IEEE INFOCOM 2025 - IEEE Conference on Computer Communications | 979-8-3315-4305-1/25/$31.00 ©2025 IEEE | DOI: 10.1109/INFOCOM55648.2025.11044475

AdaSlicing: Adaptive Online Network Slicing under Continual
Network Dynamics in Open Radio Access Networks

Ming Zhao, Yuru Zhang, Qiang Liu
University of Nebraska-Lincoln
qiang.liu@unl.edu

Abstract—Open radio access networks (e.g., O-RAN) facili-
tate fine-grained control (e.g., near-RT RIC) in next-generation
networks, necessitating advanced AI/ML techniques in handling
online resource orchestration in real-time. However, existing
approaches can hardly adapt to time-evolving network dynamics
in network slicing, leading to significant online performance
degradation. In this paper, we propose AdaSlicing, a new adaptive
network slicing system, to online learn to orchestrate virtual
resources while efficiently adapting to continual network dynam-
ics. The AdaSlicing system includes a new soft-isolated RAN
virtualization framework and a novel AdaOrch algorithm. We
design the AdaOrch algorithm by integrating AI/ML techniques
(i.e., Bayesian learning agents) and optimization methods (i.e.,
the ADMM coordinator). We design the soft-isolated RAN
virtualization to improve the virtual resource utilization of slices
while assuring the isolation among virtual resources at runtime.
We implement AdaSlicing on an O-RAN compliant network
testbed by using OpenAirlnterface RAN, Open5GS Core, and
FlexRIC near-RT RIC, with Ettus USRP B210 SDR. With
extensive network experiments, we demonstrate that AdaSlicing
substantially outperforms state-of-the-art works with 64.2% cost
reduction and 45.5% normalized performance improvement,
which verifies its high adaptability, scalability, and assurance.

Index Terms—Network Slicing, Open RAN, Network Auton-
omy, Emerging Applications

I. INTRODUCTION

Network slicing is a key technique in 5G and Beyond to cost-
efficiently and flexibly support emerging mobile applications,
e.g., autonomous driving [1], extended reality [2], and Internet
of Things [3]. With the advanced technology of infrastructure
virtualization, multiple virtual networks (i.e., slices) can be
concurrently instantiated and operated on common physical
infrastructures (e.g., base stations and switches), with assured
resource and performance isolation. By tailoring the param-
eters and resources of each slice, mobile network operators
(MNOs) can effectively meet the diversified performance
needs of slice tenants, such as end-to-end latency, security, and
reliability. In network slicing, resource orchestration serves as
the key role to dynamically manage virtualized resources [4],
[5] in multiple technical domains (e.g., radio spectrum) to all
slices for assuring their service-level agreements (SLAs).
Existing in-use orchestration solutions [6], [7], [8] heavily
rely on human expertise throughout the life-cycle of each slice
(e.g., performance modeling and fine-tuning), where orches-
tration actions are optimized in the coarse granularity, such as
every hour. With the increasing momentum of open network
initiatives (e.g., O-RAN [9], [10]) and an emphasis on a unified
software approach to simplify operations amidst increasing
complexity (e.g., UNEXT [11]), next-generation networks will

Ahan Kak, Nakjung Choi
Nokia Bell Labs
nakjung.choi @nokia-bell-labs.com

expose high-dimensional states (e.g., thousands if not more)
and allow nearly real-time control (e.g., subseconds), which
enables more fine-grained orchestration in network slicing for
further exploiting resource multiplexing [6]. To tackle the
complex fine-grained orchestration problem, machine learning
(ML) techniques [12] have been increasingly explored, such
as deep reinforcement learning [13] and Bayesian learning [4],
[5], and achieved great improvements, in terms of perfor-
mance, autonomy, and scalability.

However, we found that existing works can hardly adapt to
time-varying dynamics in network slicing, which can result
in substantial performance degradation (e.g., violated SLAs
and soared resource usage), especially during online resource
orchestration. Generally, existing works rely on deep neural
network (DNN)-parameterized agents to manage resource Or-
chestration for all slices, where their fixed input and output
space! limit the adaptability to diverse network dynamics.
On the one hand, the active slices in the network are not
stationary. Independent slice tenants may operate their slices
dynamically, such as starting and stopping slices at different
times throughout the day. On the other hand, the traffic pattern
and application characteristics of each slice may change and
evolve over time. As a result, existing DNN-parameterized
agents have to be retrained and refined, leading to delayed
adaptation to time-varying network dynamics.

In this paper, we propose a new adaptive network slicing
system (AdaSlicing), to online learn while efficiently adapting
to time-varying network dynamics. The key idea is to integrate
AI/ML techniques and optimization methods during online
resource orchestration. We design a new AdaOrch algorithm
to minimize the total operating cost of supporting all slices,
while assuring the performance requirements defined by their
SLAs. On the one hand, we design a Bayesian learning agent
to handle the resource orchestration for each slice, which will
be continually updated with accumulated online experiences.
On the other hand, we design a coordinator to coordinate all
active slices in regard to the infrastructure capacity of virtual
resources at runtime. Moreover, we design a new soft-isolated
RAN virtualization to improve the virtual resource utilization
of slices while assuring the isolation among virtual resources
at runtime. We implemented AdaSlicing on an end-to-end O-
RAN compliant network testbed by using OpenAirlnterface
RAN, Open5GS Core, and FlexRIC near-RT RIC, with Ettus
USRP B210 SDR. With the extensive network experiments, we

! Although there are several DNN architectures with flexible inputs (e.g.,
LSTM and GNN), their training complexity and sample efficiency are widely
concerned to be used for online network management [4], [14].

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



Near-RT RIC (" AdaOrch Algorithm

oo s e X

{ =

Slices RAN Core =

ees. ((g ) @ gl o =

. A A . . S

° o — Learning Agent N

oQs Soft-Isolated ; SLA online adapt

virtual =1 RAN Virtualization | s J

resources

Fig. 1. The overview of AdaSlicing.

demonstrate that AdaSlicing can reduce 64.2% total operating

cost while improving 45.5% normalized performance of slices,

as compared to state-of-the-art solutions.

Overall, we propose AdaSlicing, a new adaptive online
network slicing system, that can flexibly adapt to diverse time-
varying network dynamics. The detailed contributions are:

o We design a new soft-isolated RAN virtualization frame-
work that substantially improves virtual resource utilization
of slices at runtime.

« We design a new AdaOrch algorithm that online learns and
orchestrates virtual resources for slices with assured SLAs.

« We implement the AdaSlicing system on an O-RAN compli-
ant mobile network testbed, with multiple slices and users.

