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Abstract

In this paper, we focus on a matrix factorization-
based approach to recover low-rank asymmet-
ric matrices from corrupted measurements. We
propose an Overparameterized Preconditioned
Subgradient Algorithm (OPSA) and provide, for
the first time in the literature, linear convergence
rates independent of the rank of the sought asym-
metric matrix in the presence of gross corrup-
tions. Our work goes beyond existing results in
preconditioned-type approaches addressing their
current limitation, i.e., the lack of convergence
guarantees in the case of asymmetric matrices
of unknown rank. By applying our approach to
(robust) matrix sensing, we highlight its merits
when the measurement operator satisfies a mixed-
norm restricted isometry property. Lastly, we
present extensive numerical experiments that val-
idate our theoretical results and demonstrate the
effectiveness of our approach for different levels
of overparameterization and outlier corruptions.

1. Introduction

Low-rank matrix recovery has been a ubiquitous problem
showing up in numerous applications in the fields of sig-
nal/image processing, machine learning, and data science
(Rechtetal., 2010; Chen et al., 2013; Davenport & Romberg,
2016; Cai et al., 2021a; Smith et al., 2024; Wang et al., 2024).
For instance, problems such as matrix sensing (Jain et al.,
2013; Wei et al., 2016; Park et al., 2017; Li et al., 2020),
matrix completion (Candes & Recht, 2008; Nie et al., 2012;
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Kiimmerle & Verdun, 2021; Cai et al., 2023), and robust
principal component analysis (Candes et al., 2011; Netra-
palli et al., 2014; Giampouras et al., 2018; Cai et al., 2019;
2021b), can all be cast as low-rank matrix recovery prob-
lems and then solved using minimization algorithms that
seek a matrix X € R™*™ that is as close as possible to the
unknown low-rank matrix X, € R™*"™,

A major challenge in low-rank matrix recovery concerns the
computational complexity and memory requirements of the
proposed algorithms when the size of the unknown matrix
significantly increases. To address this, matrix factorization-
based approaches have been proposed, (Chi et al., 2019;
Park et al., 2016), which, given r > rank(X, ), use matri-
ces L € R™*"and R € R"*" suchthat X = LR . These
approaches enable the development of iterative algorithms
with significantly reduced computational complexity and
memory storage requirements. However, they lead to non-
convex formulations of the optimization problems, which
pose their own challenges in the derivation of theoretical
guarantees and fast rates of convergence.

Alternating gradient-based algorithms have been a standard
approach for solving matrix factorization-based problems.
A well-known issue with these approaches lies in the depen-
dence of their rate of convergence on the condition number
of the unknown matrix X,,(Tong et al., 2021a). This makes
convergence too slow in problems where the sought matrix
is ill-conditioned. Several works, (Park et al., 2016; Zhang
et al., 2023), address this issue by moving beyond vanilla
gradient updates and resorting to preconditioned approaches.
In (Tong et al., 2021a), preconditioned gradient algorithms
have been proposed that consist of updates in the following
form:

Ly = Ly — VL L(LR]) (R R) ™,
——
preconditioner

T Ty

Rt+1 = Rt - nVRl:(Lth ) (Lt Lt) .

—_——

preconditioner

ey

Preconditioned-based approaches, e.g. (Chi et al., 2019; Cai
et al., 2021c; Zhang et al., 2023; 2024; Cai et al., 2024),
lead to linear rates of convergence that do not depend on
the condition number of X, . Recently, these approaches
have been extended to the robust low-rank matrix recovery
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framework, aiming to address more challenging scenarios
that account for the presence of grossly corrupted data. In
these settings, (Tong et al., 2021b) reported similar rates of
convergence, which are however negatively influenced as
the level of corruption increases.

A fundamental assumption made in the above-mentioned
approaches is that the rank r of the sought matrix X, is
known. Clearly, in the case that r is underestimated, the
algorithm will only be able to find a low-rank approximation
of the ground truth matrix. To address this shortcoming,
in (Ma & Fattahi, 2021), the authors overparameterized
the rank as d > r = rank(X,), and established a linear
rate of convergence for robust low-rank matrix recovery for
symmetric matrices using a vanilla subgradient algorithm.
Further works, build on this observation aiming to establish
convergence to the ground truth matrix X, under weaker
conditions, (Ding et al., 2021; Xiong et al., 2023), or to
explore the intriguing implicit regularization phenomena in
this setting, (Soltanolkotabi et al., 2023).

Note that due to non-invertibility issues as the iterates
L, R, converge to L,, R,, the overparameterized scenario
cannot be directly adopted as such in the previously pro-
posed preconditioned-based methods that rely on updates
given in (1). To address this issue, recent works, (Zhang
etal., 2023; Xu et al., 2023), proposed an overparameterized
preconditioned algorithm focusing on symmetric matrices
and assuming smooth loss functions, with updates in the
form:

Liy =L, —nVL(L,L]) (L] L, + \XI)7, (2)

and showed linear convergence at a rate independent of the
condition number of X, and the overparameterization of the
true rank. Focusing again on smooth problems, in (Cheng
& Zhao, 2024), the authors proposed an extension of these
works to the case of asymmetric matrices coming up with
an alternating algorithm with regularized preconditioners
leading to updates:

Ly =L, — Vi L(LR])(R] R, + \I)7L,

3
Riy1 = R —nVRL(LiR] ) (L] Ly + A\ I)™". ©
In this work, we depart from previous works by focusing on
robust low-rank matrix recovery in the presence of outliers
and propose an overparameterized preconditioned-based
algorithm in the unknown rank regime. Our work aims to
address the following question (Q):

Q: Can we establish linear rates of convergence to the
ground truth X, in the case of non-smooth minimization
problems in the overparameterized regime with unknown
rank, and for asymmetric matrices X, ?

1.1. Main Contributions

In this work, we advance beyond previous work by focusing
on robust low-rank matrix recovery with a non-smooth ob-
jective function, addressing the unique challenges of recov-
ering asymmetric matrices with unknown rank (see Table 1
and comparison with SOTA). Our preconditioners naturally
arise by adopting quasi-Newton-type updates in an implic-
itly regularized objective function. Our main contributions
are summarized as follows:

* We propose a novel algorithm, coined Overparameter-
ized Preconditioned Subgradient Algorithm (OPSA),
that minimizes a robust ¢; loss function. To account for
overparameterization caused by rank overestimation,
we propose a novel distance metric and assume that the
matrix factors are initialized sufficiently close to the
ground truth (which can be easily attained by spectral
initialization). In Theorem 5.4, we show that OPSA
converges linearly to the low-rank ground truth matrix
X, using an adaptive Polyak’s step size. Note that our
main result holds for general non-smooth loss functions
under certain conditions such as the restricted rank-d
sharpness condition and restricted Lipschitz continuity.
Moreover, our results extend the preconditioned sub-
gradient method (Tong et al., 2021b) from the exact
known rank setting to the overparameterized regime.

