.5k prefixes, 21% of what was announced at the time.

Building on this work, Beverly et al. use random prob-
ing to discover 1.3M IPv6 routers [5]. Entropy/IP models
IPv6 use with information-theoretic and machine-learning
techniques [11]. After training on 1k addresses, 40% of their
1M candidate addresses are active. Murdock et al. search
regions near known addresses, discovering 55 M new active
addresses [22]. AddrMiner also grows the hitlist from a seed
set [35], finding 1.7B addresses after dealiasing. Rye and
Levin instead turn to passive addresses in NTP traffic, find-
ing an impressive 7.9 B addresses [31], showing that prior
approaches missed many client addresses.

We directly use passive data, like Rye and Levin, avoiding
the need to build a hitlist for active probing. We provide the
first reports of outage detection in IPvé.

3 METHODOLOGY

Durbin methodology is to observe passive data from some
service (§3.1). From history, it models the probability traffic
arrives from any address in some time period (§3.2). It then
detect deviations from this model with Bayesian inference,
reporting traffic reduction as an outage (§3.3). Finally, when

possible, it combines observations for multiple observers in
a block (§3.4). We optimize parameters to trade off spatial
and temporal precision for each block (§3.5).

3.1 Data Requirements

Durbin uses passive traffic observations from network ser-
vices like DNS or darknets. Many network services could
serve as input to Durbin: large websites like Google, Amazon,
or Wikipedia; web infrastructure like CDNSs; infrastructure
services like DNS or NTP. darknets are an alternative, with
darknets operated by CAIDA and Merit and smaller tele-
scopes operated by many parties. Durbin’s requirement is
that the data source accurately reports communication from
a client IP address at some specific time. Ideally, it provides
such data real-time or near-real-time. Our approach works
equally well for IPv4 and IPv6, as we show in §6.

Although we can use many possible data sources, we eval-
uate our system using two specific systems: First, we use
traffic arriving at B-root [40], one of the 13 authoritative
DNS Root services [30]. Second, we evaluate it using passive
traffic arriving at the Merit darknet [20]. These two very
different data sources show that Durbin generalizes and can
apply to many potential passive data sources.

Each data source collects traffic and shares the time and
partially-anonymized source IP address of each flow. We
take several steps to minimize any privacy risks to users
generating the data. For B-root we omit other fields (such as
query name) that are not required for detection. For the Merit
darknet we retain most fields only until we filter for spoofing.
Durbin models traffic at the block level, so we preserve the
network portion of the IP address (IPv4: /24, IPv6: /48) and
anonymize the remaining bits to shuffle individual users.

We see B-root as representative of a large Internet service
that receives global traffic. For B-root, we see about 700M
queries from about 7M unique locations per day. While large,
this coverage is much smaller then large websites like Google,
Amazon, or Wikipedia. In §6.2 we quantify B-root coverage,
show that Wikipedia would provide better coverage than
today’s public IPv6 hitlists. Thus the smaller coverage of
B-root represents a limitation in the data that we have ac-
cess to, but not a fundamental limitation in our approach.
Although B-root does receive spoofed traffic when it is at-
tacked, when not under attack all queries arriving at B-root
are from legitimate recursive resolvers, and we assume the
source address indicates a valid, active IP address. We believe
the Durbin algorithm can apply to other data sources (such
as NTP [31]), although any new source will require tuning
Durbin parameters, as we do for our current sources (§3.5).

We also evaluate over the Merit darknet, an example dark-
net. A darknet does not run real services and so should
receive no legitimate traffic. Incoming traffic is often net-
work scanners, malware attempting to propagate itself, or



Observation ‘ Prior ‘ (Observation | Prior)

Negative Down 1
Negative Up 1-rn(a)
Positive Down 7n(a)
Positive Up 1 — P(neg|down)

Table 1: Responses when a timebin has traffic or not

backscatter, where someone spoofed the darknet as the source
IP for traffic sent to another party. A darknet’s source ad-
dresses suggest a live network, but could be spoofed. We
filter darknet traffic to discard traffic where we do not be-
lieve the source address is legitimate. We follow CAIDA’s
filtering rules [8], discarding packets with TTL exceeding
200 which are not ICMP; those with IPv4 sources ending in
.0 or .255 or identical source and destinations; and protocols
0 and 150.

3.2 Learning From History

Durbin models expected traffic from address a from long-
term observations. Each address has three parameters: the
timebin duration for detection, T(a); the historical probabil-
ity we see traffic in that timebin, 7z(a), and model has enough
data to be consistent or measurable, M(a). We discuss how
we generalize from addresses to blocks in §3.4, and how set
these parameters in §3.5.

We divide the timeline into specific timebins for each
address, each lasting T'(a) seconds. In principle, T(a) may
range from 1 to 60 minutes, but currently we select from
short and long options (typically 5 or 25 minutes, §3.5).

The active probability n(a), is the probability that traffic
arrives in timebin T (a). We compute 7 (a) for each address
from from long-term observation of address a, based on the
last d days. We currently use d of two days.

Finally, we define measurability M(a), when the address
has enough data to provide signal, when 7(a) > 0,,cqsurable

Durbin works well for short-term outages, but outages
lasting longer than the training period will disappear when
training considers only the outage. Long-term outages are
difficult to handle in most outage detection systems. In gen-
eral, external information is required to distinguish long
outages from changes in usage.

3.3 Address-Level Outage Detection

To detect outages we estimate the belief B(a) as probability
that address a is reachable, from 0.0 to 1.0, certainly down to
certainly up. We classify an address as unreachable (down)
when B(a) < 6, and reachable (up) when B(a) > 0.95. We
consider middle values (6, < B(a) < 0.95) to indicate uncer-
tainty, with the hope that information in the next timebin
will resolve its state. We set the threshold 8, to 0.6, and
validate each of these parameters in §5.3.

