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The KKL inequality and Rademacher type 2
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Abstract: We show that a vector-valued Kahn–Kalai–Linial inequality holds in every

Banach space of Rademacher type 2. We also show that for any nondecreasing function

h g 0 with 0 <
∫ ∞

1
h(t)
t2 dt < ∞ we have the inequality

∥ f −E f∥2 f 12T2(X)

(∫ ∞

1

h(t)

t2
dt

)1/2




n

∑
j=1

∥D j f∥2
2

h
(

log
∥D j f∥2

∥D j f∥1

)




1/2

for all f : {−1,1}n → X and all n g 1, where X is a normed space and T2(X) is the associated

type 2 constant.
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1 Introduction

One of the central results in the analysis of Boolean functions is an estimate due to Kahn, Kalai, and

Linial from 1988 [7]. For n g 1, consider the discrete hypercube {−1,1}n equipped with the uniform

probability measure. Set ε = (ε1, . . . ,εn) ∈ {−1,1}n. For any Boolean function f : {−1,1}n →{−1,1}
with variance Var( f ) = E| f −E f |2 = δ > 0 one has

max
1f jfn

Inf j( f )gC(δ )
log(n)

n
, (1)

where Inf j( f ) = P( f (ε) ̸= f (ε· j)), ε· j = (ε1, . . . ,−ε j, . . . ,εn), and the positive constant C(δ ) depends

only on δ . In fact one can take C(δ ) = δ/5, see Corollary 1 in the Appendix. The quantity Inf j( f ), also

called the influence of the Boolean function f in the j’th coordinate, measures how influential the j’th
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variable (or j’th voter) is towards the outcome of f . Clearly, if Inf j( f ) = 0, then f does not depend on

the j’th variable at all.

Perhaps the most striking application of the inequality (1) is that for any monotone Boolean function f ,

that is, one for which f (ε)f f (ε ′) whenever ε j f ε ′
j for all j = 1, . . . ,n, and for which E f g−0.99, one

can take O(n/ log(n+1)) variables to be 1, resulting in the average of f with respect to the remaining

variables being larger than 0.99 (see Proposition 9.27 in [9]). In social choice, this means that in a

monotone election between two candidates, if the first candidate (corresponding to “−1”) wins the

election on average, then the second candidate can bribe O(n/ log(n+1)) voters to win the election on

average.

Working with Boolean functions one is likely to fall into the trap of assuming that many of the

phenomena observed in (1) are combinatorial in nature. Note that the classical Poincaré inequality

E| f −E f |2 f
n

∑
j=1

E|D j f |2, (2)

for all f : {−1,1}n →R, where D j f (ε) = f (ε)− f (ε· j)
2

, implies a weak version of (1), i.e., for any Boolean

f : {−1,1}n →{−1,1} there exists j ∈ {1, . . . ,n} such that Inf j( f ) = E|D j f |2 g E| f −E f |2/n.

By all accounts, Talagrand [11] was the first to discover a more extreme version of this inequality,

which itself implies the existence of a universal constant K ∈ (0,∞) such that

E| f −E f |2 f K

log

(
e/maxk

E|Dk f |√
E|Dk f |2

)
n

∑
j=1

E|D j f |2 (3)

holds for all real-valued functions f : {−1,1}n → R. We should point out that (3) is the version of this

estimate that is used in all applications we are aware of. It also improves the Poincaré inequality (2) by a

logarithmic factor, and can also be used to recover (1) when applied to Boolean functions. The inequality

(3) for Boolean functions, although never stated in this form, follows from the arguments of the original

paper of Kahn–Kalai–Linial [7] (see the Appendix for the full derivation), and for this reason we shall

refer to (3) as the KKL inequality.

The main advantage of the estimate (3) over the original Boolean corollary (1) is that it can be restated

when the target space of the function is taken to be an arbitrary metric space.

