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Abstract

We present a new approach for nonlinear dimensionality reduction, specifically designed
for computationally expensive mathematical models. We leverage autoencoders to
discover a one-dimensional neural active manifold (NeurAM) capturing the model
output variability, plus a simultaneously learnt surrogate model with inputs on this
manifold. The proposed dimensionality reduction framework can then be applied
to perform outer loop many-query tasks, like sensitivity analysis and uncertainty
propagation. In particular, we prove, both theoretically under idealized conditions, and
numerically in challenging test cases, how NeurAM can be used to obtain multifidelity
sampling estimators with reduced variance by sampling the models on the discovered
low-dimensional and shared manifold among models. Several numerical examples
illustrate the main features of the proposed dimensionality reduction strategy, and
highlight its advantages with respect to existing approaches in the literature.

Keywords. autoencoders, dimensionality reduction, multifidelity estimators, sensitivity
analysis, surrogate modeling, uncertainty quantification.

1 Introduction

Mathematical modeling has become an indispensable tool to understand real-world phenom-
ena in physics, engineering, and social sciences [26,29]. Mathematical models depend on
parameters that might be unknown and/or uncertain. As the computational models become
more complex, quantification of predictive uncertainty plays an increasingly important role
to fully assess the validity and accuracy of the results they provide. However, standard
techniques for uncertainty quantification (UQ), such as Monte Carlo methods, require
a large number of samples to reliably estimate the statistical moments (e.g., mean and
variance) of the stochastic response, and reaching high precision can be unfeasible if the
model is computationally expensive. Moreover, if the number of input parameters of the
model increases, most methods suffer from the curse of dimensionality, meaning that the
complexity of the estimation task grows exponentially with the dimensionality, making the
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uncertainty quantification problem intractable [18]. In uncertainty quantification, as in any
other many-query workflows such as optimization, global sensitivity analysis, and design,
dimensionality reduction techniques become crucial. Dimensionality reduction offers a
powerful approach to alleviate the computational cost of workflows that need to query the
model numerous times, e.g., uncertainty quantification, by reducing the number of model
parameters while preserving the main output features. Moreover, some mathematical
models can be overparameterized, and reducing the dimensionality can help to capture
the most relevant information, while disregarding redundant variables or unimportant
combinations thereof.

Overviews of dimensionality reduction strategies can be found in, e.g., [8,21]. We mention, in
particular, two recent approaches related to sliced inverse regression [14,25] that motivated
our work. Active subspaces (AS) was first proposed to determine linear low-dimensional
subspaces of maximum model variance in [35], and then thoroughly analyzed in [10,12].
The active directions of a model consist of the eigenvectors corresponding to the largest
eigenvalues from the expected gradient covariance matrix. AS have been demonstrated in
numerous contexts and applications including Bayesian inverse problems [13], sensitivity
analysis [11], and multifidelity dimensionality reduction [23]. The main limitation of AS,
inherited from its linear character, is that it only captures the model variation on average,
and, therefore, the existence of a lower dimensional manifold cannot be guaranteed [7]. A
second approach called active manifolds (AM) [7] overcomes some of the limitations of
AS. This approach is based on a local construction of level sets which approximates any
continuously differentiable multi-dimensional function using a surrogate defined over a one-
dimensional manifold, obtained through a non linear transformation. The main advantages
of AM over AS are that they always provide a one-dimensional reduced manifold, give a
more accurate surrogate, and enable more informative sensitivity analysis. Unfortunately,
as discussed in [7], the geometric nature of the AM algorithm requires that the function’s
level sets are fully contained in the original domain of the function. Indeed, the hypothesis of
AM is that any arbitrary multi-dimensional C! function can be related to a one-dimensional
C! counterpart where each point of the function in the original space is mapped to a
point on the one-dimensional AM moving tangentially to the corresponding level set. As
a consequence, if a point lies on a level set that leaves the domain, it is impossible to
map it to the AM. Additionally, both AS and AM methods require the computation of
the model output gradient, which is often unavailable for complex scientific codes, or
computationally expensive to approximate for high-dimensional problems. We note that
alternative approaches like the so-called Adaptive Basis [40,45] are able to overcome
the need for gradients by relying on the construction of a first order polynomial chaos
surrogate [24]. However, since this approach is still limited to the identification of a linear
manifold, in the rest of the paper we only consider AS as representative of both methods.

In this work we propose a novel methodology inspired by AM, that does not rely on the
gradient of the model, and discovers a transformation from the original input space to a
one-dimensional nonlinear manifold without being restricted by level sets. We call this
methodology neural active manifolds (NeurAM). Our approach is based on autoencoders [2],
a well established approach for unsupervised dimensionality reduction with neural networks.
The architecture consists of an encoder, which maps the input into a lower-dimensional
latent space, and a decoder, which maps points from the latent space back to the original
input space. Classic autoencoders for usupervised tasks have been used in [5] to determined
active manifolds that are then employed to accelerate multidisciplinary analysis and
optimization. This approach relies on a snapshot matrix built using an auxiliary cheaper



model. However, unlike unsupervised learning, where autoencoders are used to minimize
the reconstruction error, we are interested in determining a one-dimensional manifold in the
space of parameters capturing the entire variability of the model output. To do so, we design
a computational pipeline where a surrogate model with inputs on a one-dimensional latent
space is leveraged by the autoencoder to identify the manifold on which the representation
of the function can be obtained with minimal error. This surrogate, which is parameterized
as a dense neural network, is trained at the same time as the autoencoder’s parameters,
defining the encoder and decoder.

The resulting one-dimensional surrogate computed by NeurAM can then be easily employed
for many-query tasks, like sensitivity analysis and uncertainty propagation. In particular,
we first show how to perform sensitivity analysis along the manifold and derive both local
and global indices for the input parameters with respect to a scalar output. Our indices, in
contrast to more classical indices, such as Sobol’ [38] and Borgonovo [32], are defined along
a one-dimensional manifold.

Then, we focus on the problem of uncertainty propagation, which can easily become
unfeasible for computationally expensive models. In order to mitigate this issue, multifidelity
estimators [4,19,28,30] rely on cheaper-to-evaluate, but correlated, low-fidelity models to
achieve variance reduction. The statistical correlation among models is directly related to
the attainable variance reduction, which corresponds to a greater estimator precision when
compared to a single fidelity Monte Carlo estimator with the same computational cost.
Therefore, for poorly correlated model pairs such as those characterized by a dissimilar
number of input parameters, methodologies to increase the correlation between the fidelities
have been recently proposed, and are based on approaches for linear dimensionality reduction
such as AS [16] and adaptive basis [43]. A first step towards the extension to nonlinear
dimensionality reduction using autoencoders is discussed in [41,42]. Following this line of
work, we leverage NeurAM to enhance the performance of sampling multifidelity estimators,
complementing numerical test cases showing variance reduction of the resulting estimators
with a theoretical analysis under simplified assumptions. In particular, we demonstrate
that, under such assumptions, NeurAM provides new sampling locations, in the original
models’ inputs, that correspond to shared samples in the low-dimensional manifold leading
to a bi-fidelity correlation that is never smaller than the one produced by the original
samples. Importantly, we note that the approach proposed here could be directly leveraged
in the context of the multifidelity construction of surrogates, e.g., following recent work
discussed in [44]. For simplicity of exposure, in this manuscript, we limit the use of NeurAM
to the case of sampling estimators and we leave its integration with surrogate techniques
to a future study.