Table 1 shows how belief changes according to conditional
probabilities. We compute belief B(a) by applying Bayesian
inference on a stream of observations in each timebin T (a)
if the address has traffic (positive) or not (negative). For each
timebin with a positive and negative observations compute
new belief B’ (a) from prior belief B(a) as:

m(a)B(a)

Bl = @B@ + (1 = Plnoldown) (1 ~ B(a))

(1)

(1 - 7(a) B(@) "
(1 - n(a))B(a) + (P(noldown))(1 — B(a))

We illustrate shifts in belief with case studies in §4. These
equations get stuck when B(a) reaches 0 or 1, so we limiting
B(a) to the range By, to Bmax, currently set to 0.1 and 0.95.

3.4 Block-Level Outage Detection
We next merge address-level belief (B(a)) of all addresses in
a block to determine block-level belief B(b).

We study /24 address blocks as the smallest unit of spatial
coverage, following prior work [27, 29]. Combining results
from multiple addresses in one block can improve accuracy
since we can get more information about the block.

Following our definition of addresses, we consider block
status in timebins of duration T(), and that value can vary
by block. This approach follows address analysis with T'(a)
in §3.2. We define B(b) as the belief in the status of each /24
block b. Unlike addresses B(b) is not inferred from data, but
instead, it combines all address beliefs in that box, defining:

B(b) = max(B(a;))Va; € b

B'(a) =

We merge address-level detection results for each T'(b) to
get block-level results. Block detection uses a potentially dif-
ferent threshold (0), identifying an outage when B(b) < 0y,
a reachable block when B(b) > 0.95, and otherwise identify-
ing the block as uncertain. We set 0, = max,ep 0.

When considering block-level outage detection we select
other block-level parameters from the address-specific pa-
rameters, taking the minimum timebin and considering a
block measurable M(b) if any address is measurable:

T(b) =minT(a) and M(b) = v M(a)
acb ach
3.5 Optimizing Parameters for Each Block
We optimize Durbin parameters for each block to trade-off
accuracy and coverage. We adjust timebin duration (T(b))
and thresholds for measurability (6, 0 sparse and 0, 0qcurable)
based on amount of traffic to each block.

Durbin first selects timebin duration (T'(a)) to provide
rapid detection for addresses with frequent traffic and reli-
able detection for addresses with sparse traffic. Currently we
select between two timebin durations, based on the thresh-
old Osparse, labeling addresses where 0,,045,rqp1e < 7(a) <
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Figure 1: Traffic per address for B-root on 2019-01-10

esparse as sparse and those with pi(a) > Qsparse as frequent.
With B-root as our data source we set Gsparse as 0.6, and use
5 and 25 minutes as short and long timebins. With the Merit
darknet as the source we set 0,,,4c,rable a0d Osparse as 0.6
and T(b) is 20 minutes. We use the same Durbin algorithm
for each source, but choose parameters (95parse and T(+))
based on analysis of coverage and accuracy in §5.4 and §5.5
as we vary T (a). As future work, we plan to vary T (b) for
merit and to explore allowing T(a) to vary continuously.

Finally, we define T(b) = min(T(qa;)), VYa; € b: the block
can be as sensitive as the best address, analogous to belief
following the most reliable address (§3.4).

Currently thresholds (6, and 8), are fixed (both at 0.6).
Because belief ranges from 0 to 1, fixed values here seem
appropriate. However, belief adapts based on block history
(8§3.3) and so it is customized for each block.

4 DEMONSTRATING VIABILITY

We next show that Durbin feasible, first by confirming that a
network-wide service has enough data to provide coverage of
many blocks, then by showing how Durbin handles sources
with different amounts of traffic.

4.1 Traffic Rates per Address

We first characterize traffic in our data sources.

4.1.1 Traffic Distribution in B-root. Figure 1 shows a cumu-
lative distribution of traffic arrival rates for each address in
B-root by IPv4 (the blue line) and IPv6 (red) over one day.
Both IPv4 and IPv6 show similar distributions, although
IPv4 reports on 1.2M blocks while IPv6 is only 13k. The
similarity of these distributions suggests the same algorithm
will apply to both IPv4 and IPv6. This similarity is important
because we show good accuracy for IPv4 (§5.7) where we
can compare to alternative methods. As the first public IPv6
approach, we cannot compare to alternatives there, but since

it is the same algorithm, we expect IPv4 accuracy to apply
to IPv6 as well.

This data allows us to estimate coverage of Durbin-with-
B-root. Coverage depends on our parameters for timebin
(T(b), §3.5) and measurability (6,,045urables §3-2), as we eval-
uate in §5.4. Here we see measurability for three different
timebin sizes (25, 10, and 5 minutes, vertical black lines from
left to right). Almost all B-root sources are measurable (90%
for 5 minutes, and 95% for 25 minutes).

The gray vertical lines show the division between sparse
and frequent sources, determined by Osparse. Most sources
(80% of IPv4 and 50% of IPv6) and have frequent data (to
the right of the gray vertical line). The ability to pick up
sparse sources (blocks between the black and gray lines)
adds coverage for another 20% or 50% of all blocks (100k to
400k for IPv4, and 1000 to 6500 for IPv6).

4.1.2  Traffic Distribution in the Merit darknet. Traffic in the
Merit darknet differs because it is not an active service, but
receives only unsolicited traffic. Similar analyses reveal a
wider variability in traffic arrival probabilities for IPv4.
The distribution of traffic in the Merit darknet is similar to
that of B-root, suggesting that the same algorithms apply,
although perhaps with different parameters. However, the
Merit darknet has many more sparse blocks (80%, compared
to 30% for B-root). The smaller amount of traffic in a darknet
shows the importance of observing network services, but
scanning detected in darknets can can provide information
about the status of otherwise silent and firewalled blocks.

4.2 Belief for Frequent Traffic

We next show how Durbin can react very quickly when
an address has frequent traffic. From §3.3, an address a has
frequent traffic if 7(a) > Osparse Here we pick one exam-
ple address where 7(a) is 0.9; we see similar results in the
hundreds of other addresses that have similar traffic levels.

For addresses with frequent traffic, gaps are very unusual,
so belief changes quickly from certainly up to down. Fig-
ure 2a shows belief (the red line) for our example addresses
with frequent traffic (blue dots). In Figure 2a, blue dots in-
dicate traffic to an address at B-root on 2019-01-12 with a
gap from 19:20 to 20:20.