Definition 1.1. We say a metric space (X ,d) is of KKL type if there exists a universal constant T ∈ (0,∞)
such that the inequality

Ed( f (ε), f (ε ′))2 f T 2

log

(
e/max

k

Ed( f (ε), f (ε·k))√
Ed( f (ε), f (ε·k))2

)
n

∑
j=1

Ed( f (ε), f (ε· j))2 (4)

holds for every n g 1, and for every function f : {−1,1}n → X, where ε ′ is an independent copy of ε .

The best such T in (4) is denoted by TKKL(X).
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Thus an analogous statement to (1) can be formulated without relying on the linear structure of the

target space X one has when working with normed spaces. The translation of phenomena involving a

linear structure to fit spaces endowed only with metrics lies at the foundation of the Ribe program [8]

which was inspired by Ribe’s rigidity theorem [10], and was initiated by Bourgain [3].

This paper seeks to provide a complete description of normed spaces which are of KKL type. It is

straightforward to see that a normed space (X ,∥ ·∥) that is of KKL type must also be of Rademacher type

2 (or just type 2), meaning that there exists a constant T ∈ (0,∞) such that for all x1, ...,xn ∈ X we have

that

E

∥∥∥
n

∑
j=1

ε jx j

∥∥∥
2

f T 2
n

∑
j=1

∥x j∥2. (5)

The best constant T in (5) is denoted by T2(X).
A recent paper [6] showed that normed spaces of type 2 must satisfy the Poincaré inequality (2),

resolving a long-standing conjecture in Banach space theory due to Enflo. Soon after, Eskenazis and

Cordero-Erausquin showed [5] that for type 2 spaces there was a variant of the KKL inequality (3)

including an additional doubly logarithmic factor, which meant that (1) could not be recovered from

this. An instructive example, which serves as a “self-checker” for whether any given new functional

inequality bounding the variance of a function f by its discrete derivatives can ever recover (1) is the

tribes function ftribe : {−1,1}n 7→ {−1,1}, which has the properties: E(∑n
j=1 Inf j( f ))α ≍ logα(n) for

any α > 0; max j=1,...,n Inf j( ftribe) = Inf1( ftribe) ≍ log(n)
n

; Var( ftribe) ≍ 1 (see [2]). Notice that for the

tribes function the right hand side of (3) is of constant order as n → ∞.

In this paper we show that KKL type and Rademacher type 2 coincide.

Theorem 1. For any normed space (X ,∥ · ∥), we have

T2(X)/2 f TKKL(X)f 2e
√

2π T2(X).

It will follow from the proof of Theorem 1 that if one manages to obtain bounds ∥D j f∥2 f
b j,∥D j f∥1 f a j for some nonnegative numbers a j,b j with a j f b j, j = 1, . . . ,n, then the following

inequality holds

∥ f −E f∥2 f
2e
√

2π T2(X)

log(e/max j(a j/b j))

( n

∑
k=1

b2
k

)1/2

, (6)

where T2(X) is the type 2 constant of the normed space X .

The inequality, as written in (6), applied to real-valued functions was critical (see Chapter 5 in [4]) to

obtaining sublinear bounds on the variance in the first passage percolation model [1].

One may wonder whether there is an analog of Theorem 1 for normed spaces of type p, for p ∈ [1,2].
Recall that the normed space (X ,∥ · ∥) is of type p, p ∈ [1,2], if there exists a positive constant T such

that

E

∥∥∥
n

∑
j=1

ε jx j

∥∥∥
p

f T p
p

n

∑
j=1

∥x j∥p (7)

for all n g 1 and all x1, . . . ,xn ∈ X . The best constant T in (7) is denoted by Tp(X).
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Theorem 2. If a normed space (X ,∥ · ∥) is of type p, then we have

∥ f −E f∥p f
2e
√

2π Tp(X)√
log(e/max(

a j

b j
))

(
n

∑
k=1

b
p
j

)1/p

(8)

for any ng 1, any f : {−1,1}n →X, and any nonnegative numbers {a j,b j}n
j=1, b j g a j with ∥D j f∥1 f a j,

∥D j f∥p f b j, j = 1, . . . ,n.

