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ABSTRACT

Assessing water quality in bodies of water is important in evaluating the effects
of climate change and its anthropogenic impacts. Such assessments often require
good models of key indices such as water temperature, pH, or oxygen levels. In
this work, we investigate time series models for lake water temperatures at mul-
tiple depths and develop a physics-informed neural network based on Koopman
embeddings and LSTM that is capable of forecasting water temperatures in the
long term. Experiment results show that our model can achieve a good perfor-
mance and significantly outperforms the conventional LSTM model for this time
series forecasting problem.

1 INTRODUCTION

Assessing water quality in bodies of water such as estuaries, coastal areas, and lakes is paramount
in evaluating the effects of climate change and its anthropogenic impacts. Measuring key physical,
chemical, and biological variables to develop and continuously maintain accurate models for these
measurements can help generate early alerts and prevent several environmental problems such as
harmful algal blooms, sediment runoff, water pollution, and oxygen decrease events (Reckhow,
1994; Sharma & Kansal, [2013)).

Traditional water quality monitoring approaches have relied heavily on in-situ sensing and mea-
surements. These approaches involve collecting water samples at specific points and conducting
laboratory analyses of physical indices (e.g., temperature, turbidity, chromaticity, and electrical con-
ductivity), chemical indices (e.g., pH, dissolved oxygen, chemical oxygen demand, biochemical
oxygen demand, and total organic carbon), as well as microbiological indices (e.g., total bacteria
and total coliforms) (Jahnig & Cai, 2010; (Cloete et al., 2016). While in-situ monitoring provides
direct measurements with high accuracy, they are often time-consuming, labor-intensive, and costly,
as demonstrated in multiple studies (Cai et al.| 2008} |Giardino et al.| 2010} |Gholizadeh et al.,[2016).

Furthermore, the point-based nature of in-situ sampling makes it challenging to achieve compre-
hensive spatial coverage, particularly for large water bodies. This limitation becomes especially
problematic when monitoring extensive water systems or attempting to capture rapid changes in wa-
ter quality parameters across different locations. In-situ sensing also has other disadvantages, such
as the cost associated with sensors, communication components, and biofouling. Due to their cost,
many water bodies may remain unmonitored for the foreseeable future.

The overarching aim of our research is to develop accurate models for several key measurements
of water bodies using already available in-situ data combined with simulated data. In this prelimi-
nary work, we mainly focus on models for forecasting water temperatures at multiple depth levels.
Our work is motivated by recent research on transfer learning of water temperature models from
monitored sites to unmonitored ones (Willard et al., 2021) that tries to solve the limited in-situ data
problem above.

In this paper, we investigate the use of physics-informed neural network models for forecasting lake
water temperatures. We develop a model that combines Koopman embeddings (Geneva & Zabaras|
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2022) and LSTM (Schmidhuber & Hochreiter, |1997) to effectively forecast water temperatures over
a long period of time. The Koopman embeddings have been shown to successfully capture the
dynamics of different physical systems (Geneva & Zabaras, 2022)). In our experiments, we also
show that these embeddings can also improve the performance of time series models for the water
temperature forecasting problem.

Other Related Work. Long-term multi-variate time series forecasting presents significant challenges
due to the inherent complexity and high dimensionality of temporal data (Zheng et al.,2024). While
conventional statistical approaches like Holt-Winters (Chatfield & Yar} |1988)) and ARIMA (Contr-
eras et al.| 2003) demonstrate effectiveness in short-term predictions, they struggle with extended
forecasting horizons. To address these limitations, researchers have explored machine learning tech-
niques, including support vector machines (Huang et al., 2005), random forests (Kane et al.,|[2014),
and gradient boosting approaches (Song & Chen, 2024)), which offer improved capability in model-
ing non-linear patterns, although they necessitate substantial feature engineering. Deep learning also
emerged as promising solutions, with various architectures (e.g., RNNs, GRUs, and LSTMs), and
attention-based models (Ni et al., 2024)) that demonstrate superior performance in capturing long-
range dependencies. Contemporary approaches have further advanced the field through innovative
architectures: FEDformer (Zhou et al.,[2022b) and FiLM (Zhou et al.,|2022a) leverage frequency do-
main transformations, while PatchTST (Nie et al.,2023) and SparseTSF (Lin et al., 2024)) introduce
novel attention mechanisms and sparse computation strategies. Additionally, hybrid models that in-
tegrate statistical methods with deep learning techniques have shown enhanced predictive accuracy
across various forecasting tasks (Junior et al.,2019).