« We conducted extensive experiments to evaluate AdaSlicing,
in terms of adaptability and scalability.

I1. AdaSlicing OVERVIEW

In Fig. 1, we overview the AdaSlicing system under the
architecture of open radio access networks. It includes multiple
slices, radio access network (RAN), and core network (CN),
where the near-RT RIC hosts a wide range of xApps, such
as performance monitoring XxApps and the AdaOrch algorithm
xApp. In AdaSlicing, two primary components are the soft-
isolated RAN virtualization and the AdaOrch algorithm.

We design the soft-isolated RAN virtualization to improve
the utilization of virtual resources at runtime while assuring
the isolation among virtual resources (See Sec. V). Different
from existing hard-isolated RAN virtualization, our key idea
is to enable the sharing of unused virtual resources among
slices, before the virtual-to-physical mapping, at runtime. We
create two new kinds of virtual resources, including the soft-
isolated virtual resource block (svRB) and sharing weight
(SW), which can be dynamically orchestrated to all slices by
the AdaOrch algorithm. Note that all unused virtual resources
are shared proportionally according to the SW value of slices,
which improves resource utilization at runtime and creates
performance interdependence among all slices. In other words,
in addition to the svRB, the shared virtual resources of a slice
from the sparse VRB pool depend on not only its SW value
but also the SW values of all other active slices.

We design the AdaOrch algorithm to online orchestrate
virtual resources for all slices under time-varying network
dynamics (See Sec. IV). Different from existing orchestration
solutions, our key idea is to integrate AI/ML techniques and
optimization methods to improve adaptability while maintain-
ing the autonomy of the AdaOrch algorithm. Specifically, it
includes multiple learning agents, where each agent corre-

sponds to online learning and orchestrates virtual resources
for a slice. Note that, the AdaOrch algorithm can support
heterogeneous learning agents, in terms of adopted AI/ML
techniques (e.g., Bayesian learning and multi-armed bandit),
as long as they match the same input/output space and also
follow necessary training processes. It also includes a coordi-
nator, designed based on the alternating direction method of
multipliers (ADMM), to coordinate the infrastructure capacity
of virtual resources for all slices. During online orchestration,
each learning agent observes its local network context and
makes the orchestration action for its corresponding slice to
meet the performance requirement defined by the slice SLA.
At runtime, only active slices are involved and iteratively
communicated with the coordinator to achieve a consensus
of resource capacity. On the one hand, these learning agents
will be online updated according to newly obtained online
experiences, which assures the continual learning capability
to adapt to potential intra-slice network dynamics. On the
other hand, the coordinator can support an arbitrary number
of learning agents during each orchestration slot, which can
flexibly adapt to possible inter-slice network dynamics.

III. SYSTEM MODEL

We consider an O-RAN compliant mobile network, including
the core network (CN) and radio access network (RAN) with
multiple base stations (BSs)? and network slices. Slice tenants
establish the service level agreement (SLA) with the mobile
network operator (MNO) to support their slice users, with
predefined performance requirements, such as the maximum
latency and minimum throughput. The MNO creates multiple
xApps in the near-RT RIC to dynamically orchestrate the
virtual resources for all slices in the fine time granularity
(e.g., every second). Here, we focus on two kinds of virtual
resources: 1) the soft-isolated virtual resource blocks (svRB),
and 2) the sharing weight (SW), which are detailed in Sec. V.
We denote 7 as the set of network slices, where ¢ € Z denotes
the i-th slice.

Action Space. Denote :cgt) and wl(t) as the number of
svRBs and the SW value of the i-th slice at the ¢th time
slot, respectively. For the sake of simplicity, we further denote
XM = {xgt),w €Z} and W) = {wgt),w € 7} as the set of
these orchestration actions, respectively. Therefore, we define
the action space of resource orchestration to the i-th slice as

AD = o0 w0, )

Performance Model. Under the soft-isolated RAN virtu-
alization (see Sec. V), the final experienced VRBs of a slice
depend on not only its orchestration action but also that of
other slices (particularly their SW values). Hence, we define
the performance function of the i-th slice as

P = fa w5, @)
where we introduce sgt) =) JET i wj(-t) as the aggregated
SW value of all other active slices. Here, the performance met-
rics of each slice can be multi-dimensional and heterogeneous,

2Without loss of generality, we focus on the resource orchestration problem
in a single base station, where the AdaOrch algorithm can be easily extended
to support the scenario of multiple base stations.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



such as end-to-end latency and reliability. Here, more network
context might be incorporated, if relevant and needed, to better
represent the performance function of slices.

Cost Model. From the MNO perspective, the operating
cost of running a slice highly depends on its usage of virtual
resources. Here, we define operating cost of the i-th slice as

v =Uy 2 + Us - w”, 3)
where Uy and Ug denote the unit cost of svRB and SW,
respectively.

Problem. The objective is to minimize the total cost of
supporting all slices, while meeting their performance require-
ments defined by slice SLAs. Therefore, we formulate the
resource orchestration problem in network slicing as

. - ®)
Po: IEECRTIEN Ziel Ui @)
st. Cl: f(xgt),wgt)|sgt)) >Q;,VieT, 5)
c2: o<w <1 VieT, (6)
c3: 0<2M<HVieT, 7

. ®)
C4: 0< ZH z) < H. (8)

Here, the constraint C'1 assures that the performance of each
slice can be maintained, where the performance threshold
of the i-th slice is denoted as ;. The constraint C'2 and
C3 define the boundary of the action space, including the
maximum number of svRBs. Moreover, the constraint C'4
assures that the infrastructure capacity (denoted by H) will
not be exceeded at runtime.

Challenge. The challenge of addressing the above problem
is mainly two-fold. On the one hand, the multi-dim perfor-
mance of slices relates to a wide range of factors (e.g., traffic
pattern and channel quality) and can hardly be represented
in closed-form with respect to resource orchestration actions.
Moreover, the performance function of slices could change
over time, depending on their time-evolving application char-
acteristics. As a result, it is difficult to use conventional
math modeling approaches to represent the complex and time-
evolving performance function. On the other hand, the active
slices are non-stationary, depending on the operation strategy
of independent slice tenants, such as starting and stopping
slices at different times throughout the day. As a result, it
is inefficient to handle the dynamics of active slices by using
only parameterized agents with fixed input and output spaces.

