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Abstract

In this paper, we focus on a matrix factorization-

based approach to recover low-rank asymmet-

ric matrices from corrupted measurements. We

propose an Overparameterized Preconditioned

Subgradient Algorithm (OPSA) and provide, for

the first time in the literature, linear convergence

rates independent of the rank of the sought asym-

metric matrix in the presence of gross corrup-

tions. Our work goes beyond existing results in

preconditioned-type approaches addressing their

current limitation, i.e., the lack of convergence

guarantees in the case of asymmetric matrices

of unknown rank. By applying our approach to

(robust) matrix sensing, we highlight its merits

when the measurement operator satisfies a mixed-

norm restricted isometry property. Lastly, we

present extensive numerical experiments that val-

idate our theoretical results and demonstrate the

effectiveness of our approach for different levels

of overparameterization and outlier corruptions.

1. Introduction

Low-rank matrix recovery has been a ubiquitous problem

showing up in numerous applications in the fields of sig-

nal/image processing, machine learning, and data science

(Recht et al., 2010; Chen et al., 2013; Davenport & Romberg,

2016; Cai et al., 2021a; Smith et al., 2024; Wang et al., 2024).

For instance, problems such as matrix sensing (Jain et al.,

2013; Wei et al., 2016; Park et al., 2017; Li et al., 2020),

matrix completion (Candes & Recht, 2008; Nie et al., 2012;
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Kümmerle & Verdun, 2021; Cai et al., 2023), and robust

principal component analysis (Candès et al., 2011; Netra-

palli et al., 2014; Giampouras et al., 2018; Cai et al., 2019;

2021b), can all be cast as low-rank matrix recovery prob-

lems and then solved using minimization algorithms that

seek a matrix X ∈ R
m×n that is as close as possible to the

unknown low-rank matrix X⋆ ∈ R
m×n.

A major challenge in low-rank matrix recovery concerns the

computational complexity and memory requirements of the

proposed algorithms when the size of the unknown matrix

significantly increases. To address this, matrix factorization-

based approaches have been proposed, (Chi et al., 2019;

Park et al., 2016), which, given r g rank(X⋆), use matri-

ces L ∈ R
m×r and R ∈ R

n×r such that X = LR¦. These

approaches enable the development of iterative algorithms

with significantly reduced computational complexity and

memory storage requirements. However, they lead to non-

convex formulations of the optimization problems, which

pose their own challenges in the derivation of theoretical

guarantees and fast rates of convergence.

Alternating gradient-based algorithms have been a standard

approach for solving matrix factorization-based problems.

A well-known issue with these approaches lies in the depen-

dence of their rate of convergence on the condition number

of the unknown matrix X⋆,(Tong et al., 2021a). This makes

convergence too slow in problems where the sought matrix

is ill-conditioned. Several works, (Park et al., 2016; Zhang

et al., 2023), address this issue by moving beyond vanilla

gradient updates and resorting to preconditioned approaches.

In (Tong et al., 2021a), preconditioned gradient algorithms

have been proposed that consist of updates in the following

form:

Lt+1 = Lt − ¸∇LL(LtR
¦
t ) (R

¦
t Rt)

−1

︸ ︷︷ ︸

preconditioner

,

Rt+1 = Rt − ¸∇RL(LtR
¦
t )

(
L¦

t Lt

)−1

︸ ︷︷ ︸

preconditioner

.
(1)

Preconditioned-based approaches, e.g. (Chi et al., 2019; Cai

et al., 2021c; Zhang et al., 2023; 2024; Cai et al., 2024),

lead to linear rates of convergence that do not depend on

the condition number of X⋆. Recently, these approaches

have been extended to the robust low-rank matrix recovery
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framework, aiming to address more challenging scenarios

that account for the presence of grossly corrupted data. In

these settings, (Tong et al., 2021b) reported similar rates of

convergence, which are however negatively influenced as

the level of corruption increases.

A fundamental assumption made in the above-mentioned

approaches is that the rank r of the sought matrix X⋆ is

known. Clearly, in the case that r is underestimated, the

algorithm will only be able to find a low-rank approximation

of the ground truth matrix. To address this shortcoming,

in (Ma & Fattahi, 2021), the authors overparameterized

the rank as d g r = rank(X⋆), and established a linear

rate of convergence for robust low-rank matrix recovery for

symmetric matrices using a vanilla subgradient algorithm.

Further works, build on this observation aiming to establish

convergence to the ground truth matrix X⋆ under weaker

conditions, (Ding et al., 2021; Xiong et al., 2023), or to

explore the intriguing implicit regularization phenomena in

this setting, (Soltanolkotabi et al., 2023).

Note that due to non-invertibility issues as the iterates

Lt,Rt converge to L⋆,R⋆, the overparameterized scenario

cannot be directly adopted as such in the previously pro-

posed preconditioned-based methods that rely on updates

given in (1). To address this issue, recent works, (Zhang

et al., 2023; Xu et al., 2023), proposed an overparameterized

preconditioned algorithm focusing on symmetric matrices

and assuming smooth loss functions, with updates in the

form:

Lt+1 = Lt − ¸∇LL(LtL
¦
t )(L

¦
t Lt + ¼I)−1, (2)

and showed linear convergence at a rate independent of the

condition number of X⋆ and the overparameterization of the

true rank. Focusing again on smooth problems, in (Cheng

& Zhao, 2024), the authors proposed an extension of these

works to the case of asymmetric matrices coming up with

an alternating algorithm with regularized preconditioners

leading to updates:

Lt+1 = Lt − ¸∇LL(LtR
¦
t )(R

¦
t Rt + ¼tI)

−1,

Rt+1 = Rt − ¸∇RL(LtR
¦
t )(L

¦
t Lt + ¼tI)

−1.
(3)

In this work, we depart from previous works by focusing on

robust low-rank matrix recovery in the presence of outliers

and propose an overparameterized preconditioned-based

algorithm in the unknown rank regime. Our work aims to

address the following question (Q):

Q: Can we establish linear rates of convergence to the

ground truth X⋆, in the case of non-smooth minimization

problems in the overparameterized regime with unknown

rank, and for asymmetric matrices X⋆?

1.1. Main Contributions

In this work, we advance beyond previous work by focusing

on robust low-rank matrix recovery with a non-smooth ob-

jective function, addressing the unique challenges of recov-

ering asymmetric matrices with unknown rank (see Table 1

and comparison with SOTA). Our preconditioners naturally

arise by adopting quasi-Newton-type updates in an implic-

itly regularized objective function. Our main contributions

are summarized as follows:

• We propose a novel algorithm, coined Overparameter-

ized Preconditioned Subgradient Algorithm (OPSA),

that minimizes a robust ℓ1 loss function. To account for

overparameterization caused by rank overestimation,

we propose a novel distance metric and assume that the

matrix factors are initialized sufficiently close to the

ground truth (which can be easily attained by spectral

initialization). In Theorem 5.4, we show that OPSA

converges linearly to the low-rank ground truth matrix

X⋆ using an adaptive Polyak’s step size. Note that our

main result holds for general non-smooth loss functions

under certain conditions such as the restricted rank-d
sharpness condition and restricted Lipschitz continuity.

Moreover, our results extend the preconditioned sub-

gradient method (Tong et al., 2021b) from the exact

known rank setting to the overparameterized regime.

• For theoretical results, we focus on robust matrix

sensing and show that linear convergence holds for

OPSA both in the noiseless case and in the presence of

gross corruptions/outliers when the measurement ma-

trices satisfy a mixed-norm restricted isometry property

(RIP). In this setting, we unveil how the iteration com-

plexity is affected by overparameterization. Moreover,

our results showcase that the tolerance of measure-

ment matrices in outliers is another important factor

for sharpness around X⋆, which is a necessary condi-

tion for exact convergence.

• In the experimental section, we empirically show-

case the favorable performance of the proposed OPSA

against the state-of-the-art under different levels of

overparameterization d, for the problem of robust ma-

trix sensing with Gaussian measurements. We also

demonstrate that OPSA constantly enjoys linear conver-

gence with varying condition numbers », parameters

¼, and outlier densities even when the rank is heav-

ily overestimated. The experiments provided further

confirm our theoretical findings.

