
AdaSlicing: Adaptive Online Network Slicing under Continual

Network Dynamics in Open Radio Access Networks

Ming Zhao, Yuru Zhang, Qiang Liu

University of Nebraska-Lincoln

qiang.liu@unl.edu

Ahan Kak, Nakjung Choi

Nokia Bell Labs

nakjung.choi@nokia-bell-labs.com

Abstract—Open radio access networks (e.g., O-RAN) facili-
tate fine-grained control (e.g., near-RT RIC) in next-generation
networks, necessitating advanced AI/ML techniques in handling
online resource orchestration in real-time. However, existing
approaches can hardly adapt to time-evolving network dynamics
in network slicing, leading to significant online performance
degradation. In this paper, we propose AdaSlicing, a new adaptive
network slicing system, to online learn to orchestrate virtual
resources while efficiently adapting to continual network dynam-
ics. The AdaSlicing system includes a new soft-isolated RAN
virtualization framework and a novel AdaOrch algorithm. We
design the AdaOrch algorithm by integrating AI/ML techniques
(i.e., Bayesian learning agents) and optimization methods (i.e.,
the ADMM coordinator). We design the soft-isolated RAN
virtualization to improve the virtual resource utilization of slices
while assuring the isolation among virtual resources at runtime.
We implement AdaSlicing on an O-RAN compliant network
testbed by using OpenAirInterface RAN, Open5GS Core, and
FlexRIC near-RT RIC, with Ettus USRP B210 SDR. With
extensive network experiments, we demonstrate that AdaSlicing
substantially outperforms state-of-the-art works with 64.2% cost
reduction and 45.5% normalized performance improvement,
which verifies its high adaptability, scalability, and assurance.

Index Terms—Network Slicing, Open RAN, Network Auton-
omy, Emerging Applications

I. INTRODUCTION

Network slicing is a key technique in 5G and Beyond to cost-

efficiently and flexibly support emerging mobile applications,

e.g., autonomous driving [1], extended reality [2], and Internet

of Things [3]. With the advanced technology of infrastructure

virtualization, multiple virtual networks (i.e., slices) can be

concurrently instantiated and operated on common physical

infrastructures (e.g., base stations and switches), with assured

resource and performance isolation. By tailoring the param-

eters and resources of each slice, mobile network operators

(MNOs) can effectively meet the diversified performance

needs of slice tenants, such as end-to-end latency, security, and

reliability. In network slicing, resource orchestration serves as

the key role to dynamically manage virtualized resources [4],

[5] in multiple technical domains (e.g., radio spectrum) to all

slices for assuring their service-level agreements (SLAs).

Existing in-use orchestration solutions [6], [7], [8] heavily

rely on human expertise throughout the life-cycle of each slice

(e.g., performance modeling and fine-tuning), where orches-

tration actions are optimized in the coarse granularity, such as

every hour. With the increasing momentum of open network

initiatives (e.g., O-RAN [9], [10]) and an emphasis on a unified

software approach to simplify operations amidst increasing

complexity (e.g., UNEXT [11]), next-generation networks will

expose high-dimensional states (e.g., thousands if not more)

and allow nearly real-time control (e.g., subseconds), which

enables more fine-grained orchestration in network slicing for

further exploiting resource multiplexing [6]. To tackle the

complex fine-grained orchestration problem, machine learning

(ML) techniques [12] have been increasingly explored, such

as deep reinforcement learning [13] and Bayesian learning [4],

[5], and achieved great improvements, in terms of perfor-

mance, autonomy, and scalability.

However, we found that existing works can hardly adapt to

time-varying dynamics in network slicing, which can result

in substantial performance degradation (e.g., violated SLAs

and soared resource usage), especially during online resource

orchestration. Generally, existing works rely on deep neural

network (DNN)-parameterized agents to manage resource or-

chestration for all slices, where their fixed input and output

space1 limit the adaptability to diverse network dynamics.

On the one hand, the active slices in the network are not

stationary. Independent slice tenants may operate their slices

dynamically, such as starting and stopping slices at different

times throughout the day. On the other hand, the traffic pattern

and application characteristics of each slice may change and

evolve over time. As a result, existing DNN-parameterized

agents have to be retrained and refined, leading to delayed

adaptation to time-varying network dynamics.

In this paper, we propose a new adaptive network slicing

system (AdaSlicing), to online learn while efficiently adapting

to time-varying network dynamics. The key idea is to integrate

AI/ML techniques and optimization methods during online

resource orchestration. We design a new AdaOrch algorithm

to minimize the total operating cost of supporting all slices,

while assuring the performance requirements defined by their

SLAs. On the one hand, we design a Bayesian learning agent

to handle the resource orchestration for each slice, which will

be continually updated with accumulated online experiences.

On the other hand, we design a coordinator to coordinate all

active slices in regard to the infrastructure capacity of virtual

resources at runtime. Moreover, we design a new soft-isolated

RAN virtualization to improve the virtual resource utilization

of slices while assuring the isolation among virtual resources

at runtime. We implemented AdaSlicing on an end-to-end O-

RAN compliant network testbed by using OpenAirInterface

RAN, Open5GS Core, and FlexRIC near-RT RIC, with Ettus

USRP B210 SDR. With the extensive network experiments, we

1Although there are several DNN architectures with flexible inputs (e.g.,
LSTM and GNN), their training complexity and sample efficiency are widely
concerned to be used for online network management [4], [14].

IE
EE

 IN
FO

CO
M

 2
02

5
- I

EE
E

Co
nf

er
en

ce
 o

n
Co

m
pu

te
r C

om
m

un
ic

at
io

ns
 |

 9
79

-8
-3

31
5-

43
05

-1
/2

5/
$3

1.
00

 ©
20

25
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IN

FO
CO

M
55

64
8.

20
25

.1
10

44
47

5

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

CoreRAN

Near-RT RIC

Soft-Isolated
RAN Virtualization

xApp

Slices

xApp xApp

virtual

resources

AdaOrch Algorithm

C
o
o
r
d

in
a
to

rLearning Agent 1

Learning Agent 2

Learning Agent N

…

SLA online adapt

Fig. 1. The overview of AdaSlicing.

demonstrate that AdaSlicing can reduce 64.2% total operating

cost while improving 45.5% normalized performance of slices,

as compared to state-of-the-art solutions.

Overall, we propose AdaSlicing, a new adaptive online

network slicing system, that can flexibly adapt to diverse time-

varying network dynamics. The detailed contributions are:

• We design a new soft-isolated RAN virtualization frame-

work that substantially improves virtual resource utilization

of slices at runtime.

• We design a new AdaOrch algorithm that online learns and

orchestrates virtual resources for slices with assured SLAs.