¢ For theoretical results, we focus on robust matrix
sensing and show that linear convergence holds for
OPSA both in the noiseless case and in the presence of
gross corruptions/outliers when the measurement ma-
trices satisfy a mixed-norm restricted isometry property
(RIP). In this setting, we unveil how the iteration com-
plexity is affected by overparameterization. Moreover,
our results showcase that the tolerance of measure-
ment matrices in outliers is another important factor
for sharpness around X, which is a necessary condi-
tion for exact convergence.

e In the experimental section, we empirically show-
case the favorable performance of the proposed OPSA
against the state-of-the-art under different levels of
overparameterization d, for the problem of robust ma-
trix sensing with Gaussian measurements. We also
demonstrate that OPSA constantly enjoys linear conver-
gence with varying condition numbers x, parameters
A, and outlier densities even when the rank is heav-
ily overestimated. The experiments provided further
confirm our theoretical findings.

1.2. Notation

The transpose of a vector or matrix is denoted as (-) ". The
Euclidean vector norm is denoted as || - ||2. The Frobenius
and operator matrix norms are denoted as || - || 7 and || - ||op,
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Table 1. Comparison of theoretical convergence properties of SOTA algorithms for low-rank matrix estimation. Columns indicate if
algorithms handle asymmetric matrices, outliers, unknown rank, and if convergence is independent of (X, ), the condition number of

X . The proposed OPSA method addresses all these challenges.

Algorithm ‘ Asymmetric  Outliers Unknown Rank No dependency on «(X,)
VANILLA GD (Stoger & Soltanolkotabi, 2021) v v v X
SCALEDGD (Tong et al., 2021a) v X X v
PRECGD (Zhang et al., 2023) X X v v
SCALEDGD(\) (Xiong et al., 2023) X X v v
SCALEDSM (Tong et al., 2021b) v v X v
OPSA (Proposed) v v v v

respectively. We also denote as o;(X) the singular values
of matrix X -assuming a decreasing order as ¢ increases-
and as k(X)) its condition number. We denote the trace
of a matrix as tr(+), the trace of the inner product between
two matrices A, B as (A, B) = tr(A" B), and the m x n-
dimensional Euclidean space as R™*". G(d) denotes the
set of invertible matrices in R4* 4,

2. Related Work

In this section, we provide some interesting insights into the
connection of our approach with prior research works.

Preconditioned gradient and subgradient methods for
low-rank matrix recovery. Preconditioned-based methods
have attracted significant interest over the last few years
since they allow for establishing rates of convergence that
do not depend on the condition number of X, (Tong et al.,
2021a; Zhang, 2021; Zhang et al., 2023). For a thorough
review of these methods, we refer the reader to (Chi et al.,
2019). Preconditioned methods have been extended to non-
smooth problems such as robust low-rank matrix recovery
with ¢, loss. However, they focus on either the known-
rank asymmetric regime or assume an unknown-rank with
sought symmetric matrix X . Relaxing the symmetric as-
sumption on X to the more challenging asymmetric one
in unknown-rank regimes is the main contribution of our
work. Recently, these approaches have been shown to of-
fer significant improvements in the low-rank adaptation
(LoRA) for parameter-efficient fine-tuning foundation mod-
els, (Zhang & Pilanci, 2024). Even though this problem
is out of the scope of the current paper, extending current
approaches, which rely on a fixed rank, to the overparam-
eterized preconditioning framework is a promising future
research direction.

Overparameterized (robust) low-rank matrix recovery.
Recently, several works have focused on robust low-rank
matrix recovery in the unknown rank regime. In (Ma &
Fattahi, 2021), the authors focus on robust matrix sens-
ing and report the convergence of a vanilla subgradient
algorithm in the overparameterized setting for symmetric

matrices, which suggests an implicit regularization behav-
ior. In (Ding et al., 2021), improved results are obtained,
again for the symmetric case, by relaxing the conditions
imposed on measurement matrices. In (Zhang et al., 2023),
with the aim to reduce the negative effect of overparame-
terization and ill-conditioning, the authors focused on sym-
metric matrices and generalized the preconditioned-based
approach in the overparameterized setting using updates in
the form of (2). Similar to our work, the authors in (Cheng
& Zhao, 2024) recently, proposed an overparameterized pre-
conditioned approach for asymmetric matrix factorization
establishing linear convergence with update in the form of
(3). However, unlike our work, they focused on smooth
losses, which pose less challenges, and enabled them to use
a Polyak-Lojasiewicz (PL)-type condition for deriving the
convergence rate.

3. Problem Formulation

We focus on the low-rank matrix estimation problem, as-
suming that the true rank r is unknown. We denote the
ground truth matrix as X, and assume a singular value
decomposition

X, =U3,V,, )

where U, € R™*% contains d > r left singular vectors,
3, € R¥ i a diagonal matrix consisting of d singular
values of X, presented in an non-ascending order. Since
rank(X,) = r and d > r we have 0;(X,) = 0 fori =
r+1,...,d.

The low-rank matrix estimation problem w.r.t. the space of
X € R™*" js defined as

min
XGRWT/ Xn ,
rank(X)<d

L(X), ®)

where L£(X) is a general loss function that is convex
w.r.t. X and possibly non-smooth in order to allow the
use of robust loss functions such as the £; norm.

Here, we solve a problem equivalent to problem (5), defined
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over matrix factors L € R™*% and R € R"*¢,

L(LR"). (6)

min
Le]thXd’Re]Rnxd

3.1. Matrix Sensing

Next, we focus on the matrix sensing problem i.e., we as-
sume that we have access to observations y = {y;}¥_; of a
low-rank matrix X, € R™*" given as

where A; is the measurement operator,
1
Ai (Xy) = —(Ai X)),
p

A; € R™*"™ is the i-th measurement matrix, and s;’s corre-
spond to arbitrary and sparse corruptions.

The observation model above can be written in a more com-
pact form as

y=A(X.)+s. ®)

Our goal is to find X, given y and the measurement en-
semble A (-) = {A4; (-)}}_,. We formulate the problem
as

min

min [y = A(X) 1. ©)

where we have used the ¢, norm as the loss term (), also
known as the residual sum of absolute errors, which is
known to be robust to the presence of arbitrary sparse cor-
ruptions (Candes et al., 2011).