The main contributions of this work include:

¢ introducing an algorithm to learn a one-dimensional active manifold aided by a simulta-
neously trained surrogate model;

e proposing a way to leverage NeurAM for sensitivity analysis;

e showing how to use nonlinear dimensionality reduction to improve the correlation
between low- and high-fidelity models, and consequently to obtain multifidelity sampling
estimators of reduced variance;

e providing a theoretical result under specific assumptions, showing that the correlation
obtained from NeurAM is never smaller than the initial correlation.

The rest of the paper is organized as follows. In Section 2 we introduce NeurAM, and present



possible applications of our method in the field of uncertainty quantification in Section 3.
We then discuss sensitivity analysis in Section 3.1 and multifidelity uncertainty propagation
in Section 3.2. Then, in Section 4 we demonstrate the proposed approach on several
numerical examples of increasing complexity. Finally, conclusions and possible future
research directions are presented in Section 5.

2 Methodology

In this section we present our methodology to reduce the dimensionality of a computationally
expensive model @: R? — R with d > 1, and derive a one-dimensional surrogate. Let
us assume that we are given a set of N realizations {(x,, Q(z,))})_;, where the samples
{x,}N_, are drawn from an input distribution x. Using the notation of the autoencoders,
consider an encoder £: R? — R to reduce the dimensionality, and a decoder D: R — R? to
re-map a given sample to the original input space. A fundamental property of NeurAM is
that it aims to represent the entire variability of the model Q, therefore the encoder and
the decoder need to satisfy Q(z) ~ Q(D(E(x))); see also [41]. This implies that £ and D

can be obtained by minimizing the loss function
(€. D) = B* [(Q(X) — Q(D(EX))] . (2.1)

where the superscript denotes the fact that the expectation is computed with respect to
the measure p, i.e., X ~ p. In order to solve the minimization problem, the encoder
and the decoder need to be parameterized as £(-; ) and D(+;3), and the expectation
is approximated by its Monte Carlo approximation, yielding the discrete optimization
problem

1 N
a:5) = 37 2 (Qlen) = ADE(ai ) M) (22)

In practice, solving (2.2) without incurring additional model evaluations is not feasible. In
fact, any optimization algorithm, e.g., (stochastic) gradient descent, would require a new
evaluation of the model at D(E(zy; a); B8), for n =1,..., N, at each iteration.

To overcome this limitation, we propose to train a surrogate model S: R — R on the latent
space, and learn it simultaneously with the nonlinear transformation from the original
points in R? to the corresponding points in R on the neural active manifold. We generalize
the loss function in equation (2.1) to account for the surrogate contribution

L(E,D,S) = B" [(Q(X) — S(E(D(E(X)))))?]
+ B [(Q(X) — S(E(X)))?] (23)
+ B |(D(E(X)) - DEDEX))))?],

where the first term corresponds to the one in the original loss ¢ with the surrogate S defined
on the latent space replacing the full model, the second term refers to the error of the
surrogate model, and the third term enforces the fact that a point on the NeurAM (Z) must
be mapped in the point itself (%), i.e., the second part of the network in Figure 1, where a
schematic representation of the approach is provided, acts as a classical autoencoder. In
particular, we remark that we do not want to necessarily reconstruct all the original inputs,
i.e., D(E(x)) # x in general.



Figure 1: Schematic representation of the NeurAM architecture, where the symbols ~
are used to indicate the three terms in the loss function in equation (2.3).

We notice that the NeurAM is parameterized by the decoder D(t) for all ¢ in the interval

T = | min £(z), max £(z)| , (2.4)

and the one-dimensional analogue of the model Q on the manifold is given by &. Moreover,
this methodology provides a surrogate model Qg for Q defined as

Qs(x) = S(&()). (2.5)

The following result shows that the minimization problem with loss function (2.3) admits
a solution.

Proposition 2.1. The loss function L defined in (2.3) has at least one global minimizer.

Proof. First, notice that £ > 0. Then, define
=17 and & =9,
and set D* to be a right inverse of Q such that
QoD =1.

We remark that the right inverse exists if and only if the model Q is surjective, but it is
always possible to restrict the codomain of Q in order to make it surjective, since it maps
a d-dimensional domain into a one-dimensional one. We now notice that £(€*,D*,S8*) =0
independently of the measure u, and therefore (£€*, D*, §*) is a global minimizer of £. [

Remark 2.2. Proposition 2.1 gives the existence of a global minimizer of £, but does not
guarantee its uniqueness. In particular, it is possible to show that £ has multiple global
minimizers. First, from the proof of Proposition 2.1 notice that the choice of the right
inverse D* is not unique, since Q is not injective. Moreover, a family of minimizers could
be obtained by setting

S* = %I, E" =a0, (aQ)o D" =T,

for a parameter a € R, a # 0.



The solution provided by the proof of Proposition 2.1 is not useful from a practical point
of view, as it relies on the model Q, which is computationally expensive, and requires the
computation of its right inverse. Therefore, we consider the parameterized encoder &(-; a),
decoder D(+; 3), and surrogate model S(+;7), which are represented by neural networks,
and compute their optimal parameters by minimizing the approximated loss function

N
£(0,5:7) = 3 D2(Qan) = SE(D(E(as a); 5); @)i)?
n=1
1 N
t+ 5 2 (Qwn) = S(E(ania)iy))? (2:6)
n=1
N
4 Y (D(E (s 0); 5) — DIED(E (s 2)s B 0); )
n=1

In Algorithm 1 we summarize the main steps to construct a neural active manifold. The
closeness of the solution of the optimization problem to the global minimizer given in
Proposition 2.1 is dependent on the complexity of the model Q, the expressive power of
encoder and decoder, and the number IV of samples. Nevertheless, even if we cannot achieve
a loss function equal to zero in practice, in Section 4 we show that the NeurAM determined
by this procedure provides a valid representation of the model Q in one dimension.

Algorithm 1: NeurAM

Input: Model Q
Input distribution u
Number of samples N

Output: Neural active manifold D(t; 5*) for ¢ in T
Encoder £(+; a*) to obtain the latent space
Surrogate model S(-;7*) on the latent space
Surrogate model Qg of Q

1: Parameterize the encoder through a neural network £(-; ).

Parameterize the decoder through a neural network D(-; ).

Parameterize the surrogate model through a neural network S(-;7).

Draw the samples and evaluate the model to get {(xn, Q(x,)}N_; with z,, ~ pu.
Define the loss function /j(oz, B,7) given in equation (2.6).

Compute the optimal parameters (a*, f*,~v*) = arg min E(a, B,7).

Compute the domain of the neural active manifold 7 from equation (2.4).

Define the surrogate model Qg using equation (2.5).

Remark 2.3. Even if learning the NeurAM can be computationally expensive depending
on the complexity of the neural networks representing encoder £(-;a), decoder D(-; 3),
and surrogate model S(+;7y), the main advantages with respect to other techniques in the
literature, such as active subspaces [12] or active manifolds [7], are that the evaluation
of the gradient of the model V@ is never required and that we can identify a nonlinear



manifold described by an arbitrary transformation from the original space, regardless of the
function level sets. Moreover, we also train a surrogate model Qg without any additional
cost.

Remark 2.4. If the model Q is not defined on the whole space R?, but only on a domain
Q C R?, then we need to enforce the NeurAM to lie on Q. Hence, we need to impose the
codomain of the decoder D to be included in €. This constraint can be easily enforced from
the practical viewpoint if the domain is a box of the form 2 = ngl[ai, b;] with a; < b; for
alli=1,...,d, as it is usually the case in applications. Otherwise, if the input parameters
are correlated, one would need an invertible map h from the domain 2 to a simpler box or
to the whole space to decorrelate the variables. We leave the problem of determining such
a map, which could be done using, e.g., normalizing flows [20], for future work.