Our third theorem investigates Talagrand’s inequality for normed spaces of type 2. Theorem 1 in [5]

says that if X is of type 2 then

∥ f −E f∥2 f
C√

ε




n

∑
j=1

∥D j f∥2
2

log1−ε ∥D j f∥2

∥D j f∥1




1/2

(9)

holds for all ε ∈ (0,1) and all f : {−1,1}n 7→ X , where C depends only on the type 2 constant of X . It

is an open problem whether one can remove ε in the statement of the inequality (9), i.e., remove the

constant 1√
ε

and take ε = 0 in the power of the logarithm.

In this direction we make the following improvement.

Theorem 3. Let h g 0 be nondecreasing with 0 <
∫ ∞

1 h(t)dt
t2 < ∞ and X a normed space of type 2. Then

∥ f −E f∥2 f 12T2(X)

(∫ ∞

1

h(t)

t2
dt

)1/2




n

∑
j=1

∥D j f∥2
2

h
(

log
∥D j f∥2

∥D j f∥1

)




1/2

(10)

for all f : {−1,1}n → X and all n g 1.

The choice h(t) = t1−ε recovers (9). One can consider more sophisticated examples such as h(t) =
t

log1+ε (2+t)
or h(t) = t

log(2+t)(log log(10+t))1+ε for any ε > 0.

It is worth noting that if a normed space X satisfies (10) for some h as above, then by considering

linear functions f (ε) = ∑i εixi, we see that X must be of type 2.

In Sections 3, 4, 5 we present proofs of Theorems 1, 2, 3, respectively. In Section 6 we present

Propositions 6.1 and 6.2 showing that the main steps in the proofs of our theorems give sharp bounds.

2 Background

Consider the space of vector-valued functions f : {−1,1}n → X , defined on the discrete hypercube, for

which (X ,∥ · ∥) is a normed space. Define the Lp(X) norm on such functions as

∥ f∥p = (E∥ f∥p)1/p =
( 1

2n ∑
ε∈{−1,1}n

∥ f (ε)∥p
)1/p

.
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It is often helpful to think about f in terms of its Fourier-Walsh expansion

f (ε) = ∑
S¢{1,...,n}

aSεS,

where

εS : (ε1, ...,εn) 7−→ ∏
i∈S

εi, ε /0 ≡ 1,

are called Walsh functions. A straightforward computation yields

aS = EεS f (ε) for all S ¦ {1, ...,n}.

Much of what we will prove in this paper relies on the rich theory of the heat semigroup on the discrete

hypercube. With the discrete derivative operators D j defined as in the introduction, define the discrete

Laplacian ∆ on functions f : {−1,1}n → X as follows

∆ f (ε) =−
n

∑
j=1

D j f (ε).

We then define the heat semigroup Pt = e∆t as

Pt( f )(ε) = ∑
S¢{1,...,n}

aSe−|S|tεS for all t g 0.

An important property satisfied by the heat semigroup is hypercontractivity: for all p,q satisfying

1 < p f q < ∞ and e−2t f p−1
q−1

, we have

∥Pt f∥q f ∥ f∥p. (11)

One of the key ingredients in obtaining Theorem 1 is going to be the following pointwise identity

obtained in [6]. For a normed space (X , || · ||) and a function f : {−1,1}n → X , we have

− d

dt
Pt f (ε) =

1√
e2t −1

Eξ

n

∑
j=1

δ j(t)D j f (εξ (t)), (12)

where εξ (t) = (ε1ξ1(t), ...,εnξn(t)), and the ξi(t) are i.i.d. random variables with

P{ξi(t) =±1}= 1± e−t

2
,

and δi =
ξi(t)−Eξi(t)√

Var(ξi(t))
.

DISCRETE ANALYSIS, 2024:2, 14pp. 5



3 Proof of Theorem 1

The lower bound T2(X)/2 f TKKL(X) follows by applying (4) to linear functions f (ε) = ε1x1+ . . .+εnxn

and using the simple inequality E∥ f −E f∥2 f E∥ f (ε)− f (ε ′)∥2.