IV. PROPOSED SOLUTION

In this section, we develop the AdaOrch algorithm to effi-
ciently solve the resource orchestration problem. The funda-
mental idea is to integrate AI/ML techniques and optimization
methods to address the aforementioned adaptability challenge.
On the one hand, we design a learning agent (based on the
Bayesian optimization framework) that focuses on the resource
orchestration of each slice, which will be online updated
with accumulated experiences to track its potentially time-
evolving performance function. On the other hand, we design
a coordinator (based on the alternating direction method of
multipliers (ADMM) framework) to coordinate all active slices
in regard to the infrastructure capacity of virtual resources. In

addition, we design the interface (e.g., state and action space
and training mechanism) to enable the convergent interaction
among learning agents and the coordinator towards the objec-
tive of adaptive network slicing.

Specifically, we first decouple the original problem Py
into multiple subproblems and a coordination problem, by
leveraging the ADMM framework. We design each subprob-
lem to correspond to the resource orchestration of individual
slices, and the coordination problem to coordinate and assure
the infrastructure capacity of virtual resources (i.e., C4).
The coordination problem turns out to be convex and can
be efficiently solved by off-the-shelf optimization toolboxs.
To solve individual subproblems, we design a constrained
Bayesian optimization method to online learn and orchestrate
virtual resources for individual slices, while assuring their
performance requirements. During online orchestration, these
subproblems and the coordination problem will be solved
alternatively, and eventually achieve a convergent optima,
which acts as the final resource orchestration for all slices.

A. Problem Decomposition

First, we introduce auxiliary variables z(t)

, ~ and enforce addi-
tional constraints by letting zi(t) = xgt),Vi € 7. Then, we can

reformulate the problem Py into the following problem
: ()
(0, 20w ZiEI Ui ©

st. C1, C2, C3, (10)
. ®

C4: 0< ZZ_EI 2 < H, (11)

c5: 2l =" vier, (12)

where we rewrite the constraint C4 in Py (which relates to
X®)Y into a new constraint in this problem Py, which relates to
only Z(). Here, we denote Z(*) = {zzm,Vi € 1} as the set of
auxiliary variables. The above problem reformulation aims to
decouple the connection between the optimization variables of
X® in the original constraint C'4 in Py, which will facilitate
the separation of individual xgt) in each slice. Note that, the
optimization variable wgt) in each slice is not included by
any constraints, except its boundary between 0 and 1. In the
reformulated problem P;, we have three kinds of optimization
variables, i.e., X, Z®) and WO,
Second, we derive the augmented Lagrangian function of
P; with scaled dual variables as
— ) P
L@ w,2,y) =Y (0" + L]

2
2 =0+ 0|, a3

where p is a positive constant, and YV = {yl(t),Vi e I}
is the set of scaled dual variables. Based on the ADMM
framework [15], we can solve the problem P; by alternatively
addressing the following problems:

Py XD i+l —

ar min ﬁ(X,W,Z(t),y(t)), (14)
x® wte{C,,Cs,C3}
Pg . Z(t+1) =
arg min L(XETD WDz p®)y (15)
ZMWeCy

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



and updating the dual variables as follows:

gD =y D S vie T (16)
Here, problem Ps involves the actual resource orchestration
for all slices, under the given auxiliary and dual variables
in the last iteration. Then, problem Ps relates to the update
of auxiliary variables, depending on the optimized orches-
tration actions of problem P,. Next, dual variables can be
updated with the optimized orchestration actions and auxiliary
variables. This iteration continues until the convergence of
variables.

B. The Design of Coordinator

In the context of the AdaSlicing system, we centralize the
solving of problem Ps; and the update of dual variables into
the coordinator. Specifically, we rewrite the problem P as

2
Py X A
st.  0< Ziez A < H, (18)

where the first part of augmented Lagrangian is irrelevant to
this optimization of auxiliary variables and thus omitted. We
observe that this problem P, is a standard quadratic integer
programming problem, which is convex. Hence, we can utilize
the off-the-shelf optimization toolbox to efficient solve it, such
as CVX [16], [17]. By solving problem P,, we obtain the
updated auxiliary variables Z(*+1) and then update the dual
variables accordingly.

C. The Design of Learning Agents

In the context of the AdaSlicing system, we solve the problem
‘P52 in these learning agents. This is based on the observation
that, the problem Ps is fully separable with respect to each
slice, where the optimization of xl(t) can be fully conducted
in the ¢-th slice without any connections with other slices. For
the sake of simplicity, we re-express the problem Py into the

following child problem Ps in the ith slice
2

Poi LB, U0+ 8= =20+ a9
st. Cl: f@”, w?s) > @, (20)
c2: o<w <1, 1)
c3: 0<a2<H, (22)

where all constraints are rewritten with respect to only the ith
slice. Due to the unknown and potential time-evolving perfor-
mance function in constraint C'1, it is challenging to solve the
problem with conventional optimization based methods, such
as linear and convex optimization [18].

Constrained Bayesian Optimization. Here, we design a
new constrained Bayesian optimization method to address
the above child problem Ps. Bayesian optimization [19],
[20] is the state-of-the-art global optimization framework,
and is particularly efficient in handling blackbox problems
with expensive querying costs. It is an iterative searching
process, including a probabilistic surrogate model and an
acquisition function. In each iteration, the surrogate model,
e.g., Gaussian process [21], is trained to approximate the

uncertainty of the black-box function, e.g., the performance
function of slices f(xgt),wl(t”sz(-t)), according to previous
experiences, e.g., orchestration-to-performance pairs. Then,
the acquisition function, e.g., expected improvement (EI) [22],
estimates the utility of different actions {mgt),wft)} while
balancing the exploration and exploitation. The next action
can be determined by maximizing the acquisition function,
under the boundary of action space (e.g., C2, C3). Along with
the accumulation of online experiences, the surrogate model
will be updated to be more accurate to represent the blackbox
function, which guides the selection of future orchestration
actions towards the optima.

Barrier Method. In the child problem Ps, its objective
function is deterministic with a closed-form expression, while
its constraint C1 is the unknown blackbox function. As vanilla
Bayesian optimization hardly handle complex constraints (i.e.,
C1), we use the barrier method [18] to convert the child
problem Ps into unconstrained one. Specifically, we add a
penalty function to the objective function, and rewrite the child

problem P5 as
2

P + ¢

. : ) , P ‘
P : {I(t)zlgltr)lﬁm} U,” + 5
st. C2,03, (23)
where ¢; = —log(—(Q; — f(xgt),wgt”sgt))) is the log barrier
penalty.

xgt) . Zi(t) + yt(f)

Gaussian Process. We adopt Gaussian Process (GP) as the
surrogate model to approximate the time-evolving perfor-
mance function of the slice, which is based on its superior
advantages of sample efficiency and robustness. Gaussian Pro-
cess [23] is a probabilistic, sample-efficient and wide-adopted
non-parametric machine learning technique. With slight abuse
of notation, we denote x = [xl(-t), wgt), 52”} as the combination
of the orchestration action of this slice and aggregated SW
of other slices. Gaussian Process can be defined by its mean
function m(x) and covariance function k(x,x’) as:

m(x) = E[f(x)], (24)

k(x,X') = E[(f(x) = m(x)(f(x) = m(x))], (25)

where f(x) represents the unknown performance function of

the slice to learn (i.e., f(:cl(lt)7 wgt)|s§t))). Here, k is the kernel

function, which determines the smoothness and other proper-

ties of the functions drawn from the Gaussian Process. For any

new input x*, GP can generate in a normal distribution, with

its mean denoted by s (x*) and its variance by o?(x*), which

will be utilized by the acquisition function when selecting the
next action.