• We implement the AdaSlicing system on an O-RAN compli-

ant mobile network testbed, with multiple slices and users.

• We conducted extensive experiments to evaluate AdaSlicing,

in terms of adaptability and scalability.

II. AdaSlicing OVERVIEW

In Fig. 1, we overview the AdaSlicing system under the

architecture of open radio access networks. It includes multiple

slices, radio access network (RAN), and core network (CN),

where the near-RT RIC hosts a wide range of xApps, such

as performance monitoring xApps and the AdaOrch algorithm

xApp. In AdaSlicing, two primary components are the soft-

isolated RAN virtualization and the AdaOrch algorithm.

We design the soft-isolated RAN virtualization to improve

the utilization of virtual resources at runtime while assuring

the isolation among virtual resources (See Sec. V). Different

from existing hard-isolated RAN virtualization, our key idea

is to enable the sharing of unused virtual resources among

slices, before the virtual-to-physical mapping, at runtime. We

create two new kinds of virtual resources, including the soft-

isolated virtual resource block (svRB) and sharing weight

(SW), which can be dynamically orchestrated to all slices by

the AdaOrch algorithm. Note that all unused virtual resources

are shared proportionally according to the SW value of slices,

which improves resource utilization at runtime and creates

performance interdependence among all slices. In other words,

in addition to the svRB, the shared virtual resources of a slice

from the sparse vRB pool depend on not only its SW value

but also the SW values of all other active slices.

We design the AdaOrch algorithm to online orchestrate

virtual resources for all slices under time-varying network

dynamics (See Sec. IV). Different from existing orchestration

solutions, our key idea is to integrate AI/ML techniques and

optimization methods to improve adaptability while maintain-

ing the autonomy of the AdaOrch algorithm. Specifically, it

includes multiple learning agents, where each agent corre-

sponds to online learning and orchestrates virtual resources

for a slice. Note that, the AdaOrch algorithm can support

heterogeneous learning agents, in terms of adopted AI/ML

techniques (e.g., Bayesian learning and multi-armed bandit),

as long as they match the same input/output space and also

follow necessary training processes. It also includes a coordi-

nator, designed based on the alternating direction method of

multipliers (ADMM), to coordinate the infrastructure capacity

of virtual resources for all slices. During online orchestration,

each learning agent observes its local network context and

makes the orchestration action for its corresponding slice to

meet the performance requirement defined by the slice SLA.

At runtime, only active slices are involved and iteratively

communicated with the coordinator to achieve a consensus

of resource capacity. On the one hand, these learning agents

will be online updated according to newly obtained online

experiences, which assures the continual learning capability

to adapt to potential intra-slice network dynamics. On the

other hand, the coordinator can support an arbitrary number

of learning agents during each orchestration slot, which can

flexibly adapt to possible inter-slice network dynamics.

III. SYSTEM MODEL

We consider an O-RAN compliant mobile network, including

the core network (CN) and radio access network (RAN) with

multiple base stations (BSs)2 and network slices. Slice tenants

establish the service level agreement (SLA) with the mobile

network operator (MNO) to support their slice users, with

predefined performance requirements, such as the maximum

latency and minimum throughput. The MNO creates multiple

xApps in the near-RT RIC to dynamically orchestrate the

virtual resources for all slices in the fine time granularity

(e.g., every second). Here, we focus on two kinds of virtual

resources: 1) the soft-isolated virtual resource blocks (svRB),

and 2) the sharing weight (SW), which are detailed in Sec. V.

We denote I as the set of network slices, where i ∈ I denotes

the i-th slice.

Action Space. Denote x
(t)
i and w

(t)
i as the number of

svRBs and the SW value of the i-th slice at the tth time

slot, respectively. For the sake of simplicity, we further denote

X (t) = {x
(t)
i , ∀i ∈ I} and W(t) = {w

(t)
i , ∀i ∈ I} as the set of

these orchestration actions, respectively. Therefore, we define

the action space of resource orchestration to the i-th slice as

A
(t)
i = {x

(t)
i , w

(t)
i }. (1)

Performance Model. Under the soft-isolated RAN virtu-

alization (see Sec. V), the final experienced vRBs of a slice

depend on not only its orchestration action but also that of

other slices (particularly their SW values). Hence, we define

the performance function of the i-th slice as

P
(t)
i = f(x

(t)
i , w

(t)
i |s

(t)
i), (2)

where we introduce s
(t)
i =

∑

j∈I,j ̸=i w
(t)
j as the aggregated

SW value of all other active slices. Here, the performance met-

rics of each slice can be multi-dimensional and heterogeneous,

2Without loss of generality, we focus on the resource orchestration problem
in a single base station, where the AdaOrch algorithm can be easily extended
to support the scenario of multiple base stations.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

such as end-to-end latency and reliability. Here, more network

context might be incorporated, if relevant and needed, to better

represent the performance function of slices.

Cost Model. From the MNO perspective, the operating

cost of running a slice highly depends on its usage of virtual

resources. Here, we define operating cost of the i-th slice as

U
(t)
i = UH · x

(t)
i + US · w

(t)
i , (3)

where UH and US denote the unit cost of svRB and SW,

respectively.

Problem. The objective is to minimize the total cost of

supporting all slices, while meeting their performance require-

ments defined by slice SLAs. Therefore, we formulate the

resource orchestration problem in network slicing as

P0 : min
{X (t),W(t)}

∑

i∈I
U

(t)
i (4)

s.t. C1 : f(x
(t)
i , w

(t)
i |s

(t)
i) ≥ Qi, ∀i ∈ I, (5)

C2 : 0 ≤ w
(t)
i ≤ 1, ∀i ∈ I, (6)

C3 : 0 ≤ x
(t)
i ≤ H, ∀i ∈ I, (7)

C4 : 0 ≤
∑

i∈I
x
(t)
i ≤ H. (8)

Here, the constraint C1 assures that the performance of each

slice can be maintained, where the performance threshold

of the i-th slice is denoted as Qi. The constraint C2 and

C3 define the boundary of the action space, including the

maximum number of svRBs. Moreover, the constraint C4
assures that the infrastructure capacity (denoted by H) will

not be exceeded at runtime.

Challenge. The challenge of addressing the above problem

is mainly two-fold. On the one hand, the multi-dim perfor-

mance of slices relates to a wide range of factors (e.g., traffic

pattern and channel quality) and can hardly be represented

in closed-form with respect to resource orchestration actions.