Recall that we assume we do not know the true rank r of
the unknown matrix X, and we also solve the problem
in the space of matrix factors L € R™*? and R € R"*¢
whose product equals X i.e., X = LR with d being an
overestimate of . We thus formulate matrix sensing as

ly —A(LRT) |1 (10)

min
LGRm’Xd,RG]R"Xd

4. Overparameterized Preconditioned
Subgradient Algorithm

To minimize the objective function given in (6), we
use quasi-Newton type updates. Hence, we use local
upper-bounds of the objective function, which lead to
preconditioned-type updates for the matrix factors L and R,
ie.,

(L1, Riy1) = argmin £(L: R, ) + (0. L(L: R, ), L — L;)

L,R
+ <3R['(LtR2—)> (R — Ry))

1 T 2
+ g (102 = L) (R Be 4 2D

+ 1| (R~ Re) (B L+ AD)|13),

where 1), is the step size and Op, L(L; R, ) and Or L(L:R,")
denote subgradients of the objective function £(L;R,)
w.r.t. L and R, respectively.

Note that the RHS of the above optimization problem corre-
sponds to upper bounds of the original objective and leads
to quasi-Newton-type updates, (Giampouras et al., 2020).
We use a Polyak’s type step size, and get a similar form to
the one in (Tong et al., 2021b), i.e.,

L(L,R]) - L(L,R]
0= (t”v SR (11)
t

where
v = |SiR(R] Ry + M) %%
+ IS Ly(L{ Ly + M) 72|12

with S, denoting a subgradient of the objective L(X}), i.e.,
S, € O0x L(X4).

The proposed algorithm is given in Algorithm 1.

Algorithm 1 Overparameterized Preconditioned Subgradi-
ent Algorithm (OPSA)
1: Input: Data (y € RP in the matrix sensing case), d:
overestimated rank, 7: stepsize.

2: Inmitialize Ly and Ry, sett = 0.

3: while ! Stop Condition do

4: Lt+1 = Lt — ’I’]tSth (R:Rt + AI>_1
5. Ry =Ry — S/ Ly (L] L+ M)
6: t=t+1

7: end while

8:

Output: X = L, R/ .

Remark 4.1. In practice, if £L(L,R]) is unknown, e.g., due
to noise or additional regularization terms, Polyak’s type
step size may be hard to apply. To address that, one can use
a geometrically decaying step size schedule to match the
expected linear convergence. Such a step size schedule was
introduced in (Goffin, 1977) and has been widely used in
the literature on subgradient methods.

5. Convergence Analysis

In this section, we present the convergence analysis of the
proposed Overaparametrized Preconditioned Subgradient
Algorithm (OPSA).

5.1. Landscape Assumptions
In the following, we provide the assumptions used in our
theoretical results.

Assumption 5.1 (Restricted Lipschitz Continuity). A func-
tion £(-) : R™*™ + R is rank-d restricted L-Lipschitz
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continuous for some quantity L > 0 if
|L£(X1) — L(X2)| < LI Xy — Xollp (12)
holds for any X7, X5 € R"*™ such that X; — X5 has

rank at most 2d.

Assumption 5.2 (Restricted Sharpness). A function £(-) :
R™*™ +— R is rank-d restricted p-sharp w.r.t. X, for some
1> 0if

L(X) - L(X,) 2 pl| X - XilF (13)
holds for any X € R™*™ with rank at most d.

5.2. Main Results
Let F, = [L*} e Rimtn)xd where L, = U*zé, R, =

R,
1 L
V.52, and F = { R} e Rm+m)xd,

In our results, we propose a modified version of the distance
metric introduced in (Tong et al., 2021b), defined as

dist?(F, F,) = inf |[(LQ — L,)(Z, + M)z |2
ist“(F, F,) Qé%<d>H( Q )(ZBe + A2 |
+[(RQ™T = R) (S, + AD? |3

Matrix @ is known as the alignment matrix and has long
been used in similar distance metrics, (Tong et al., 2021a).

Lemma 5.3. The proposed distance metric is an upper
bound of the distance | LR" — X ,||r. Namely, assuming
that dist(F, Fy) < e, it holds

ILRT — X,|r < (1 n %) Vadist(F, F,).  (14)

Proof: The proof is deferred to supplementary material.

We next provide our main result, which relies on the assump-
tion that the Lipschitz continuity and restricted sharpness
condition are satisfied and ensure exact convergence.

Theorem 5.4 (Convergence of OPSA). Ler L(X)

R™*™ — R be convex w.r.t X, and assume that it satisfies
the rank-d restricted L-Lipschitz continuity assumption and
the rank-d restricted u-sharpness condition, defined above.

Let also A :724%, and without loss of generality 0,.(X,) = 1.
Let e = —10 —, and
XXl 5p
101 X o'
dist(Fy, F,) < de = —— 1—*1%P 15
ist(Fo, Fy) < Xe N 20 (15)

where x = L. Then for the Overparameterized Precondi-
tioned Subgradient Algorithm (OPSA) given in Algorithm 1,

with the Polyak’s step-size defined in (11), we have

1
0.12\ 5 1074 X || op?
dist(F,, F,) < (1 - ) X llov

Y2 20 -y ’
1
0.12Y % 1.5 x 1074|| X, ||op2
LR — X,|r < (1 _ ) P
LR, Ir < X2 20 - x

Proof. The rate can be derived from its general form (see
(16)) by setting A = 1Xeler X = ¢| X, ||, ¢ = 20. The
detailed proof is deferred to supplementary material. O

Remark 5.5. Our derived rate of convergence requires a
good initialization that will satisfy condition (15). In prac-
tice, this condition can be satisfied by using a truncated
spectral method as in (Zhang et al., 2016). It should be
also noted that, even though the rate is independent of the
condition number of X, the initialization condition is nega-
tively affected as this condition number increases, requiring
initializations closer to X,.

Technical innovation. It should be noted that the deriva-
tion of the convergence rate in the overpararameterized and
asymmetric case that we focus on, requires a novel defini-
tion of the distance metric given in (23). Namely, previous
convergence metrics dealing with the imbalance issue that
shows up in the asymmetric low-rank matrix estimation
problems, cannot be applied in the overparameterized set-
ting due to overparameterization and non-invertibility of
3. In order to prove the contraction of this convergence
metric we derive novel and non-trivial perturbation-type
bounds of matrix norms, which pose their own challenges
and move beyond existing approaches that address either
the known-rank or unknown-rank and symmetric matrices
regime (see Table 1).