3 Application to uncertainty quantification

In this section we discuss possible applications of NeurAM in the field of uncertainty
quantification. In addition to providing a surrogate model, our methodology can be used
for sensitivity analysis. Moreover, the one-dimensional latent space can be employed
to enhance the performance of multifidelity estimators in the context of uncertainty
propagation.

3.1 Sensitivity analysis

Similar to AM [7], NeurAM can be used to perform a more informative sensitivity analysis
than AS [12]. By computing the derivatives of the surrogate model Qg with respect to the
input parameters along the NeurAM, we can perform local sensitivity analysis, and quantify
how the relevance, and consequently the identifiability, of each parameter varies along the
manifold, hence providing a dynamic ranking. In particular, consider the quantities A; for
all7=1,...,d defined as

2

1 0Qs
Ni(x) = T
@)= v as@P o @

and notice that they represent how much a single input parameter contributes to the
variation of the model. Therefore, by evaluating the quantities \; along the NeurAM, we
obtain a measure 6; of importance of each parameter that varies along the manifold, and
which is given by

Y

1
- 2
IVQs(D(®))l
where, by definition (2.5) and using the chain rule, we have

“2(D() = S'(E(DW) 5 (D),

with & being the derivative of the surrogate S with respect to the latent variable ¢. Note
that, from the practical point of view, the derivatives can be computed using automatic
differentiation. We also remark that the local indices sum up to one at all points in the
manifold, i.e., for all t € T

0Qs
Bz, (D(1))

0;(¢) . teT, (3.1)

> 6i(t) =1. (3.2)



Moreover, letting I' be the NeurAM, we can define global indices by integrating the dynamic
indices along the manifold as
1
0,=— / A dl,
7 ’F’ r 7

forall i =1,...,d, which give an overall ranking of the importance of the input parameters.

The line integrals can then be computed from the parameterization D of the manifold I"

yielding the indices

o _ b0 D) at
Z JrD'@de

where D’ stands for the derivative of the decoder D with respect to the latent variable ¢,
and which, due to the equality (3.2), satisfy

d
> e;=1
=1

These indices, depending on whether the input parameters are normalized or not, might be
sensitive to units. In fact, even if the variable ¢ € 7 describing the manifold is common for
all the parameters, the components of the output of the decoder D have the same units as
the inputs parameters of the model Q. It is therefore always important to first normalize
the dataset. We note that in this novel approach for sensitivity analysis based on a one-
dimensioanl reduction, both the local and global indices give a ranking for the relevance of
the input parameters without taking into account their interactions. Nevertheless, if one
is interested in extracting more information regarding the interaction between variables,
classic sensitivity indices, e.g., Sobol’, can also be computed at a minimal computational
cost by leveraging the surrogate model Qg provided by the NeurAM algorithm.

(3.3)

We finally remark that, even if we suggest to use the surrogate model Qg for sensitivity
analysis, we do not always expect Qg to be a perfect approximation of the original model Q.
This surrogate is indeed built with the main purpose of helping to determine the NeurAM.
Nevertheless, even if the error between Q and Qg is not negligible, the surrogate model can
still be useful for discovering an active manifold, and identifying the most relevant input
parameters through sensitivity analysis.

3.2 Multifidelity uncertainty propagation

Inspired by the works [41,42], neural active manifolds can be used to increase the cor-
relation between high-fidelity and low-fidelity models in the framework of multifidelity
uncertainty propagation. For sake of generality, we limit our analysis to multifidelity Monte
Carlo estimators [28] with a single low-fidelity model. Nevertheless, we remark that a
straightforward extension to other estimators, e.g., Approximate Control Variate [19] and
multiple low-fidelity sources, is also possible. We assume a computationally expensive
high-fidelity model Qupr: R¢ — R and a cheaper low-fidelity model Qpp: R — R, and
consider the problem of estimating the quantity

q = E*[Qur(X)],

for some probability distribution p on R?. We want to employ the multifidelity Monte
Carlo estimator introduced in [28]. Let w = Cyp/Crr be the cost ratio between the two
fidelities, and let B be the available computational budget given in terms of evaluations of
the high-fidelity model, i.e.,

B = Nur + wNpF,



where Nypr and Ny are the number of high-fidelity and low-fidelity evaluations, respectively.
By solving an optimal allocation problem, it is possible to split the total computational
budget between the high-fidelity and the low-fidelity models in such a way that the variance
of the resulting multifidelity Monte Carlo estimator is minimized [30]. In particular, the
solution of the allocation problem is given by

B B
d Nip = yNur =
1+ wy an LF = VIVHF 1+ wy’

Nup = with v =

w(l—p?)’
where p is the Pearson correlation coefficient between the high-fidelity and low-fidelity
models
_ Cov" (Qur(X), Qur (X))
v Vart[Qup (X)] Var” [Qrp (X))

After fixing the number of evaluations Nyp and Npp, we are now ready to define the
multifidelity Monte Carlo estimator

NHF NHF NLF
ZQHF (zn) — ( ZQLF Tn) _7ZQLF xn)7 (3.5)

(3.4)

where the coefficient [ is given by

Cov* (Qur(X), Qur(X))

= ) 3.6

5 Var# [QLF(X)} ( )

and the samples {xn} I are drawn from the distribution . We remark that the estimator
g is unbiased, i.e., E#[g ] = ¢, and that the correlation p in (3.4) and the coefficient § in

(3.6) can be estimated from a pilot sample {x,})_; with N < Npp. The performance of
the multifidelity Monte Carlo estimator, i.e., its variance, is strongly dependent on the
correlation p. In particular, we have

Vart [q] = EVar“ Our (X <\/:+ \/E)

which is a decreasing function in p? as long as p?> > w/(1 + w). Therefore, for a fixed
computational budget, the larger the correlation is in modulus, the smaller the variance is,
and consequently the estimation is more precise.

We now adopt the methodology introduced in [41] based on nonlinear dimensionality
reduction to increase the correlation between the fidelities, and therefore decrease the
variance of the estimator. The main limitation in [41] is the need for a surrogate model
to discover the lower-dimensional manifold. We overcome this restriction by using neural
active manifolds, which do not rely on any surrogate model, but build a surrogate model
on the latent space simultaneously with the learning of the lower-dimensional manifold.
Moreover, in [41] a shared space between the high-fidelity and low-fidelity models is built
employing normalizing flows, which, however, may suffer from poor performance in presence
of limited available data. Since our NeurAM is one-dimensional, we replace normalizing
flows by the inverse transform method, and consider the uniform distribution ¢([0,1]) as
the reference distribution in the shared space.

We proceed as follows. We first compute the NeurAM for both the high-fidelity and
low-fidelity models by minimizing the loss function (2.6), and thus obtaining

(&nur (s amr), Dur (- Bur), Sur (- yHF)) and (Err(sanr), Dur (s Aur), SLr(LE))-



Then, let Fyr and Frr be the cumulative distribution functions in the latent spaces of the
two fidelities defined as

Fur(t) = P*(Epr(X; anr) < t) and  Frp(t) = PA(Er(X;arr) < 1),

which can be estimated using the empirical distributions given by the available pilot sample
{x,}_,. Notice that the cumulative distribution functions satisfy

(Fur o Eur (- onr))xp = U([0,1]) and (FLr o ELr(sanr))pp = U([0,1]),  (3.7)
where # denotes the push-forward measure, and which means that
]:HF(SHF(X7OZHF)) NU([O, 1]) and fLF(gLF(X;OéLF)) NU([O, 1])

Therefore, we can define the modified low-fidelity model using the uniformly distributed
shared space as a bridge between the two fidelities

Orr(z) = Qur(Prr(Fip (Fur (Eur(z; anr))); BLr)), (3.8)

which can then replace the original Qpr in the definition of the multifidelity Monte Carlo
estimator in equation (3.5). A schematic visualization of the presented pipeline is given in
Figure 2. The inverse of the cumulative distribution function ]:IjFl stands for the generalized
inverse defined as

Fip(u) = inf{t € R: Fp(t) > u},  forall u € [0,1].