To get the upper bound in Theorem 1 we proceed as follows. Without loss of generality we assume

max1fkfnE∥Dk f∥> 0 otherwise f is constant and hence there is nothing to verify. By applying (12) to

the function Pt( f ), and using the chain rule, we obtain

− d

dt
P2t f (ε) =

2√
e2t −1

Eξ

n

∑
j=1

δ j(t)D jPt f (εξ (t)).

We then proceed by integrating both sides with respect to t and note that P0 f = f , and limt→∞ Pt f = E f .

It follows that

f (ε)−E f = 2 ·
∫ ∞

0
Eξ

n

∑
j=1

δ j(t)D jPt f (εξ (t))
dt√

e2t −1
. (13)

Next, we take L2 norms and apply both the triangle and Jensen’s inequality, which yields

∥ f −E f∥2 f 2 ·
∫ ∞

0

(
Eξ ,ε

∥∥∥
n

∑
j=1

δ j(t)D jPt f (ε ·ξ (t))
∥∥∥

2)1/2 dt√
e2t −1

.

Since (E∥ f (ε)− f (ε ′)∥2)1/2 f 2∥ f −E f∥2, we will shift to exclusively obtaining upper bounds on the

right hand side (RHS) of the inequality above. Notice that (δ ,ξ ε) has the same distribution as (δ ,ε). We

thus replace ξ ε with ε via a change of variables, i.e.

∥ f −E f∥2 f RHS := 2 ·
∫ ∞

0

(
Eξ ,ε

∥∥∥
n

∑
j=1

δ j(t)D jPt f (ε)
∥∥∥

2)1/2 dt√
e2t −1

.

In addition, a symmetrization argument using Eδi(t) = 0 yields the following inequality

RHS f 2 ·
∫ ∞

0

(
Eξ ,ξ ′,ε,ε ′

∥∥∥
n

∑
j=1

ε ′
j(δ j(t)−δ ′

j(t))D jPt f (ε)
∥∥∥

2)1/2 dt√
e2t −1

,

where δ ′
j is a copy of δ j depending on ξ ′, which is an independent copy of ξ , and ε ′ ∈ {−1,1}n is an

independent copy of ε . Since our normed space X is of type 2, applying the definition to the average over

ε ′ we obtain

RHS f 2T2(X) ·
∫ ∞

0

(
Eξ ,ξ ′,ε

n

∑
j=1

(δ j(t)−δ ′
j(t))

2 · ∥D jPt f (ε)∥2
)1/2 dt√

e2t −1
. (14)

Next, we have Eξ ′,ξ (δ j(t)−δ ′
j(t))

2 = 2, which we can plug into (14) to obtain the following estimate

RHS f 23/2 ·T2(X) ·
∫ ∞

0

( n

∑
j=1

∥D jPt f∥2
2

)1/2 dt√
e2t −1

.
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Moreover, the commutativity D jPt = PtD j along with hypercontractivity gives us

∥D jPt f∥2
2 f ∥D j f∥2

1+e−2t .

It thus follows that

RHS f 23/2 ·T2(X) ·
∫ ∞

0

( n

∑
j=1

∥D j f∥2
1+e−2t

)1/2 dt√
e2t −1

.

By Hölder’s inequality, we have

∥D j f∥2
1+e−2t f ∥D j f∥2θ

1 · ∥D j f∥2(1−θ)
2 f ∥D j f∥2

2 ·
(

max
k

∥Dk f∥1

∥Dk f∥2

)2θ

, (15)

where θ = 1−e−2t

1+e−2t . We have therefore obtained the following inequality

∥ f −E f∥2 f 23/2 ·T2(X) ·
( n

∑
j=1

∥D j f∥2
2

)1/2

·
∫ ∞

0

(
max

k

∥Dk f∥1

∥Dk f∥2

) 1−e−2t

1+e−2t dt√
e2t −1

. (16)

Let a := maxk
∥Dk f∥1

∥Dk f∥2
∈ (0,1]. Since 1+e−t

1+e−2t g 1 and 1√
1+e−t

f 1, we have

∫ ∞

0
a

1−e−2t

1+e−2t
dt√

e2t −1
f
∫ ∞

0
a1−e−t e−tdt√

1− e−t
f e ·

∫ ∞

0
(a/e)1−e−t e−tdt√

1− e−t
,

Performing the substitution s =
√

(1− e−t) log(e/a) then gives us

e ·
∫ ∞

0
(a/e)1−e−t e−tdt√

1− e−t
=

2e√
log(e/a)

∫ √
log(e/a)

0
e−s2

ds f e
√

π√
log(e/a)

,

whence the desired result follows immediately.