We show timebins as boxes at the top of Figure 2a, showing
reachable with red boxes (top row, with traffic), uncertain as
dark orange in the middle, and unreachable (no traffic) with
light orange, on the third row. We then zoom on the outage
period in Figure 2b.

Figure 2a shows that frequent traffic (the solid blue dots
before 19:00) yield confident of reachability (belief at the 0.90
maximum). However, the traffic gap from 18:56 to 20:26 (see
Figure 2b) causes belief to drop through uncertainty (two
timebins at 19:00) to unreachable (at 19:20). This example
shows how Durbin reacts quickly given frequent traffic.
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Figure 2: Belief change in Durbin-with-B-root, varying traffic frequency and timebin duration. Data: 2019-01-10.

4.3 Belief for Addresses with Sparse Traffic
For addresses with sparse traffic (when 7(a) < Osparse),
Durbin must be more cautious in determining when an out-
age occurs. Here we pick one example with 7z(a) = 0.6.
Again we see similar results in the hundreds of other, sparse
addresses where 0,,0qcrable < (@) < Osparse.

Figure 2c shows one day (2019-01-13) for this representa-
tive address, with sparser traffic (blue dots) causing belief
(the red line) to vary. To see Durbin coping with gaps in data,
Figure 2d zooms in a 90 minute period starting at 2:50. Here
belief often drops as multiple timebins pass without traffic,
all the way to the outage at 3:40 and 4:10. While relatively
rare, these false outages are a problem that comes from at-
tempting to track blocks with sparse traffic—we simply do
not have enough information in a short timebin to make
consistently good decisions. We can discard such blocks, but
that reduces coverage. In the next section, we show how to
gather more information to correct this situation.

4.4 Sparse Traffic with a Longer Timebin
The false outages in Figure 2d result from short timebins not
observing enough information to make good decisions. We
next show that a longer timebin addresses this problem.

Figure 2e shows one day for the same address as Figure 2c),
now with a 25 minute timebin.

With longer timebins, 7(a) rises to 0.9, enough informa-
tion that we never detect false outages, and we see only three
unknown periods for the same day results in several false
outages and many unknown periods with a shorter timebin.
Figure 2f zooms 5 hours starting at 3:00 to show how a longer
timebin bridges gaps.

We use these examples to motivate our overall design
choices: using Bayesian Inference to adapt belief based on
multiple rounds of observation, and adapting a belief thresh-
old and tuning parameters based on address history (§5.3).

5 VALIDATION OF OUR APPROACH

We next validate our results, examining accuracy with pos-
itive predictive value (PPV), recall, and true negative rate,
sensitivity to the parameters of belief threshold and timebin
duration. We use PPV instead of information retrieval’s preci-
sion to avoid confusion with terms temporal and spatial pre-
cision, both key “knobs” in our design. We then demonstrate
that our approach can detect short outages and trade-off
spatial and temporal precision.

We validate our results by comparing them to prior data
sources. We run Durbin with both both 7 days of B-root
and 7 days of darknet as data sources. We compare to Trinoc-
ular [27], a system using active analysis with very broad cov-
erage (about 5M IPv4 /24s). We validate our short-duration
outage results by comparing them to Disco [34]. It uses RIPE
Atlas data to detect correlated disconnections, making it
sensitive to short-duration outages. We would like to com-
pare to other passive systems, but Durbin’s much greater
spatial sensitivity makes direct comparison to Chocolatine
impossible [14], and CDN data is not publicly available [29].

We show Durbin system has good accuracy (§5.1), how
belief threshold (§5.3) and time-bin (§5.4) affects accuracy
and coverage, we can detect short outages (§5.6), Durbin can
trade-off between temporal and spatial precision (§5.5) and
our system is consistent over a long period of time (§5.7).



5.1 Accuracy of Durbin-with-network
services

5.1.1  Direct comparison of Durbin-with-B-root. To compare
Durbin-with-B-root to Trinocular we first find all /24 blocks
observed both, yielding about 880k blocks in both datasets for
the 7 days starting on 2019-01-09. We then compare the block-
durations (in seconds) each system identifies as reachable or
not.

Table 2a shows this confusion matrix, defining Trinocular
outages as ground truth. We define a false outage (fo) for a
block when Durbin predicts the block is unreachable, but
Trinocular can reach it, and have similar definitions for false
availability (fa), true availability (¢a), and true outages (to).

PPV is uniformly good ((ta/(ta+ fa)) = 0.9999): Durbin’s
reported availability is almost always correct.

We next consider true negative rate (INR) to quantify
what duration of outages we report are true ((to/(to + fa)).
Our TNR is good, at 0.8417, but lower than the PPV. Strong
TNR means we correctly estimate outage duration, but TNR
is lower than PPV because outages are rare, making small
differences between Durbin and Trinocular more noticeable.

5.1.2  How does imprecise comparison affect accurate results?
Both Trinocular and Durbin measure with fixed timebins,
and misalignment between the two systems inevitably re-
sults in small differences (just like comparisons measured in
whole numbers of meters and feet will never be identical).
Measurement precision results in lower-than-expected recall
( (ta/(ta+ fo)) = 0.6282).

Recall suggests that we often find shorter outages than
Trinocular. Trinocular’s temporal precision is coarser than
Durbin (£330 s vs. £150 s), so Durbin can detect shorter out-
ages. Enhancing Durbin’s precision using exact timestamps
is a potential future research direction.

Temporal precision is affected by several factors. Most
important is choice of timebin duration, T(b). If we select
precise timing with a small timebin, then we will either lose
accuracy (because many timebins have no responses and so
we need to use a lower belief threshold), or we must increase
our spatial scale to provide reliable decisions. Also, actual
outages do not always line up with timebins, so any timebin-
based system may report outages up to one timebin late.
Finally, depending on block history, it make take multiple
timebins to shift belief.