1.2. Notation

The transpose of a vector or matrix is denoted as (·)¦. The

Euclidean vector norm is denoted as ∥ · ∥2. The Frobenius

and operator matrix norms are denoted as ∥ · ∥F and ∥ · ∥op,
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Table 1. Comparison of theoretical convergence properties of SOTA algorithms for low-rank matrix estimation. Columns indicate if

algorithms handle asymmetric matrices, outliers, unknown rank, and if convergence is independent of »(X⋆), the condition number of

X⋆. The proposed OPSA method addresses all these challenges.

Algorithm Asymmetric Outliers Unknown Rank No dependency on »(X⋆)

VANILLA GD (Stöger & Soltanolkotabi, 2021) 6 6 6 :

SCALEDGD (Tong et al., 2021a) 6 : : 6

PRECGD (Zhang et al., 2023) : : 6 6

SCALEDGD(¼) (Xiong et al., 2023) : : 6 6

SCALEDSM (Tong et al., 2021b) 6 6 : 6

OPSA (Proposed) 6 6 6 6

respectively. We also denote as Ãi(X) the singular values

of matrix X -assuming a decreasing order as i increases-

and as »(X) its condition number. We denote the trace

of a matrix as tr(·), the trace of the inner product between

two matrices A,B as ïA,Bð = tr(A¦B), and the m× n-

dimensional Euclidean space as Rm×n. G(d) denotes the

set of invertible matrices in R
d×d.

2. Related Work

In this section, we provide some interesting insights into the

connection of our approach with prior research works.

Preconditioned gradient and subgradient methods for

low-rank matrix recovery. Preconditioned-based methods

have attracted significant interest over the last few years

since they allow for establishing rates of convergence that

do not depend on the condition number of X⋆, (Tong et al.,

2021a; Zhang, 2021; Zhang et al., 2023). For a thorough

review of these methods, we refer the reader to (Chi et al.,

2019). Preconditioned methods have been extended to non-

smooth problems such as robust low-rank matrix recovery

with ℓ1 loss. However, they focus on either the known-

rank asymmetric regime or assume an unknown-rank with

sought symmetric matrix X . Relaxing the symmetric as-

sumption on X to the more challenging asymmetric one

in unknown-rank regimes is the main contribution of our

work. Recently, these approaches have been shown to of-

fer significant improvements in the low-rank adaptation

(LoRA) for parameter-efficient fine-tuning foundation mod-

els, (Zhang & Pilanci, 2024). Even though this problem

is out of the scope of the current paper, extending current

approaches, which rely on a fixed rank, to the overparam-

eterized preconditioning framework is a promising future

research direction.

Overparameterized (robust) low-rank matrix recovery.

Recently, several works have focused on robust low-rank

matrix recovery in the unknown rank regime. In (Ma &

Fattahi, 2021), the authors focus on robust matrix sens-

ing and report the convergence of a vanilla subgradient

algorithm in the overparameterized setting for symmetric

matrices, which suggests an implicit regularization behav-

ior. In (Ding et al., 2021), improved results are obtained,

again for the symmetric case, by relaxing the conditions

imposed on measurement matrices. In (Zhang et al., 2023),

with the aim to reduce the negative effect of overparame-

terization and ill-conditioning, the authors focused on sym-

metric matrices and generalized the preconditioned-based

approach in the overparameterized setting using updates in

the form of (2). Similar to our work, the authors in (Cheng

& Zhao, 2024) recently, proposed an overparameterized pre-

conditioned approach for asymmetric matrix factorization

establishing linear convergence with update in the form of

(3). However, unlike our work, they focused on smooth

losses, which pose less challenges, and enabled them to use

a Polyak-Lojasiewicz (PL)-type condition for deriving the

convergence rate.

3. Problem Formulation

We focus on the low-rank matrix estimation problem, as-

suming that the true rank r is unknown. We denote the

ground truth matrix as X⋆, and assume a singular value

decomposition

X⋆ = U⋆Σ⋆V
¦
⋆ , (4)

where U⋆ ∈ R
m×d contains d g r left singular vectors,

Σ⋆ ∈ R
d×d is a diagonal matrix consisting of d singular

values of X⋆ presented in an non-ascending order. Since

rank(X⋆) = r and d g r we have Ãi(X⋆) = 0 for i =
r + 1, . . . , d.

The low-rank matrix estimation problem w.r.t. the space of

X ∈ R
m×n is defined as

min
X∈R

m×n,
rank(X)fd

L(X), (5)

where L(X) is a general loss function that is convex

w.r.t. X and possibly non-smooth in order to allow the

use of robust loss functions such as the ℓ1 norm.

Here, we solve a problem equivalent to problem (5), defined
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over matrix factors L ∈ R
m×d and R ∈ R

n×d,

min
L∈Rm×d,R∈Rn×d

L(LR¦). (6)

3.1. Matrix Sensing

Next, we focus on the matrix sensing problem i.e., we as-

sume that we have access to observations y = {yi}pi=1 of a

low-rank matrix X⋆ ∈ R
m×n, given as

yi = Ai (X⋆) + si, 1 f i f p, (7)

where Ai is the measurement operator,

Ai (X⋆) =
1

p
ïAiX⋆ð,

Ai ∈ R
m×n is the i-th measurement matrix, and si’s corre-

spond to arbitrary and sparse corruptions.

The observation model above can be written in a more com-

pact form as

y = A (X⋆) + s. (8)

Our goal is to find X⋆ given y and the measurement en-

semble A (·) = {Ai (·)}pi=1. We formulate the problem

as

min
X∈Rm×n

∥y −A (X) ∥1, (9)

where we have used the ℓ1 norm as the loss term l(·), also

known as the residual sum of absolute errors, which is

known to be robust to the presence of arbitrary sparse cor-

ruptions (Candès et al., 2011).

Recall that we assume we do not know the true rank r of

the unknown matrix X⋆, and we also solve the problem

in the space of matrix factors L ∈ R
m×d and R ∈ R

n×d

whose product equals X i.e., X = LR¦ with d being an

overestimate of r. We thus formulate matrix sensing as

min
L∈Rm×d,R∈Rn×d

∥y −A
(
LR¦) ∥1. (10)

4. Overparameterized Preconditioned

Subgradient Algorithm

To minimize the objective function given in (6), we

use quasi-Newton type updates. Hence, we use local

upper-bounds of the objective function, which lead to

preconditioned-type updates for the matrix factors L and R,

i.e.,

(Lt+1,Rt+1) ≡ argmin
L,R

L(LtR
¦
t ) + ï∂LL(LtR

¦
t ),L−Ltð

+ ï∂RL(LtR
¦
t ), (R−Rt)ð

+
1

2¸t

(

∥ (L−Lt) (R
¦
t Rt + ¼I)∥2F

+ ∥ (R−Rt) (L
¦
t Lt + ¼I)∥2F

)

,

where ¸t is the step size and ∂LL(LtR
¦
t ) and ∂RL(LtR

¦
t )

denote subgradients of the objective function L(LtR
¦
t )

w.r.t. L and R, respectively.

Note that the RHS of the above optimization problem corre-

sponds to upper bounds of the original objective and leads

to quasi-Newton-type updates, (Giampouras et al., 2020).

We use a Polyak’s type step size, and get a similar form to

the one in (Tong et al., 2021b), i.e.,

¸t =
L(LtR

¦
t )− L(L⋆R

¦
⋆ )

µt
, (11)

where

µt = ∥StRt(R
¦
t Rt + ¼I)−

1
2 ∥2F

+ ∥S¦
t Lt(L

¦
t Lt + ¼I)−

1
2 ∥2F

with St denoting a subgradient of the objective L(Xt), i.e.,

St ∈ ∂XL(Xt).

The proposed algorithm is given in Algorithm 1.