Note also that the derived rate of convergence is valid in the
overparameterized rank setting where d > r and the value
of A should be positive i.e., A > 0. The positive value of
A is required so that the matrix 3, + AI that is used in the
convergence metric is always invertible. When d = r the
rate of OPSA can take the same form as the one of the scaled
subgradient method of (Tong et al., 2021b), that is derived
in the known rank regime. Namely, when d = r then 3, is
invertible and A could be 0. To make the theorem applicable
for d = r , we could replace the A parameter appearing in
(15), with X = XA + 04(X,). In that case, when d > r, we
have \' = )\ since 04(X,) = 0. But whend = r, \' =
o.(X,) (since A = 0),and the initialization condition and
rate of convergence (see supplementary material) boils down
to a similar form, up to some constants, to the one in (Tong
etal., 2021b).

Remark 5.6. As is shown in Theorem 5.4, the rate is in-

dependent of the condition number of X,. The linear rate
provided in Theorem 5.4 is a simplified form of the general
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expression:

plx,e,\) =1
\/ﬁ—l \/\/5—1 1 )
2)( 142X 1+2>\ 1_\[(\[4_[)\4))

B 3 Ve(e +V2A1)
vt (2 T Vet mb) )

(16)

Note that this general form holds for any value of A > 0,
and its detailed derivation can be found in the supplementary
material (Theorem A.3.1).

Remark 5.7. The level of overparameterization influences
the rate of convergence through . Specifically, x depends
on the landscape properties of the objective as expressed
by the Lipschitcz constant L and the restricted sharpness
constant ;. Generally speaking, x = ;% increases with
d (L 1, p 1) making the rate of convergence slower. This
effect of the overestimated rank d on the rate of convergence
is demonstrated in the numerical experiments section (see

Figure 2).

5.3. Iteration Complexity for Matrix Sensing

In this section, we analyze the iteration complexity, i.e., the
number of iterates 7' required to reach | Ly R} — X, ||r <
€, namely e-accuracy. This study will focus on the matrix
sensing problem.

5.3.1. NOISELESS MATRIX SENSING

Herein, we focus on the noiseless case without the presence
of outliers, where it holds that y = A (X).

Definition 5.8 (Mixed-norm RIP). Let 2d > 0 denote the
rank of X and A(-) a linear map. We define the &, 0,
as the lower and upper uniform bounds, respectively, of the

quantity % for all matrices X of rank at most 2d.

The mixed-norm RIP is empirically verified for the Gaussian
linear map in Figure 1.

Proposition 5.9 (Lipschitz Continuity and Restricted Sharp-
ness—No Outliers). If A(-) satisfies the mixed-norm property
with constants 85, 657, then L(X) = ||y — A(X) |1 satis-
fies the rank-d restricted L-Lipschitz continuity and rank-d
restricted sharpness with constants,

L =065, and ji=6,,. (17)

Proof: Similar to Proposition 1 in (Tong et al., 2021b).

Corollary 5.10 (Iteration Complexity—No Outliers). Using the
same setting as in Theorem 5.4, we use the Lipschitz con-
stant and restricted sharpness constant of Proposition 5.9,
we get iteration complexity for noiseless matrix sensing is

o( (52) ).

7><103

(¢)]

N

R A AN

X)L/ 1X e

[1A(
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Figure 1. Values of TXTp

RSOOO

for Gaussian map A : R590%500 _,
, where rank(X') = 10. Each point represents one result of
500 random trials. Blue and red dash lines are the lower and upper
uniform bounds, respectively.

5.3.2. ROBUST MATRIX SENSING

Here we consider the presence of outliers. We thus first
define the S-outlier type bound condition. The S-outlier
bound property has been used in the robust low-rank matrix
recovery problem in prior works, e.g., (Tong et al., 2021b).
It actually encodes a property of that allows restricted sharp-
ness condition to be satisfied in matrix sensing problems
in the presence of outliers. A detailed derivation of this
condition, as a natural generalization of RIP can be found
in (Charisopoulos et al., 2021).

Definition 5.11 (S-outlier Type Bound). The linear map
A(-) satisfies the rank-2d S-outlier type bound w.r.t. a set S
with a constant 6V if for all matrices X € R™*" of rank at
most 2d we have

X F < || Ase (X

) =

M = [ As (X
{Ai (X

Y, A8)
where As (X ) =
{Ai (X) }iese.

Proposition 5.12 (Matrix Sensing with Outliers). Ler A (-)
the rank-2d mixed-norm RIP with (0,,, 5;1) and the S-
outlier bound property defined above with §°. Then L(X)
satisfies the rank-d restricted L-Lipschitz continuity and
p-sharpness with

)}ies and Age (X

L=05), and p=4° (19)
Proof: The Lipschitz constant can be derived following
similar steps as in the noiseless case. For the restricted

sharpness constant ;¢ we use Proposition 2 of (Tong et al.,
2021b).

Corollary 5.13 (Iteration Complexity with Outliers). Under the
same setting as in Theorem 5.4, and by using the Lipschitz
constant and restricted sharpness constant of Propositions
5.12, we get iteration complexity for matrix sensing, in the

N
presence of outliers, is (’)( (62‘1) log(%)),
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Figure 2. Performance comparison between OPSA (top) and ScaledSM (bottom) with different overparameterization d, where

n,r, K, A, outlier = 100, 5, 20, 2, 10%.
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Figure 3. Performance comparison between OPSA (top) and ScaledSM (bottom) with different overparameterization d, where

n,r, K, A, outlier = 100, 10, 20, 2, 10%.

It should be noted that Corollary 5.13 implies that in the
presence of outliers, the iteration complexity increases at
an amount depending on the properties of the measurement
matrices (through §°).

Remark 5.14. Assuming a measurement operator A; (X ) =
+(A;, X)), where A; has Gaussian i.i.d. entries (0, 1), we
can invoke the results of (Charisopoulos et al., 2021; Tong
et al., 2021b), which show that A(-) satisfies the mixed-RIP
and and S-outlier bound conditions with

5;d Z 17 (de < 17 50 Z 1- 2p8u

~

where p, € [0, %) is the fraction of outliers, as long as
S (m+n)d

1
PR op,)2 °g<12ps>'

Hence, under the same setting as in Theorem 5.4 OPSA
converges linearly to e-accuracy in

1 1
o ((1 “op) o8 >

iterations assuming that it is initialized appropriately (see
statement of Theorem 5.4).