To track the potential time-evolving performance function
of slices, we introduce a fixed-size reply buffer for the GP
during the online orchestration. Instead of using all observed
experiences, we regress the GP by sampling experiences from
the reply buffer, based on the priority of experiences. When
a new online experience is obtained, it will be queued into
the reply buffer with the highest sampling priority. Note that,
we decay the priority of an experience according to its age-
of-information, which will make the latest experiences to be

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



[72) 0‘
§ 2 Used svRBs
E 6l — Orchestrated svRBs I
5]
5 41
E 27
z
0 200 400 600 800
Time (s)

Fig. 2. An example of runtime utilization of vRBs under different
applications. Here, we run mixed applications before 400s, only
watch live video in [400s, 600s], and then perform speedtest.
sampled more frequently. If the reply buffer is full, the oldest
experience will be removed, which helps to track the time-
evolving performance function of slices. In the meantime, the
fixed size of the reply buffer ensures that the computation
complexity of GP regression is constant and can be performed
in real-time.

Acquisition Function. For the acquisition function, there
is a wide range of candidates, such as lower confidence
bound (LCB), expected improvement (EI), and probability
of improvement (PI). For example, EI aims to maximize
the expected improvement under to-date observations, while
balancing the exploration and exploitation. However, existing
works [24], [25] show that acquisition functions may fall into
local optima under different blackbox functions, i.e., there
is no one-fit-all acquisition function. Hence, we adopt the
gp_hedge [25] strategy in the AdaSlicing system. Its basic
idea is to dynamically choose one of the candidate acquisi-
tion functions during the iterations of Bayesian optimization.
The selection of acquisition functions is optimized by using
an online multi-armed bandit algorithm, which demonstrated
promising performance compared to individual fixed acquisi-
tion functions.

V. SOFT-ISOLATED RAN VIRTUALIZATION

In this section, we introduce the soft-isolated RAN virtualiza-
tion in the AdaSlicing system.

RAN virtualization is the foundation of network slicing
technique to virtualize physical infrastructures (e.g., base sta-
tions) into virtual radio resources (e.g., VRBs) and implement
virtual resources at runtime. During online resource orches-
tration, these virtual resources can be flexibly orchestrated to
different network slices periodically (e.g., every minute or hour
in conventional networks). At runtime, virtual resources of
slices will be mapped to physical resources (e.g., PRBs/RBGs)
by using virtual-to-physical mapping [26], [27], [28]. With the
mapped physical resources, each slice will conduct its intra-
slice user scheduling in every millisecond. The objective of
RAN virtualization is to achieve high isolation (e.g., resource)
and low overhead (e.g., computation). On the one hand, high
isolation ensures that virtual resources are isolated with each
other, and thus provides performance isolation among slices.
Here, we denote RAN virtualization as hard isolated when
virtual resources are only exclusively mapped to physical
resources, e.g., a VRB always corresponds to a set of PRBs in
the MAC layer. On the other hand, low overhead ensures that
the implementation of virtual resources can be performed at a

[svRB, SW] [svRB, SW] [sVRB, SW

RICs (Slice 1] (Slice2]  SliceN

slice 2

1slice 1

1slice 3| slice 4

1 final vRBs

|
]
[ vSharing Layer ]
]

MAC [ Virtual-to-Physical Mapping
RBGs

4 (stice 1] stice2] - [stice N]

1
1
1
1
1
|
1
/]
I
1
1
1
1
!
]
|
I

slice 1 slice 2 | slice 3 sl‘ice 4

Fig. 3. The architecture of soft- Fig. 4. An example of soft-isolated
isolated RAN virtualization. RAN virtualization.

minimal computation time.

In the context of open radio access networks (e.g., O-RAN),
the virtual resources of network slices can be orchestrated in
fine time granularity (e.g., as low as subseconds via near-
RT RIC) to better track their time-varying traffic variations.
However, we observe that the orchestrated virtual resources
of slices are usually under-utilized in the scenario of hard-
isolated RAN virtualization. Fig. 2 shows the number of vRB
utilization of a network slice under different virtual resources
and slice applications in a mobile network testbed. It can be
seen that, the orchestrated vRBs are not fully utilized due to
different patterns of slice traffic, where only active speedtest
may saturate the orchestrated vRBs. This resource under-
utilization can be attributed to 1) slices are usually orchestrated
to have sufficient virtual resources to accommodate their peak
traffic until the next orchestration slot; 2) their virtual resources
are exclusively mapped and cannot be shared with other slices,
even if they are not fully used at runtime.

Therefore, we propose a soft-isolated RAN virtualization, as
shown in Fig. 3, to improve the runtime utilization of virtual
resources while assuring their isolation. Soft-isolation also
serves as an enabler for the 3GPP-defined network resource
model [29], which is considered the de facto standard for
RAN slice resource management. The key idea is to enable
the sharing of unused virtual resources among slices, before
the virtual-to-physical mapping, at runtime. Specifically, we
design a new virtual resource sharing (vSharing) layer to share
expectantly excessive virtual resources among slices, where
the inputs are the orchestration action of all slices and the
outputs are the number of VRBs of all slices. First, we create
two new kinds of virtual resources, including soft-isolated
virtual resource blocks (svRBs) and sharing weights (SWs).
Here, we assume that a virtual resource block (vRB) always
corresponds to a fixed set of physical resources, i.e., one
downlink resource block group (RBG) and one uplink physical
resource block (PRB), in the virtual-to-physical mapping.
Second, based on the orchestrated number of svRBs of each
slice, we estimate the expectantly needed number of vRBs
for intra-slice user scheduling, as illustrated in Fig. 4. This
can be determined by aggregating all user traffic (e.g., as
stored in the per-user RLC buffer) associated with a given
slice. Third, we determine the total number of unused vRBs
of all slices and build a vRB pool, where we skip these slices
whose expectantly needed vRBs exceed their orchestrated
svRBs. Fourth, we proportionally share the vRB pool to these
slices with overflowed user traffic, according to their SWs.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



Thus, we can obtain the final number of vRBs for all slices,
including 1) for slices with overflowed traffic: summing up
their orchestrated svRBs and the shared unused vRBs; 2)
for slices without overflowed traffic: their expectantly needed
vRBs. Finally, the virtual-to-physical mapping will be invoked
to map the final vRBs of slices to physical resources (i.e.,
PRBs and RBGs).