4 Proof of Theorem 2

The proof of Theorem 2 proceeds in the same way as the proof of Theorem 1, therefore, to avoid

repetitions we briefly sketch the argument. We take Lp norms in both sides of (13), and apply the triangle

and Jensen’s inequality, as well as the same symmetrization arguments. By Cauchy–Schwarz, we have

E|δ j(t)−δ ′
j(t)|p f 2p/2. Then using hypercontractivity and Hölder’s inequality we obtain

∥D jPt f∥p
p f ∥D j f∥p

1+(p−1)e−2t f b
p
j

(
max

k

ak

bk

)pθ

, where θ =
1− e−2t

1+(p−1)e−2t
.

Finally note that for any a ∈ (0,1] we have

∫ ∞

0
a

1−e−2t

1+(p−1)e−2t
dt√

e2t −1
f
∫ ∞

0
a1−e−t e−tdt√

1− e−t
,
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after which the rest of the proof proceeds verbatim as in Section 3.

Let us remark that the converse implication to Theorem 2 also holds true: if (X ,∥ · ∥) is an arbitrary

normed space, and the inequality (8) holds with 2e
√

2π Tp(X) replaced by some universal constant, then

the normed space X must be of type p. Indeed, the conclusion follows by choosing f = ∑ j ε jx j and

a j = b j = ∥x j∥.

5 Proof of Theorem 3

The first steps of the proof proceed along the same lines as in Theorem 1, except that we do not take the

maximum over k in (15). We thus end up with the following inequality:

∥ f −E f∥2 f 23/2 ·T2(X) ·
∫ ∞

0

(
n

∑
j=1

∥D j f∥2
2 ·
(∥D j f∥2

1

∥D j f∥2
2

) 1−e−2t

1+e−2t
)1/2

dt√
e2t −1

. (17)

We then note that since 1−e−2t

1+e−2t g 1− e−t and
∥D j f∥1

∥D j f∥2
f 1, as well as the fact that 1√

e2t−1
f e−t√

1−e−t
, we can

bound the right hand side in (17) by

∫ ∞

0

(
n

∑
j=1

∥D j f∥2
2 ·
(∥D j f∥1

∥D j f∥2

)1−e−t)1/2
e−tdt√
1− e−t

.

Using this estimate, we can perform the substitution s =
√

1− e−t , which allows us to rewrite the integral

above as

1

2

∫ 1

0

(
n

∑
j=1

∥D j f∥2
2 ·
(∥D j f∥1

∥D j f∥2

)s2)1/2

ds.

Let us denote g(
√

s) = h(s). Note that our theorem is satisfied if we can show

∫ 1

0

(
∑

j

∥D j f∥2
2 ·
(∥D j f∥1

∥D j f∥2

)s2)1/2

ds f 12
√

2

(∫ ∞

1

g(s)

s3
ds

)1/2 ( n

∑
j=1

∥D j f∥2

g
(

log1/2 ∥D j f∥2

∥D j f∥1
.
)
)1/2

. (18)

Next, denote c j =
∥D j f∥2

2

g

(
log1/2 ∥D j f∥2

∥D j f∥1

) , and X j =
∥D j f∥1

∥D j f∥2
for all j = 1, . . . ,n. Then, dividing both sides of (18)

by
( n

∑
j=1

c j

)1/2

gives us the following:

∫ 1

0

(
n

∑
j=1

(
c j

n

∑
k=1

ck

)
·X s2

j g(log1/2(1/X j))

)1/2

ds f 12
√

2

(∫ ∞

1

g(s)

s3
ds

)1/2

.