6. Numerical Experiments

In this section, we verify the empirical performance of the
proposed overparameterized Preconditioned Subgradient
Algorithm (OPSA), i.e., Algorithm 1.

Experimental setup. The ground truth X, is generated as a
product of two n x r random matrices, and then the condition
number is adjusted to be x by altering the singular values
of X,. The observations of matrix sensing are obtained as
described in (8), that is

yvi = Ai (X)) + s, 1<i<p,

where the sensing operator A;(X,) = %(Ai,XQ and
A, is a Gaussian random matrix. The corruption vec-
tor s € RP contains randomly positioned outliers whose
values are drawn uniformly at random from the interval
[—10]|A(X) |00, 10]|4; (X)) |loo]. Through this section,
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Figure 4. OPSA performance with different condition numbers x, where n, A, outlier = 100, 2,10%. Top: r,d = 5,10. Bottom:
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Figure 5. OPSA performance with different \, where n, &, outlier = 100, 20, 10%. Top: r,d = 5, 10. Bottom: r, d = 10, 20.

m = 8nr measurements are used in all tests. The code of
ScaledSM is obtained from the authors’ website. For the
sake of fairness, Polyak’s stepsizes are used for all tested
algorithms, thus ScaledSM requires no extra parameter tun-
ing. For OPSA, ) is the only parameter to be tuned, and an
experiment in this section shows that A can be easily tuned
in a wide favorable range. All the tests are conducted with
Matlab 2024a on a mobile workstation equipped with an
Intel 19-12950HX CPU and 64GB of RAM. The Matlab
implementation for the proposed OPSA is available online
athttps://github.com/caesarcai/OPSA.

Performance with different overparameterizations d. We
compare the convergence performance of OPSA against
ScaledSM (Tong et al., 2021b), the state-of-the-art subgra-
dient method for robust matrix sensing, with different levels
of overparameterization d. The convergence is evaluated
with respect to the relative error | L; R — X, || r/|| X+ F
The comparison results with true rank » = 5 and » = 10
are reported in Figures 2 and 3, respectively. For both algo-
rithms, one can see that more overparameterization leads to

slower convergence. However, OPSA constantly achieves
linear convergence while ScaledSM fails to converge when
major overparameterization happens.

Performance with different condition numbers «. In this
experiment, we test the convergence performance of OPSA
with different condition numbers of X,. The results with
conditional numbers up to 100 are reported in Figure 4. One
can observe that the convergence behavior and final accu-
racy of OPSA are not distinctly affected by larger condition
numbers, even when the rank is heavily overestimated. This
observation matches our main theoretical result. In Fig-
ure 7, we conduct additional experiments for OPSA with
extremely large condition numbers « up to 10,000. The
results are consistence with Figure 4. Even with k = 1, 000
or k = 10,000, OPSA still delivers stable convergence and
achieves the same final accuracy.

Performance with different parameters \. Notice that A
is the only parameter to be tuned in OPSA. In Figure 5, we
test the convergence performance of OPSA with different \.
One can observe that a mild A value (e.g., 0.1, 1, 2) helps



Guarantees of Overparameterized Preconditioned Subgradient Algorithm

. r=5d=10
10 : :
- OPSA 1% outliers
OPSA 5% outliers
—~+-OPSA 10% outliers
5 100t -=-OPSA 15% outliers|{
5
o
=
5 -10
1070}
107157 e ,
0 500 1000 1500 2000

Iteration count

r=10,d = 20
10° : ‘
—-OPSA 1% outliers
OPSA 5% outliers
——OPSA 10% outliers
5 10°° —=OPSA 15% outliers|{
&
(0]
=
s 10710
o
1071®
0 500 1000 1500 2000

Iteration count
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Figure 7. OPSA performance with different large condition numbers «, where n, A, outlier = 100, 2, 10%. Left: r,d = 5, 10. Right:

r,d = 10, 20.

OPSA maintain steep linear convergence when the rank is
heavily overestimated. However, if the A parameter is set
too large (e.g., 10) or too tiny (e.g., 10~%), OPSA converges
much slower, although still at a linear rate. Overall, OPSA’s
performance is favorable with a wide range of A values, and
thus the parameter tuning is easy for the proposed OPSA.

Performance with different outlier densities. In Figure 6,
OPSA is tested against different outlier densities. OPSA
successfully recovers X, and maintains linear convergence
in all tests. Note that more iterations are needed, and slightly
worse final accuracy can be achieved when more outliers
are present. This is as expected since more outliers lead to
harder recovery problems.

More numerical results. Additional numerical experiments
on partially observed video background subtraction tasks,
have been conducte and reported in the supplementary ma-
terial.

7. Conclusions

In this paper, we proposed an overparameterized Precondi-
tioned Subgradient Algorithm (OPSA) for robust low-rank
matrix recovery. Our work goes beyond existing SOTA
works by addressing the challenging scenario of robust low-
rank matrix recovery in the case of asymmetric matrices of
unknown rank using a preconditioned-type approach. Under
certain landscape assumptions i.e., Lipschitz continuity and
restricted sharpness conditions, we a) established a linear
rate of convergence that is independent of the condition
number of the unknown matrix, and b) derived the iteration
complexity matrix sensing, in the noiseless setting and in
the presence of outliers. Numerical results corroborate our
theoretical findings for different levels of overparameteriza-
tion of the rank, and outliers, and the independence of the
rate of convergence on the condition number of the sought
matrix.
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Supplementary Materials for
Guarantees of a Preconditioned Subgradient Algorithm for

Overparameterized Asymmetric Low-rank Matrix Recovery

A.l. Problem Formulation

We focus on the following low-rank matrix estimation problem

min L(Y, X) = min L(Y,LR"). (20)
X L,RLRT=X

We assume a preconditioned alternating gradient descent algorithm consisting of the following steps:

—1

Lit1 =Ly —n(SiRy) (R] Ry + M), 1)
—1

Rt+1 = Rt — T]t(StTLt) (L:Lt + )\I) 5 (22)

with S; € OxI(Y, X).

Let X, be the ground truth matrix, F, = LI%*} € Rim+m)xd where d > r = rank(X,), L, = U*E,%, R, = V*Ef, and

F = LL%} € RU™+7)xd We define the following convergence metric,

dist(F, F,) = \/ olnf | I(EQ = L) + D37 + I(RQ™T — R)(B. + M35 (23)

In our analysis we focus on the Polyak’s type step size, defined as follows,

_ L(LR/) — L(L.R])
IS.R(R) Ry + M)~ 2|3 + 1S Lo (L Ly + M)~ [|3

Nt (24)

Algorithm 1 Overparameterized Preconditioned Subgradient Algorithm (OPSA)

1: Input: y € RP, d: overestimated rank, A > 0: regularization parameter, 7): stepsize.