VI. SYSTEM IMPLEMENTATION

In this section, we describe the testbed implementation of
the AdaSlicing system, including hardware, software, and
architecture, and introduce the application of slices.

A. Testbed Specifications

We implement the AdaSlicing system on an end-to-end net-
work slicing testbed, including the radio access network, core
network, and near-real-time RIC, as illustrated in Fig. 5. We
implement the RAN by using OpenAirlnterface (OAI) [30]
(v2022.41). The RAN is hosted in an Intel i7-14700K desktop
(64G RAM) with a low-latency kernel of Ubuntu 22.04, which
connects an Ettus USRP B210 as the RF front-end. We operate
the base station at band 7 with 10MHz radio bandwidth
(i.e., 50 physical resource blocks). We use a Faraday cage to
containerize all smartphones for eliminating other radio inter-
ference. We implement the CN with Open5GS [31] (v2.7.0),
which is hosted in another Intel i7-10700 desktop (32G RAM).
The RAN and CN is connected with 1Gbps Ethernet cable. We
implement the near-RT RIC with FlexRIC [26] (v1.0.0), which
supports 4G slicing capability. We implement the AdaOrch
algorithm with Python 3.11, which runs on the CN desktop.
We adopt the scikit-optimize (v0.10.1) with the Gaussian Pro-
cess estimator, which relies on the GaussianProcessRegressor
module in sklearn toolkit [32]. Detailed testbed specifications
are listed in Table 1.

B. Slice Applications

We implemented an Android application® for each slice. As
AdaSlicing focuses on inter-slice resource allocation, we use
only one smartphone as the mobile user for each slice, for the
sake of tractability. It is basically a video streaming application
(downlink heavy), where the edge server (collocated in CN
desktop) continuously sends video frames to individual mobile
users. Note that, we change the application parameters for each

3 AdaSlicing is fully compatible with other slice applications, as long as the
near-RT RIC can periodically retrieve the performance of individual slices.

TABLE I
THE DETAILED TESTBED SPECIFICATIONS.

Component Hardware Software
Core Network Intel Core i7-10700 Desktop Open5GS
Open RAN Intel Core 17-14700K Desktop | OpenAirlnterface
SDR Ettus USRP B210 UHD v4.5.0.0
Near-RT RIC | Intel Core i7-14700K Desktop FlexRIC v1.0.0
UEs OnePlus 9 5G Andriod 11

slice (but unknown to AdaSlicing), in terms of the data size of
video frames. The performance metrics of slice applications
are 1) throughput and 2) frame-per-second, which are reported
to near-RT RIC every second.

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of the AdaSlicing system from different
perspectives. The goal is to answer the following questions: 1)
how does AdaSlicing perform as compared to state-of-the-art
network slicing systems? 2) how does AdaSlicing optimize
online resource allocation in detail? 3) how does the soft-
isolated RAN virtualization improve the resource utilization
of slices as compared to existing hard isolation? and 4) to
what extent, AdaSlicing can adapt to time-varying network
dynamics?

We compare AdaSlicing with the following systems:

« GBO: GBO uses a global Bayesian optimization to optimize
resource orchestration for all slices, under hard-isolated
RAN virtualization. To assure the SLA of slices, its ob-
jective is penalized by using the the barrier method if their
performance requirements are violated.

o Atlas: Atlas [5] is a state-of-the-art network slicing system,
under hard-isolated RAN virtualization. Atlas focuses on the
resource allocation of individual slices, which are optimized
by using a Bayesian optimization independently. As it does
not considered the resource capacity of infrastructures, we
slightly modify it to enforce a simple scaling if the resource
capacity is exceeded at runtime.

o ExSearch: Exhaustive search (ExSearch) uses the exhaus-
tive search method to optimize the network slicing, under
hard-isolated RAN virtualization, where it selects the action
with the minimal cost while satisfying the performance
requirement of all slices. Note that, it requires the whole
action-to-performance dataset to be available in advance,
which is impractical in real-world networks.

During the performance evaluation, we use the following
experiment parameters, which are generally selected based on
the realistic network capacity of the testbed. We create three
slices and each slice has one smartphone user. The perfor-
mance threshold of all slices @);,Vi € Z are 12 Megabits-
per-second (Mbps) throughput and 10 FPS. Without loss of
generality, we use Uy = 1,Us = 1 for weighting both
svRB and SW. We use different compression qualities of .jpg
in Android applications to stream their video frames to the
edge server. The maximum number of svRBs is H = 12,
where the minimum of 1 svRB is assigned to keep the slice
alive. In the GP, we utilize the Matern kernel and gp-hedge

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



141 \ — GBO
‘g 121 ExSearch
_: 10+ —— Atlas
;o 81 = AdaSlicing
6
0 2 4 6 § 10 12 14

Orchestration slots

Fig. 6. The convergence of total cost under systems.

o3
Q
20T B
:é 1.81 ExSearch
5 1.71
2161 ====__Atlas.
21 —— AdaSlicing
= L
1.3
£
Z

0 2 4 6 § 10 12 14
Orchestration slots

Fig. 7. The convergence of normalized performance under systems.

strategy includes expected improvement (EI), probability of
improvement (PI), and low confidence bound (LCB).

A. Overall Performance

In this subsection, we show the overall performance (i.e.,
total cost and slice performance) achieved by all systems.
Fig. 6 and Fig. 7 show the convergence of total cost and
normalized performance obtained by different systems, re-
spectively. Here, we define the normalized performance of a
slice as the ratio between its performance f(x;,w;|s;) and
the threshold @);, where multiple performance metrics will be
averaged if applicable. We can see that, AdaSlicing achieves
a fast convergence speed with only 5 iterations. This can
be attributed to the high sample efficiency of individualized
learning agents and the strong robustness of the coordinator in
AdaSlicing. Table II shows the numerical results of the cost
and slice performance after the convergence of all systems.
We can see that, AdaSlicing obtains the lowest cost with the
highest normalized performance at the same time, among all
systems. As compared to the state-of-the-art Atlas, AdaSlicing
reduces 64.2% cost, particularly the needed number of svRBs
is reduced by 66.7%, and also improves 45.5% normalized
performance in the meantime. In other words, although other
comparison systems use more virtual resources (i.e., sSVRBs),
their achieved normalized performances are still lower than
that of AdaSlicing. This can be attribute to the soft-isolated
RAN virtualization in AdaSlicing, which justifies the necessity
of sharing virtual resources among slices at runtime.