Algorithm 1 Overparameterized Preconditioned Subgradi-

ent Algorithm (OPSA)

1: Input: Data (y ∈ R
p in the matrix sensing case), d:

overestimated rank, ¸: stepsize.

2: Initialize L0 and R0, set t = 0.

3: while ! Stop Condition do

4: Lt+1 = Lt − ¸tStRt

(
R¦

t Rt + ¼I
)−1

5: Rt+1 = Rt − ¸tS
¦
t Lt

(
L¦

t Lt + ¼I
)−1

6: t = t+ 1
7: end while

8: Output: X̂ = LtR
¦
t .

Remark 4.1. In practice, if L(L⋆R
¦
⋆ ) is unknown, e.g., due

to noise or additional regularization terms, Polyak’s type

step size may be hard to apply. To address that, one can use

a geometrically decaying step size schedule to match the

expected linear convergence. Such a step size schedule was

introduced in (Goffin, 1977) and has been widely used in

the literature on subgradient methods.

5. Convergence Analysis

In this section, we present the convergence analysis of the

proposed Overaparametrized Preconditioned Subgradient

Algorithm (OPSA).

5.1. Landscape Assumptions

In the following, we provide the assumptions used in our

theoretical results.

Assumption 5.1 (Restricted Lipschitz Continuity). A func-

tion L(·) : Rm×n 7→ R is rank-d restricted L-Lipschitz
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continuous for some quantity L > 0 if

|L(X1)− L(X2)| f L∥X1 −X2∥F (12)

holds for any X1,X2 ∈ R
m×n such that X1 − X2 has

rank at most 2d.

Assumption 5.2 (Restricted Sharpness). A function L(·) :
R

m×n 7→ R is rank-d restricted µ-sharp w.r.t. X⋆ for some

µ > 0 if

L(X)− L(X⋆) g µ∥X −X⋆∥F (13)

holds for any X ∈ R
m×n with rank at most d.

5.2. Main Results

Let F⋆ =

[
L⋆

R⋆

]

∈ R
(m+n)×d, where L⋆ = U⋆Σ

1
2
⋆ , R⋆ =

V⋆Σ
1
2
⋆ , and F =

[
L

R

]

∈ R
(m+n)×d.

In our results, we propose a modified version of the distance

metric introduced in (Tong et al., 2021b), defined as

dist2(F ,F⋆) = inf
Q∈G(d)

∥(LQ−L⋆)(Σ⋆ + ¼I)
1
2 ∥2F

+ ∥(RQ−¦ −R⋆)(Σ⋆ + ¼I)
1
2 ∥2F .

Matrix Q is known as the alignment matrix and has long

been used in similar distance metrics, (Tong et al., 2021a).

Lemma 5.3. The proposed distance metric is an upper

bound of the distance ∥LR¦ −X⋆∥F . Namely, assuming

that dist(F ,F⋆) f ¼ϵ, it holds

∥LR¦ −X⋆∥F f
(

1 +
ϵ

2

)√
2dist(F ,F⋆). (14)

Proof: The proof is deferred to supplementary material.

We next provide our main result, which relies on the assump-

tion that the Lipschitz continuity and restricted sharpness

condition are satisfied and ensure exact convergence.

Theorem 5.4 (Convergence of OPSA). Let L(X) :
R

m×n 7→ R be convex w.r.t X , and assume that it satisfies

the rank-d restricted L-Lipschitz continuity assumption and

the rank-d restricted µ-sharpness condition, defined above.

Let also ¼ = 1
20 , and without loss of generality Ãr(X⋆) = 1.

Let ϵ = 10−4

Ç∥X⋆∥
1
2
op

, and

dist(F0,F⋆) f ¼ϵ =
10−4

Ç

∥X⋆∥−
1
2

op

20
, (15)

where Ç = L
µ . Then for the Overparameterized Precondi-

tioned Subgradient Algorithm (OPSA) given in Algorithm 1,

with the Polyak’s step-size defined in (11), we have

dist(Ft,F⋆) f
(

1− 0.12

Ç2

) t
2 10−4∥X⋆∥−

1
2

op

20 · Ç ,

∥LtR
¦
t −X⋆∥F f

(

1− 0.12

Ç2

) t
2 1.5× 10−4∥X⋆∥−

1
2

op

20 · Ç .

Proof. The rate can be derived from its general form (see

(16)) by setting ¼ =
∥X⋆∥op

¼̄
, ¼̄ = c∥X⋆∥op, c = 20. The

detailed proof is deferred to supplementary material.

Remark 5.5. Our derived rate of convergence requires a

good initialization that will satisfy condition (15). In prac-

tice, this condition can be satisfied by using a truncated

spectral method as in (Zhang et al., 2016). It should be

also noted that, even though the rate is independent of the

condition number of X⋆, the initialization condition is nega-

tively affected as this condition number increases, requiring

initializations closer to X⋆.

Technical innovation. It should be noted that the deriva-

tion of the convergence rate in the overpararameterized and

asymmetric case that we focus on, requires a novel defini-

tion of the distance metric given in (23). Namely, previous

convergence metrics dealing with the imbalance issue that

shows up in the asymmetric low-rank matrix estimation

problems, cannot be applied in the overparameterized set-

ting due to overparameterization and non-invertibility of

Σ⋆. In order to prove the contraction of this convergence

metric we derive novel and non-trivial perturbation-type

bounds of matrix norms, which pose their own challenges

and move beyond existing approaches that address either

the known-rank or unknown-rank and symmetric matrices

regime (see Table 1).

Note also that the derived rate of convergence is valid in the

overparameterized rank setting where d g r and the value

of ¼ should be positive i.e., ¼ > 0. The positive value of

¼ is required so that the matrix Σ⋆ + ¼I that is used in the

convergence metric is always invertible. When d = r the

rate of OPSA can take the same form as the one of the scaled

subgradient method of (Tong et al., 2021b), that is derived

in the known rank regime. Namely, when d = r then Σ⋆ is

invertible and ¼ could be 0. To make the theorem applicable

for d = r , we could replace the ¼ parameter appearing in

(15), with ¼′ = ¼+ Ãd(X⋆). In that case, when d > r, we

have ¼′ = ¼ since Ãd(X⋆) = 0. But when d = r, ¼′ =
Ãr(X⋆) (since ¼ = 0),and the initialization condition and

rate of convergence (see supplementary material) boils down

to a similar form, up to some constants, to the one in (Tong

et al., 2021b).

Remark 5.6. As is shown in Theorem 5.4, the rate is in-
dependent of the condition number of X⋆. The linear rate
provided in Theorem 5.4 is a simplified form of the general
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expression:

Ä(Ç, ϵ, ¼) = 1

− 1

2Ç2

√√
2− 1

1 + 2¼

(

√√
2− 1

1 + 2¼

(

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)

− 2Ç
√
2

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

))

.

(16)

Note that this general form holds for any value of ¼ g 0,

and its detailed derivation can be found in the supplementary

material (Theorem A.3.1).

Remark 5.7. The level of overparameterization influences

the rate of convergence through Ç. Specifically, Ç depends

on the landscape properties of the objective as expressed

by the Lipschitcz constant L and the restricted sharpness

constant µ. Generally speaking, Ç = L
µ increases with

d (L ↑, µ ³) making the rate of convergence slower. This

effect of the overestimated rank d on the rate of convergence

is demonstrated in the numerical experiments section (see

Figure 2).

5.3. Iteration Complexity for Matrix Sensing

In this section, we analyze the iteration complexity, i.e., the

number of iterates T required to reach ∥LTR
¦
T −X⋆∥F f

ϵ, namely ϵ-accuracy. This study will focus on the matrix

sensing problem.

5.3.1. NOISELESS MATRIX SENSING

Herein, we focus on the noiseless case without the presence

of outliers, where it holds that y = A (X⋆).

Definition 5.8 (Mixed-norm RIP). Let 2d > 0 denote the

rank of X and A(·) a linear map. We define the ¶−2d, ¶
+
2d,

as the lower and upper uniform bounds, respectively, of the

quantity
∥A(X)∥1

∥X∥F
for all matrices X of rank at most 2d.