2: Inmitialize Ly and Ry, sett = 0.

3: while ! Stop Condition do

4. Lt+1 = Lt — ’I’]tSth (R:Rt + )\I)_1
S Ry =Ry — S Ly (L] L+ M)~
6: t=t+1

7: end while

8:

Output: X = L;R/.

13
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A.2. Auxiliary Lemmata

Lemma A.2.1 (Theorem 1 (Birman et al., 1975); Theorem X.1.1, (Bhatia, 2013)). Let A, B positive definite matrices. It
holds,

|A® - B%|,, < | A - B3, (25)
Lemma A.2.2. Let | X — X, |lop < Lo.(X..), then it holds | X — X, || > %dm(nﬂ).
Proof: Let us denote @, as the optimal alignment matrix for dist(F', F} ). We will have,
dist*(F, F,) = |(LQ, — L)(Z, + AD? |} + [(RQ; T — R)(S. + A2 |}
= tr{(Z, + M)? (LQ, — L) (LQ, — L,)(Z, + \I)*}
+tr{(S, + AN (RQ; T — R)T(RQ; T — R,) (S, + )2}
=tr{(LQ. — L.) " (LQ, — L) (=, + M)} + tr{(RQ; " — L) " (RQ; " — R.)(Z, + \I)}
1 1
= [(LQ. — L)% + (RQ; T — ROZZ 17+ A ((LQ. — LI} + (RQ; T — R)|%) -

By using the definition of the distance and Lemma 11 in (Tong et al., 2021a), and Lemma 5.14 in (Tu et al., 2016), we have

1 2\
dist?(F,F,) < —— | X = X, |3+ ——————— | X — X,||%. 26
SRR < 51X = Xl + o s IX - X 26)
Hence, we have
. 1 2\ or (X)) + 22
dist?(F, F,) < + X -X,%=—"2"T"" |IX - X,|%, 27
WO < (ot e I Xl = R RS IX - X @D
which leads us to inequality
\/5—1 o (X,) ..
||X_X*HF Z \/wdlst(F,F*). (28)

Lemma A.2.3. The proposed distance metric given in (23), is an upper bound of the distance | LR" — X, || . Namely,
assuming that dist(F, F,) < Xe, it holds

ILRT — X,||r < (1 + g) Vadist(F, F,). (29)

Proof: We use the following distance metric,

A (F,F) = [ int QLS. + ADHE + [(BQT — R (5. + MDA (30)

and we assume that dist(Fy, Fy) < Ae.

By using the following known norm inequalities

|AB| ¢ > || Al ro.(B) > | Allopo.(B), 31)
we can get
(L = L)(Z0 + D222 + (R — R)(Zs + M) 72202 < A2, (32)
which implies
1 1
max{||(L — L.)(Zy + M) 72 |[op, [|(R — R)(Zs + ML) 2)|lop} < . (33)

14
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Next, we show the relation between || L; R, — X, || and dist(F}, F,),
IL:R — X,|lr=|LR" — X.||r = |[ALR] + LA + ALAR| r
< HALRTHF + | L AR|lF + [ALAR| = HALRTHF + L. ARlF

+ ||§AL (S, +MDE (B, + M) 2 AL+ iAL (S, + M) (2, + M) AL r
1 1
< ALE +AD p + [AR(S. + ADHp + 5I1AL (B + A1 AR (B2 +AD7F) [lop
]. _1 1
+ 5182 (B 42D ol Ak (B2 +AD?) |1r
1 _1 1 1 1
< (14 g max{|Ar (Zo +AD7H) lops 1AL (B +AD) " op} ) (1AL (B2 +AD* 15 + AR (2. +AD* |1r)
€ €
< - i < -
< (1 n 2) Vadist (F, F,) < (1 n 2) V2,
where he have used the initialization condition, the fact that
max{[Ap (T + M) 7H) lop, AL (B + A1) 72 [Jop} < € (34)
and the inequality

|AL (B + A1) ||+ AR (s + M) 2 ||p

: (35)
< Vo IAL (B 1 ADE 2 4 |AR (S, +AD? 2.

This finishes the proof. O

Lemma A.2.4. Ler us assume dist(F, Fy) < e\, where A\ = % Let 0,(X,) = 1 and denote A\R = (R"R +
MN)Y2 —(R] R, + MN)Y/2, AL = (LTL + \I)'Y/? — (L] L, 4+ \I)'/2, then it holds

(S, + A1) "2 AyLop < Ve(ve+ V2AT),

. ., (36)
| (S0 + ML) "2 AVRlp < Ve(ve+ VEAL).

Proof: We have
1 1
[(Zy + ML) 2ALL|op = | (ETL + AL)(Sy + MDY 2 = (L] Ly + AD(Z + A7) 7 oy 37)
Letus denote A = (LTL + \)(2, + AI)"'and B = (L] L, + M\I)(2, + AI)~'. From Lemma A.2.1, we have that
1
|A2 = B2l < [||A = Bl[|3-
Hence,
1 1
| (LTL4+M)(Z0 + M) ™12 = (L] L + A2+ AD) 7Y lop
S NETL A+ AI)(S, + AD ™ — (LT L, + AD(S. + AD Y2, = | (LTL — LTL) (S, + AD Y|4,
1 1
=|(L'L-L"L,+L"L,—L[L,) (=, + AD7H2, = || (L"(L - L,)+ (L — L) L,) (. + M) 1|3,
1
| (L — L. +L) (L-L.)+(L—L,) L) (S, + AXI) |3

= (L~L)T(L ~ L) + L] (L~ L) + (L — L) L) (S, + A4

< (L~ L)L~ L)+ LT(L — L) + (L~ L) L) [0S, + AD 713,
sé(nL L||op+f LI IE - Z1)

< Ai (Ve VXL 5% ve)

+VEVE XL 3N = Ve(Ve + VaAY).
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From the last inequality, we get that,
(B + M) "2 ANL||op < Ve(ve+ V2XT). (38)

The proof for the term t|| (3, + AT )7% A\R)|,p can be derived following similar steps. O
Lemma A.2.5. Let L € R™*4 R € R"*? and denote A\R = (R"R + \)'/? — (R] R, + \I)'/?, A\L =

(LTL +XI)Y2 — (LT L, + \I)'/2. Assume that max{||[[(L — L,)(Zx + M) 7% ||op, (R = R) (s + M) 2|op} < e
Then it holds,