)

x SHF 14243 DHF THH x ELF DLF LR
- Fur R -
HE m LE
L

Figure 2: Schematic representation of the multifidelity uncertainty propagation pipeline
based on NeurAM.

First, we notice that the estimator remains unbiased since we did not modify the high-
fidelity model Qpr. Then, based on the ideas in [41], we expect the modified low-fidelity
model to be better correlated with the high-fidelity model, and therefore we aim to achieve
a smaller variance for the multifidelity Monte Carlo estimator.

Remark 3.1. In this section, for simplicity, we outlined the methodology assuming the
high-fidelity and low-fidelity models to have the same parameterization. However, we note
that the presented approach is also able to handle models with dissimilar parameterization
due to the reduction to a shared one-dimensional manifold.
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In the next section we consider the idealized setting given by the proof of Proposition 2.1,
and show that, at least in this case, the new correlation

_ Cov* (QHF(X), @LF(X))
\/Var“[QHF(X)] Vart [QLF(X)}

(3.9)

is indeed better than the original correlation p given in (3.4). This gives a theoretical
guarantee under specific conditions, and therefore justifies the approach described in this
section.

3.2.1 Analysis under idealized setting

In this section we assume to reach a loss function equal to zero, and we consider the global
minimizer given in the proof of Proposition 2.1. In particular, let

Sur =71, &ur = Qur, QuroDur =Z, and Spr =17, &F = Q1F, QLr o Dir =7,
which, due to equation (3.8), gives
Our (v) = Fig (Fur(Qur(x))). (3.10)

Moreover, let us assume that both Fyp and Frp are invertible, and, without loss of
generality, that p > 0. In fact, if p < 0, then we can always define Orr starting from —Qpp
instead of Q. In the next result we show that, in this case, the mean and the variance of
the model are not affected, even if we are considering the reduction to its one-dimensional
NeurAM.

Lemma 3.2. Let Opp be defined in equation (3.10). Then, we have
B [Que(X)] = B [Que(X)]  and  Var' [Qre(X)| = Var" [Que(X)].

Proof. First, let us rewrite the variances in terms of first and second moments

Vart [QLF(X)] = E* [QLF(X)Q] — E+ [QLF(X)]2 :

(3.11)
Var [Qur(X)] = E* [Qur(X)?] — B* [Qur(X)]?,
which imply that we need to show that
E# [QLF(X)k} =EH [QLF(X)]C} :
for k =1,2. We then have
E# QLF /QLF p(x) = /fﬂ:l(fHF(QHF(l‘)))k du(z),
which due to (3 7) with égrp = Qur implies
E* QLF /]:LF d(Fur o Qur)#1(y /fLF (y) = /qk de_Fl#U(Q),

where # stands for the push-forward measure and U for the uniform distribution #([0, 1]).
Finally, using again equation (3.7) with &Lp = Qrp, we obtain

B [O0ue(X)"] = [ ¢ dQuesnta) = [ Que(w) dn(x) = B [Que(X)*]

which, together with equations (3.11), yields the desired result. O
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We can now state the main result of this section: the modified low-fidelity model QLF is
better correlated with the high-fidelity model Qup than the original low-fidelity Q.

Theorem 3.3. Let Orp be defined as in equation (3.10), and let the correlations p and p
be given in (3.4) and (3.9), respectively. Then, it holds

p=p-
Proof. First, by Lemma 3.2, notice that p > p if and only if

Cov" (Qur(X). Qur (X)) > Cov" (Qur(X), Qur (X)) (3.12)

Then, rewriting the covariances as

Cov* (Qur(X), Qur(X)) = E*[Qur(X) Qur (X)] — B*[Qure(X)] E*[Qrr(X)],
Cov* (Qur(X), Qur(X)) = E¥[Qur(X) Qur (X)] — E¥[Qur (X)] E*[Qur (X)),

and due to Lemma 3.2, we deduce that (3.12) is satisfied if and only if

EX[Qur(X) Qrr(X)] > E*[Qup(X) Qrr(X)).

Let us now rewrite the left-hand side using the fact that the high-fidelity model can be
rewritten as

Onr(z) = Fip (Fur (Qur(2))).

In particular, by equation (3.7) with égyrp = Qpp, we have

B[ Que (X) Qur (X)) = [ Fih (P (Qr () P (Fiar (Quae (2) (o),
— / Fir (W) F (w) A(Fuap © Qup) epalur)
- [ Fab i ) au(w
= B[ Fb (D) F (U)],

where the superscript ¢ denotes the fact that the expectation is computed with respect to
the uniform distribution ([0, 1]). Therefore, in order to conclude the proof, we have to
show that

EY [ Fap(U)Fig (U)] = E*[Qur(X) Qur(X)). (3.13)

We analyze the two sides separately, and we first consider the left-hand side. The expectation
can be rewritten as

B O)FR O] = [ [P ERO) 2 6 F ) 2 s)deds

PU(Fe(U) < t, Fip(U) < s)dtds
) > t, Fig(U) < s)dtds
)

o))
L
// P! (Figp(U) < t, Frp(U) > s) dt ds,
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which, since Fgr and Frp are strictly increasing, implies
EY [ Fie (U) Frp (U)] = /OOO /OOOPM(U > Fur(t),U > Frr(s))dtds
+ /OOO /OOO}P’”(U < Fun(t),U < Fip(s)) dtds
—lfﬁﬂwwzﬂmngﬁﬂww®

—AfEIWWSﬁmmUzﬁﬂmww-

Then, using the fact that U ~ U(]0, 1]), we obtain
R UFRO) = [ [0 - max{Fue(t). Fur(s)}) dtds

+ /0 /0 min{Fur(t), Frr(s)} dt ds

(3.14)

/ / max{0, Fir(s) — Fap(t)} dt ds

/ / max{O fHF fLF(S)}dtdS.

On the other hand, the right-hand side of (3.13) reads
E[Qur (X) Qpr (X)) :/0 /0 P*(Qup(X) > t, Qp(X) > s) dtds
0 40

[ [ PrQur(X) <1, Qur(X) < 5)deds

oo (3.15)

_/_0 /OOO[[W(QHF(X) > ¢, Qup(X) < s)dtds

—/OOO/O PH(Qup(X) < t, Qup(X) > s) dt ds.