B. AdaSlicing Dissection

In this subsection, we dissect the AdaSlicing system to show
the details behind its achieved performance in Table II. First,
Fig. 8 shows the convergence curve of overall cost, and
that of all three agents in the 4th orchestration slot. It can
be seen that, the overall cost starts high and then quickly
decreases towards convergence. This is resulted from both the
initialization of auxiliary and dual variables in the coordina-
tor, and the inaccurate representation of learning agents in
their early stages. In AdaSlicing, all learning agents and the
coordinator will communicate to achieve the consensus and

20 o
184 —— Adaslicing Z 5 Learning agent 1
o N—"] ™\
0
161 0 5 10 15 20 25
Rounds
10
2 b 5 s
8 ] —
S 121 0
= 0 5 10 15 20 25
= 10 Rounds
=
8
61 10 15 20 25
Rounds
4
2

0 2 4 6 8 10 12 14
Orchestration slots

Fig. 8. The convergence of total cost in the AdaSlicing system (the red
curve), including three detailed convergence curves under constrained
Bayesian optimization (blue curves) at the 4-th orchestration slot.

&% 61 0.30
& 5] —— Slice 1 —— Slice 1
> . 0.251 .
& 41 Slice 2 Slice 2
S . Z 020 .
5 31 — Slice 3 2 — Slice 3
O
§ 2 0.15
Z 11, ; ; 0.10 1 ; ;
0 5 10 15 0 5 10 15
Orchestration slots Orchestration slots
0 2 24
2 —— Slice 1 = —— Slice 1
g Slice 2 E; Slice 2
e — si el ——i
Z Slice 3 g Slice 3
=] =
a %
215 } ; <0y } ;
0 5 10 15 0 5 10 15

Orchestration slots Orchestration slots

Fig. 9. The convergence of detailed variables.

generate the optimal orchestration action in each orchestration
slot. Moreover, we design to reuse previous experiences in
individual learning agents to accelerate their convergence in
later orchestration slots, which can be observed in these
subplot curves of learning agents. Fig. 9 show the detailed
convergence of the orchestration actions, and these auxiliary
and dual variables. It can be seen that, after the initialization
of dual variables (-5), they are updated to be -2, and then
converges to be 0. This is because that, the optimized number
of svRBs by learning agents and the auxiliary variables are
exactly equivalent after the second orchestration slot, which
leads to no update to dual variables (See Eq. 16). These
convergence curves verify the effectiveness of the coordinator
in coordinating these learning agents in AdaSlicing.

C. Soft-Isolated RAN Virtualization

In this subsection, we evaluate the soft-isolated RAN virtu-
alization in AdaSlicing, as compared to existing hard-isolated
solutions. Here, we create two test slices, each has one mobile
user, where we measure the throughput by simultaneously
starting the online speedtest tool for both slice users. Fig. 10
shows the experienced throughput of two slices under both
soft-isolated and hard-isolated RAN virtualization. In both
experiments, slice O and 1 are assigned with [7 RBGs/svRBs,
0.2 SW] and [5 RBGs/svRBs, 0.1 SW], respectively. It can be
seen that, under hard-isolated RAN virtualization (i.e., the top
figure), the experienced throughput of both slices are static
and generally proportional to their orchestrated number of

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



TABLE II
DETAILED CONVERGED ORCHESTRATION OF ALL SYSTEMS.

Methods Cost  Individual cost svRBs SW Normalized Performance Throughput (Mbps) FPS
GBO 12 (1, 5, 6) (1, 5, 6) - 1.22 (4.40, 12.40, 14.16) (16, 18, 12)
ExSearch 12 4,4, 4) 4,4, 4) - 1.23 (10.24, 10.24, 10.24) (20, 17, 11)
Atlas 12 4, 4, 4) 4, 4, 4) - 1.23 (10.24, 10.24, 10.24) (20, 17, 11)
AdaSlicing | 4.3 11,2111 @1,2,1) (0.1,0.1,0.1) 1.79 (17.04, 18.40, 16.80) (27, 22, 15)
235 12.5 - —
§ 3(5) —_— Sl%ce 0 _ 100 B GBO
g 201 Slice 1 § 75 ExSearch
£151 = B Atlas
23 /_V\ /f—\ g ;2 B AdaSlicing
£ 0l :

0 20 40 60 80 100 120
Time (second)

2 351 ==

230 —— Slice 0

2 251 St

4520, 1ce

AN } 1 / A

g s \ [

= 01

= T T T T T T T
0 20 40 60 80 100 120

Time (second)

Fig. 10. The experienced downlink throughput under the hard-isolated
(top) vs soft-isolated (bottom) RAN virtualization.

L 12
2104 [0 py EA Slice0 Ead Slicel
7 81 [ E o
G
=} 64 e o o
2
g 44 c’c 0o oo
E 24 o o o
Z= P O p O O]

0.1 02 03 04 05

SW of Slice 0

Fig. 11. The impact of SW in sharing virtual resources. Here, the
read line in each bar is the originally assigned number of svRBs.
RBGs. In contrast, under soft-isolated RAN virtualization (i.e.,
the button figure), the experienced throughput of both slices
are increased, which attributes to unused virtual resources in
the RAN. Besides, the additionally gained throughput of slice
0 is nearly twice than that of slice 1, which proportionally
corresponds to their SWs. At the later part of the bottom
figure (i.e., 62 seconds), we only start the speedtest in the
slice 0. We can see that, its experienced throughput soars up
to 33.6 Mbps, which means it enjoys basically all the virtual
resources from slice 1 and any other unused resources in RAN.
Fig. 11 further shows the impact of different SWs in sharing
the virtual resources among slices. Here, we fix the SW of
the slice 1 as 0.3, and assign slice 0 and 1 with 4 and 6
svRBs, respectively. Given the total 16 svRBs in I0MHz RAN,
there are 6 svRBs remained unused, which will be shared by
slice 0 and 1. We can see that, the higher SW in the slice 0,
its experienced number of svRBs increases accordingly. For
example, when the SW of slice 0 is 0.2, it shares 40% from
the unused 6 svRBs, i.e., 2.4 svRBs, which is grounded to
be 2 svRBs. These results show that, the soft-isolated RAN
virtualization can assure the isolation among virtual resources,
while improving the resource utilization at runtime.