Viewing the
c j

n

∑
k=1

ck

as probabilities, we can obtain the result above, and thus prove Theorem 3 immediately

by proving the following:
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Lemma 5.1. For all g g 0 with
∫ ∞

1
g(t)
t3 dt < ∞, we have that

∫ 1

0

(
EX s2

g(log1/2(1/X))
)1/2

ds f (
√

2+8
√

π)

(∫ ∞

1

g(s)

s3
ds

)1/2

(19)

for all random variables 0 f X f 1.

To prove this, rewrite X = e−Y 2

, where Y is a non-negative random variable. We thus have that

∫ 1

0

(
EX s2

g(log1/2(1/X))
)1/2

ds =
∫ 1

0

(
E e−(sY )2

g(Y )
)1/2

ds.

Now write pk = P(2k f Y < 2k+1) and use the fact that t 7→ e−t2

is decreasing and t 7→ g(t) is nonde-

creasing for t g 0, we get

∫ 1

0

(
E e−(sY )2

g(Y )
)1/2

ds f
∫ 1

0

(
g(1)+

∞

∑
k=0

e−(s2k)2

g(2k+1)pk

)1/2

ds.

Next, we partition the interval we are integrating over into intervals of the form (2− j,2− j+1] to get the

following estimate

∫ 1

0

(
g(1)+

∞

∑
k=0

e−(s2k)2

g(2k+1)pk

)1/2

ds f
∞

∑
j=1

(
g(1)+

∞

∑
k=0

e−22(k− j)
g(2k+1)pk

)1/2

2− j.

Next, using subadditivity of the map t 7→
√

t and interchanging the sums we obtain

∞

∑
j=1

(
g(1)+

∞

∑
k=0

e−22(k− j)
g(2k+1)pk

)1/2

2− j f
√

g(1)+
∞

∑
k=0

√
g(2k+1)

√
pk

∞

∑
j=1

e−
22(k− j)

2 2− j. (20)

Next, notice that

∞

∑
j=1

e−
22(k− j)

2 2− j f
∞

∑
j=1

∫ 2− j+1

2− j
e−

(2kx)2

8 dx =
∫ 1

0
e

−(2kx)2

8 dx = 2−k

∫ 2k

0
e−y2/8dy,

where the estimate
∫ 2k

0 e−y2/8dy f
√

2π gives us that

∞

∑
j=1

e−
22(k− j)

2 2− j f
√

2π ·2−k,

for all k. Using this estimate on (20) gives us

√
g(1)+

∞

∑
k=0

√
g(2k+1)

√
pk

∞

∑
j=1

e−
22(k− j)

2 2− j f

√
g(1)+

√
2π ·

∞

∑
k=0

√
g(2k+1)2−k√pk.

DISCRETE ANALYSIS, 2024:2, 14pp. 9



However, notice that

∞

∑
k=0

g(2k+1)2−2k f 8
∞

∑
k=0

∫ 2k+1

2k

g(2t)

t3
dt = 32

∫ ∞

2

g(s)

s3
ds,

and g(1)f 2
∫ ∞

1
g(s)
s3 ds. We thus have by Cauchy-Schwarz that

√
g(1)+

√
2π ·

∞

∑
k=0

√
g(2k+1)2−k√pk f (

√
2+8

√
π)

(∫ ∞

1

g(s)

s3
ds

)1/2

.

which completes the proof of the lemma, and thus also the theorem.

6 Concluding remarks

One may wonder how sharp the bound obtained in Lemma 5.1 is. We can show that the inequality (19) is

sharp up to a multiplicative constant.

Proposition 6.1. For any g g 0 with
∫ ∞

1
g(t)
t3 dt < ∞ there exists a random variable X, 0 f X f 1, such

that
∫ 1

0

(
EX s2

g(log1/2(1/X))
)1/2

ds g e−8

2

(∫ ∞

1

g(s)

s3
ds

)
.