5.1.3 Re-evaluating with Precision-Aware Comparison: Our
measurement accuracy is determined by temporal precision,
but smaller differences provide metrics that can be mislead-
ing, exaggerating differences that reflect random phase of
measurements rather than differences in the underlying con-
clusions. To factor out the measurement system and get at the
underlying phenomena we next consider precision-aware
comparison.

We define precision-aware comparison as ignore differences
that are shorter than the measurement timebin for a given
block. Ignoring these short differences is justified timebin
phase is arbitrary, and it reflects more on quantization of
outage detection into timebins than on the actual correctness
of the underlying method. We keep any differences lasting
longer then the block’s timebin, since those represent real
disagreement in results. We then computing PPV, recall and
TNR on these “precision-aware” observations. (Our precision-
aware comparison is analogous to how CDN-based outages
were comparing to only Trinocular outages lasting longer
one hour, the CDN quantum [29], however we present both
the full data §5.1.1 and precision-aware comparisons here.)

Table 2b shows comparisons with observations with precision-

aware time bins. Now, PPV is uniformly good (inference of
blocks being reachable is nearly always correct) as before
which is 0.9999. Also, Recall rises to near-perfect 0.9985 (from
0.6282), because alignment eliminates what would otherwise
be many short, false outages.

The number and duration of false outage events drops to
one-quarter of before, from 31.09 Gs to 78.16 Ms. We believe
these improved results better reflect the true ability of passive
observation to detect events, once with rounded time bins.

5.1.4 Comparison with event counts . Our prior comparisons
consider block-seconds, giving longer differences heavier
weight. In Table 2c we instead count events (state changes).

When considering events instead of time, recall is domi-
nated by many blocks that never change state, and recall and
TNR are disproportionately by a few blocks that frequently
change state. Since a stable block has one correct event, but
a block that frequently changes state may have hundreds of
changes, events magnify the effects of frequently changing
blocks. Thus events show lower recall and TNR. As future
work, we plan to look for these frequently changing blocks
to account for them with more conservative parameters.

5.1.5 IPv6 Correctness. We validate the Durbin algorithms
above for IPv4, finding excellent PPV and good TNR. For
IPv4, we can validate against other systems, but there are no
prior results for IPv6 against which to compare.
Fortunately, our IPv4 and IPv6 algorithms are identical, and
we showed in Figure 1 that many addresses have similar
traffic rates. Since correctness depends on traffic rate and
regularity and these are similar in IPv4 and IPv6, we expect
our accuracy for IPv4 outage detection to apply to IPv6.

5.2 Accuracy of Durbin-with-darknet
To confirm Durbin’s accuracy the Merit darknet, a different
data source, we repeat these comparison.

5.2.1 Directly comparing Durbin-with-darknet. To compare
Durbin using the Merit darknet data with Trinocular, we
find all /24 blocks in both and compare the duration for each
system labels as reachable or not.
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Table 2: Confusion matrix for long-duration outages for Durbin-with-B-root (Dataset: 2019q1)

We see 66,776 blocks in Durbin-with-the Merit darknet,
compared to 5,210,923 blocks in Trinocular, with 59,979
blocks in the intersection. the Merit darknet has 66,776 blocks,
but 3,198 are only active because of spoofing. We, therefore,
compare the 63,578 remaining to the 5,210,923 blocks in
Trinocular, finding 59,979 in the intersection.

We compared seven days of data starting from 2021-01-10.
Table 3a shows the confusion matrix from this analysis when
we define Trinocular outages as ground truth.

PPV is very good (0.9810), showing that Durbin-with-the
Merit darknet’s reported availability is almost always correct.
True negative rate (TNR) estimates how many outages are
correct. TNR (0.7334) is lower than PPV because outages
are rare, so small differences between Durbin-with-darknet
and Trinocular are noticeable. Finally, recall (0.8488) is also
quite good, indicating that Durbin successfully detects a high
proportion of the outages identified by Trinocular.

5.2.2  Durbin-with-the Merit darknet, by events. We next com-
pare the number of outage events, comparing Durbin-with-
the Merit darknet against Trinocular.

Similar to Durbin-with-B-root, many blocks are always
up, giving us good recall (0.8137). A small fraction of blocks
(about 10%) are detected poorly in Durbin and produce many
false events. These blocks have sparse traffic, and when mul-
tiple consecutive timebins have no traffic, false outages result.
These sparse-traffic blocks reduce TNR. As future work we
plan to examine making timebin duration more adaptive
to provide more reliable results for these blocks. This prob-
lem has observed [29] before in active detection, where it
was resolved by observing more data to confirm or reject
the outage, a rough equivalent to increasing the timebin
duration [4].

5.3 Sensitivity of Belief Threshold

We next examine the sensitivity of our results to the belief
threshold (6,) an important parameter discussed in §3.3. In
our model, true outage detection varies with the change in
belief threshold. A higher belief threshold can guarantee
not to get false reports on short gaps. It also guarantees the

detection of true outages. But too high a threshold will miss
very brief outages. We customize parameters to find a middle
ground to balance these two competing requirements.

To study the belief threshold we vary belief threshold 9,
and hold the time bin at T(b) = 10 minutes. We compare
the impact of belief threshold 8}, of Durbin-with-B-root and
Durbin-with-the Merit darknet against Trinocular, quantita-
tively (Figure 3a and Figure 3b) and graphically (Figure 4).

Figure 3a and Figure 3b show the trend change by look-
ing at parameters PPV, recall, and TNR with varying belief
thresholds for 0.3, 0.6, and 0.8, and Figure 4 compares TNR
as threshold varies for more values between 0.2 and 0.9.

TNR is similar for threshold 0.6 or more. We chose 8, = 0.6
to maximize sensitivity to short-duration outages. We see
the benefits of more sensitive detection in Figure 3a where
0, = 0.6 reports shorter outage duration (78.16 Ms less of
the 87.85 Ms before) and larger true availability (52.52 Gs
duration than 50.83 Gs before.) compared to 65 = 0.8.