Moreover, the performance function of slices could change

over time, depending on their time-evolving application char-

acteristics. As a result, it is difficult to use conventional

math modeling approaches to represent the complex and time-

evolving performance function. On the other hand, the active

slices are non-stationary, depending on the operation strategy

of independent slice tenants, such as starting and stopping

slices at different times throughout the day. As a result, it

is inefficient to handle the dynamics of active slices by using

only parameterized agents with fixed input and output spaces.

IV. PROPOSED SOLUTION

In this section, we develop the AdaOrch algorithm to effi-

ciently solve the resource orchestration problem. The funda-

mental idea is to integrate AI/ML techniques and optimization

methods to address the aforementioned adaptability challenge.

On the one hand, we design a learning agent (based on the

Bayesian optimization framework) that focuses on the resource

orchestration of each slice, which will be online updated

with accumulated experiences to track its potentially time-

evolving performance function. On the other hand, we design

a coordinator (based on the alternating direction method of

multipliers (ADMM) framework) to coordinate all active slices

in regard to the infrastructure capacity of virtual resources. In

addition, we design the interface (e.g., state and action space

and training mechanism) to enable the convergent interaction

among learning agents and the coordinator towards the objec-

tive of adaptive network slicing.

Specifically, we first decouple the original problem P0

into multiple subproblems and a coordination problem, by

leveraging the ADMM framework. We design each subprob-

lem to correspond to the resource orchestration of individual

slices, and the coordination problem to coordinate and assure

the infrastructure capacity of virtual resources (i.e., C4).

The coordination problem turns out to be convex and can

be efficiently solved by off-the-shelf optimization toolboxs.

To solve individual subproblems, we design a constrained

Bayesian optimization method to online learn and orchestrate

virtual resources for individual slices, while assuring their

performance requirements. During online orchestration, these

subproblems and the coordination problem will be solved

alternatively, and eventually achieve a convergent optima,

which acts as the final resource orchestration for all slices.

A. Problem Decomposition

First, we introduce auxiliary variables z
(t)
i and enforce addi-

tional constraints by letting z
(t)
i = x

(t)
i , ∀i ∈ I. Then, we can

reformulate the problem P0 into the following problem

P1 : min
{X (t),Z(t),W(t)}

∑

i∈I
U

(t)
i (9)

s.t. C1, C2, C3, (10)

C4 : 0 ≤
∑

i∈I
z
(t)
i ≤ H, (11)

C5 : x
(t)
i = z

(t)
i , ∀i ∈ I, (12)

where we rewrite the constraint C4 in P0 (which relates to

X (t)) into a new constraint in this problem P1, which relates to

only Z(t). Here, we denote Z(t) = {z
(t)
i , ∀i ∈ I} as the set of

auxiliary variables. The above problem reformulation aims to

decouple the connection between the optimization variables of

X (t) in the original constraint C4 in P0, which will facilitate

the separation of individual x
(t)
i in each slice. Note that, the

optimization variable w
(t)
i in each slice is not included by

any constraints, except its boundary between 0 and 1. In the

reformulated problem P1, we have three kinds of optimization

variables, i.e., X (t), Z(t), and W(t).

Second, we derive the augmented Lagrangian function of

P1 with scaled dual variables as

L(X ,W,Z,Y) =
∑

i∈I

(U
(t)
i +

ρ

2

∥

∥

∥
x
(t)
i − z

(t)
i + y

(t)
i

∥

∥

∥

2

), (13)

where ρ is a positive constant, and Y(t) = {y
(t)
i , ∀i ∈ I}

is the set of scaled dual variables. Based on the ADMM

framework [15], we can solve the problem P1 by alternatively

addressing the following problems:

P2 : X (t+1),W(t+1) =

arg min
X (t),W(t)∈{C1,C2,C3}

L(X ,W,Z(t),Y(t)), (14)

P3 : Z(t+1) =

arg min
Z(t)∈C4

L(X (t+1),W(t+1),Z,Y(t)), (15)

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

and updating the dual variables as follows:

y
(t+1)
i = y

(t)
i + (x

(t+1)
i − z

(t+1)
i), ∀i ∈ I. (16)

Here, problem P2 involves the actual resource orchestration

for all slices, under the given auxiliary and dual variables

in the last iteration. Then, problem P3 relates to the update

of auxiliary variables, depending on the optimized orches-

tration actions of problem P2. Next, dual variables can be

updated with the optimized orchestration actions and auxiliary

variables. This iteration continues until the convergence of

variables.

B. The Design of Coordinator

In the context of the AdaSlicing system, we centralize the

solving of problem P3 and the update of dual variables into

the coordinator. Specifically, we rewrite the problem P3 as

P4 : min
z
(t)
i

∑

i∈I

∥

∥

∥
x
(t)
i − z

(t)
i + y

(t)
i

∥

∥

∥

2

(17)

s.t. 0 ≤
∑

i∈I
z
(t)
i ≤ H, (18)

where the first part of augmented Lagrangian is irrelevant to

this optimization of auxiliary variables and thus omitted. We

observe that this problem P4 is a standard quadratic integer

programming problem, which is convex. Hence, we can utilize

the off-the-shelf optimization toolbox to efficient solve it, such

as CVX [16], [17]. By solving problem P4, we obtain the

updated auxiliary variables Z(t+1), and then update the dual

variables accordingly.

C. The Design of Learning Agents

In the context of the AdaSlicing system, we solve the problem

P2 in these learning agents. This is based on the observation

that, the problem P2 is fully separable with respect to each

slice, where the optimization of x
(t)
i can be fully conducted

in the i-th slice without any connections with other slices. For

the sake of simplicity, we re-express the problem P2 into the

following child problem P5 in the ith slice

P5 : min
{x

(t)
i

,w
(t)
i

}

U
(t)
i +

ρ

2

∥

∥

∥
x
(t)
i − z

(t)
i + y

(t)
i

∥

∥

∥

2

(19)

s.t. C̄1 : f(x
(t)
i , w

(t)
i |s

(t)
i) ≥ Qi, (20)

C̄2 : 0 ≤ w
(t)
i ≤ 1, (21)

C̄3 : 0 ≤ x
(t)
i ≤ H, (22)

where all constraints are rewritten with respect to only the ith

slice. Due to the unknown and potential time-evolving perfor-

mance function in constraint C̄1, it is challenging to solve the

problem with conventional optimization based methods, such

as linear and convex optimization [18].