D. Scalability and Adaptability

In this subsection, we evaluate the AdaSlicing system under
different scenarios, in terms of scalability and adaptability.

1 2 3 4 5
Number of slices

Fig. 12. The total cost under different number of slices.

- GBO ExSearch = Atlas = AdaSlicing

Total cost

S

0

8 \

61 iSlice disconnected|
4

R

| Slice reconnected

0 5 10 15 20 25 30
Orchestration slots

Fig. 13. The total cost under time-varying network dynamics.

- GBO ExSearch = Atlas = AdaSlicing

/

Slice disconnected

>~

| Slice reconnected i|

Normalized performance

et 1 et e e 1t D
Dwhruoaaxoo

0 5 10 15 20 25 30
Orchestration slots

Fig. 14. The normalized performance under time-varying dynamics.

Fig. 12 shows the total cost of all systems under different num-
ber of slices (there are a maximum 5 slices due to the limited
capacity of the testbed). As the number of slices increases
in RAN, the more virtual resources are needed to support
their users under the slice SLAs. We can see that, AdaSlicing
can achieve the lowest total cost under all scenarios, which
verifies the high scalability of AdaSlicing in handling large
scale network slicing scenarios. Here, the total cost of other
systems reach to the maximum svRBs in the system, while
their normalized performances are decreased up to 53.9%, if
supporting more than 3 slices. Fig. 13 and Fig. 14 show the
convergence of total cost and normalized performance under
time-varying number of active slices. Here, we disconnect slice
3 at the 10th orchestration slots and re-connect it back at the
20th orchestration slots, to emulate the network dynamics. It
can be seen that, AdaSlicing quickly adapts to the departure
of slice 3 within only one orchestration slot, where the total
cost is reduced by 25.6 % while improving 12.8 % normalized
performance. This is achieved by adaptively coordinating these
auxiliary and dual variables in the coordinator in AdaSlicing.
As slice 3 is reconnected, AdaSlicing can also adapt and
converge back to the optima in a few orchestration slots. In
contrast, GBO is designed to accommodate the peak traffic

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



- GBO ExSearch = Atlas = AdaSlicing

14
12

27
s \ \
g8 ;
= 6 Request higher Request lower
4 performance performance
0 5 10 s 20 25 30

Orchestration slots
Fig. 15. The total cost under changing slice demands.

"— GBO ExSearch = Atlas = AdaSlicing
o
Q
534
£22
< 2.0
218
3 16
N 14 ) .
=12 Request higher Request lower
£ 1.0 performance performance
208

0 5 10 15 20 25 30

Orchestration slots

Fig. 16. The normalized performance under changing slice demands.

of slices, its total cost cannot be adapted to time-varying
network dynamics. In addition, Fig. 15 and Fig. 16 show the
total cost and normalized performance of all systems under
time-varying performance threshold of slices. Here, we set the
threshold of slices as [8Mbps, 10FPS], and increase them to
[20Mbps, 1SFPS] at the 10th orchestration slot, and reset it
back at the 20th orchestration slot. We can see that, AdaSlicing
can quickly adapt to this change in a few orchestration slots,
by orchestrating more virtual resources to slices. Here, the
decrease of normalized performance in Fig. 16 is because
we divide the slice performance by the increased threshold.
These experimental results justify the high adaptability of
AdaSlicing, in terms of reacting to time-varying network
dynamics in real-world networks.

VIII. RELATED WORK

Open Radio Access Network. Open RAN has shown the
increasing momentum in revolutionizing and defining the next
generation mobile network [33]. FlexRIC [26] is an open-
source flexible and efficient software development kit (SDK),
and has been gradually adopted to build specialized and multi-
service SD-RAN controllers. HexRIC [28] is a purpose-built
next-generation network controller for the O-RAN ecosystem,
featuring with the robust messaging infrastructure and AI/ML
operation framework under the architecture of separated con-
trol and user plane. ColO-RAN [34] is the first publicly-
available large-scale O-RAN testing framework, that is devel-
oped based on the Colosseum wireless network emulator with
scaled software-defined radio and computational capabilities.
Open RAN initiatives create unlimited possibilities in next-
generation mobile network (e.g., rApps, XApps, dApps), where
advanced AI/ML techniques are necessitated to handle ever-
increasing complex fine-grained network management.
Machine Learning for Networking. AI/ML techniques
have revealed convincing potential in dealing with complex
and time-correlated network systems. To assure the SLA
of end-to-end slices, Liu er al. proposed EdgeSlice [35], a
decentralized deep reinforcement learning (DRL) approach,
to dynamically orchestrate multi-domain radio and computing

resources. To support increasing computing and storage de-
mand of O-RAN compliant networks, Maxenti et al. proposed
ScalO-RAN [36], a control framework to allocate and scale O-
RAN applications under the given application-specific latency
requirement. To facilitate spectrum sharing among network
operators in O-RAN compliant networks, Bonati et al. pro-
posed NeutRAN [37], a zero-touch framework to automate
operator onboarding, supported by a new optimization engine
and fully virtualized infrastructure. OrchestRAN [38] is a net-
work intelligence orchestration framework towards the Open
RAN paradigm, and aims to automatically optimize the set of
data-driven algorithms while assuring time requirements and
avoiding conflicts. Most policies of existing AI/ML-assisted
network managements are trained with offline environments
(e.g., simulators) or limited online data observation from
real-world networks. Recent observations revealed that offline
policies could suffer from simulation-to-reality discrepancy,
leading to non-trivial performance degradation when applied
to real-world networks.

Online Network Management. To address the simulation-
to-reality gap, Zhang et al. [39] proposed OnRL to online
update the DRL policy via interacting with real-world net-
works, to improve the performance of real-time mobile video
telephony. To enable online network configuration in wireless
mesh networks (WMNs), Shi et al. [7] proposed a new transfer
learning-based algorithm that bridges the simulation-to-reality
gap, according to both offline and online datasets. Hu ez
al. [40] proposed a new neural-assisted algorithm to optimize
radio resources to slices, by introducing a DNN to approximate
the complex performance function of heterogeneous slices. Liu
et al. [S] proposed Atlas, an online network slicing system,
to automate the service configuration of slices with assured
slice SLAs, via safe and sample-efficient learn-to-configure
approaches. However, these online learning works heavily rely
on parameterized DNN agents with fixed input and output
spaces, and cannot efficiently adapt to potential time-varying
network dynamics in real-world networks.