This evaluation also shows the cost of a low threshold.
False outages and false availability are higher with 0, =
0.3 compared to thresholds of 0.6 or 0.8. (For example, in
Figure 3a, we see 2X more false availability and 26 more
false outages.) Both recall and TNR are lower for 6, = 0.3
because Durbin is detecting short inactive periods as outages.

5.4 Sensitivity to Timebin Duration

Durbin optimizes parameters to provide temporal precision
when possible, but falls back on coarser temporal precision
when necessary to improve coverage and accuracy for both
sparse and dense blocks. §5.3 compares PPV, recall and TNR
as belief thresholds vary while setting T(b) as constant. In
this section, we will vary T (b) and set the belief threshold
as constant (0.6) to see the trend change in PPV, recall and
TNR.

Table 4a shows Durbin’s recall and TNR are very sensitive
to timebin duration (T'(b)). Longer durations of T(b) are
more likely to miss short outages but improve coverage by
including addresses with sparse data.
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True availability = TP | 3,064,574,810
True outage = TN 9,833,309
False availability = FP 59,215,390
False outage = FN | 546,190,291
PPV 0.9810

Recall 0.8488

TNR 0.7334

(a) Comparison of durations

events

True availability = TP | 72,787
True outage = TN 524
False availability = FP 210
False outage = FN | 16,656
PPV | 0.9971

Recall | 0.8137

TNR | 0.7138

(b) Comparison of events

Table 3: Long-duration outages after precision-aware comparison for Durbin-withthe Merit darknet

(Dataset: 2021q1)

Belief Threshold () Belief Threshold (6,) glo .A
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TNR 0.7567 0.8417 0.8191 TNR 0.6088 0.7206 0.7586 09001 02 03 04 05 06 07 08 09 1.0

(a) Durbin-with-B-root

Figure 3: Confusion matrix as belief threshold varies for Durbin-with-
B-root and Durbin-with-the Merit darknet. Times in seconds.

Belief Threshold

(b) Durbin-with-the Merit darknet.

Figure 4: True outage detection rate
for Durbin-with-B-root and Durbin-
with-the Merit darknet.

Time bin duration (T(b)) Time bin duration (T (b))
15 minute 10 minute 5 minute 30 minute 20 minute 10 minute S— events
TA | 56,492,461,162 | 52,525,765,695 | 47,456,373,912 TA | 4,974,983,931 | 4,008,712,735 | 3064574810  1rue availability = TP | 31,115
TO 11,234,345 13,147,965 14,092,345 TO 4,025,307 4,711,215 9,833,309 True outage =TN | 2,030
FA 3,043,362 2,471,178 2,001,769 FA 2,021,539 1,826,015 1,615,440  False availability = FP 735
FO 72,036,450 78,163,261 | 128,124,934 FO 267,706 361,615 546,190 False outage = FN | 1,799
PPV 0.9999 0.9999 0.9999 PPV 0.9997 0.9914 0.9910 PPV | 0.9769
Recall 0.9999 0.9985 0.9973 Recall 0.9996 0.9981 0.9988 Recall | 0.9453
TNR 0.7821 0.8417 0.8756 TNR 0.6656 0.7206 0.8588 TNR | 0.7341

(a) Durbin-with-B-root

Table 4: Confusion matrix as T(b) varies for Durbin-with-B-root and Durbin-with-

the Merit darknet. Times in seconds.

On the contrary, short T(b) can reduce coverage because
it means that we are analyzing a smaller amount of traffic
data at once making it more difficult to identify patterns or
anomalies in the data, especially for sparse blocks or regions
with low traffic volume. In Table 4a we show accuracy for
three timebin durations in detail and in Figure 5 we add
more reference points and see the trend change of TNR and
coverage.

5.4.1 How does accuracy vary with timebin? Timebin du-
ration is an important parameter to Durbin. We next vary
timebin duration’s influence on accuracy to justify Durbin’s
choice of a 10 minute timebin. We hold the belief threshold
constant at 6, = 0.6.

(b) Durbin-with-the Merit darknet

Table 5: Short-duration
outages for Durbin-with-
B-root (events)

In Table 4a, with a 10 minute timebin for both sparse and
dense blocks, the performance of PPV, Recall, and TNR is
outstanding: 0.9999, 0.9985, and 0.8417, respectively. In com-
parison, using a 5minute timebin reduces Recall slightly
(0.9973).

Recall is lower for 5 minute timebins because it increases
the number of false outages. We see this change as the false
outage duration increases to 128.12 Ms from 78.16 Ms as we
go to 5 minutes from 10 minute timebins. These false outages
occur in blocks with infrequent traffic (§5.1). Although a
shorter timebin results in some false outages, it also allows
Durbin to detect previously missed short outage. Durbin
identifies one empty timebin without traffic as an outage
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Figure 5: Sensitivity of the timebin for Durbin-with-B-root and Durbin-with-the Merit darknet.

when the timebin duration is short, even if there is no actual
outage shown in §4.

When timebin duration is longer, the true outage duration
(in seconds) falls somewhat. Again, this reduction is because
some short-duration outages are missed. Table 4a shows
short timebins have more true outages (compare T(b) of
15 minutes vs 10 or 5). Outage duration is reduced from
14.09 Ms (when T(b) is 5 minute) to 11.23 Ms (when T(b) is
15 minute).

Here we examined only outage duration. In future work,
we plan to evaluate counts of outage events in addition to
durations.

We conclude that T(b) = 10 minutes provides the best
choice when possible. However, we select a longer duration
from block with sparse traffic, as described in §5.5.

5.4.2 How coverage varies with timebin? The prior section
examined three different timebins. We next consider a wider
range of options and study how TNR and coverage vary with
timebin.

We can get both good coverage and TNR by setting short-
duration timebin for dense blocks and long-duration timebin
for sparse blocks. We next experiment with different time-
bin durations to see how both sparse and dense blocks can
achieve good coverage and TNR.

In Figure 5b we vary T (b) and study coverage. (We hold
the belief threshold constant at 8, = 0.6). We vary T (b) from
3 minutes to 30 minutes and observe the coverage. Here we
define coverage as the percentage of observed B-root blocks
in a time bin with respect to the total number of existing
B-root blocks.