Constrained Bayesian Optimization. Here, we design a

new constrained Bayesian optimization method to address

the above child problem P5. Bayesian optimization [19],

[20] is the state-of-the-art global optimization framework,

and is particularly efficient in handling blackbox problems

with expensive querying costs. It is an iterative searching

process, including a probabilistic surrogate model and an

acquisition function. In each iteration, the surrogate model,

e.g., Gaussian process [21], is trained to approximate the

uncertainty of the black-box function, e.g., the performance

function of slices f(x
(t)
i , w

(t)
i |s

(t)
i), according to previous

experiences, e.g., orchestration-to-performance pairs. Then,

the acquisition function, e.g., expected improvement (EI) [22],

estimates the utility of different actions {x
(t)
i , w

(t)
i } while

balancing the exploration and exploitation. The next action

can be determined by maximizing the acquisition function,

under the boundary of action space (e.g., C̄2, C̄3). Along with

the accumulation of online experiences, the surrogate model

will be updated to be more accurate to represent the blackbox

function, which guides the selection of future orchestration

actions towards the optima.

Barrier Method. In the child problem P5, its objective

function is deterministic with a closed-form expression, while

its constraint C̄1 is the unknown blackbox function. As vanilla

Bayesian optimization hardly handle complex constraints (i.e.,

C̄1), we use the barrier method [18] to convert the child

problem P5 into unconstrained one. Specifically, we add a

penalty function to the objective function, and rewrite the child

problem P5 as

P6 : min
{x

(t)
i

,w
(t)
i

,s
(t)
i

}

U
(t)
i +

ρ

2

∥

∥

∥
x
(t)
i − z

(t)
i + y

(t)
i

∥

∥

∥

2

+ φi

s.t. C̄2, C̄3, (23)

where φi = −log(−(Qi− f(x
(t)
i , w

(t)
i |s

(t)
i)) is the log barrier

penalty.

Gaussian Process. We adopt Gaussian Process (GP) as the

surrogate model to approximate the time-evolving perfor-

mance function of the slice, which is based on its superior

advantages of sample efficiency and robustness. Gaussian Pro-

cess [23] is a probabilistic, sample-efficient and wide-adopted

non-parametric machine learning technique. With slight abuse

of notation, we denote x = [x
(t)
i , w

(t)
i , s

(t)
i] as the combination

of the orchestration action of this slice and aggregated SW

of other slices. Gaussian Process can be defined by its mean

function m(x) and covariance function k(x, x′) as:

m(x) = E[f(x)], (24)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (25)

where f(x) represents the unknown performance function of

the slice to learn (i.e., f(x
(t)
i , w

(t)
i |s

(t)
i)). Here, k is the kernel

function, which determines the smoothness and other proper-

ties of the functions drawn from the Gaussian Process. For any

new input x∗, GP can generate in a normal distribution, with

its mean denoted by µ(x∗) and its variance by σ2(x∗), which

will be utilized by the acquisition function when selecting the

next action.

To track the potential time-evolving performance function

of slices, we introduce a fixed-size reply buffer for the GP

during the online orchestration. Instead of using all observed

experiences, we regress the GP by sampling experiences from

the reply buffer, based on the priority of experiences. When

a new online experience is obtained, it will be queued into

the reply buffer with the highest sampling priority. Note that,

we decay the priority of an experience according to its age-

of-information, which will make the latest experiences to be

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800
Time (s)

2
4
6
8

10

N
um

be
r o

f s
vR

Bs Used svRBs
Orchestrated svRBs

Fig. 2. An example of runtime utilization of vRBs under different
applications. Here, we run mixed applications before 400s, only
watch live video in [400s, 600s], and then perform speedtest.

sampled more frequently. If the reply buffer is full, the oldest

experience will be removed, which helps to track the time-

evolving performance function of slices. In the meantime, the

fixed size of the reply buffer ensures that the computation

complexity of GP regression is constant and can be performed

in real-time.

Acquisition Function. For the acquisition function, there

is a wide range of candidates, such as lower confidence

bound (LCB), expected improvement (EI), and probability

of improvement (PI). For example, EI aims to maximize

the expected improvement under to-date observations, while

balancing the exploration and exploitation. However, existing

works [24], [25] show that acquisition functions may fall into

local optima under different blackbox functions, i.e., there

is no one-fit-all acquisition function. Hence, we adopt the

gp hedge [25] strategy in the AdaSlicing system. Its basic

idea is to dynamically choose one of the candidate acquisi-

tion functions during the iterations of Bayesian optimization.

The selection of acquisition functions is optimized by using

an online multi-armed bandit algorithm, which demonstrated

promising performance compared to individual fixed acquisi-

tion functions.

V. SOFT-ISOLATED RAN VIRTUALIZATION

In this section, we introduce the soft-isolated RAN virtualiza-

tion in the AdaSlicing system.

RAN virtualization is the foundation of network slicing

technique to virtualize physical infrastructures (e.g., base sta-

tions) into virtual radio resources (e.g., vRBs) and implement

virtual resources at runtime. During online resource orches-

tration, these virtual resources can be flexibly orchestrated to

different network slices periodically (e.g., every minute or hour

in conventional networks). At runtime, virtual resources of

slices will be mapped to physical resources (e.g., PRBs/RBGs)

by using virtual-to-physical mapping [26], [27], [28]. With the

mapped physical resources, each slice will conduct its intra-

slice user scheduling in every millisecond. The objective of

RAN virtualization is to achieve high isolation (e.g., resource)

and low overhead (e.g., computation). On the one hand, high

isolation ensures that virtual resources are isolated with each

other, and thus provides performance isolation among slices.

Here, we denote RAN virtualization as hard isolated when

virtual resources are only exclusively mapped to physical

resources, e.g., a vRB always corresponds to a set of PRBs in

the MAC layer. On the other hand, low overhead ensures that

the implementation of virtual resources can be performed at a

vSharing Layer

Slice 1 Slice 2 Slice N…

Virtual-to-Physical Mapping

Slice 1 Slice 2 Slice N…

MAC

final vRBs

[svRB, SW] [svRB, SW] [svRB, SW]

RICs

RBGs

Fig. 3. The architecture of soft-
isolated RAN virtualization.

svRBs

slice 1 slice 2 slice 3 slice 4

slice 1 slice 2 slice 3 slice 4

vRBs

Traffic

vRB pool

Fig. 4. An example of soft-isolated
RAN virtualization.

minimal computation time.

In the context of open radio access networks (e.g., O-RAN),

the virtual resources of network slices can be orchestrated in

fine time granularity (e.g., as low as subseconds via near-

RT RIC) to better track their time-varying traffic variations.

However, we observe that the orchestrated virtual resources

of slices are usually under-utilized in the scenario of hard-

isolated RAN virtualization. Fig. 2 shows the number of vRB

utilization of a network slice under different virtual resources

and slice applications in a mobile network testbed. It can be

seen that, the orchestrated vRBs are not fully utilized due to

different patterns of slice traffic, where only active speedtest

may saturate the orchestrated vRBs. This resource under-

utilization can be attributed to 1) slices are usually orchestrated

to have sufficient virtual resources to accommodate their peak

traffic until the next orchestration slot; 2) their virtual resources

are exclusively mapped and cannot be shared with other slices,

even if they are not fully used at runtime.