Proof. Let X = e−Y 2

and choose Y g 0 so that pk = P(2k f Y < 2k+1) = g(2k)2−2k

∑
∞
j=1 g(2 j)2−2 j for all k g 1. We

have
∫ 1

0

(
EX s2

g(log1/2(1/X))
)1/2

ds =
∫ 1

0

(
Ee−(sY )2

g(Y )
)1/2

ds g
∞

∑
j=1

∫ 2− j+1

2− j

( ∞

∑
k=0

e−(s2k+1)2

g(2k)pk

)1/2

ds g
∞

∑
j=1

( ∞

∑
k=0

e−(2− j+k+2)2

g(2k)pk

)1/2

2− j g

∞

∑
j=1

e−8
√

g(2 j)p j 2− j = e−8
( ∞

∑
j=1

g(2 j)2−2 j
)1/2

,

where we established the final inequality by considering only the k = j terms. On the other hand

∞

∑
j=1

g(2 j)2−2 j g
∞

∑
j=1

∫ 2 j+1

2 j

g(t/2)

t3
dt =

1

4

∫ ∞

1

g(s)

s3
ds.

This finishes the proof of the proposition.

One may also wonder whether we can prove the following inequality

∫ ∞

0

(
n

∑
j=1

∥D j f∥2
2 ·
(∥D j f∥2

1

∥D j f∥2
2

) 1−e−2t

1+e−2t

)1/2
dt√

e2t −1
fC

(
n

∑
j=1

∥D j f∥2
2

log
∥D j f∥2

∥D j f∥1

)1/2

(21)
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with some universal finite constant C > 0. Note that (21) combined with (17) would solve the open

problem regarding setting ε = 0 in (9). If the inequality (21) does not hold then this would mean that one

needs to come up with a different approach to prove or disprove the inequality (9) without ε .

It was noted by the referee in [5] that if we treat b j = ∥D j f∥2
2, a j = ∥D j f∥2

1 as arbitrary nonnegative

numbers satisfying b j g a j g 0, then the inequality (21) does not hold in such generality. However, in

general the numbers b j and a j may not be arbitrary, i.e., there could be some relations between ∥D j f∥1

and ∥D j f∥2. For instance, for a Boolean function f : {−1,1}n → {−1,1} we have b j = ∥D j f∥2
2 =

∥D j f∥1 =
√

a j for all j = 1, . . . ,n. Therefore, it is interesting to ask whether the inequality (21) holds in

the “Boolean case”:

∫ ∞

0

(
n

∑
j=1

b
1+ 1−e−2t

1+e−2t

j

)1/2
dt√

e2t −1
fC′

(
n

∑
j=1

b j

log(1/b j)

)1/2

(22)

for all n g 1 and all b j ∈ [0,1]. It turns out that:

Proposition 6.2. There is no finite universal constant C′ > 0 for which the inequality (22) holds for all

b1, . . . ,bn ∈ [0,1] and all n g 1.

Proof. Towards a contradiction, assume that (22) holds true. We have b
1+ 1−e−2t

1+e−2t

j g b
1+2(1−e−t)
j . Performing

the substitution s =
√

1− e−t the inequality (22) implies

∫ 1

0

(
n

∑
j=1

b1+2s2

j

)1/2

ds fC

(
n

∑
j=1

b j

log(1/b j)

)1/2

. (23)

It follows from homogeneity that for all Borel measurable random variable Y g 0 we have

∫ 1

0

(
Ee−Y 2−2(Y s)2

)1/2

ds fC

(
E

e−Y 2

Y 2

)1/2

. (24)

Next, choose Y so that it takes only the values 2k, k ∈ Z with probabilities pk, i.e., ∑k∈Z pk = 1. Also set

pk = 0 for k f 0. Then the right hand side in (24) takes the form

C
(

∑
kg1

2−2ke−22k

pk

)1/2

.

The left hand side in (24) we can lower bound as

∞

∑
j=1

∫ 2− j+1

2− j

(
∑
kg1

e−22k−2(2ks)2

pk

)1/2

ds g

∞

∑
j=1

(
∑
kg1

e−22k−2(2k− j+1)2

pk

)1/2

2− j g e−4 ∑
jg1

(
e−22 j

p j

)1/2

2− j.