We now compare each term in the right-hand side of equations (3.14) and (3.15) separately.
First, we have

max {Fyr (t), FLr(s)} = max{P*(Qur(X) < t), PH(Qur(X) < s)}
<PH(Qur(X) <t) +PH(QLr(X) < s)
— P (Qur(X) <t,QLr(X) <s),

which implies
max{fHF(t),}_LF(s)} Z ]P)M(QHF(X) Z t, QLF(X) Z 8). (316)
Then, for the second term we find

min{Fur(t), FLr(s)} = min{P*(Qn

F(X)
> PH(Qur(X) <t,

< 1), BHQur(X) < )}
Or(X) < 5). (317

For the third term we have
PH(Qur(X) > ¢, Qur(X) < s) = PH(Qur(X) < s) — P*(Qur(X) <1, QLr(X) < )
> max{0, P*(Qrr(X) < s) — P¥(Qur(X) < 1)}

= max{0, Frr(s) — Fur(t)},
(3.18)
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and similarly for the fourth term
PH(Qur(X) <, QLr(X) > s) = PH(Qur(X) <t) — P¥(Qur(X) <t, QLr(X) < s)

> max{0, P*(Qur(X) < t) — PH(Que(X) < 5)}
= max{O,}"HF(t) — .FLF(S)}

(3.19)
Finally, collecting the bounds (3.16), (3.17), (3.18), (3.19) together with the decompositions
(3.14), (3.15), we deduce the inequality (3.13), which implies the desired result. O

Remark 3.4. The analysis in this section is performed under the assumption that the neural
active manifold is constructed using a global minimizer of the loss function, and hence
we put ourselves in the idealized framework in which the models can be reconstructed
exactly from the one-dimensional NeurAM. Even if this cannot be achieved in practice, this
theoretical analysis gives a formal justification for why it is worth modifying the low-fidelity
model, i.e., draw new samples from the shared space obtained from the NeurAM of the two
fidelities. Therefore, we remark that, even if we cannot achieve the best correlation p in
practice, our methodology, in most of the cases, gives a new correlation that is better than
the original correlation p, as we observe in the following numerical experiments. Finally,
notice that the ideal correlation obtained from equation (3.13), i.e.,

S oM (Fan ). T (©)
Var! [Foh (U)] Var [F(U)]

(3.20)

can be used as a reference value for the new correlation that we can get in practice, since
it is computed in the idealized framework where the reduction to one dimension still allows
us to reconstruct the original model exactly.

4 Numerical examples

In this section we apply our algorithm to construct a neural active manifold for several
models. We first consider simple two-dimensional analytical functions to demonstrate
the performance of NeurAM while providing intuition on the process of reducing the
problem dimensionality by directly plotting the active manifold. Two computationally
challenging test cases are then analyzed to demonstrate that the approach is viable for
realistic problems. The first problem we consider is the so-called Hartmann problem [37],
which has been used previously as a test case for other dimensionality reduction strategies,
such as AS [17] and AM [7]. We also study a more complex cardiac electrophysiology
model with biphasic response, requiring the solution of a preliminary classification task.
Finally, we compare the multifidelity UQ pipeline introduced in the previous section with
standard multifidelity Monte Carlo estimators for model with multiple inputs, and perform
sensitivity analysis. We remark that, for each numerical example, we use a different set
of hyperparameters (layers and neurons) for the neural networks corresponding to the
encoder £, decoder D, and surrogate model S. All the hyperparameters are optimized
using Optuna [1] monitoring the validation loss (20% of the dataset) for 100 iterations.
In particular, we constrain the number of layers to be in {1,...,4} and the number of
neurons per layer to be in {1,...,16}, and we train all the networks for 10000 epochs.
Hence, we emphasize that the resulting neural networks have a limited size, implying a
minimal computational cost for their training.
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4.1 Two-dimensional models

We analyze several two-dimensional synthetic test cases to assess the performance of the
proposed approach and visualize the neural active manifold.

4.1.1 Parabolic neural active manifold

We first consider the model @: R? — R defined as
Q(.%') - .I'% + 2,

and let the distribution of the input parameters be pu = U([0,1]?). Notice that this is an
example where the global minimizer given by the proof of Proposition 2.1 can be computed
analytically. In particular, we have

.
S =t, E@=al+m, DO=|/L i] (4.1)

which implies that £(£*,D*,S8*) = 0. The NeurAM is then parameterized by the decoder
D*(t) for all values of ¢ in the interval

T: i 2+ 5 2+ — 0527
o oin @), max (214 22)) =[0.2]

and is represented by a parabola of the form xo = 22 for all z; € [0,1]. In Figure 3 we
illustrate the NeurAM that we computed analytically on top of the contour plot of the
model, and we show through red arrows how the points are projected on the manifold by
the autoencoder, i.e., computing D(E(z)). Moreover, from the parity plot on the right,
we observe that the exact and surrogate models coincide, i.e., Q(x) = Qg(x) = S(&(x)),
resulting in the entire model variance being captured.

Let us now slightly modify the function @, and consider a more complex model Q: RZ2 — R
given by
Q(x) = sin(Q(z)) = sin(z} + x2),

for which the NeurAM remains the same if we choose as surrogate model S(¢) = sin(t).
We then run our algorithm with an increasing number of training samples N = 10, 30,
50, 100, 500, 1000, and compute the mean absolute error (MAE) and the mean squared
error (MSE) for

ei(r) = Qz) = QD(E(x))),  exfx) = Qx) — s(x), (4.2)

over 100 repetitions. Note that e; only measures the error due to the dimensionality
reduction, while es quantifies the error in the surrogate model. The MAE and MSE for e;
and eg are computed using a testing set with 1000 randomly selected samples. In Figure 4
we present the resulting error trends, using error bars to represent standard deviations
produced by repeated runs. As expected, both errors decrease with the increase of the
training dataset, until they reach a plateau. We remark that the standard deviation of the
model Q over its domain is

\/E“ [(Q(x) - B1[Q(X)))’] ~ 0.25,

implying that the relative errors are approximately of the same order of the absolute errors
reported in Figure 4.
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Figure 3: Analytical results for the two-dimensional model Q. Left: projection of
input samples on the one-dimensional NeurAM. Right: parity plot between the exact and
surrogate models.
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Figure 4: Approximation errors (MAE and MSE) in equation (4.2) as functions of the
size of the training set N for the two-dimensional model Q. Left: error e; due to the
dimensionality reduction. Right: error ey of the surrogate model.

4.1.2 Comparison with active manifolds and active subspaces

We consider the following two-dimensional models that have been used to test AM in [7]

Q) (x) = ™21,

Qo(x) = a:% + x%,

Qs(z) = 23 + 23 + 0.221 4 0.612,

and we let the distribution of the input parameters be pu = U([—1,1]?). We first compute
NeurAM using N = 1000 samples. The results in Figure 5 show the projections determined
through dimensionality reduction (red arrows), while the parity plots show how the
surrogate model on the latent space, i.e., as a function of the reduced variable, is able to
capture practically the entire variability for all the models. We remark that these plots
are obtained for one possible realization of the NeurAM, meaning that the method can
generate alternative NeurAM with similar overall results.

We then compare the performance of NeurAM with results for AS and AM, as reported
in [7, Table 1]. We run our algorithm 100 times using N = 1000 training samples, and
we compute the errors using equation (4.2) on a testing set of size 1000. Even though
our approach presents a slightly larger variability, which is mainly due to the fact that
the solution of the optimization algorithm is not unique, Figure 6 shows that NeurAM
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is consistently able to achieve smaller errors than competing algorithms. Moreover, our
method is always able to find a lower-dimensional representation, unlike AM for which a
percentage of points in the domain is left out as shown in the table in Figure 6, meaning
that we can always compute the projection of a point on the lower-dimensional manifold,
similarly to AS. Finally, NeurAM requires fewer training points (1000 for NeurAM and
8000 for AM and AS as stated in [7]), and, more crucially, does not need the computation
of the gradient, which is instead necessary for both AS and AM.

A Q3

Q Q> Q3
® Data 9| @ Data 9 ® Data
== [dentity == [dentity == [dentity
9 15 1
= s =
& g ! !
%1 2 “ 1
0.5
-2
0
0
0 1 2 0 1 2 -2 0 2
Q=) Q) Q=)

Figure 5: Results for the two-dimensional models Q1, Qs, Qs, for one realization of the
NeurAM. Top: projection of input samples on the one-dimensional NeurAM. Bottom:

parity plot between the exact and surrogate models.