The mixed-norm RIP is empirically verified for the Gaussian

linear map in Figure 1.

Proposition 5.9 (Lipschitz Continuity and Restricted Sharp-

ness–No Outliers). If A(·) satisfies the mixed-norm property

with constants ¶−2d, ¶
+
2d, then L(X) = ∥y−A (X) ∥1 satis-

fies the rank-d restricted L-Lipschitz continuity and rank-d
restricted sharpness with constants,

L = ¶+2d and µ = ¶−2d. (17)

Proof: Similar to Proposition 1 in (Tong et al., 2021b).

Corollary 5.10 (Iteration Complexity–No Outliers). Using the

same setting as in Theorem 5.4, we use the Lipschitz con-

stant and restricted sharpness constant of Proposition 5.9,

we get iteration complexity for noiseless matrix sensing is

O
((

¶+
2d

¶−
2d

)2

log( 1ϵ )
)

.

0 100 200 300 400 500

Trials

3

4
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10

3

Figure 1. Values of
∥A(X)∥1
∥X∥F

for Gaussian map A : R500×500 →
R

5000, where rank(X) = 10. Each point represents one result of

500 random trials. Blue and red dash lines are the lower and upper

uniform bounds, respectively.

5.3.2. ROBUST MATRIX SENSING

Here we consider the presence of outliers. We thus first

define the S-outlier type bound condition. The S-outlier

bound property has been used in the robust low-rank matrix

recovery problem in prior works, e.g., (Tong et al., 2021b).

It actually encodes a property of that allows restricted sharp-

ness condition to be satisfied in matrix sensing problems

in the presence of outliers. A detailed derivation of this

condition, as a natural generalization of RIP can be found

in (Charisopoulos et al., 2021).

Definition 5.11 (S-outlier Type Bound). The linear map

A(·) satisfies the rank-2d S-outlier type bound w.r.t. a set S
with a constant ¶0 if for all matrices X ∈ R

m×n of rank at

most 2d we have

¶0∥X∥F f ∥ASc (X) ∥1 − ∥AS (X) ∥1, (18)

where AS (X) = {Ai (X)}i∈S and ASc (X) =
{Ai (X)}i∈Sc .

Proposition 5.12 (Matrix Sensing with Outliers). Let A (·)
the rank-2d mixed-norm RIP with (¶−2d, ¶

+
2d) and the S-

outlier bound property defined above with ¶o. Then L(X)
satisfies the rank-d restricted L-Lipschitz continuity and

µ-sharpness with

L = ¶+2d and µ = ¶0. (19)

Proof: The Lipschitz constant can be derived following

similar steps as in the noiseless case. For the restricted

sharpness constant µ we use Proposition 2 of (Tong et al.,

2021b).

Corollary 5.13 (Iteration Complexity with Outliers). Under the

same setting as in Theorem 5.4, and by using the Lipschitz

constant and restricted sharpness constant of Propositions

5.12, we get iteration complexity for matrix sensing, in the

presence of outliers, is O
((

¶+
2d

¶0

)2

log( 1ϵ )
)

.
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Figure 2. Performance comparison between OPSA (top) and ScaledSM (bottom) with different overparameterization d, where

n, r, », ¼, outlier = 100, 5, 20, 2, 10%.
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Figure 3. Performance comparison between OPSA (top) and ScaledSM (bottom) with different overparameterization d, where

n, r, », ¼, outlier = 100, 10, 20, 2, 10%.

It should be noted that Corollary 5.13 implies that in the

presence of outliers, the iteration complexity increases at

an amount depending on the properties of the measurement

matrices (through ¶0).

Remark 5.14. Assuming a measurement operator Ai(X) =
1
p ïAi,Xð, where Ai has Gaussian i.i.d. entries N (0, 1), we

can invoke the results of (Charisopoulos et al., 2021; Tong

et al., 2021b), which show that A(·) satisfies the mixed-RIP

and and S-outlier bound conditions with

¶−2d ≳ 1, ¶+2d ≲ 1, ¶0 ≳ 1− 2ps,

where ps ∈ [0, 1
2 ) is the fraction of outliers, as long as

p ≳
(m+ n)d

(1− 2ps)2
log

(
1

1− 2ps

)

.

Hence, under the same setting as in Theorem 5.4 OPSA

converges linearly to ϵ-accuracy in

O

(
1

(1− 2ps)2
log

1

ϵ

)

iterations assuming that it is initialized appropriately (see

statement of Theorem 5.4).

6. Numerical Experiments

In this section, we verify the empirical performance of the

proposed overparameterized Preconditioned Subgradient

Algorithm (OPSA), i.e., Algorithm 1.

Experimental setup. The ground truth X⋆ is generated as a

product of two n×r random matrices, and then the condition

number is adjusted to be » by altering the singular values

of X⋆. The observations of matrix sensing are obtained as

described in (8), that is

yi = Ai (X⋆) + si, 1 f i f p,

where the sensing operator Ai(X⋆) = 1
p ïAi,X⋆ð and

Ai is a Gaussian random matrix. The corruption vec-

tor s ∈ R
p contains randomly positioned outliers whose

values are drawn uniformly at random from the interval

[−10∥A(X⋆)∥∞, 10∥Ai(X⋆)∥∞]. Through this section,

7
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Figure 4. OPSA performance with different condition numbers », where n, ¼, outlier = 100, 2, 10%. Top: r, d = 5, 10. Bottom:

r, d = 10, 20.
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Figure 5. OPSA performance with different ¼, where n, », outlier = 100, 20, 10%. Top: r, d = 5, 10. Bottom: r, d = 10, 20.

m = 8nr measurements are used in all tests. The code of

ScaledSM is obtained from the authors’ website. For the

sake of fairness, Polyak’s stepsizes are used for all tested

algorithms, thus ScaledSM requires no extra parameter tun-

ing. For OPSA, ¼ is the only parameter to be tuned, and an

experiment in this section shows that ¼ can be easily tuned

in a wide favorable range. All the tests are conducted with

Matlab 2024a on a mobile workstation equipped with an

Intel i9-12950HX CPU and 64GB of RAM. The Matlab

implementation for the proposed OPSA is available online

at https://github.com/caesarcai/OPSA.

Performance with different overparameterizations d. We

compare the convergence performance of OPSA against

ScaledSM (Tong et al., 2021b), the state-of-the-art subgra-

dient method for robust matrix sensing, with different levels

of overparameterization d. The convergence is evaluated

with respect to the relative error ∥LtR
¦
t −X⋆∥F /∥X⋆∥F .

The comparison results with true rank r = 5 and r = 10
are reported in Figures 2 and 3, respectively. For both algo-

rithms, one can see that more overparameterization leads to

slower convergence. However, OPSA constantly achieves

linear convergence while ScaledSM fails to converge when

major overparameterization happens.

Performance with different condition numbers ». In this

experiment, we test the convergence performance of OPSA

with different condition numbers of X⋆. The results with

conditional numbers up to 100 are reported in Figure 4. One

can observe that the convergence behavior and final accu-

racy of OPSA are not distinctly affected by larger condition

numbers, even when the rank is heavily overestimated. This

observation matches our main theoretical result. In Fig-

ure 7, we conduct additional experiments for OPSA with

extremely large condition numbers » up to 10, 000. The

results are consistence with Figure 4. Even with » = 1, 000
or » = 10, 000, OPSA still delivers stable convergence and

achieves the same final accuracy.

Performance with different parameters ¼. Notice that ¼
is the only parameter to be tuned in OPSA. In Figure 5, we

test the convergence performance of OPSA with different ¼.

One can observe that a mild ¼ value (e.g., 0.1, 1, 2) helps
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Figure 6. OPSA performance with different outlier densities, where n, », ¼ = 100, 20, 2. Top: r, d = 5, 10. Bottom: r, d = 10, 20.
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Figure 7. OPSA performance with different large condition numbers », where n, ¼, outlier = 100, 2, 10%. Left: r, d = 5, 10. Right:

r, d = 10, 20.