1 1 1
RTR+M) * (2, +M)? o < T
I ) S A < s .
_1 1 1
LTL+ M) ? (8, + A)? |lop < —
It ) A o < e
-1 1 _1 1\ 1
Proof: We have (RT R+ )™ * (S, + A1)* = (S, +A1)"* (RTR+AI)?) . Hence,
1 1 1
I (RTR+AI) "7 (S + AD)? ||op = : . (40)
oy ((2* F M) E (RTR + M) )
By Weyl’s inequality, we get
_1 1
oa (e +AD)7F (RTR+ AT)?)
1 1
> 04 (B + A1) "2 (RIR, + A)? ) = (S0 + AD) " H ANl (41)
=1 —||(Zs + AI)"2A\R||p.
From Lemma A.2.4, we have ) .
IS, + A1) AR, < Ve(ve +V2AE). “2)
Hence, we conclude the proof. The proof for || (X, + AT )7% A\R)|,p can be similarly derived. O

A.3. Proof of convergence of OPSA

Theorem A.3.1 (Convergence of Overparameterized Preconditioned Subgradient Algorithm). Let £(X) : R™*™ — R be
convex w.r.t X, and assume that it satisfies the rank-d restricted L-Lipschitz continuity assumption and the rank-d restricted
w-sharpness condition, defined above. Assume also that

dist(Fp, Fy) < Xe (43)

X llop

and let A = ,00( X)) =1, and x = L Then for the Overparameterized Preconditioned Subgradient algorithm
given in Algorithm ] , with the Polyak’s stepsize defined in (24), we have,
1
. s (11 Xop \?
dist(F, Fy) < p(x,€,A)2 5 ¢ (44)
where p(x, €, \) is given by
V2—-1( [V2- 1 1
P 6A) =1~ -— =
2x2 | 1+2) 1+2)\ (1= Ve(Ve+ V2rh))2
3 2)\1
o3 (e g o VWS V27 4_)1 . (45)
2" T e+ vanh)
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Proof: We denote L = L,Q;,R=R,Q; ' ,A\py =L—-L,,Ap=R—R,and S = S,.

We focus on the contraction of dist (Fy41, Fy).
dist” (Fyy1, F) < [[(Een1 Qi — L) (e + AD2 |3 + [[(Re41Qp T — Ru) (3o + A2 7 (46)
Let L = L,Q;, R = R,Q; " and § = S, and first bound the term || (L 1Q; — L,)(X, 4+ AI)z||% as follows,

1 -1 1
[(Lt11Q: — L)(Bs + A2 |7 = || (L ~nSR(R"R+ M) - L*) (. + )7 %
= |AL (B + )7 |% — 20(S, AL (S, + M) (RTR+ M) ' R")
+ 2 |[SR(RTRA+ M)~ (S, + M) %
1 1
= 1AL (B + AD? [ = 20 (S, ALR] + SALAR)

Oy

- 1
— 2 (S,AL (S, + M) (RTR+ M) 'R — ALR] — SALAR)

O3
+ 12 ISR(RTR+ M)~ (, +AD? ||%.

O3

We focus on bounding the term |Os|,

- 1
(S,AL (Z, +\I) (RTR+ M) RT — ALR] — SALAR)

<ISIFIAL (B + ML) |7 x

=

- _1 1 1
(IR (RTR+ D)™ (S04 AD)E = Ry (524 M) oy + 5 1AR (S0 + M) 2 ), 7)

where we have used the inequalities || AB||r < || A|lop||B|lr and [|A — Bllop < || Allop + || Bllop-

For the first term of (47) we have

1 1
2

(S, + M)? — R, (S, + )

llop
_1

S(RTR4M) (S, +AD! — R, (S, + \I) " |,
((RTR+ M) %~ (RIR, + AI)’%) (S, + AD)? + (R R, + AI)

N

R(R'R+))
=|R(R"R+ AI)

Nl
[

2 (3, + M)

)

=|R(R"R+XI)"
~R. (%, +A1)—% lop

1

— |R(RTR+ I (((RTR+ M) ? - (RIR, + )\I)_%) (2, + M)? + 1) R, (S, + M) oy
(

) ?
<IR(RTR+A) oy (RTR+AD)F — (RI R+ A1) F) (5, +AD)

op

-
=

+|R(RTR+ M) 2 — R, (R R, + M) 2 ||,

1

We now focus on bounding the term [|( (RTR+ M) * — (R[ R. + )\I)_é ) (s + AD)? ||,p. Let A= RTR+ AI
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Guarantees of Overparameterized Preconditioned Subgradient Algorithm

and B = R] R, + \I. We have

[(A™% = B75) (S, + A [lop = (A% — B72)(ATBH)(AZBH) ™ (S 4 A1) oy
= (B = B~ ¥ A3 B3)(A3BY) ™! (2, 4+ A1) oy
= (B} =B 2ABB 3 (A ) (2, +AD)* oy
= (I - B2 A A7) (B 4D ||y

<|B73 (B - A1) o A7F (B + A1) oy
Ve(Ve+ V2A3)

- ) 48
1— Ve(ve+V2At) “48)
where the last inequality follows by using Lemmata A.2.4 and A.2.5.
Next, we bound the term || R (RT R+ M) ? — R, (RT R, + AI) " ? ||,,. We have
IR(RTR+A)"* R, (RIR. + A1) ||,
= (R~ R (RTR+ A1) ¥ + R, (RTR+ A1) * — (RIR. 4+ A1) ) |,
<(R-R.,)(RTR+AI) * |0 + || R. (RTR+ M) ? — (RIR, + AI)’%) lop
<R~ Rullopll (RTR+ ML) "2 |lop + |IR. (RTR+ M)? — (RIR, + AI)*%) lop
;1

= et vy

where we have used the inequality | R — R,||op < ev/\. Note that this result holds, since we assumed dist(F, F,) < e,
hence we can show the following,

(L = L) (Be + M) 2 )(Z, + A7 2)|2,02((8 + M)?)) (50)
+ (R = R (s + AD2)(Z, + AL )2, 02((Sy + AD)F)) < A2

= (L = L)(Be + M) ?)(Bs + AD 722 + (R = B)(By + M) 2)(B + M) 22)|2,0, (B + M) 7)) < A2
maX(HL—L*HOP,HR—R*HOP) < \/Xﬁ (51)