4.1.3 NeurAM for multifidelity uncertainty propagation

In this section we show another advantage of NeurAM, the ability to enhance the perfor-
mance of multifidelity Monte Carlo estimators, without any additional modification or
computational cost. Specifically, we consider the following high-fidelity and low-fidelity

models
OQur(z) = ™1 10372 1 0 155in(2721),

Orr(x) = %01@1+09922 4 () 154in(3my),

proposed in [16] to test the application of AS to multifidelity UQ, and then further employed
in [41] in the context of nonlinear dimensionality reduction. We assume x ~ p = U([—1,1]?),
and focus on the estimation of the quantity of interest ¢ expressed as

25 2 2
¢ =B Qur(X)] = 3} (7" —e75 —ef +e).
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Figure 6: Comparison of approximation errors (MAE and MSE) for AS, AM, and NeurAM,
applied to the two-dimensional models Q1, O2, Q3. Top: plot of the approximation errors,
where the values for AS and AM are reported from [7, Table 1], and the errors e; and eg
for NeurAM are defined in equation (4.2). These results consider 8000 training samples for
AS and AM, and 1000 samples for NeurAM. Bottom: percentage of test points for which
the algorithm successfully found an approximation.

We further assume a computational budget B = 1000 and a cost of our low-fidelity model
equal to Crrp = 0.01Chxr (w = 0.01) to mirror cost differences in realistic applications.

We compute NeurAM for both the high-fidelity and low-fidelity models separately using
N = 1000 training samples, and present the results in Figure 7, which shows that the
variability for both models is entirely captured. We remark that, even if we might expect
a vertical NeurAM, as Qpp(x) only varies along the vertical direction, any curve going
from the bottom (minimum value) to the top (maximum value) of the domain is a valid
NeurAM. What is crucial is how points outside the manifold are projected on it, which
occurs horizontally, i.e., along the direction where the model response is constant. This
indeed suggests the correctness of the results for this case.

We then move to the problem of estimating the quantity of interest ¢ using a multifidelity
Monte Carlo estimator. We compare multifidelity Monte Carlo from (3.5) with our modified
estimator, where Orr is used instead of 9rr, and computed applying NeurAM to map
high-fidelity to low-fidelity model inputs. We also include a single fidelity Monte Carlo
estimator in our comparison as a reference. Figure 8 shows the results obtained from
100 repeated evaluations of the three estimators. We observe that the original models
Opnr and Qrr are badly correlated, leading to a poor performance of the multifidelity
Monte Carlo estimator, which indeed does not improve over single-fidelity Monte Carlo.
Conversely, NeurAM significantly increases the correlation between the models, leading
to a multifidelity estimator with reduced variance. Finally, the box plot in Figure 8 also
includes the ideal correlation from equation (3.20), which seems to act as an upper bound
for the correlation achievable through NeurAM.
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Figure 7: Results for the two-dimensional models Qup, O, for one realization of the
NeurAM. Top: projection of input samples on the one-dimensional NeurAM. Bottom:

parity plot between the exact and surrogate models.
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Figure 8: Numerical results for the multifidelity uncertainty propagation. Left: Pearson
correlation coefficients. Right: approximated distributions from single-fidelity and multifi-
delity Monte Carlo estimators. The dashed line indicates the exact value of the quantity of

interest q.
4.1.4 Sensitivity analysis for the two-dimensional models

Consider the model @ with the parabolic NeurAM in Section 4.1.1, for which we can
compute the sensitivity indices analytically. Substituting the expressions in equation (4.1)

into the local indices (3.1) we obtain
2t 1
s TR

for ¢ € [0, 2] which implies that the first input is more important than the second if t > 1/2,
while the opposite is true for ¢ < 1/2. Moreover, computing the integrals in equation (3.3)
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leads to the global indices

2 2
2t2i1 2 dt _ Jo 2t+1 d _ 4v5 —2log(2 4+ V5)

o _ ~ 0.512,
oAy 2 /Eg 45+ 2l0s2+VE)
2 1 [fat41 [
0, — Jo 2041 tst dt fo 2t+1 dt 4log(2 + v/5) ~ 0.488
g = ~ (0.488.
f02 21;8421 dt fO 2tzr1 dt 4\/5 + 21og(2 + v/5)

We then move to the models 91, Oo, O3, and Qnr, Orr in Sections 4.1.2 and 4.1.3, re-
spectively. Both local and global indices are reported in Figure 9, where we also compare
the results with the first order Sobol’ sensitivity indices, even if we do not expect perfect
agreement since our sensitivity indices are based on derivatives, while Sobol’ indices are
based on an analysis of variance. For the last Qpr model, where the only significant
variable is xo as shown in Figure 7, the indices are constantly equal to 0 and 1 for x1 and
xo, respectively, as expected. For the second model Qs, where one would expect equal
importance for both the variables, we notice that our local and global indices slightly diverge
from the value 0.5. This is due to the fact that the indices are dependent on the single
realization of the NeurAM. Nevertheless, for all the realizations, the values oscillate around
0.5, implying that both the variables are important. Moreover, computing the average
global indices over 100 runs, we obtain ©; = 0.499 and ©5 = 0.501, as expected. For the
other models, the importance of the input variables as computed from NeurAM and Sobol’
indices is consistent, with the only exception of Q1 for which the interaction between the
two components is more relevant. In particular, we observe a better agreement between the
two types of indices for 9, O3, Qrr, where the interaction between the variables is limited.
Our indices are therefore more suitable to correctly rank the variables in the presence
of a negligible interaction. Extensions of NeurAM to quantify sensitivity accounting for
interaction among inputs are left to future work.

1 (9} . Qs . Q3 ) Qnr ) orr
=05 (1 m—— VW 0.5 S D
>

0 0 0 0 0

-05 0 05 1 -1 -0.6 -0.2 -1 0 1 -1 0 1 3 -2 -1 0
t t t t t
Q1 Qs Q3 onr orr
X1 Zo X1 o T i) X1 o T To
C] 0.555 0.445 0.558 0.442 0.329 0.671 0.625 0.375 0 1
S 0.176  0.762 0.500 0.500 0.320 0.680 0.801 0.173 0 1

Figure 9: Sensitivity analysis for one realization of the NeurAM for the two-dimensional
models Qp, 9, Q3, Our, Qrr. Top: local indices 0(t) for both x; (blue) and xy (red).
Bottom: global indices ® compared with Sobol’ indices S.

4.2 Hartmann problem

In this section we consider a more complex example, the Hartmann problem, which is a
verification test case for magnetohydrodynamics applications. The Hartmann problem
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models a laminar flow of a conducting fluid between two parallel plates, while a magnetic
field is applied in the transverse direction [37]. This problems admits an analytical solution
and has been used previously to test AS and AM in [7,17]. In particular, the two quantities
of interest, i.e., the average flow velocity u and the induced magnetic field B, are given by
the following expression [7,17]

9 Byl Byl
s omioen =55 1~ e ()|
0

Opo ! Iz Bol
Pt 0= G 1240 o (75

where the magnetic constant ug = 1 and the length [ = 1 are fixed, while the remaining
parameters are log-uniformly distributed in the ranges given in Table 1. Note that the
fluid density p does not actually appear in the equations for v and B. We first normalize
the input parameters in [—1,1]°, and run our algorithm using N = 1000 training samples.
Since we cannot visualize the NeurAM for a five-dimensional problem, Figure 10 only shows
a parity plot for both the average flow velocity u and the induced magnetic field B. We
observe that the model variability is almost completely captured by NeurAM, but, unlike
the two-dimensional models in the previous sections, a few points are observed to deviate
from the identity.