OPSA maintain steep linear convergence when the rank is

heavily overestimated. However, if the ¼ parameter is set

too large (e.g., 10) or too tiny (e.g., 10−4), OPSA converges

much slower, although still at a linear rate. Overall, OPSA’s

performance is favorable with a wide range of ¼ values, and

thus the parameter tuning is easy for the proposed OPSA.

Performance with different outlier densities. In Figure 6,

OPSA is tested against different outlier densities. OPSA

successfully recovers X⋆ and maintains linear convergence

in all tests. Note that more iterations are needed, and slightly

worse final accuracy can be achieved when more outliers

are present. This is as expected since more outliers lead to

harder recovery problems.

More numerical results. Additional numerical experiments

on partially observed video background subtraction tasks,

have been conducte and reported in the supplementary ma-

terial.

7. Conclusions

In this paper, we proposed an overparameterized Precondi-

tioned Subgradient Algorithm (OPSA) for robust low-rank

matrix recovery. Our work goes beyond existing SOTA

works by addressing the challenging scenario of robust low-

rank matrix recovery in the case of asymmetric matrices of

unknown rank using a preconditioned-type approach. Under

certain landscape assumptions i.e., Lipschitz continuity and

restricted sharpness conditions, we a) established a linear

rate of convergence that is independent of the condition

number of the unknown matrix, and b) derived the iteration

complexity matrix sensing, in the noiseless setting and in

the presence of outliers. Numerical results corroborate our

theoretical findings for different levels of overparameteriza-

tion of the rank, and outliers, and the independence of the

rate of convergence on the condition number of the sought

matrix.
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Soltanolkotabi, M., Stöger, D., and Xie, C. Implicit bal-

ancing and regularization: Generalization and conver-

gence guarantees for overparameterized asymmetric ma-

trix sensing. In The Thirty Sixth Annual Conference on

Learning Theory, pp. 5140–5142. PMLR, 2023.
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Supplementary Materials for
Guarantees of a Preconditioned Subgradient Algorithm for

Overparameterized Asymmetric Low-rank Matrix Recovery

A.1. Problem Formulation

We focus on the following low-rank matrix estimation problem

min
X

L(Y ,X) ≡ min
L,R,LR¦=X

L(Y ,LR¦). (20)

We assume a preconditioned alternating gradient descent algorithm consisting of the following steps:

Lt+1 = Lt − ¸t(StRt)
(
R¦

t Rt + ¼I
)−1

, (21)

Rt+1 = Rt − ¸t(S
¦
t Lt)

(
L¦

t Lt + ¼I
)−1

, (22)

with St ∈ ∂X l(Y ,Xt).

Let X⋆ be the ground truth matrix, F⋆ =

[
L⋆

R⋆

]

∈ R
(m+n)×d, where d g r = rank(X⋆), L⋆ = U⋆Σ

1
2
⋆ , R⋆ = V⋆Σ

1
2
⋆ , and

F =

[
L

R

]

∈ R
(m+n)×d. We define the following convergence metric,

dist(F ,F⋆) =
√

inf
Q∈G(d)

∥(LQ−L⋆)(Σ⋆ + ¼I)
1
2 ∥2F + ∥(RQ−¦ −R⋆)(Σ⋆ + ¼I)

1
2 ∥2F . (23)

In our analysis we focus on the Polyak’s type step size, defined as follows,

¸t =
L(LtR

¦
t )− L(L⋆R

¦
⋆ )

∥StRt(R¦
t Rt + ¼I)−

1
2 ∥2F + ∥S¦

t Lt(L¦
t Lt + ¼I)−

1
2 ∥2F

. (24)

Algorithm 1 Overparameterized Preconditioned Subgradient Algorithm (OPSA)

1: Input: y ∈ R
p, d: overestimated rank, ¼ > 0: regularization parameter, ¸: stepsize.

2: Initialize L0 and R0, set t = 0.

3: while ! Stop Condition do

4: Lt+1 = Lt − ¸tStRt

(
R¦

t Rt + ¼I
)−1

5: Rt+1 = Rt − ¸tS
¦
t Lt

(
L¦

t Lt + ¼I
)−1

6: t = t+ 1
7: end while

8: Output: X = LtR
¦
t .
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A.2. Auxiliary Lemmata

Lemma A.2.1 (Theorem 1 (Birman et al., 1975); Theorem X.1.1, (Bhatia, 2013)). Let A,B positive definite matrices. It

holds,

∥A 1
2 −B

1
2 ∥op f ∥A−B∥

1
2
op. (25)

Lemma A.2.2. Let ∥X −X⋆∥op f 1
2Ãr(X⋆), then it holds ∥X −X⋆∥F g

√
(
√
2−1)Ãr(X⋆)

Ãr(X⋆)+2¼ dist(F ,F⋆).

Proof: Let us denote Q⋆ as the optimal alignment matrix for dist(F ,F⋆). We will have,

dist2(F ,F⋆) = ∥(LQ⋆ −L⋆)(Σ⋆ + ¼I)
1
2 ∥2F + ∥(RQ−¦

⋆ −R⋆)(Σ⋆ + ¼I)
1
2 ∥2F

= tr{(Σ⋆ + ¼I)
1
2 (LQ⋆ −L⋆)

¦(LQ⋆ −L⋆)(Σ⋆ + ¼I)
1
2 }

+ tr{(Σ⋆ + ¼I)
1
2 (RQ−¦

⋆ −R⋆)
¦(RQ−¦

⋆ −R⋆)(Σ⋆ + ¼I)
1
2 }

= tr{(LQ⋆ −L⋆)
¦(LQ⋆ −L⋆)(Σ⋆ + ¼I)}+ tr{(RQ−¦

⋆ −L⋆)
¦(RQ−¦

⋆ −R⋆)(Σ⋆ + ¼I)}
= ∥(LQ⋆ −L⋆)Σ

1
2
⋆ ∥2F + ∥(RQ−¦

⋆ −R⋆)Σ
1
2
⋆ ∥2F + ¼

(
∥(LQ⋆ −L⋆)∥2F + (RQ−¦

⋆ −R⋆)∥2F
)
.

By using the definition of the distance and Lemma 11 in (Tong et al., 2021a), and Lemma 5.14 in (Tu et al., 2016), we have

dist2(F ,F⋆) f
1√
2− 1

∥X −X⋆∥2F +
2¼

(
√
2− 1)Ãr(X⋆)

∥X −X⋆∥2F . (26)

Hence, we have

dist2(F ,F⋆) f (
1√
2− 1

+
2¼

(
√
2− 1)Ãr(X⋆)

)∥X −X⋆∥2F =
Ãr(X⋆) + 2¼

(
√
2− 1)Ãr(X⋆)

∥X −X⋆∥2F , (27)

which leads us to inequality

∥X −X⋆∥F g
√

(
√
2− 1)Ãr(X⋆)

Ãr(X⋆) + 2¼
dist(F ,F⋆). (28)

Lemma A.2.3. The proposed distance metric given in (23), is an upper bound of the distance ∥LR¦ −X⋆∥F . Namely,

assuming that dist(F ,F⋆) f ¼ϵ, it holds

∥LR¦ −X⋆∥F f
(

1 +
ϵ

2

)√
2dist(F ,F⋆). (29)

Proof: We use the following distance metric,

dist(F ,F⋆) =
√

inf
Q∈G(d)

∥(LQ−L⋆)(Σ⋆ + ¼I)
1
2 ∥2F + ∥(RQ−¦ −R⋆)(Σ⋆ + ¼I)

1
2 ∥2F (30)

and we assume that dist(Ft,F⋆) f ¼ϵ.