Combining the above bounds we get

IR(RTR+A) ™ (S +A)? — R, (S, +AI) "2 ||,
Velve+ V227

<e+2 -, (52)
1 Ve(v/e+v2M)
We now focus on bounding Os,
ISR(RTR+ M) (Z, +AD? ||%
<[ISR(RTR+A) 7 |2 x| (RTR+ ) (S, + D) |2,
O34 O3y
_1 1
<|SR(RTR+AI) ?||% (53)

(1= VeV + VA
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Guarantees of Overparameterized Preconditioned Subgradient Algorithm

Using the derived inequalities above we have

1
2

+ 2Ll AL (2*+>‘I)% IF3 (3e+2 Ve(Ve+ \/55\17)1 )
2T (Vave+ VD))

SISR(RT R+ AI)|7

N

[(Lis1Qr — L)(Sy + A2 |2 < [|AL (B, + A |2 — 20(S,ALR] + ZALAR)

1

2
NRNTENCNCERVCIE

Following the same steps for bounding the term || (Ri+1Q; | — R.)(Z. 4+ M)z, we have
dist?(F,1, F,)
<AL (B + AD? 2+ AR (S, + M2 3 - 25(S, X — X.)
VE(VE+ V2XE)
1— e(v/e+V2A1)
9 1

(1— Ve(Ve+ V21

3 1 1
+ 2nL <26+2 ) (||AL (E,+ 2Dz ||p+ |Ar (Zs + AN)2 ||F)

+n

oE (ISR(RTR+ D)~ (3 + ISTLILTL + A1)} |1}

Ve(Ve+v2X1)
1 — \/e(Ve+V2A1)

(ISRRTR+AD) ™43+ |ISTLLTL + A1) 13

< dist?*(F}, F,) — 27 (lf(LthT) - ﬁ(X*)) + 2nLV2 (36 +2 ) dist(F}, Fy)

1

2
T e+ Va2

Convergence with Polyak’s stepsize. We use Polyak’s stepsize defined as
L(L:R]) — L(X,)

= T o (54
|ISR(IRTR+ M)~ 2%+ ||STL(LTL+ M)~z |%

Ur
Due to convexity of £(X), Lemma A.2.2, and the assumption o,.(X,) = 1, we also have,

(8, X —X,)>L(X)—L(X,)>p|X —X.||>pu mdist(F,F*).
We thus get
1
(1 — Ve(ve+ V223
3 Ve(ve+V2AT)
+2v2n, L (26 2 et 0
1 > V2 -1
(1= Ve(Ve+ V2ri))? 1+2A

_ £ §€ \ﬁ(\ﬁJrﬁ/_\%) is
2f2M (2 +21—\/E(\/E+\/§)\i)>>d t(F,, F,).

dist?(Fy41, F,) < dist?(Fy, F,) —n, (2 - ))2> (L(X) - L(X,))

) dist(F,, F,)

< dist®*(F;, F,) — mu( <2 -

Using (Tong et al., 2021b, Lemma A.2.2 and Lemma 4), we can lower bound the step size as

po [V2-1
212\ 1+ 2X

n > dist(F, F.,).
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Guarantees of Overparameterized Preconditioned Subgradient Algorithm

We define xy = ﬁ and then we get

dlbt Ft+1,

Y o ——
U 22V re2x Y r+2x (1 — Ve(y/e+ V2A5))2

3 Ve(ve + V22T) o
—2vV2 <2e+21 N \/Qxi)> ))dlst (F,, F,).

We define p(x, €, \) as the contraction rate given by,

Pl 6 ) \/ﬁ_l ¢ﬂ_1 : )
p(x. €, "2\ 152 1+2)\ T (1— Ve(ve + V2rE))2

(3 Vet VA
—2xV2 <2€+21—\ﬁ(\/é+\/§)\i)> >

This finishes the proof. O

A.3.1. Proof of Theorem 5.4

Theorem 5.4 Let L(X) : R™*™ — R be convex w.r.t X, and assume that it satisfies the rank-d restricted L-Lipschitz

continuity assumption and the rank-d restricted u-sharpness condition, defined above. Assume also that A = %
A = || X«llops ¢ = 20, and without loss of generality o, (X,) = 1. Set € = 1071 , which implies.
XHX*Hozp
104 | X, [0
dist(Fy, F,) < Ae = 20 1 Xullor” (55)
X c

where x = % Then for the Overparameterized Preconditioned Subgradient Algorithm (OPSA) given in Algorithm 1, with
the Polyak’s step-size defined in (24), we have,

1241074 X, [ o
dist(F}, F,) < (170 ) 07 X llop

X° ex
012 % 1.5 x 10~4|[ X, [|o2
ILR] -~ X r < (1- %) [Xelor”.
X X
Proof: By using the general expression for the rate p(x, €, A) provided in Theorem A.3.1 and for A = =, and € = 107; .
X1l 3px
‘We have,
(1= p(x,6,M)x* > 0.12, (56)

which leads to the contraction rate showing up in the statement of the Theorem. By applying Lemma A.2.3, we can show
the second inequality. O
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A.4. More Numerical Experiments

A .4.1. Partially Observed Video Background Subtraction

Video background subtraction with partial observation is one standard benchmark for robust matrix completion. Note that
the RIP condition of matrix completion is only defined with the tangent space projection and the incoherence condition.
Nevertheless, following the setup as in (Cai et al., 2025), we apply OPSA to the partially observed video background
subtraction task on two real video datasets, namely shoppingmall and restaurant'. The visual results are reported in Figures 8
and 9, compared against the fully observed RPCA results. Although the rank is overestimated and the observation is partially
accessible, OPSA achieves crisp visual results.

Figure 8. Video background subtraction on shoppingmall video. Each row corresponds to a frame in the video. The first column is for the
original frames. The next two columns are the “groundtruth” foreground and background provided by AccAltProj (Cai et al., 2019), a
non-convex RPCA algorithm, with rank 2 and full observation. The last two columns are the foreground and background outputted by the
proposed OPSA with 5x overestimated rank d = 10 and 30% observation.

!The datasets were originally provided by http://perception.i2r.a-star.edu.sqg/bk_model/bk_index.html;
however, it is no longer available. The datasets are now available at https://hgcai.org/datasets/shoppingmall.mat and
https://hgcai.org/datasets/restaurant .mat, respectively.
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Figure 9. Video background subtraction on restaurant video. Each row corresponds to a frame in the video. The first column is for the
original frames. The next two columns are the “groundtruth” foreground and background provided by AccAltProj (Cai et al., 2019), a
non-convex RPCA algorithm, with rank 2 and full observation. The last two columns are the foreground and background outputted by the
proposed OPSA with 5x overestimated rank d = 10 and 30% observation.
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