)

We then compare the performance of our methodology with the numerical results for AS
and AM reported in [7, Table 3]. We run NeurAM 100 times, and then compute the
MAE and MSE of the errors e; and ey in (4.2) at each iteration for both u and B. The
comparative plot in Figure 11 shows an improved performance of NeurAM for both Qols,
particularly the induced magnetic field B. This can be justified in light of the more complex
dependence between B and the five inputs, whereas linear dimensionality reduction seems
sufficient for u (see, e.g., the sensitivity indices in Figure 13).

We also use the optimally trained NeurAM for multifidelity propagation and sensitivity
analysis. In this context, we assume the induced magnetic field B and the average flow
velocity u to represent the low-fidelity and high-fidelity model response, respectively, and
focus on computing the expectation u = E”[u], where v denotes the joint distribution
of the input parameters given in Table 1. In order to mimic cost differences in realistic
applications, we let w = 0.01 be the cost ratio Cpr/Cyp between the two fidelities. We then
compute 100 estimates of « with a computational budget B = 1000, using single-fidelity
Monte Carlo and multifidelity Monte Carlo with the original low-fidelity model or using
NeurAM to determine new sample locations according to (3.8). In Figure 12 we show that
the new low-fidelity sampling locations computed by NeurAM improve the correlation
between B and u, and in several cases reach the ideal correlation given in Remark 3.4. As
a consequence, the resulting approximated distribution of the multifidelity Monte Carlo
estimator with NeurAM has a significantly smaller variance than standard multifidelity
Monte Carlo.

Finally, in Figure 13 we show that NeurAM can be used for sensitivity analysis. In
particular, we plot the quantities 6;, i = 1,...,5, given in equation (3.1) for each input.
The input ranking varies along the manifold for B, while it remains approximately constant
for u. For example, the dependence of B on By increases along the manifold, implying a
smaller contribution of dpy/0x, which is the most important input parameter. On the other
hand, we notice that the second most relevant parameter for u is p, while the remaining
inputs give a negligible contribution. Moreover, in both cases we observe that the index
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0(t) for p is constantly zero as expected, since it does not appear in the equations for u
and B. In Figure 13 we finally compare the global indices ©; with the first order Sobol’
sensitivity indices S; computed evaluating the exact models over 2! samples, showing
agreement between the two rankings.

Parameter Notation Range Unit
Fluid viscosity ,u [0.05,0.2] kg m~t 7!
Fluid density P 1, 5] kg m~3
Applied pressure gradient % [0.5, 3] kg m~2 g2
Resistivity n [0.5, 3] kg m3 s73 A2
Applied magnetic field By [0.1,1] kg s72 A1

Table 1: Parameter space for the Hartmann problem.
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Figure 10: Parity plot between the exact and surrogate models, for one realization of
the NeurAM for the Hartmann problem. Left: average flow velocity uw. Right: induced
magnetic field B.
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Figure 11: Comparison of approximation errors (MAE and MSE) between AS, AM and
NeurAM for the Hartmann problem. The values for AS and AM are reported from [7, Table
3], and the errors e; and ez for NeurAM are defined in equation (4.2). Left: average flow
velocity u. Right: induced magnetic field B.

4.3 Cardiac electrophysiology

In this section we consider a more complex model which cannot be expressed as an analytic
function of the input parameters. In particular, we model cardiac electrophysiology in a
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Figure 12: Multifidelity uncertainty propagation for the Hartmann problem. Left:
Pearson correlation coefficients. Right: approximated distributions for the single fidelity
and multifidelity Monte Carlo estimators.
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Figure 13: Sensitivity analysis for one realization of the NeurAM for the Hartmann
problem. Left: average flow velocity u. Right: induced magnetic field B. Top: local indices
0(t) from NeurAM. Bottom: global NeurAM (©) and Sobol’ (.S) sensitivity indices.

two-dimensional square Q = [0, L]? of length L = 250 mm representing a slab of cardiac
tissue using the biophysically detailed monodomain equation [9,33], coupled with the ten
Tusscher-Panfilov ionic model [39]. We formulate the model as follows

(4.3)

Ot Tonl1t,9) V- (Disol Vit) = Tuppli0,7578) im0 (0,7,
(DpmVu) -n=0 on 90 x (0,77,
dy .

i F(u,y; GNa, GeaL, Gkry GKs) in Q x (0,77,
u(w,0) = up(w), y(w,0) = yo(w) in €.

The transmembrane potential u describes the propagation of the electric signal over the
two-dimensional slab of cardiac tissue, the vector y = (y1,...,yam+p) defines the probability

density functions of M = 12 gating variables, which represent the fraction of open channels
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across the membrane of a single cardiomyocyte, and the concentrations of P = 6 relevant
ionic species. Among them, sodium Na™, intracellular calcium Ca?t and potassium
K™ play an important role in the physiological processes [3] dictating heart rhythmicity
and sarcomere contractility [6]. The right hand side F'(u,y) defines the dynamics of the
gating and concentration variables. The ionic current Zio,(u,y) models the impact of
the system of ordinary differential equations at the cellular, microscopic scale on the
tissue, macroscopic scale coming for the first partial differential equation. The analytical
expressions of both F'(u,y) and Zion(u,y) derive from the mathematical formulation of
the ten Tusscher-Panfilov ionic model [39]. The right-hand side F' depends also on the
maximal Ca®t and Nat current conductances Gcar, and G, and the maximal rapid
and slow delayed rectifier current conductances Gk, and Gks. The diffusion tensor Digol
defines an isotropic propagation of the electric signal driven by the homogeneous isotropic
conductivity Dis,. We impose the condition of an electrically isolated domain by prescribing
homogeneous Neumann boundary conditions 92, where n is the outward unit normal vector
to the boundary. The action potential is triggered by a uniform current Z,pp, (w, 7; 754m)
that is applied at time 7 = 0 s on {0} x [0, 125], which is the left side of the square domain,
followed by another stimulus at a variable time 7 = 75i™ on the [0,125]2. Finally, the
maximal rapid and slow delayed rectifier current conductances are fixed at Gx, = 0.153 nS
pF~! and Ggs = 0.392 nS pF 1, respectively, and the final simulation time is 7 = 2 s.

We perform space discretization of the model (4.3) using P finite elements. The tetrahedral
meshes are comprised of 20353 cells and 10400 degrees of freedom, and the average mesh
size is h = 3.5 mm. Regarding time discretization, we first update the variables of the ionic
model and then the transmembrane potential by employing an implicit-explicit numerical
scheme [15,31,34]. Specifically, in the monodomain equation, the diffusion term is treated
implicitly and the ionic term is treated explicitly. Moreover, the ionic current is discretized
by means of the ionic current interpolation scheme [22]. We employ a time step size
At = 0.1 ms with the forward Euler scheme.