By using the following known norm inequalities

∥AB∥F g ∥A∥FÃr(B) g ∥A∥opÃr(B), (31)

we can get

∥(L−L⋆)(Σ⋆ + ¼I)−
1
2 ∥2op¼2 + ∥(R−R⋆)(Σ⋆ + ¼I)−

1
2 )∥2op¼2 f ¼2ϵ2, (32)

which implies

max{∥(L−L⋆)(Σ⋆ + ¼I)−
1
2 ∥op, ∥(R−R⋆)(Σ⋆ + ¼I)−

1
2 )∥op} f ϵ. (33)
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Next, we show the relation between ∥LtR
¦
t −X⋆∥F and dist(Ft,F⋆),

∥LtR
¦
t −X⋆∥F = ∥LR¦ −X⋆∥F = ∥∆LR

¦
⋆ +L⋆∆

¦
R +∆L∆

¦
R∥F

f ∥∆LR
¦
⋆ ∥F + ∥L⋆∆

¦
R∥F + ∥∆L∆

¦
R∥ = ∥∆LR

¦
⋆ ∥F + ∥L⋆∆

¦
R∥F

+ ∥1
2
∆L (Σ⋆ + ¼I)

1
2 (Σ⋆ + ¼I)

− 1
2 ∆¦

R +
1

2
∆L (Σ⋆ + ¼I)

1
2 (Σ⋆ + ¼I)

− 1
2 ∆¦

R∥F

f ∥∆L(Σ⋆ + ¼I)
1
2 ∥F + ∥∆R(Σ⋆ + ¼I)

1
2 I∥F +

1

2
∥∆L (Σ⋆ + ¼I)

1
2 ∥F ∥∆R

(

Σ⋆ + ¼I)−
1
2

)

∥op

+
1

2
∥∆L (Σ⋆ + ¼I)

− 1
2 ∥op∥∆R

(

Σ⋆ + ¼I)
1
2

)

∥F

f
(

1 +
1

2
max{∥∆R

(

Σ⋆ + ¼I)−
1
2

)

∥op, ∥∆L (Σ⋆ + ¼I)
− 1

2 ∥op}
)(

∥∆L (Σ⋆ + ¼I)
1
2 ∥F + ∥∆R (Σ⋆ + ¼I)

1
2 ∥F

)

f
(

1 +
ϵ

2

)√
2dist (F ,F⋆) f

(

1 +
ϵ

2

)√
2¼ϵ,

where he have used the initialization condition, the fact that

max{∥∆R

(

Σ⋆ + ¼I)−
1
2

)

∥op, ∥∆L (Σ⋆ + ¼I)
− 1

2 ∥op} f ϵ (34)

and the inequality

∥∆L (Σ⋆ + ¼I)
1
2 ∥F + ∥∆R (Σ⋆ + ¼I)

1
2 ∥F

f
√
2

√

∥∆L (Σ⋆ + ¼I)
1
2 ∥2F + ∥∆R (Σ⋆ + ¼I)

1
2 ∥2F .

(35)

This finishes the proof.

Lemma A.2.4. Let us assume dist(F ,F⋆) f ϵ¼, where ¼ =
∥X⋆∥op

¼̄
. Let Ãr(X⋆) = 1 and denote ∆¼R = (R¦R +

¼I)1/2 − (R¦
⋆ R⋆ + ¼I)1/2, ∆¼L = (L¦L+ ¼I)1/2 − (L¦

⋆ L⋆ + ¼I)1/2, then it holds

∥ (Σ⋆ + ¼I)
− 1

2 ∆¼L∥op f √
ϵ(
√
ϵ+

√
2¼̄

1
4 ),

∥ (Σ⋆ + ¼I)
− 1

2 ∆¼R∥op f √
ϵ(
√
ϵ+

√
2¼̄

1
4 ).

(36)

Proof: We have

∥(Σ⋆ + ¼I)−
1
2∆¼L∥op = ∥

(
(L¦L+ ¼I)(Σ⋆ + ¼I)−1

) 1
2 −

(
(L¦

⋆ L⋆ + ¼I)(Σ⋆ + ¼I)−1
) 1

2 ∥op. (37)

Let us denote A = (L¦L+ ¼I)(Σ⋆ + ¼I)−1 and B = (L¦
⋆ L⋆ + ¼I)(Σ⋆ + ¼I)−1. From Lemma A.2.1, we have that

∥A 1
2 −B

1
2 ∥op f ∥|A−B|∥

1
2
op.

Hence,

∥
(
(L¦L+ ¼I)(Σ⋆ + ¼I)−1

) 1
2 −

(
(L¦

⋆ L⋆ + ¼I)(Σ⋆ + ¼I)−1
) 1

2 ∥op
f ∥(L¦L+ ¼I)(Σ⋆ + ¼I)−1 − (L¦

⋆ L⋆ + ¼I)(Σ⋆ + ¼I)−1∥
1
2
op = ∥

(
L¦L−L¦

⋆ L⋆

)
(Σ⋆ + ¼I)−1∥

1
2
op

= ∥
(
L¦L−L¦L⋆ +L¦L⋆ −L¦

⋆ L⋆

)
(Σ⋆ + ¼I)−1∥

1
2
op = ∥

(
L¦(L−L⋆) + (L−L⋆)

¦L⋆

)
(Σ⋆ + ¼I)−1∥

1
2
op

= ∥
(
(L−L⋆ +L⋆)

¦(L−L⋆) + (L−L⋆)
¦L⋆

)
(Σ⋆ + ¼I)−1∥

1
2
op

= ∥
(
(L−L⋆)

¦(L−L⋆) +L¦
⋆ (L−L⋆) + (L−L⋆)

¦L⋆

)
(Σ⋆ + ¼I)−1∥

1
2
op

f ∥
(
(L−L⋆)

¦(L−L⋆) +L¦
⋆ (L−L⋆) + (L−L⋆)

¦L⋆

)
∥

1
2
op∥(Σ⋆ + ¼I)−1∥

1
2
op

f 1

¼
1
2

(

∥L−L⋆∥op +
√
2∥L⋆∥

1
2
op∥(L−L⋆)∥

1
2
op

)

f 1

¼
1
2

(

¼
1
2 ϵ+

√
2∥X⋆∥

1
4
op¼

1
4

√
ϵ
)

= ϵ+
√
2
√
ϵ∥X⋆∥

1
4
op¼

− 1
4 =

√
ϵ(
√
ϵ+

√
2¼̄

1
4 ).
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From the last inequality, we get that,

∥(Σ⋆ + ¼I)−
1
2∆¼L∥op f √

ϵ(
√
ϵ+

√
2¼̄

1
4 ). (38)

The proof for the term t∥ (Σ⋆ + ¼I)
− 1

2 ∆¼R∥op can be derived following similar steps.

Lemma A.2.5. Let L ∈ R
m×d, R ∈ R

n×d and denote ∆¼R = (R¦R + ¼I)1/2 − (R¦
⋆ R⋆ + ¼I)1/2, ∆¼L =

(L¦L+ ¼I)1/2 − (L¦
⋆ L⋆ + ¼I)1/2. Assume that max{∥∥(L−L⋆)(Σ⋆ + ¼I)−

1
2 ∥op, ∥(R−R⋆)(Σ⋆ + ¼I)−

1
2 ∥op} f ϵ.

Then it holds,

∥
(
R¦R+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 ∥op f 1

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

,

∥
(
L¦L+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 ∥op f 1

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

.

(39)

Proof: We have
(
R¦R+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 =

(

(Σ⋆ + ¼I)
− 1

2

(
R¦R+ ¼I

) 1
2

)−1

. Hence,

∥
(
R¦R+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 ∥op =

1

Ãd

(

(Σ⋆ + ¼I)
− 1

2 (R¦R+ ¼I)
1
2

) . (40)

By Weyl’s inequality, we get

Ãd

(

(Σ⋆ + ¼I)
− 1

2

(
R¦R+ ¼I

) 1
2

)

g Ãd

(

(Σ⋆ + ¼I)
− 1

2

(
R¦

⋆ R⋆ + ¼I
) 1

2

)

− ∥(Σ⋆ + ¼I)−
1
2∆¼R∥op

= 1− ∥(Σ⋆ + ¼I)−
1
2∆¼R∥op.