Therefore, we propose a soft-isolated RAN virtualization, as

shown in Fig. 3, to improve the runtime utilization of virtual

resources while assuring their isolation. Soft-isolation also

serves as an enabler for the 3GPP-defined network resource

model [29], which is considered the de facto standard for

RAN slice resource management. The key idea is to enable

the sharing of unused virtual resources among slices, before

the virtual-to-physical mapping, at runtime. Specifically, we

design a new virtual resource sharing (vSharing) layer to share

expectantly excessive virtual resources among slices, where

the inputs are the orchestration action of all slices and the

outputs are the number of vRBs of all slices. First, we create

two new kinds of virtual resources, including soft-isolated

virtual resource blocks (svRBs) and sharing weights (SWs).

Here, we assume that a virtual resource block (vRB) always

corresponds to a fixed set of physical resources, i.e., one

downlink resource block group (RBG) and one uplink physical

resource block (PRB), in the virtual-to-physical mapping.

Second, based on the orchestrated number of svRBs of each

slice, we estimate the expectantly needed number of vRBs

for intra-slice user scheduling, as illustrated in Fig. 4. This

can be determined by aggregating all user traffic (e.g., as

stored in the per-user RLC buffer) associated with a given

slice. Third, we determine the total number of unused vRBs

of all slices and build a vRB pool, where we skip these slices

whose expectantly needed vRBs exceed their orchestrated

svRBs. Fourth, we proportionally share the vRB pool to these

slices with overflowed user traffic, according to their SWs.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

Slice Users

USRP B210

Radio Access

NetworkCore Network

RF Antenna

Near-RT RIC

Fig. 5. The overview of AdaSlicing testbed.

Thus, we can obtain the final number of vRBs for all slices,

including 1) for slices with overflowed traffic: summing up

their orchestrated svRBs and the shared unused vRBs; 2)

for slices without overflowed traffic: their expectantly needed

vRBs. Finally, the virtual-to-physical mapping will be invoked

to map the final vRBs of slices to physical resources (i.e.,

PRBs and RBGs).

VI. SYSTEM IMPLEMENTATION

In this section, we describe the testbed implementation of

the AdaSlicing system, including hardware, software, and

architecture, and introduce the application of slices.

A. Testbed Specifications

We implement the AdaSlicing system on an end-to-end net-

work slicing testbed, including the radio access network, core

network, and near-real-time RIC, as illustrated in Fig. 5. We

implement the RAN by using OpenAirInterface (OAI) [30]

(v2022.41). The RAN is hosted in an Intel i7-14700K desktop

(64G RAM) with a low-latency kernel of Ubuntu 22.04, which

connects an Ettus USRP B210 as the RF front-end. We operate

the base station at band 7 with 10MHz radio bandwidth

(i.e., 50 physical resource blocks). We use a Faraday cage to

containerize all smartphones for eliminating other radio inter-

ference. We implement the CN with Open5GS [31] (v2.7.0),

which is hosted in another Intel i7-10700 desktop (32G RAM).

The RAN and CN is connected with 1Gbps Ethernet cable. We

implement the near-RT RIC with FlexRIC [26] (v1.0.0), which

supports 4G slicing capability. We implement the AdaOrch

algorithm with Python 3.11, which runs on the CN desktop.

We adopt the scikit-optimize (v0.10.1) with the Gaussian Pro-

cess estimator, which relies on the GaussianProcessRegressor

module in sklearn toolkit [32]. Detailed testbed specifications

are listed in Table I.

B. Slice Applications

We implemented an Android application3 for each slice. As

AdaSlicing focuses on inter-slice resource allocation, we use

only one smartphone as the mobile user for each slice, for the

sake of tractability. It is basically a video streaming application

(downlink heavy), where the edge server (collocated in CN

desktop) continuously sends video frames to individual mobile

users. Note that, we change the application parameters for each

3AdaSlicing is fully compatible with other slice applications, as long as the
near-RT RIC can periodically retrieve the performance of individual slices.

TABLE I
THE DETAILED TESTBED SPECIFICATIONS.

Component Hardware Software

Core Network Intel Core i7-10700 Desktop Open5GS

Open RAN Intel Core i7-14700K Desktop OpenAirInterface

SDR Ettus USRP B210 UHD v4.5.0.0

Near-RT RIC Intel Core i7-14700K Desktop FlexRIC v1.0.0

UEs OnePlus 9 5G Andriod 11

slice (but unknown to AdaSlicing), in terms of the data size of

video frames. The performance metrics of slice applications

are 1) throughput and 2) frame-per-second, which are reported

to near-RT RIC every second.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate

the performance of the AdaSlicing system from different

perspectives. The goal is to answer the following questions: 1)

how does AdaSlicing perform as compared to state-of-the-art

network slicing systems? 2) how does AdaSlicing optimize

online resource allocation in detail? 3) how does the soft-

isolated RAN virtualization improve the resource utilization

of slices as compared to existing hard isolation? and 4) to

what extent, AdaSlicing can adapt to time-varying network

dynamics?

We compare AdaSlicing with the following systems:

• GBO: GBO uses a global Bayesian optimization to optimize

resource orchestration for all slices, under hard-isolated

RAN virtualization. To assure the SLA of slices, its ob-

jective is penalized by using the the barrier method if their

performance requirements are violated.

• Atlas: Atlas [5] is a state-of-the-art network slicing system,

under hard-isolated RAN virtualization. Atlas focuses on the

resource allocation of individual slices, which are optimized

by using a Bayesian optimization independently. As it does

not considered the resource capacity of infrastructures, we

slightly modify it to enforce a simple scaling if the resource

capacity is exceeded at runtime.

• ExSearch: Exhaustive search (ExSearch) uses the exhaus-

tive search method to optimize the network slicing, under

hard-isolated RAN virtualization, where it selects the action

with the minimal cost while satisfying the performance

requirement of all slices. Note that, it requires the whole

action-to-performance dataset to be available in advance,

which is impractical in real-world networks.

During the performance evaluation, we use the following

experiment parameters, which are generally selected based on

the realistic network capacity of the testbed. We create three

slices and each slice has one smartphone user. The perfor-

mance threshold of all slices Qi, ∀i ∈ I are 12 Megabits-

per-second (Mbps) throughput and 10 FPS. Without loss of

generality, we use UH = 1, US = 1 for weighting both

svRB and SW. We use different compression qualities of .jpg

in Android applications to stream their video frames to the

edge server. The maximum number of svRBs is H = 12,

where the minimum of 1 svRB is assigned to keep the slice

alive. In the GP, we utilize the Matern kernel and gp-hedge

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14
Orchestration slots

4
6
8

10
12
14

To
ta

l c
os

t

GBO
ExSearch
Atlas
AdaSlicing

Fig. 6. The convergence of total cost under systems.