In Table 2 we report descriptions, ranges and units for the four model parameters. We
initially generate a dataset of 10000 electrophysiology simulations (5000 for training and
5000 for testing) by exploring the space of parameters with stratified sampling (latin
hypercube sampling [27]). The quantity of interest Q(X) that is monitored by our method
is the space integral of the transmembrane potential u at the final time T, i.e.,

Q(X) = [ ulw,T5 X) dw,

where
stim T 4
X = [GCaL Grna Diso Tbox] € R

is the vector of inputs. We remark that all the input parameters and the quantity of
interest have been normalized in the interval [—1, 1]. The parameter space covered by the
model (4.3) enables numerical simulations exhibiting both sinus rhythm and sustained
arrhythmia, as shown in Figure 14. Indeed, this test case presents a bifurcation, meaning
that the response varies abruptly even for locations that are relatively close in the space
of parameters (alternative ways to describe this behavior would be to say that the model
response is biphasic or characterized by sharp gradients), which leads to a challenging
mathematical problem for the presented dimensionality reduction approach. The bifurcation
is visible in Figure 15, where we plot the histogram of the quantity of interest, and notice
that Q takes either values close to —1, with a very few exceptions in the interval (—0.9,0)
that are not visible in the histogram, or values approximately in the interval (0.4,1). We
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therefore first perform a classification to divide the input space in two classes, based on
whether the normalized quantity of interest is positive or negative, and then compute the
NeurAM in each class separately. We build a neural network classifier using the training
data, and then plot the results on the test set in Figure 15. We observe that the classifier
is able to correctly discriminate between sinus rhythm and sustained arrhythmia in 97.68%
of the cases.

We now apply our methodology to learn the NeurAM for the two classes. In Figure 16,
where we plot the exact and surrogate models as functions of the reduced variable, we
notice that the NeurAM is able to capture most of the variability of the model. We remark
that, for the case of the sinus rhythm, the model takes only values in the neighborhood
of —1, and therefore the surrogate model is almost constant. Note that the plot on the
left of Figure 16 might be misleading, as almost all the points are concentrated around
(—1,1), and only a few points are left out from the identity line and give a nonnegligible
error. Regarding the case of sustained arrhythmia, where there is more variability, the
surrogate model is able to provide a reliable approximation, but it is not as accurate
as in the test cases in Section 4.1 due to the increased complexity of the problem. In
Table 3 we report the MAE and the MSE for the error es in equation (4.2) given by the
surrogate model. We remark that in this example we cannot compute the error e; given
by the dimensionality reduction because we would need to run additional simulations in
the projected points, which are not in the original dataset. We notice that the errors in
Table 3, compared with the standard deviation ¢ of the model over the input domain, are
particularly small for the single classes, meaning that NeurAM gives accurate surrogate
models for each class. We also notice that the overall error, obtained first applying the
classifier and then the surrogate model of the predicted class, is slightly larger. This is
due to the fact that a wrong classification yields a large error for the particular sample,
implying a larger overall error contribution. Nevertheless, the derived surrogate model
still provides a reliable approximation of the real model since the majority of the data is
correctly classified.

We finally perform a sensitivity analysis for the cardiac electrophysiology model, considering
both classes of sinus rhythm and sustained arrhythmia. The local sensitivity indices 6;(t)
and the global sensitivity indices ©; are illustrated in Figure 17 for all the parameters 1.
We first notice that all the variables appear to be unimportant in the case of sinus rhythm,
except for 75U which is the only one that affects the quantity of interest for the parameter
space explored in Table 2, since it is crucial to distinguish this physiological state from the
onset of possible rhythm disorders [36]. Regarding the case of sustained arrhythmia, we
observe how the relevance of each input parameter varies along the NeurAM. In particular,
we notice that, as reflected by the global indices in the table of Figure 17, G, is the
most important input parameter, since it plays an important role in arrhythmogenesis [3],
followed by ng}‘{“, Diso and Gna, respectively. Moreover, from the dynamic indices, we

deduce that Tﬁf)ifl is more relevant in the first and last part of the NeurAM, while Djy, is
more important in the middle part.

5 Conclusion

In this work we introduced a novel technique for dimensionality reduction of computationally
expensive models. In particular, we employed autoencoders with one-dimensional latent
space to obtain a manifold in the parameter space (neural active manifold or NeurAM)
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Parameter Notation Range Unit

Stimulation time TSt [300, 400] ms
Isotropic conductivity Diso [0.2114, 0.4757] mm? ms~!
Maximal C'a®T conductance GNa [9.892, 22.2570) nS pF~!

Maximal Na* conductance GealL [2.653e-05, 5.970e-05] cm?® ms™! pF~1

Table 2: Input parameter space for the cardiac electrophysiology model.

T=02s T=04s T=0.6s T=0.8s T=1s T=2s

Figure 14: Examples of evolution in time of the transmembrane potential u in the cardiac
electrophysiology model, for different time instants in the numerical simulation. Top: sinus
rhythm. Bottom: sustained arrhythmia.
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Figure 15: Classification of cardiac electrophysiology response. Left: histogram of the
quantity of interest Q. Right: results from the classification algorithm.

Sinus rhythm Sustained arrhythmia Overall
MAE  MSE o MAE  MSE o MAE  MSE o
0.0002 0.0039 0.0240 0.0018 0.0293 0.1127 0.0689 0.0602 0.7905

Table 3: Approximation error (MAE and MSE) of the surrogate model, compared with the
standard deviation o of the original model, for both sinus rhythm and sustained arrhythmia
in the cardiac electrophysiology model. In the third column the overall error is computed
employing the classifier as a first step.

capturing as much as possible of the model output variability. The autoencoder is combined
with a surrogate model with inputs in the latent space that is trained at the same time
as the encoder and decoder. NeurAM provides a concise one-dimensional analogue of
the original computationally expensive model, and can be used to efficiently perform
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Figure 16: Parity plot between the exact and surrogate models, for one realization of the
NeurAM for the cardiac electrophysiology model. Left: sinus rhythm. Right: sustained
arrhythmia.
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Figure 17: NeurAM sensitivity analysis for the cardiac electrophysiology model. Left:
sinus rhythm. Right: sustained arrhythmia. Top: local indices (). Bottom: global indices
O.

uncertainty quantification tasks. We first showed how NeurAM can be used to perform
both local and global sensitivity analysis. In particular, we proposed new local indices
providing a dynamic ranking of the input parameters along the manifold. Moreover, by
integrating these local indices, we derived global indices that quantify the overall ranking
of the input parameters. We then focused on the problem of multifidelity uncertainty
propagation, selecting a low- and high-fidelity model pair. Following [41], we used NeurAM
to determine a shared space bridging the inputs of the two models, and to generate new
low-fidelity input samples resulting in higher correlation between the low- and high-fidelity
model response. We remark that the main advantages with respect to [41] are that we do
not require a surrogate model to be computed beforehand, and that we replace normalizing
flows with simple projections on the inverse cumulative distribution function, which benefits
from increased robustness. Furthermore, we provided a complete theoretical analysis of
this approach under idealized conditions, where we prove that the use of NeurAM results
in higher correlation.
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We presented extensive numerical experimentation that showed the advantages of this
nonlinear technique for dimensionality reduction, and corroborated the analysis. We first
considered simple two-dimensional models, and then moved to more complex test cases,
including the Hartmann problem, and a cardiac electrophysiology model that presents a
bifurcation in the parameter space. NeurAM produces smaller errors compared to linear
approaches such as AS [12], or more recent nonlinear approaches like AM [7]. On the
other hand, our method has a slightly larger variability which is mainly caused by the
fact that the solution to the minimization problem that determines the NeurAM is not
unique. Therefore, even if the error is in most of the cases smaller than for traditional
approaches in the literature, we are interested in looking for additional conditions to enforce,
in order to guarantee the uniqueness of the NeurAM. Moreover, the theoretical argument in
Section 3.2.1 is valid under idealized conditions. An interesting future development consists
in lifting this assumption, considering a more concrete scenario. Finally, we treated the
bifurcation in the cardiac electrophysiology model by first performing a classification, and
then computing NeurAM separately for the two classes. In future work, we would like the
algorithm to be able to autonomously perform domain decomposition, without the need of
a pre-trained classifier. In this context, we might benefit from a two-dimensional manifold,
and therefore we should first study an extension to NeurAM with multidimensional latent
space.
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