2 MATERIALS AND METHODS

2.1 DATASET

In this study, we use the data originally published by Willard et al. (2021) that includes water tem-
perature data and lake characteristics for 450 lakes across the Midwestern United States. The dataset
contains various attributes such as maximum lake depth, surface area, simulated water temperatures
at multiple depths, and in situ temperature observations. The data span 40 years from January 1st,
1980, to December 31st, 2019. For our work, we utilize a subset of this dataset that contains 14,600
daily records of temperatures for a single lake over the entire period. This specific lake is chosen
due to its extensive records of water temperatures at different depths and in situ observations.

The temperature data for the above lake were generated using the PBO model—a process-based lake
temperature model to estimate thermal dynamics based on meteorological inputs and lake attributes
(Willard et al.| 2021)). While the dataset contains temperature profiles at 50 different depths for each
recorded day, in this preliminary study, we only use the water temperatures at depths of 0, 1, and 2
meters to demonstrate our method. We will use this multi-depth temperature data from the first 32
years to build our model. Data for the next 4 years will be used as a validation set, while data for the
last 4 years will be used for testing our model.

2.2 PHYSICS-INFORMED NEURAL NETWORKS

We propose to approach the above lake water temperature prediction problem using physics-
informed neural network models. In particular, we will transform the multi-depth temperature data
to a higher dimensional time series using a Koopman embedding encoder (Geneva & Zabaras, |[2022).
This time series will then be combined with periodic date features to train an LSTM model (Schmid-
huber & Hochreiter,|1997) capable of predicting the next multi-depth temperatures given a previous
window of temperature embeddings.

By leveraging the Koopman embeddings, our model can capture the dynamics of the time series,
reinforcing relationships between states that occur close together in time or follow similar dynamic
patterns. Furthermore, the model’s ability to transform nonlinear systems into linear representations
enables more efficient training and analysis, which is crucial for studying complex dynamical sys-
tems like lake water temperature variation across depths. As shown later in our experiments, our
approach allows the LSTM to accurately predict future temperatures at multiple depths, making it
an effective tool for forecasting lake temperature patterns with improved accuracy and efficiency.



Published as a workshop paper at “Tackling Climate Change with Machine Learning”, ICLR 2025

(dn—W' S dn—l) € RZW
f—%

periodic date features

LSTM
ode
depth D W&W

W—J %f_j —~
(tn—W: ey tn—l) € RDXW (kn—WJ ey kn—l) € RMXW tTl € RD

g ,?_
= =
= 0

Figure 1: An illustration of our physics-informed model for multi-depth lake temperature prediction.

Model. Formally, let ¢ = (¢1,t,...,tx) be our multi-depth temperatures of a lake over N time
steps, where t; = (ti,l S 7T 7 D) € RP contains the water temperatures at D depth levels that
are measured at time step . A Koopman embedding encoder is a neural network K that transforms
any t; into a higher dimensional embedding vector k; = K (t;) € R, where M is the length of an
embedding vector and can be tuned as a hyper-parameter. Assuming we have already trained this
encoder, we can utilize it to convert the original data into a higher dimensional time series and then
train an LSTM with this time series.

An illustration of our model is shown in Figure [l The aim of this model is to predict, at any
time step n, the multi-depth temperatures t,, using a window of previous W multi-depth tem-
peratures t,_w.n—1 = (tn—w,---,tn—1) € RP*W _ For this purpose, the model first uses
the pre-trained Koopman embedding encoder K to convert ¢,,_yy.,—1 into an embedding matrix
(kn—ws .- kn_1) € RM*W 'where k; = K(t;). Then this matrix will be combined with pe-
riodic date features (d,_w,...,d,_1) € R2*W to form the full feature matrix z,_w.,_1 =
(LW Ty1) € RIMFDXW "where 2, = (d;, k;) and d; consists of the sine and cosine of
the date of year at time step 7. The full feature matrix will be used as the input to an LSTM model
My with parameters 6, which will return the prediction vector tn = M, o(Tn—wwm—1) € RP for the
next time step.

Training and prediction. Given a training time series (¢1,%2,...,ty), we train our model by
minimizing the average squared Euclidean distance between #; and #;. That is, we minimize the loss
function £(0) = Zf\iw 1 |£; — t;]|?/(N — W), which can be solved easily using an off-the-shelf
optimizer such as SGD or Adam. After training the model, we can use it to predict a new time series
(t1,t2,...) by sequentially predicting the value ¢; using the previous W predictions. For our system,

the first W values of the target time series need to be given as seed values.