Our coverage varies as a function of timebin because we
pick coverage based on history discussed in §3.2. In short-
duration T(b), we only observe dense blocks, which results
in a high true outage detection rate (0.874) but low coverage
(around 30% dense blocks and 2% sparse blocks of all mea-
surable blocks). The short duration captures only a small
amount of traffic in one T(b), which excludes sparse blocks
and leads to low coverage.
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With long-duration T(b) the coverage improves by includ-
ing more sparse blocks, but the TNR suffers.

Figure 5a shows TNR for timebin sizes from 3 to 25 min-
utes (left bars). As timebin increases, more blocks become
measurable and we increase coverage as we describe next.
When T(b) is 25 minute the coverage is around 95% but the
TNR is 0.674 because of the inclusion of sparse blocks. By
this analysis, we can say that Durbin can trade-off between
spatial and temporal precision which is described in the next
section §5.5

In future work, we will perform two separate analyses:
holding the coverage constant and observing changes in
TNR as we varied T(b) and allowing the coverage to vary
while we monitored changes in TNR as we varied T(b). By
comparing the effects of T (b) under these two conditions, we
can determine how much each factor contributes to changes
in TNR and understand how timebin and coverage interact
with each other.

5.4.3 How accuracy varies with timebin, in Durbin-with-darknet?

In this section, we show how varying the timebin dura-
tion influences outage detection performance, specifically
in terms of metrics such as PPV, Recall, and TNR. Shorter
timebins improve the detection of shorter outages, especially
for dense blocks, while longer timebins enhance reliability
for sparse blocks by reducing false positives. In Table 4b,
with a 10 minute timebin for both sparse and dense blocks,
the performance of PPV, Recall, and TNR is outstanding,
achieving values of 0.9910, 0.9988, and 0.8588, respectively.

When timebin duration is longer, we observe a reduc-
tion in the true outage duration (in seconds), indicating that
some outages are missed. Similar to Table 4a, Table 4b shows
short timebins have more true outages (compare T(b) of
30 minutes vs 20 or 1).

Therefore, if we have a fixed timebin then 20 minutes time
bin seems good for Darknet. We can see around 5% more true
outages when the time bin is 20 minutes. But if we have a
variable timebin then different timebins for dense and sparse
blocks are good §5.5.



5.5 Trading Between Spatial and Temporal
Precision

We exploit the ability to trade-off between spatial and tem-
poral precision while preserving accuracy. We customize
parameters to treat each block differently, allowing different
regions to have different temporal and spatial precision. As
a result, we can get coverage in sparse blocks, although to
get good accuracy we must use coarser temporal precision.

In Figure 5b we evaluate this trade-off, showing that we
have fine precision for the dense blocks, but require coarser
precision to cover blocks with sparse traffic across the left
bars. The rightmost bar, labeled 5/25, shows a hybrid system
where blocks with dense traffic use T(b) of 5 minutes, while
those with sparse traffic have T(b) of 25 minutes.

With varying T(b) values (customized to block traffic),
we obtain broad coverage: 85% of all blocks with B-root
traffic. Varying T(b) by block also provides a good TNR
(0.811). By contrast, a strict 25 minute T(b) has TNR 0.647,
because coarser precision can miss short outages. Comparing
the rightmost two bars in Figure 5a, this is about a 20%
improvement in TNR.

This comparison shows the advantage of tuning parame-
ters to each block to maximize coverage and accuracy.

5.6 Can We Detect Short-Duration Outages?
We next demonstrate that Durbin can detect shorter outages
than prior systems, in part because we can trade-off spatial
and temporal precision with coverage and accuracy. Here,
we examine 5 minute outages, with a belief threshold of 0.6
and T(b) to 5 minute.

To validate our short-duration outage results, we compare
them to Disco [34] using RIPE Atlas data [38] as ground
truth. Using RIPE data, Disco infers that multiple concurrent
disconnections of long-running TCP connections in the same
AS indicate a network outage.

Although its coverage is only about 10k /24s, we use Disco
for ground truth to compare short outages because it reports
5 minute outages (unlike Trinocular’s 11 minutes).

We study all 10.5k /24 blocks observed from both Durbin
using B-root data that also have data from RIPE Atlas over 7
days of data starting on 2019-01-09. Table 5 shows the confu-
sion matrix, testing Durbin against Atlas disconnections as
ground truth. Our model can correctly detect outages with
short lengths which can be as little as 5 minutes or less than
5 minutes. When routing changes there can be transients
on the internet which can cause brief outages. We observe
that we have great PPV (0.9769), recall (0.9453) and TNR
(0.7341) for short-duration outages (5 minutes or more). Our
measurements show that on that week, around 5% of total
blocks that have 5 minute outages that were not seen in prior
work. The duration of outages from 5 to 11 minutes, omitted
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from previous observations, increases total outage duration
by 20%.

5.7 Are These Results Stable?

We next validate the consistency of our results over a week,
examining accuracy with PPV, recall, and TNR for long-term
observation to show the results are stable. We run Durbin
on B-root data everyday for continuous monitoring,.

5.7.1 Observation for a week. In Figure 9 we observe seven
days of Durbin’s accuracy parameters (PPV, recall and TNR)
(We put the figure in appendix Appendix B). PPV is the same
for all seven days (0.9999) because of the high true availability
on each day. Recall and TNR are also generally stable, with
recall ranging from 0.96 to 0.99 and TNR from 0.8 to 0.9. Both
are lowest on 2019-01-11, because on that day we see many
sparse blocks which gives more false outages.

This data suggests that our results are consistent over
multiple days.

5.7.2  Continuous Monitoring. As Durbin matures, we are
shifting to running it continuously. Thus far we have revised
our implementation to run against B-root continuously. We
currently run it once at the end of the day. It generates and
caches training data for the current day, and then runs detec-
tions on the current day using cached training data from the
prior two days. Thus far we have run Durbin-over-B-root
against a full month of data, and we are currently bringing
up 24x7 processing,.