(41)

From Lemma A.2.4, we have

∥(Σ⋆ + ¼I)−
1
2∆¼R∥op f √

ϵ(
√
ϵ+

√
2¼̄

1
4 ). (42)

Hence, we conclude the proof. The proof for ∥ (Σ⋆ + ¼I)
− 1

2 ∆¼R∥op can be similarly derived.

A.3. Proof of convergence of OPSA

Theorem A.3.1 (Convergence of Overparameterized Preconditioned Subgradient Algorithm). Let L(X) : Rm×n 7→ R be

convex w.r.t X , and assume that it satisfies the rank-d restricted L-Lipschitz continuity assumption and the rank-d restricted

µ-sharpness condition, defined above. Assume also that

dist(F0,F⋆) f ¼ϵ (43)

and let ¼ =
∥X⋆∥op

¼̄
, Ãr(X⋆) = 1, and Ç = L

µ . Then for the Overparameterized Preconditioned Subgradient algorithm

given in Algorithm 1, with the Polyak’s stepsize defined in (24), we have,

dist(Ft,F⋆) f Ä(Ç, ϵ, ¼)
t
2

(∥X∥op
¼̄

ϵ

) 1
2

, (44)

where Ä(Ç, ϵ, ¼) is given by

Ä(Ç, ϵ, ¼) = 1− 1

2Ç2

√√
2− 1

1 + 2¼

(√√
2− 1

1 + 2¼

(

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)

− 2Ç
√
2

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

))

. (45)
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Proof: We denote L = LtQt,R = RtQ
−¦
t ,∆L = L−L⋆,∆R = R−R⋆ and S = St.

We focus on the contraction of dist (Ft+1,F⋆).

dist2 (Ft+1,F⋆) f ∥(Lt+1Qt −L⋆)(Σ⋆ + ¼I)
1
2 ∥2F + ∥(Rt+1Q

−¦
t −R⋆)(Σ⋆ + ¼I)

1
2 ∥2F . (46)

Let L = LtQt,R = RtQ
−¦
t and S = St and first bound the term ∥(Lt+1Qt −L⋆)(Σ⋆ + ¼I)

1
2 ∥2F as follows,

∥(Lt+1Qt −L⋆)(Σ⋆ + ¼I)
1
2 ∥2F = ∥

(

L− ¸SR
(
R¦R+ ¼I

)−1 −L⋆

)

(Σ⋆ + ¼I)
1
2 ∥2F

= ∥∆L (Σ⋆ + ¼I)
1
2 ∥2F − 2¸ïS,∆L (Σ⋆ + ¼I)

(
R¦R+ ¼I

)−1
R¦ð

+ ¸2∥SR
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 ∥2F

= ∥∆L (Σ⋆ + ¼I)
1
2 ∥2F − 2¸ ïS,∆LR

¦
⋆ +

1

2
∆L∆

¦
Rð

︸ ︷︷ ︸

O1

− 2¸ ïS,∆L (Σ⋆ + ¼I)
(
R¦R+ ¼I

)−1
R¦ −∆LR

¦
⋆ − 1

2
∆L∆

¦
Rð

︸ ︷︷ ︸

O2

+ ¸2 ∥SR
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 ∥2F

︸ ︷︷ ︸

O3

.

We focus on bounding the term |O2|,

|ïS,∆L (Σ⋆ + ¼I)
(
R¦R+ ¼I

)−1
R¦ −∆LR

¦
⋆ − 1

2
∆L∆

¦
Rð|

f ∥S∥F ∥∆L (Σ⋆ + ¼I)
1
2 ∥F×

(∥R
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 −R⋆ (Σ⋆ + ¼I)

− 1
2 ∥op +

1

2
∥∆R (Σ⋆ + ¼I)

− 1
2 ∥op), (47)

where we have used the inequalities ∥AB∥F f ∥A∥op∥B∥F and ∥A−B∥op f ∥A∥op + ∥B∥op.

For the first term of (47) we have

∥R
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 −R⋆ (Σ⋆ + ¼I)

− 1
2 ∥op

= ∥R
(
R¦R+ ¼I

)− 1
2
(
R¦R+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 −R⋆ (Σ⋆ + ¼I)

− 1
2 ∥op

= ∥R
(
R¦R+ ¼I

)− 1
2

(((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

(Σ⋆ + ¼I)
1
2 +

(
R¦

⋆ R⋆ + ¼I
)− 1

2 (Σ⋆ + ¼I)
1
2

)

−R⋆ (Σ⋆ + ¼I)
− 1

2 ∥op
= ∥R

(
R¦R+ ¼I

)− 1
2

(((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

(Σ⋆ + ¼I)
1
2 + I

)

−R⋆ (Σ⋆ + ¼I)
− 1

2 ∥op

f ∥R
(
R¦R+ ¼I

)− 1
2 ∥op

∥
∥
∥

((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

(Σ⋆ + ¼I)
1
2

∥
∥
∥
op

+ ∥R
(
R¦R+ ¼I

)− 1
2 −R⋆

(
R¦

⋆ R⋆ + ¼I
)− 1

2 ∥op.

We now focus on bounding the term ∥
( (

R¦R+ ¼I
)− 1

2 −
(
R¦

⋆ R⋆ + ¼I
)− 1

2
)
(Σ⋆ + ¼I)

1
2 ∥op. Let A = R¦R + ¼I
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and B = R¦
⋆ R⋆ + ¼I . We have

∥(A− 1
2 −B− 1

2 ) (Σ⋆ + ¼I)
1
2 ∥op = ∥(A− 1

2 −B− 1
2 )(A

1
2B

1
2 )(A

1
2B

1
2 )−1 (Σ⋆ + ¼I)

1
2 ∥op

= ∥(B 1
2 −B− 1

2A
1
2B

1
2 )(A

1
2B

1
2 )−1 (Σ⋆ + ¼I)

1
2 ∥op

= ∥(B 1
2 −B− 1

2A
1
2B

1
2 )B− 1

2 (A− 1
2 ) (Σ⋆ + ¼I)

1
2 ∥op

= ∥(I −B− 1
2A

1
2 )(A− 1

2 ) (Σ⋆ + ¼I)
1
2 ∥op

f ∥B− 1
2

(

B
1
2 −A

1
2

)

∥op∥A− 1
2 (Σ⋆ + ¼I)

1
2 ∥op

=

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

, (48)

where the last inequality follows by using Lemmata A.2.4 and A.2.5.

Next, we bound the term ∥R
(
R¦R+ ¼I

)− 1
2 −R⋆

(
R¦

⋆ R⋆ + ¼I
)− 1

2 ∥op. We have

∥R
(
R¦R+ ¼I

)− 1
2 −R⋆

(
R¦

⋆ R⋆ + ¼I
)− 1

2 ∥op
= ∥(R−R⋆)

(
R¦R+ ¼I

)− 1
2 +R⋆

((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

∥op

f ∥(R−R⋆)
(
R¦R+ ¼I

)− 1
2 ∥op + ∥R⋆

((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

∥op

f ∥R−R⋆∥op∥
(
R¦R+ ¼I

)− 1
2 ∥op + ∥R⋆

((
R¦R+ ¼I

)− 1
2 −

(
R¦

⋆ R⋆ + ¼I
)− 1

2

)

∥op

f ϵ+

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

, (49)

where we have used the inequality ∥R−R⋆∥op f ϵ
√
¼. Note that this result holds, since we assumed dist(F ,F⋆) f ¼ϵ,

hence we can show the following,

∥(L−L⋆)(Σ⋆ + ¼I)
1
2 )(Σ⋆ + ¼I)−

1
2 )∥2opÃ2

r((Σ⋆ + ¼I)
1
2 )) (50)

+ ∥(R−R⋆)(Σ⋆ + ¼I)
1
2 )(Σ⋆ + ¼I)

1
2 )∥2opÃ2

r((Σ⋆ + ¼I)
1
2 )) < ¼2ϵ2

→ ∥(L−L⋆)(Σ⋆ + ¼I)
1
2 )(Σ⋆ + ¼I)−

1
2 )∥2op¼+ ∥(R−R⋆)(Σ⋆ + ¼I)