IX. CONCLUSION

In this paper, we presented AdaSlicing, a new adaptive net-
work slicing system, that online learns to orchestrate virtual
resources while efficiently adapting to time-varying network
dynamics. We designed the soft-isolated RAN virtualization
that significantly improves the virtual resource utilization of
slices without breaking the promise of resource isolation.
We designed the AdaOrch algorithm that minimizes the total
operating cost of supporting all slices with assured slice SLAs,
via online resource orchestration. We found that the integra-
tion of AI/ML techniques and optimization methods could
combine their individual advantages (e.g., high approximation
capability and robust convergence) during online resource
orchestration in real-world networks.

ACKNOWLEDGEMENT

This work is supported by the US National Science Foundation
under Grant No. 2321699, No. 2333164, and No. 2428427.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



[1]

[2

—

[3

—

[4]

[5]

[6]

[7

—

[8]

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

REFERENCES

H. Bagheri, M. Noor-A-Rahim, Z. Liu, H. Lee, D. Pesch, K. Moessner,
and P. Xiao, “5g nr-v2x: Toward connected and cooperative autonomous
driving,” IEEE Communications Standards Magazine, vol. 5, no. 1, pp.
48-54, 2021.

Y. Guan, X. Hou, N. Wu, B. Han, and T. Han, “Deepmix: mobility-
aware, lightweight, and hybrid 3d object detection for headsets,” in
Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, ser. MobiSys ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 28-41. [Online].
Available: https://doi.org/10.1145/3498361.3538945

T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 4, pp. 2462-2488, 2020.

Q. Liu, N. Choi, and T. Han, “OnSlicing: online end-to-end net-
work slicing with reinforcement learning,” in Proceedings of the 17th
International Conference on emerging Networking EXperiments and
Technologies, 2021, pp. 141-153.

——, “Atlas: automate online service configuration in network slicing,”
in Proceedings of the 18th International Conference on emerging
Networking EXperiments and Technologies, 2022, pp. 140-155.

C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should i slice my network? a multi-service empirical evaluation
of resource sharing efficiency,” in Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, 2018,
pp. 191-206.

J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh network con-
figuration from simulation to reality via deep learning based domain
adaptation,” in NSDI, 2021, pp. 887-901.

J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez, “Overbooking network slices through yield-driven end-
to-end orchestration,” in Proceedings of the 14th International Confer-
ence on emerging Networking EXperiments and Technologies, 2018, pp.
353-365.

0O.-R. ALLIANCE, “O-ran alliance,” June 2022 [Online]. [Online].
Available: https://www.o-ran.org/

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding o-ran: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Communications Surveys & Tutorials, 2023.
S. Azimeh, V. Csaba, and G. Markus, “UNEXT — A unified networking
experience,” Nokia Bell Labs, White Paper, 2023.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436444, 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,” in
Proceedings of the ACM special interest group on data communication,
2019, pp. 270-288.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1-122, 2011.

S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1-5, 2016.

A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting
system for convex optimization problems,” Journal of Control and
Decision, vol. 5, no. 1, pp. 42-60, 2018.

S. Boyd and L. Vandenberghe, “Convex optimization, 25 cambridge
university press,” Cambridge, England, 2010.

P. 1. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
school on machine learning. Springer, 2003, pp. 63-71.

E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active

(23]

[24]

[25]

[26]

[27]

[28]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

C. Williams and C. Rasmussen, “Gaussian processes for regression,”
Advances in neural information processing systems, vol. 8, 1995.

T. d. P. Vasconcelos, D. A. de Souza, C. L. Mattos, and J. P. Gomes,
“No-past-bo: Normalized portfolio allocation strategy for bayesian op-
timization,” in 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI). 1EEE, 2019, pp. 561-568.

M. Hoffman, E. Brochu, N. De Freitas et al., “Portfolio allocation for
bayesian optimization,” in UAI, 2011, pp. 327-336.

R. Schmidt, M. Irazabal, and N. Nikaein, “Flexric: An sdk for next-
generation sd-rans,” in Proceedings of the 17th International Conference
on emerging Networking EXperiments and Technologies, 2021, pp. 411—
425.

Q. Liu and T. Han, “Virtualedge: Multi-domain resource orchestra-
tion and virtualization in cellular edge computing,” in Proceedings of
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 1051-1060.

V.-Q. Pham, H.-T. Thieu, A. Kak, and N. Choi, “Hexric: Building a
better near-real time network controller for the open ran ecosystem,” in
Proceedings of the 24th International Workshop on Mobile Computing
Systems and Applications, 2023, pp. 15-21.

3rd Generation Partnership Project (3GPP), “5G; Management and
orchestration; 5G Network Resource Model (NRM),” Technical Speci-
fication (TS) 28.541, May 2024, release 18.7.0.
OpenAirInterface Software Alliance.
https://gitlab.eurecom.fr/oai/openairinterface5g
Open5GS. [Online]. Available: https://github.com/openSgs/openSgs

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

A. Kak, H.-T. Thieu, V.-Q. Pham, R. K. Sheshadri, N. Choi, Y. Guan,
M. Yin, and T. Han, “Aweran: Making a case for application-aware radio
access network slicing,” in Proceedings of the 17th ACM Workshop on
Wireless Network Testbeds, Experimental evaluation & Characteriza-
tion, 2023, pp. 41-48.

M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-
ran: Developing machine learning-based xapps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions
on Mobile Computing, vol. 22, no. 10, pp. 5787-5800, 2022.

Q. Liu, T. Han, and E. Moges, “Edgeslice: Slicing wireless edge
computing network with decentralized deep reinforcement learning,”
in Proceedings of IEEE 40th International Conference on Distributed
Computing Systems (ICDCS), 2020, pp. 234-244.

S. Maxenti, S. D’Oro, L. Bonati, M. Polese, A. Capone, and T. Melodia,
“Scalo-ran: Energy-aware network intelligence scaling in open ran,”
arXiv preprint arXiv:2312.05096, 2023.

L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Neutran:
An open ran neutral host architecture for zero-touch ran and spectrum
sharing,” IEEE Transactions on Mobile Computing, 2023.

S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “Orchestran: Orchestrat-
ing network intelligence in the open ran,” IEEE Transactions on Mobile
Computing, 2023.

H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,
and X. Chen, “Onrl: improving mobile video telephony via online
reinforcement learning,” in MobiCom, 2020, pp. 1-14.

T. Hu, Q. Liao, Q. Liu, A. Massaro, and G. Carle, “Fast and scalable
network slicing by integrating deep learning with lagrangian methods,”
in GLOBECOM 2023-2023 IEEE Global Communications Conference.
IEEE, 2023, pp. 6346-6351.

[Online]. Available:

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on September 01,2025 at 13:58:16 UTC from |IEEE Xplore. Restrictions apply.