Denoting q j =
(

e−22 j

p j

)1/2

2− j, j g 1, we see that (24) implies the inequality ∑ jg1 q j f e4C(∑ jg1 q2
j)

1/2,

which by homogeneity (and slightly abusing notation) must hold for all q j g 0, resulting in the desired

contradiction.
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Appendix

The improved Poincaré inequality (3) for Boolean functions follows from the arguments of Kahn–Kalai–

Linial [7].

Theorem 4 (Kahn–Kalai–Linial). We have

E| f −E f |2 f 4

log(e/maxk Infk( f ))

n

∑
j=1

Inf j( f ) (25)

for all n g 1 and any f : {−1,1}n →{−1,1}.

Proof. Assume E| f −E f |2 > 0 (and hence maxk Infk( f )> 0) since otherwise there is nothing to prove.

Let f (ε) = ∑S¢{1,...,n} f̂ (S)εS. We start from the identity

∑
S¢{1,...,n}

|S| f̂ (S)2 =
n

∑
j=1

E|D j f |2. (26)

The idea is to apply the identity (26) to Pt f instead of f and integrate with respect to the measure e−tdt

over the ray [0,∞). Indeed, note that P̂t f (S) = e−t|S| f̂ (S). Therefore (26) gives

∑
S¢{1,...,n}

e−2t|S||S|a2
S f

n

∑
j=1

E|PtD j f |2
(11)

f
n

∑
j=1

(Inf j( f ))
2

1+e−2t , (27)

where we also used the fact that D j f ∈ {−1,0,1}. If we let s := e−2t and integrate (27) in s over (0,1)
we obtain

∑
S ̸= /0

|S|
|S|+1

a2
S f

∫ 1

0

n

∑
j=1

(
Inf j( f )

) 2
1+s

ds f
( n

∑
j=1

Inf j( f )
) ∫ 1

0

(
max

k
Infk( f )

) 1−s
1+s

ds.

On the one hand we have

1

2
E| f −E f |2 = 1

2
∑
S ̸= /0

a2
S f ∑

S ̸= /0

|S|
|S|+1

a2
S.

Next, letting a := maxk Infk( f ) ∈ (0,1], we obtain

∫ 1

0
a

1−s
1+s ds

s=1−x
=

∫ 1

0
a

x
2−x dx

af1

f
∫ 1

0
a

x
2 dx f

√
e

∫ 1

0
(a/e)

x
2 dx

−x log(a/e)=y
=

1

− log(a/e)

∫ − log(a/e)

0
e−y/2dy

f 2

− log(a/e)
.

This completes the proof of (25).
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Remark 1. It follows from the proof above that
∫ 1

0 (Inf j( f ))
2

1+s ds f 2Inf j( f )
− log(Inf j( f )/e) for all j = 1, . . . ,n.

Therefore, if we do not take the maximum in the proof of Theorem 4 we would obtain

E| f −E f |2 f 4
n

∑
j=1

Inf j( f )

log(e/Inf j( f ))
,

which is Talagrand’s inequality for Boolean functions.

Corollary 1. For any n g 1 and any f : {−1,1}n →{−1,1} we have

max
k

Inf1fkfn( f )g 1

5
Var( f )

log(n)

n
,

where Var( f ) = E| f −E f |2.

Proof. If n = 1 or Var( f ) = 0 there is nothing to prove. Henceforth, we assume n g 2 and Var( f ) =
1− (E f )2 =: δ ∈ (0,1]. Let t := maxk Inf1fkfn( f )> 0. By (25) we have δ f 4nt

log(e/t) . Since d
ds

s
log(e/s) =

2−log(s)
(1−log(s))2 > 0 the map s 7→ s

log(e/s) is increasing on (0,1]. Assume the contrary, i.e., t < δ log(n)
5n

. To get a

contradiction it suffices to show

δ >
4

5

δ log(n)

ln(5en/(δ log(n)))
. (28)

The inequality (28) is the same as 5en1/5 > δ log(n) for all n g 2. On the other hand, for all n g 1 we

have d
dn
(5en1/5 − log(n)) = en1/5−1

n
> 0 (and 5en1/5 > δ log(n) holds at n = 1), hence the inequality (28)

is proved.
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