1
2 )(Σ⋆ + ¼I)

1
2 2)∥2opÃr((Σ⋆ + ¼I)

1
2 )) < ¼2ϵ2

max (∥L−L⋆∥op, ∥R−R⋆∥op) <
√
¼ϵ. (51)

Combining the above bounds we get

∥R
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 −R⋆ (Σ⋆ + ¼I)

− 1
2 ∥op

f ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

. (52)

We now focus on bounding O3,

∥SR
(
R¦R+ ¼I

)−1
(Σ⋆ + ¼I)

1
2 ∥2F

f ∥SR
(
R¦R+ ¼I

)− 1
2 ∥2F

︸ ︷︷ ︸

O3a

×∥
(
R¦R+ ¼I

)− 1
2 (Σ⋆ + ¼I)

1
2 ∥2op

︸ ︷︷ ︸

O3b

f ∥SR
(
R¦R+ ¼I

)− 1
2 ∥2F

1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

. (53)
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Using the derived inequalities above we have

∥(Lt+1Qt −L⋆)(Σ⋆ + ¼I)
1
2 ∥2F f ∥∆L (Σ⋆ + ¼I)

1
2 ∥2F − 2¸ïS,∆LR

¦
⋆ +

1

2
∆L∆

¦
Rð

+ 2¸L∥∆L (Σ⋆ + ¼I)
1
2 ∥F




3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−
(√

ϵ(
√
ϵ+

√
2¼̄

1
4 )
)





+ ¸2
1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

∥SR(R¦R+ ¼I)∥2F .

Following the same steps for bounding the term ∥(Rt+1Q
−¦
t −R⋆)(Σ⋆ + ¼I)

1
2 ∥2F , we have

dist2(Ft+1,F⋆)

f ∥∆L (Σ⋆ + ¼I)
1
2 ∥2F + ∥∆R (Σ⋆ + ¼I)

1
2 ∥2F − 2¸ïS,X −X⋆ð

+ 2¸L

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

)
(

∥∆L (Σ⋆ + ¼I)
1
2 ∥F + ∥∆R (Σ⋆ + ¼I)

1
2 ∥F

)

+ ¸2
1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

(
(

∥SR(R¦R+ ¼I)−
1
2 ∥2F + ∥S¦L(L¦L+ ¼I)−

1
2 ∥2F

)

f dist2(Ft,F⋆)− 2¸
(

L̃(LtR
¦
t )− L̃(X⋆)

)

+ 2¸L
√
2

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

)

dist(Ft,F⋆)

+ ¸2
1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

(

∥SR(R¦R+ ¼I)−
1
2 ∥2F + ∥S¦L(L¦L+ ¼I)−

1
2 ∥2F

)

.

Convergence with Polyak’s stepsize. We use Polyak’s stepsize defined as

¸t =
L̃(LtR

¦
t )− L̃(X⋆)

∥SR(R¦R+ ¼I)−
1
2 ∥2F + ∥S¦L(L¦L+ ¼I)−

1
2 ∥2F

. (54)

Due to convexity of L(X), Lemma A.2.2, and the assumption Ãr(X⋆) = 1, we also have,

ïS,X −X⋆ð g L̃(X)− L̃(X⋆) g µ∥X −X⋆∥ g µ

√

(
√
2− 1)

1 + 2¼
dist(F ,F⋆).

We thus get

dist2(Ft+1,F⋆) f dist2(Ft,F⋆)− ¸t

(

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)

(L̃(X)− L̃(X⋆))

+ 2
√
2¸tL

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

)

dist(Ft,F⋆)

f dist2(Ft,F⋆)− ¸tµ

((

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)
√√

2− 1

1 + 2¼

− 2
√
2
L

µ

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

))

dist(Ft,F⋆).

Using (Tong et al., 2021b, Lemma A.2.2 and Lemma 4), we can lower bound the step size as

¸t g
µ

2L2

√√
2− 1

1 + 2¼
dist(F ,F⋆).
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We define Ç = L
µ and then we get

dist2(Ft+1,F⋆)

f
(

1− 1

2Ç2

√√
2− 1

1 + 2¼

(√√
2− 1

1 + 2¼

(

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)

− 2Ç
√
2

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

)))

dist2(Ft,F⋆).

We define Ä(Ç, ϵ, ¼) as the contraction rate given by,

Ä(Ç, ϵ, ¼) = 1− 1

2Ç2

√√
2− 1

1 + 2¼

(√√
2− 1

1 + 2¼

(

2− 1

(1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 ))2

)

− 2Ç
√
2

(

3

2
ϵ+ 2

√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

1−√
ϵ(
√
ϵ+

√
2¼̄

1
4 )

))

.

This finishes the proof.

A.3.1. Proof of Theorem 5.4

Theorem 5.4 Let L(X) : Rm×n 7→ R be convex w.r.t X , and assume that it satisfies the rank-d restricted L-Lipschitz

continuity assumption and the rank-d restricted µ-sharpness condition, defined above. Assume also that ¼ =
∥X⋆∥op

¼̄
,

¼̄ = c∥X⋆∥op, c = 20, and without loss of generality Ãr(X⋆) = 1. Set ϵ = 10−4

Ç∥X⋆∥
1
2
op

, which implies.

dist(F0,F⋆) f ¼ϵ =
10−4

Ç

∥X⋆∥−
1
2

op

c
, (55)

where Ç = L
µ . Then for the Overparameterized Preconditioned Subgradient Algorithm (OPSA) given in Algorithm 1, with

the Polyak’s step-size defined in (24), we have,

dist(Ft,F⋆) f
(

1− 0.12

Ç2

) t
2 10−4∥X⋆∥−

1
2

op

cÇ
,

∥LtR
¦
t −X⋆∥F f

(

1− 0.12

Ç2

) t
2 1.5× 10−4∥X⋆∥−

1
2

op

cÇ
.

Proof: By using the general expression for the rate Ä(Ç, ϵ, ¼) provided in Theorem A.3.1 and for ¼ = 1
c , and ϵ = 10−4

∥X⋆∥
1
2
opÇ

.

We have,

(1− Ä(Ç, ϵ, ¼))Ç2 g 0.12, (56)

which leads to the contraction rate showing up in the statement of the Theorem. By applying Lemma A.2.3, we can show

the second inequality.
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A.4. More Numerical Experiments

A.4.1. Partially Observed Video Background Subtraction

Video background subtraction with partial observation is one standard benchmark for robust matrix completion. Note that

the RIP condition of matrix completion is only defined with the tangent space projection and the incoherence condition.

Nevertheless, following the setup as in (Cai et al., 2025), we apply OPSA to the partially observed video background

subtraction task on two real video datasets, namely shoppingmall and restaurant1. The visual results are reported in Figures 8

and 9, compared against the fully observed RPCA results. Although the rank is overestimated and the observation is partially

accessible, OPSA achieves crisp visual results.

Figure 8. Video background subtraction on shoppingmall video. Each row corresponds to a frame in the video. The first column is for the

original frames. The next two columns are the “groundtruth” foreground and background provided by AccAltProj (Cai et al., 2019), a

non-convex RPCA algorithm, with rank 2 and full observation. The last two columns are the foreground and background outputted by the

proposed OPSA with 5× overestimated rank d = 10 and 30% observation.

1The datasets were originally provided by http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html;
however, it is no longer available. The datasets are now available at https://hqcai.org/datasets/shoppingmall.mat and
https://hqcai.org/datasets/restaurant.mat, respectively.
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Figure 9. Video background subtraction on restaurant video. Each row corresponds to a frame in the video. The first column is for the

original frames. The next two columns are the “groundtruth” foreground and background provided by AccAltProj (Cai et al., 2019), a

non-convex RPCA algorithm, with rank 2 and full observation. The last two columns are the foreground and background outputted by the

proposed OPSA with 5× overestimated rank d = 10 and 30% observation.
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