0 2 4 6 8 10 12 14
Orchestration slots

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

GBO
ExSearch
Atlas
AdaSlicing

Fig. 7. The convergence of normalized performance under systems.

strategy includes expected improvement (EI), probability of

improvement (PI), and low confidence bound (LCB).

A. Overall Performance

In this subsection, we show the overall performance (i.e.,

total cost and slice performance) achieved by all systems.

Fig. 6 and Fig. 7 show the convergence of total cost and

normalized performance obtained by different systems, re-

spectively. Here, we define the normalized performance of a

slice as the ratio between its performance f(xi, wi|si) and

the threshold Qi, where multiple performance metrics will be

averaged if applicable. We can see that, AdaSlicing achieves

a fast convergence speed with only 5 iterations. This can

be attributed to the high sample efficiency of individualized

learning agents and the strong robustness of the coordinator in

AdaSlicing. Table II shows the numerical results of the cost

and slice performance after the convergence of all systems.

We can see that, AdaSlicing obtains the lowest cost with the

highest normalized performance at the same time, among all

systems. As compared to the state-of-the-art Atlas, AdaSlicing

reduces 64.2% cost, particularly the needed number of svRBs

is reduced by 66.7%, and also improves 45.5% normalized

performance in the meantime. In other words, although other

comparison systems use more virtual resources (i.e., svRBs),

their achieved normalized performances are still lower than

that of AdaSlicing. This can be attribute to the soft-isolated

RAN virtualization in AdaSlicing, which justifies the necessity

of sharing virtual resources among slices at runtime.

B. AdaSlicing Dissection

In this subsection, we dissect the AdaSlicing system to show

the details behind its achieved performance in Table II. First,

Fig. 8 shows the convergence curve of overall cost, and

that of all three agents in the 4th orchestration slot. It can

be seen that, the overall cost starts high and then quickly

decreases towards convergence. This is resulted from both the

initialization of auxiliary and dual variables in the coordina-

tor, and the inaccurate representation of learning agents in

their early stages. In AdaSlicing, all learning agents and the

coordinator will communicate to achieve the consensus and

Fig. 8. The convergence of total cost in the AdaSlicing system (the red
curve), including three detailed convergence curves under constrained
Bayesian optimization (blue curves) at the 4-th orchestration slot.

0 5 10 15
Orchestration slots

1
2
3
4
5
6

N
um

be
r o

f s
vR

Bs Slice 1
Slice 2
Slice 3

0 5 10 15
Orchestration slots

0.10
0.15
0.20
0.25
0.30

SW

Slice 1
Slice 2
Slice 3

0 5 10 15
Orchestration slots

2

1

0

D
ua

l v
ar

ia
bl

e Slice 1
Slice 2
Slice 3

0 5 10 15
Orchestration slots

0

1

2

A
ux

ili
ar

y
va

ria
bl

e

Slice 1
Slice 2
Slice 3

Fig. 9. The convergence of detailed variables.

generate the optimal orchestration action in each orchestration

slot. Moreover, we design to reuse previous experiences in

individual learning agents to accelerate their convergence in

later orchestration slots, which can be observed in these

subplot curves of learning agents. Fig. 9 show the detailed

convergence of the orchestration actions, and these auxiliary

and dual variables. It can be seen that, after the initialization

of dual variables (-5), they are updated to be -2, and then

converges to be 0. This is because that, the optimized number

of svRBs by learning agents and the auxiliary variables are

exactly equivalent after the second orchestration slot, which

leads to no update to dual variables (See Eq. 16). These

convergence curves verify the effectiveness of the coordinator

in coordinating these learning agents in AdaSlicing.

C. Soft-Isolated RAN Virtualization

In this subsection, we evaluate the soft-isolated RAN virtu-

alization in AdaSlicing, as compared to existing hard-isolated

solutions. Here, we create two test slices, each has one mobile

user, where we measure the throughput by simultaneously

starting the online speedtest tool for both slice users. Fig. 10

shows the experienced throughput of two slices under both

soft-isolated and hard-isolated RAN virtualization. In both

experiments, slice 0 and 1 are assigned with [7 RBGs/svRBs,

0.2 SW] and [5 RBGs/svRBs, 0.1 SW], respectively. It can be

seen that, under hard-isolated RAN virtualization (i.e., the top

figure), the experienced throughput of both slices are static

and generally proportional to their orchestrated number of

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DETAILED CONVERGED ORCHESTRATION OF ALL SYSTEMS.

Methods Cost Individual cost svRBs SW Normalized Performance Throughput (Mbps) FPS

GBO 12 (1, 5, 6) (1, 5, 6) - 1.22 (4.40, 12.40, 14.16) (16, 18, 12)

ExSearch 12 (4, 4, 4) (4, 4, 4) - 1.23 (10.24, 10.24, 10.24) (20, 17, 11)

Atlas 12 (4, 4, 4) (4, 4, 4) - 1.23 (10.24, 10.24, 10.24) (20, 17, 11)

AdaSlicing 4.3 (1.1, 2.1, 1.1) (1, 2, 1) (0.1, 0.1, 0.1) 1.79 (17.04, 18.40, 16.80) (27, 22, 15)

0 20 40 60 80 100 120
Time (second)

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (M

bp
s)

Slice 0
Slice 1

0 20 40 60 80 100 120
Time (second)

0
5

10
15
20
25
30
35

Th
ro

ug
hp

ut
 (M

bp
s)

Slice 0
Slice 1

Fig. 10. The experienced downlink throughput under the hard-isolated
(top) vs soft-isolated (bottom) RAN virtualization.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
SW of Slice 0

0
2
4
6
8

10
12

N
um

be
r o

f s
vR

Bs Slice 0 Slice 1

Fig. 11. The impact of SW in sharing virtual resources. Here, the
read line in each bar is the originally assigned number of svRBs.

RBGs. In contrast, under soft-isolated RAN virtualization (i.e.,

the button figure), the experienced throughput of both slices

are increased, which attributes to unused virtual resources in

the RAN. Besides, the additionally gained throughput of slice

0 is nearly twice than that of slice 1, which proportionally

corresponds to their SWs. At the later part of the bottom

figure (i.e., 62 seconds), we only start the speedtest in the

slice 0. We can see that, its experienced throughput soars up

to 33.6 Mbps, which means it enjoys basically all the virtual

resources from slice 1 and any other unused resources in RAN.