Koopman embedding encoder. This encoder is part of the Koopman embedding model (Geneva &
2022)), which includes an encoder and a decoder neural networks. The model transforms
physical state data into high-dimensional embedding vectors, which can be subsequently used by
deep learning models. This method effectively models the evolution of a dynamical system over
time using the infinite-dimensional linear Koopman operator, which can convert a nonlinear system
into a linear one, allowing for more complex state representations while simplifying the system. In
this model, the encoder maps the physical state space (e.g., multi-depth lake water temperatures)
into an M -dimensional embedding space that captures the underlying dynamics of the system. The
decoder then reconstructs the original physical states from this embedding space. In our work, we
pre-train the whole Koopman embedding model with our training data but only use the encoder in
our physics-informed LSTM model.
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Table 1: Comparison of test MSEs of the LSTM baseline and our model. The results show that our
model significantly outperforms the baseline on predictions at all depth levels.

Depth (m) LSTM LSTM-+Koopman (ours)

0 36.306 11.120
1 35.871 10.890
2 34.869 10.390
Overall 35.682 10.800

3 EXPERIMENTS AND RESULTS

Experiment settings. In our experiments, we construct a training time series consisting of the lake
water temperature data in the first 32 years (from 1980 to 2011), a validation time series consisting
of data in the next 4 years (from 2012 to 2015), and a test time series consisting of data in the last 4
years (from 2016 to 2019). Each time series has 365 time steps per year, with the 29th of February
removed from leap years to ensure consistency in the data. The time step size is set to 1 day to allow
for a uniform temporal resolution across all samples. Thus, the lengths of the time series are 11,680
for training, 1,460 for validation, and 1,460 for testing.

We first train the Koopman embedding model using the same procedure as (Geneva & Zabaras
(2022). The model consists of an encoder that maps a 3-dimensional input (D = 3) to a 32-
dimensional embedding space (M = 32) and a decoder that reconstructs the original state. The
encoder comprises two fully connected layers (with 500 and 32 units respectively), each of which
uses the ReLLU activation, layer normalization and dropout. The decoder mirrors this structure, map-
ping the embeddings back to the original dimensions. The training process minimizes a loss function
comprising three components: a reconstruction loss, a Koopman dynamics loss, and a decay term.
The model is trained using the Adam optimizer for 70 epochs with a learning rate decay strategy.
During training, we monitor the performance of the model on the validation set.

After training the Koopman embedding model, we freeze its encoder network and use it to train the
LSTM component of our model (see Figure[I). The LSTM comprises four layers, each containing
64 hidden nodes. The LSTM layers’ output is then passed through a fully connected linear layer
mapping the 64-dimensional hidden state to a 3-dimensional output, which corresponds to the de-
sired predictions. We train the LSTM with a window size W = 4 by running the Adam optimizer
with learning rate 0.01 for 250 epochs. After training, we employ the model to predict the whole
test time series, using the first 4 days’ temperatures as seed data.

To evaluate the effectiveness of our approach, we compare it with a baseline method that trains an
LSTM model without the Koopman embeddings. This LSTM baseline is trained using the same
network architecture and number of epochs as in our method, but with the learning rate set to
0.001 to ensure a good performance. Both the baseline (named LSTM) and our method (named
LSTM+Koopman) are evaluated using the mean squared error (MSE) on the test time series.

Results. In Table |If and Figure [2| we show the results of our experiments. From the results, it is
clear that our LSTM+Koopman method significantly outperforms the LSTM baseline on the predic-
tions at all three depth levels. Overall, our method reduces the test MSE from 35.682 to 10.800, a
nearly 70% improvement. These results confirm that using physics-informed features, particularly
Koopman embeddings in this case, can improve the performance of the LSTM model for the lake
water temperature prediction problem.

4 CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for predicting lake water temperatures using physics-
informed neural networks. Using the Koopman embeddings, our method can capture the temperature
dynamics efficiently, reducing the mean squared errors of predictions by nearly 70%. Our findings
confirm the effectiveness of using physics-informed features to enhance the performance of deep
learning models for the prediction of lake water temperature.
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Figure 2: The target and predicted time series of the LSTM baseline and our method at different
depth levels.

For future work, we will expand our research by combining both in-situ and simulated data to
further improve the model’s prediction ability. We will also explore more powerful models such
as transformers (Waswani et al., 2017) and broaden our research to other water quality indices such

as pH or oxygen levels to provide more comprehensive solutions for monitoring and managing lake
resources efficiently.
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