Since our IPv6 B-root data mirrors the structure of IPv4
network services, the validation of Durbin performance for
IPv4 gives confidence that IPv6 accuracy will be similar.

6 RESULTS

Having established that Durbin works in §5, we next explore
what it says about the Internet. Our results show the outage
rate on IPv4 and IPv6 in §6.1 and our IPv6 coverage in §6.2.

6.1 How Many IPv6 Outages?

We evaluate IPv6 outage rate based on seven days of passive
data from B-root. We established Durbin’s accuracy in IPv4
(85.1), and showed that IPv6 sources have a similar traffic
rate as IPv6 (§4.1). Using this result, we next provide the first
results for IPv6 outages.

6.1.1 Outage Duration. First, we show internet outage du-
ration (seconds of outages for fraction of time for outages)
of IPv4 and IPv6 address blocks and Trinocular’s outage Fig-
ure 6 for seven days. The fraction of outage duration follows
prior work and allows us to compare IPv4 outages against
IPvé.

In §5.6 see /48 IPv6 blocks are out about 9% of the time.

To show that both Durbin and Trinocular have similar
outages in IPv4, we compare Durbin’s outage duration with
Trinocular’s outage duration for IPv4 blocks. By comparison,
Durbin sees around 1% outage duration in /24 IPv4 blocks.
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Durbin seems to have a bit higher outage duration than
Trinocular, due to its detection of short outages (see §5.6).

We first examine how often Durbin infers networks are
down.

We evaluate a week of data using Durbin-with-B-root
in Figure 6. Here the Durbin-inferred fraction of outages
are shown for IPv4 (blue, solid line) and for IPv6 (the red
line). We compare to the publicly shared outage rate from
Trinocular for IPv4 (the blue dashed line).

First, we see that IPv4 outage fractions are similar for both
Durbin and Trinocular, both around 2% to 4%. Durbin’s re-
sults are from 1M /24 IPv4 blocks, less coverage than Trinoc-
ular’s 5M, but a similar fraction.

Durbin also provides the first data for IPv6 outages (the red
line). We see IPv6 outages are much higher: from 0.6 to 1.5,
rates 10X what we see in IPv4. This data is a report of 1338
outages in /48 IPv6 blocks. The absolute number of outages
is significantly higher for IPv4 (1M) compared to IPv6 (30k)
due to the larger number of measurable IPv4 blocks.

We expect that IPv6 outages will be more than IPv4, but
evaluating why the difference is this large is ongoing work.
Recent work that studied outage rates in RIPE Atlas [32],
finding that IPv6 DNS query rates fail at a rate 3X what IPv4
sees (about 9% failures in v6 vs. 3% in v4). They point to a
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Figure 7: IPv4 and IPv6: blocks with at least one outage
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combination of end-system misconfiguration and long-term
peering disputes as reasons for the difference. Our results
show a larger difference, something we are looking into.

6.1.2  Blocks With At Least One Outage. We next consider
how many blocks see at least one outage each day.

We consider this metric because outage durations are heav-
ily influenced by a few blocks that are unreachable for a long
time. Blocks with long-term outages are unlikely to have ac-
tive users, but users remember times their work was stopped
by an Internet outage—something captured by this metric.

In Figure 7 shows the fraction of blocks with at least one
10-minute outage on each day. For IPv4, Durbin sees 3 to
4% of /24 TPv4 blocks have at least one outage on any given
day (the solid blue line). Trinocular shows a similar fraction,
with about 2% of blocks out at least once (the dashed blue
line), a similar fraction as what Durbin sees. For IPv6, that
fraction rises to 12% to 13% of all measurable /48 IPv6 blocks
(the solid red line).

We can use this metric to compare IPv4 and IPv6: we see
that the outages for IPv6 seems somewhat greater than for
IPv4, suggesting IPv6 reliability can improve. The absolute
number of outages is much larger for IPv4 (1M) than for IPv6
(30k) because there are many more measurable IPv4 blocks.

6.2 How Broad Is Our IPv6 Coverage?
We next evaluate Durbin’s current coverage along with Durbin’s
potential coverage given access to other data sources, com-
paring both to the prior work.

Durbin’s coverage depends on its input data—any data
source that supports the passive observation of global sources
is suitable input (§3.1). Potential coverage is maximized using
data sources that see many source addresses. Most top-10
websites (Google, Facebook, Wikipeida, etc.) more than meet
this requirement, as would many global CDNs (Akamai, Ama-
zon Cloudfront, Cloudflare, etc.), and some global services
(public DNS resolvers, NTP services, etc.). While we do not
currently have access to this data, and it is unlikely a com-
mercial service would share their data with researchers, we
consider potential Durbin coverage to show how well the



method could work, given proper input. (It is always possi-
ble that a top website or CDN would choose to implement
Durbin for their own purposes.)

Published work shows Wikipedia sees 25M unique IP ad-
dresses [39], which suggests they likely see millions of /24
IPv4 prefixes. Analysis of “a major CDN” states they have
2.3M “trackable” /24s address blocks (where trackable means
blocks with at least 40 active IP addresses, allowing outage
detection by their method). NTP sees billions of IPv6 ad-
dresses [31]. Below we evaluate B-root, a CDN, Wikipedia,
and NTP as potential data sources for Durbin.

6.2.1 Comparing Durbin Coverage to Prior Work: Figure 8
compares prior systems (left, hashed bars) against Durbin
with B-root (the first darker blue bar in the right cluster).
We show data for both IPv4 (the left graph) and IPv6 (the
right graph), normalizing both to 100% as the best possible
current result.

For IPv4 (the left graph with blue bars), we see that Durbin
with B-root provides good coverage: about 1M /24s blocks.
We find this coverage surprisingly good, given B-root only
sees traffic from DNS servers, not end-users. Durbin’s IPv4
coverage is about one-fifth of the 5.1M in Trinocular (the
largest current outage detection system), half of CDN-based
detection, and 10X more than Disco.