Fig. 11 further shows the impact of different SWs in sharing

the virtual resources among slices. Here, we fix the SW of

the slice 1 as 0.3, and assign slice 0 and 1 with 4 and 6

svRBs, respectively. Given the total 16 svRBs in 10MHz RAN,

there are 6 svRBs remained unused, which will be shared by

slice 0 and 1. We can see that, the higher SW in the slice 0,

its experienced number of svRBs increases accordingly. For

example, when the SW of slice 0 is 0.2, it shares 40% from

the unused 6 svRBs, i.e., 2.4 svRBs, which is grounded to

be 2 svRBs. These results show that, the soft-isolated RAN

virtualization can assure the isolation among virtual resources,

while improving the resource utilization at runtime.

D. Scalability and Adaptability

In this subsection, we evaluate the AdaSlicing system under

different scenarios, in terms of scalability and adaptability.

1 2 3 4 5
Number of slices

0.0
2.5
5.0
7.5

10.0
12.5

To
ta

l c
os

t GBO
ExSearch
Atlas
AdaSlicing

Fig. 12. The total cost under different number of slices.

Slice disconnected
Slice reconnected

Fig. 13. The total cost under time-varying network dynamics.

Slice disconnected
Slice reconnected

Fig. 14. The normalized performance under time-varying dynamics.

Fig. 12 shows the total cost of all systems under different num-

ber of slices (there are a maximum 5 slices due to the limited

capacity of the testbed). As the number of slices increases

in RAN, the more virtual resources are needed to support

their users under the slice SLAs. We can see that, AdaSlicing

can achieve the lowest total cost under all scenarios, which

verifies the high scalability of AdaSlicing in handling large

scale network slicing scenarios. Here, the total cost of other

systems reach to the maximum svRBs in the system, while

their normalized performances are decreased up to 53.9%, if

supporting more than 3 slices. Fig. 13 and Fig. 14 show the

convergence of total cost and normalized performance under

time-varying number of active slices. Here, we disconnect slice

3 at the 10th orchestration slots and re-connect it back at the

20th orchestration slots, to emulate the network dynamics. It

can be seen that, AdaSlicing quickly adapts to the departure

of slice 3 within only one orchestration slot, where the total

cost is reduced by 25.6 % while improving 12.8 % normalized

performance. This is achieved by adaptively coordinating these

auxiliary and dual variables in the coordinator in AdaSlicing.

As slice 3 is reconnected, AdaSlicing can also adapt and

converge back to the optima in a few orchestration slots. In

contrast, GBO is designed to accommodate the peak traffic

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

Request higher

performance

Request lower

performance

Fig. 15. The total cost under changing slice demands.

Request higher

performance

Request lower

performance

Fig. 16. The normalized performance under changing slice demands.

of slices, its total cost cannot be adapted to time-varying

network dynamics. In addition, Fig. 15 and Fig. 16 show the

total cost and normalized performance of all systems under

time-varying performance threshold of slices. Here, we set the

threshold of slices as [8Mbps, 10FPS], and increase them to

[20Mbps, 15FPS] at the 10th orchestration slot, and reset it

back at the 20th orchestration slot. We can see that, AdaSlicing

can quickly adapt to this change in a few orchestration slots,

by orchestrating more virtual resources to slices. Here, the

decrease of normalized performance in Fig. 16 is because

we divide the slice performance by the increased threshold.

These experimental results justify the high adaptability of

AdaSlicing, in terms of reacting to time-varying network

dynamics in real-world networks.

VIII. RELATED WORK

Open Radio Access Network. Open RAN has shown the

increasing momentum in revolutionizing and defining the next

generation mobile network [33]. FlexRIC [26] is an open-

source flexible and efficient software development kit (SDK),

and has been gradually adopted to build specialized and multi-

service SD-RAN controllers. HexRIC [28] is a purpose-built

next-generation network controller for the O-RAN ecosystem,

featuring with the robust messaging infrastructure and AI/ML

operation framework under the architecture of separated con-

trol and user plane. ColO-RAN [34] is the first publicly-

available large-scale O-RAN testing framework, that is devel-

oped based on the Colosseum wireless network emulator with

scaled software-defined radio and computational capabilities.

Open RAN initiatives create unlimited possibilities in next-

generation mobile network (e.g., rApps, xApps, dApps), where

advanced AI/ML techniques are necessitated to handle ever-

increasing complex fine-grained network management.

Machine Learning for Networking. AI/ML techniques

have revealed convincing potential in dealing with complex

and time-correlated network systems. To assure the SLA

of end-to-end slices, Liu et al. proposed EdgeSlice [35], a

decentralized deep reinforcement learning (DRL) approach,

to dynamically orchestrate multi-domain radio and computing

resources. To support increasing computing and storage de-

mand of O-RAN compliant networks, Maxenti et al. proposed

ScalO-RAN [36], a control framework to allocate and scale O-

RAN applications under the given application-specific latency

requirement. To facilitate spectrum sharing among network

operators in O-RAN compliant networks, Bonati et al. pro-

posed NeutRAN [37], a zero-touch framework to automate

operator onboarding, supported by a new optimization engine

and fully virtualized infrastructure. OrchestRAN [38] is a net-

work intelligence orchestration framework towards the Open

RAN paradigm, and aims to automatically optimize the set of

data-driven algorithms while assuring time requirements and

avoiding conflicts. Most policies of existing AI/ML-assisted

network managements are trained with offline environments

(e.g., simulators) or limited online data observation from

real-world networks. Recent observations revealed that offline

policies could suffer from simulation-to-reality discrepancy,

leading to non-trivial performance degradation when applied

to real-world networks.

Online Network Management. To address the simulation-

to-reality gap, Zhang et al. [39] proposed OnRL to online

update the DRL policy via interacting with real-world net-

works, to improve the performance of real-time mobile video

telephony. To enable online network configuration in wireless

mesh networks (WMNs), Shi et al. [7] proposed a new transfer

learning-based algorithm that bridges the simulation-to-reality

gap, according to both offline and online datasets. Hu et

al. [40] proposed a new neural-assisted algorithm to optimize

radio resources to slices, by introducing a DNN to approximate

the complex performance function of heterogeneous slices. Liu

et al. [5] proposed Atlas, an online network slicing system,

to automate the service configuration of slices with assured

slice SLAs, via safe and sample-efficient learn-to-configure

approaches. However, these online learning works heavily rely

on parameterized DNN agents with fixed input and output

spaces, and cannot efficiently adapt to potential time-varying

network dynamics in real-world networks.