Durbin’s current coverage is determined by B-root, and
which /24 blocks report traffic that is frequent enough to
evaluate (§3.2). We evaluate Durbin’s IPv6 coverage based
on one representative day (2019-01-10) of passive data from
B-root, comparing results in IPv4 and IPvé.

We evaluate Durbin’s IPv6 coverage based on one repre-
sentative day of passive data from B-root, comparing results
in IPv4 and IPv6. We show Durbin’s coverage of both IPv4
and IPv6 address blocks and compare the coverage with
prior works Trinocular, Akamai and Disco. We use Trinocu-
lar, Akamai, and Disco coverage as the prior work for IPv4
and Gasser hitlist for IPv6 coverage in Figure 8.

6.2.2  Durbin IPv4 Coverage with Potential Alternative Sources:

Durbin’s current coverage is limited by not seeing clients,
but if Durbin were run with a major website’s logs as input,
its coverage can equal or exceed current systems. We next
consider what Durbin coverage would be if it was applied to
CDN, Wikipedia, or NTP traffic.

CDN: We estimate potential coverage with CDN data
from published work [29]. However, their paper provides
only IPv4 coverage.

Wikipedia: We use Wikipedia as an example top-10 web-
site. Wikipedia does not provide public access to browsing
traffic, but all Wikipedia edits are public, and about half are
logged with IP addresses (as disclosed to the editor, so with
their consent).
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We downloaded the entire Wikipedia edit history and
the logging history and extracted all “IP users”. We count
9,264,603 unique IPv4 addresses and 94,042 IPv6 addresses,
for 1,694,599 IPv4 /24 blocks and 30,257 IPv6 /48 blocks.

Of course, Wikipedia has far more readers than editors.
One analysis observes that although the read: edit ratio is
not known, the number of page views can provide an up-
per bound on the number of readers. All Wikipedia sees
about 85 billion page views per month, and Hill suggested
35 page-views per reader [15], implying about 686M read-
ers per month, or 75X more than editors. We suggest this
offers a loose upper bound on the number of unique IPs that
Wikipedia sees per month. We assume a more conservative
10x multiplier from editors, implying readers will show 1.7M
IPv4 /24 blocks and 30.2k IPv6 /48 blocks.

Implications for Durbin: IPv4 coverage with the CDN
will roughly match coverage with prior work [29], but Durbin
will be able to report 5-minute temporal precision for frequent-
traffic blocks. This analysis uses only blocks reported as mea-
surable by their outage detection system. It is possible that
Durbin could provide coarse-time results for blocks that are
unmeasurable by their method, thereby increasing coverage.

These results suggest that the Durbin algorithm could
provide at least as good coverage as CDN-based outage de-
tection, when applied to a data source like a major website.

6.2.3 Actual and Potential IPv6 Coverage: Durbin coverage
is even more promising when one considers IPv6. Here we
compare the IPv6 hitlist as the best possible option (although
we have not seen published work using IPv6 hitlists for out-
age detection). We cover slightly less than one-fifth of the
Gasser hitlist, but use only passive data from B-root.

Our analysis of Wikipedia IPv6 edits suggests Durbin
would see 30.2k /48 blocks, roughly double B-root, and half
of the Gasser IPv6 hitlist. Projecting edits to readers with the
same ratio as in IPv4, we expect around 300k /48 blocks.

Finally, while our analysis of Wikipedia is conservative,
Rye and Leven took data from NTP, a global service touched
by billions of IPv6 addresses. The right-most set of red bars
in Figure 8 add NTP, but with a log-scale y-axis: with 7.9
billion IPv6 addresses, NTP exceeds all other sources.

7 CONCLUSION

We have describe Durbin, a system to detect Internet outages
with a new adaptive algorithm using passive sources. The
challenge to outage detection from passive data is balancing
accuracy with spatial and temporal precision and coverage;
Durbin provides good accuracy (0.811 TNR) at constant spa-
tial precision (/24 IPv4 and /48 IPv6 blocks) by adapting
temporal precision for each block (5 or 25 mintues). We eval-
uated Durbin with two different data sources: B-root and the
Merit darknet, examples representing network services like
DNS and darknets. Coverage of IPv4 with our data sources



is good (about 1M /24 blocks with B-root). IPv4 coverage
with B-root is large as current active methods, but a top
website could use Durbin to see IPv4 coverage equal to or
exceeding active methods. Finally, Durbin provides the first
published data reporting IPv6 outages (30k /48 IPv6 blocks
with B-root), showing the promise passive methods to track
outages in IPv6.
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APPENDIX A RESEARCH ETHICS

Our work poses no ethical concerns. In evaluating the risks
of or work relative to its benefits, it poses minimal risks,
while there are significant benefits to a new method to detect
Internet outages and thereby improve Internet service.

We believe our work poses minimal risk because our ap-
proach analyzes passive traffic to look for activity on net-
works. The primary risk is that such traffic analysis may
reveal personal information about individuals. To avoid re-
vealing such information, our data provider provides only
an IP address and timestamp of activity, not the actual user
activity. (For example, in DNS data, the query and reply
are removed.) We discuss data handling in §3.1: while we
require tracking specific sources, we do not need to know
actual IP addresses, just correct address blocks. Our data
provider therefore anonymizes the least-significant bits of
IP addresses.

Finally, our use of B-root poses minimal privacy risk
because nearly all DNS queries are from infrastructure (re-
cursive resolvers), not directly from individuals, any requests
from individuals are mixed in with queries from infrastruc-
ture.
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Figure 9: PPV, recall and TNR for seven days for Durbin-
with-B-root

We have submitted an IRB review request proposing an
analysis of new data sources (beyond B-root) with the above
anonymization as non-human-subjects research. This IRB is
currently under review.

APPENDIX B ARE THESE RESULTS
STABLE?

In Figure 9, we observe seven days of Durbin’s accuracy
parameters (PPV, recall, and TNR). PPV is consistent for all
seven days (0.9999) because of the high true availability on
each day. Recall and TNR are generally stable, with recall
ranging from 0.96 to 0.99 and TNR from 0.8 to 0.9. Both are
lowest on 2019-01-11 due to many sparse blocks causing
more false outages.
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