IX. CONCLUSION

In this paper, we presented AdaSlicing, a new adaptive net-

work slicing system, that online learns to orchestrate virtual

resources while efficiently adapting to time-varying network

dynamics. We designed the soft-isolated RAN virtualization

that significantly improves the virtual resource utilization of

slices without breaking the promise of resource isolation.

We designed the AdaOrch algorithm that minimizes the total

operating cost of supporting all slices with assured slice SLAs,

via online resource orchestration. We found that the integra-

tion of AI/ML techniques and optimization methods could

combine their individual advantages (e.g., high approximation

capability and robust convergence) during online resource

orchestration in real-world networks.

ACKNOWLEDGEMENT

This work is supported by the US National Science Foundation

under Grant No. 2321699, No. 2333164, and No. 2428427.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner,
and P. Xiao, “5g nr-v2x: Toward connected and cooperative autonomous
driving,” IEEE Communications Standards Magazine, vol. 5, no. 1, pp.
48–54, 2021.

[2] Y. Guan, X. Hou, N. Wu, B. Han, and T. Han, “Deepmix: mobility-
aware, lightweight, and hybrid 3d object detection for headsets,” in
Proceedings of the 20th Annual International Conference on Mobile

Systems, Applications and Services, ser. MobiSys ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 28–41. [Online].
Available: https://doi.org/10.1145/3498361.3538945

[3] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2462–2488, 2020.

[4] Q. Liu, N. Choi, and T. Han, “OnSlicing: online end-to-end net-
work slicing with reinforcement learning,” in Proceedings of the 17th

International Conference on emerging Networking EXperiments and

Technologies, 2021, pp. 141–153.

[5] ——, “Atlas: automate online service configuration in network slicing,”
in Proceedings of the 18th International Conference on emerging

Networking EXperiments and Technologies, 2022, pp. 140–155.

[6] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should i slice my network? a multi-service empirical evaluation
of resource sharing efficiency,” in Proceedings of the 24th Annual

International Conference on Mobile Computing and Networking, 2018,
pp. 191–206.

[7] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in NSDI, 2021, pp. 887–901.

[8] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez, “Overbooking network slices through yield-driven end-
to-end orchestration,” in Proceedings of the 14th International Confer-

ence on emerging Networking EXperiments and Technologies, 2018, pp.
353–365.

[9] O.-R. ALLIANCE, “O-ran alliance,” June 2022 [Online]. [Online].
Available: https://www.o-ran.org/

[10] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding o-ran: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 2023.

[11] S. Azimeh, V. Csaba, and G. Markus, “UNEXT – A unified networking
experience,” Nokia Bell Labs, White Paper, 2023.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,” in
Proceedings of the ACM special interest group on data communication,
2019, pp. 270–288.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

[16] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[17] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and

Decision, vol. 5, no. 1, pp. 42–60, 2018.

[18] S. Boyd and L. Vandenberghe, “Convex optimization, 25 cambridge
university press,” Cambridge, England, 2010.

[19] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint

arXiv:1807.02811, 2018.

[20] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information

processing systems, vol. 25, 2012.

[21] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer

school on machine learning. Springer, 2003, pp. 63–71.

[22] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active

user modeling and hierarchical reinforcement learning,” arXiv preprint

arXiv:1012.2599, 2010.
[23] C. Williams and C. Rasmussen, “Gaussian processes for regression,”

Advances in neural information processing systems, vol. 8, 1995.
[24] T. d. P. Vasconcelos, D. A. de Souza, C. L. Mattos, and J. P. Gomes,

“No-past-bo: Normalized portfolio allocation strategy for bayesian op-
timization,” in 2019 IEEE 31st International Conference on Tools with

Artificial Intelligence (ICTAI). IEEE, 2019, pp. 561–568.
[25] M. Hoffman, E. Brochu, N. De Freitas et al., “Portfolio allocation for

bayesian optimization,” in UAI, 2011, pp. 327–336.
[26] R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: An sdk for next-

generation sd-rans,” in Proceedings of the 17th International Conference

on emerging Networking EXperiments and Technologies, 2021, pp. 411–
425.

[27] Q. Liu and T. Han, “Virtualedge: Multi-domain resource orchestra-
tion and virtualization in cellular edge computing,” in Proceedings of

IEEE 39th International Conference on Distributed Computing Systems

(ICDCS), 2019, pp. 1051–1060.
[28] V.-Q. Pham, H.-T. Thieu, A. Kak, and N. Choi, “Hexric: Building a

better near-real time network controller for the open ran ecosystem,” in
Proceedings of the 24th International Workshop on Mobile Computing

Systems and Applications, 2023, pp. 15–21.
[29] 3rd Generation Partnership Project (3GPP), “5G; Management and

orchestration; 5G Network Resource Model (NRM),” Technical Speci-
fication (TS) 28.541, May 2024, release 18.7.0.

[30] OpenAirInterface Software Alliance. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g

[31] Open5GS. [Online]. Available: https://github.com/open5gs/open5gs
[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[33] A. Kak, H.-T. Thieu, V.-Q. Pham, R. K. Sheshadri, N. Choi, Y. Guan,

M. Yin, and T. Han, “Aweran: Making a case for application-aware radio
access network slicing,” in Proceedings of the 17th ACM Workshop on

Wireless Network Testbeds, Experimental evaluation & Characteriza-

tion, 2023, pp. 41–48.
[34] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-

ran: Developing machine learning-based xapps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions

on Mobile Computing, vol. 22, no. 10, pp. 5787–5800, 2022.
[35] Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge

computing network with decentralized deep reinforcement learning,”
in Proceedings of IEEE 40th International Conference on Distributed

Computing Systems (ICDCS), 2020, pp. 234–244.
[36] S. Maxenti, S. D’Oro, L. Bonati, M. Polese, A. Capone, and T. Melodia,

“Scalo-ran: Energy-aware network intelligence scaling in open ran,”
arXiv preprint arXiv:2312.05096, 2023.

[37] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Neutran:
An open ran neutral host architecture for zero-touch ran and spectrum
sharing,” IEEE Transactions on Mobile Computing, 2023.

[38] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “Orchestran: Orchestrat-
ing network intelligence in the open ran,” IEEE Transactions on Mobile

Computing, 2023.
[39] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,

and X. Chen, “Onrl: improving mobile video telephony via online
reinforcement learning,” in MobiCom, 2020, pp. 1–14.

[40] T. Hu, Q. Liao, Q. Liu, A. Massaro, and G. Carle, “Fast and scalable
network slicing by integrating deep learning with lagrangian methods,”
in GLOBECOM 2023-2023 IEEE Global Communications Conference.
IEEE, 2023, pp. 6346–6351.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from IEEE Xplore. Restrictions apply.

