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Abstract: We show that a vector-valued Kahn—Kalai-Linial inequality holds in every
Banach space of Rademacher type 2. We also show that for any nondecreasing function

h>0with0 < [° @dt < o we have the inequality

1/2
o (¢ 1/2 n D:fl2
|f =Efll2 <12T(X) ( / (z)dt> ARl
1 t =1 h (log HDJfHZ)
! 1D,

forall f:{—1,1}" — X and all n > 1, where X is a normed space and 75 (X) is the associated
type 2 constant.
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1 Introduction

One of the central results in the analysis of Boolean functions is an estimate due to Kahn, Kalai, and
Linial from 1988 [7]. For n > 1, consider the discrete hypercube {—1,1}" equipped with the uniform
probability measure. Set € = (¢y,...,¢&,) € {—1,1}". For any Boolean function f: {—1,1}" — {—1,1}
with variance Var(f) = E|f —Ef|> = § > 0 one has

log(n)
1I£je'lénlnfj(f) >C(9) i (D
where Inf;(f) = P(f(¢) # f(¥)), €%/ = (e1,...,—€j,..., &), and the positive constant C(§) depends

only on §. In fact one can take C(8) = 6/5, see Corollary 1 in the Appendix. The quantity Inf;(f), also
called the influence of the Boolean function f in the j’th coordinate, measures how influential the j’th
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variable (or j’th voter) is towards the outcome of f. Clearly, if Inf;(f) = 0, then f does not depend on
the j’th variable at all.

Perhaps the most striking application of the inequality (1) is that for any monotone Boolean function f,
that is, one for which f(€) < f(&') whenever &; < € forall j = 1,...,n, and for which Ef > —0.99, one
can take O (n/log(n+ 1)) variables to be 1, resulting in the average of f with respect to the remaining
variables being larger than 0.99 (see Proposition 9.27 in [9]). In social choice, this means that in a
monotone election between two candidates, if the first candidate (corresponding to “—1") wins the
election on average, then the second candidate can bribe O(n/log(n+ 1)) voters to win the election on
average.

Working with Boolean functions one is likely to fall into the trap of assuming that many of the
phenomena observed in (1) are combinatorial in nature. Note that the classical Poincaré inequality

Elf —Ef|*< Y EID;f?, )
j=1

forall f:{—1,1}" = R, where D;f(€) = w, implies a weak version of (1), i.e., for any Boolean
fi{=1,1}" = {—1,1} there exists j € {1,...,n} such that Inf;(f) = E|D;f|> > E|f —Ef|*/n.

By all accounts, Talagrand [11] was the first to discover a more extreme version of this inequality,
which itself implies the existence of a universal constant K € (0, o) such that

K n

——— LEID/P (3)
log <e/ maxj TE|Dka|2> j=1

holds for all real-valued functions f : {—1,1}" — R. We should point out that (3) is the version of this
estimate that is used in all applications we are aware of. It also improves the Poincaré inequality (2) by a
logarithmic factor, and can also be used to recover (1) when applied to Boolean functions. The inequality
(3) for Boolean functions, although never stated in this form, follows from the arguments of the original
paper of Kahn—Kalai—Linial [7] (see the Appendix for the full derivation), and for this reason we shall
refer to (3) as the KKL inequality.

The main advantage of the estimate (3) over the original Boolean corollary (1) is that it can be restated
when the target space of the function is taken to be an arbitrary metric space.

Elf-Ef <

Definition 1.1. We say a metric space (X,d) is of KKL type if there exists a universal constant T € (0,0)
such that the inequality

T2

Ed(f(e).S(e™) ) ]
log <"/ m Ed(f(-?),f(ﬁ"))z> '

Ed(f(g), f(e*))? )

(ngE

Ed(f(e), f(€))* <

1

holds for every n > 1, and for every function f : {—1,1}" — X, where €' is an independent copy of €.
The best such T in (4) is denoted by Tk (X).
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Thus an analogous statement to (1) can be formulated without relying on the linear structure of the
target space X one has when working with normed spaces. The translation of phenomena involving a
linear structure to fit spaces endowed only with metrics lies at the foundation of the Ribe program [8]
which was inspired by Ribe’s rigidity theorem [10], and was initiated by Bourgain [3].

This paper seeks to provide a complete description of normed spaces which are of KKL type. It is
straightforward to see that a normed space (X, || - ||) that is of KKL type must also be of Rademacher type

2 (or just type 2), meaning that there exists a constant 7 € (0,0) such that for all xy,...,x, € X we have
that
n 2 n
E‘ Yy 8jxjH <T*Y x S)
Jj=1 Jj=1

The best constant 7T in (5) is denoted by 7> (X).

A recent paper [6] showed that normed spaces of type 2 must satisfy the Poincaré inequality (2),
resolving a long-standing conjecture in Banach space theory due to Enflo. Soon after, Eskenazis and
Cordero-Erausquin showed [5] that for type 2 spaces there was a variant of the KKL inequality (3)
including an additional doubly logarithmic factor, which meant that (1) could not be recovered from
this. An instructive example, which serves as a “self-checker” for whether any given new functional
inequality bounding the variance of a function f by its discrete derivatives can ever recover (1) is the

tribes function fuibe : {—1,1}" = {—1,1}, which has the properties: E(Y}_; Inf;(f))* < log*(n) for

any o > 0; maxj—p,__,Inf;( firibe) = Infi (firive) < 10g("); Var(fuive) < 1 (see [2]). Notice that for the

n
tribes function the right hand side of (3) is of constant order as n — oo.

In this paper we show that KKL type and Rademacher type 2 coincide.

Theorem 1. For any normed space (X, || -

), we have
T>(X)/2 < Teki (X) < 2eV27 To(X).

It will follow from the proof of Theorem 1 that if one manages to obtain bounds ||D;fl|» <
b;,|[Djf|li < a; for some nonnegative numbers a;,b; with a; < bj, j =1,...,n, then the following
inequality holds

If~Efle < ;
og

2e\21 T>(X) noooN12
»(kgbk) , ©)

(e/max;(a;/b;
where 7>(X) is the type 2 constant of the normed space X.

The inequality, as written in (6), applied to real-valued functions was critical (see Chapter 5 in [4]) to
obtaining sublinear bounds on the variance in the first passage percolation model [1].

One may wonder whether there is an analog of Theorem 1 for normed spaces of type p, for p € [1,2].
Recall that the normed space (X, || - ||) is of type p, p € [1,2], if there exists a positive constant 7 such
that

B

n P n

Yoo <7 Y Il ™
j=1 j=1
forall n > 1 and all x,...,x, € X. The best constant 7T in (7) is denoted by 7),(X).
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Theorem 2. If a normed space (X, || -||) is of type p, then we have

If =Efll, <

2ev2n Ty (X) ( y b’.’) " ®)

Og(e/max(bi)) k=1
foranyn>1, any f:{—1,1}" — X, and any nonnegative numbers {aj,bj};le, bj>a;with |D;f|i <aj
IDifll, <bj, j=1,...,n

Our third theorem investigates Talagrand’s inequality for normed spaces of type 2. Theorem 1 in [5]
says that if X is of type 2 then

1/2
C 1 D fl2
If—Efll. < — Z ID;f I3

e | & 1—¢ |Djfll2
Ve S og! 15

©)

holds for all € € (0,1) and all f: {—1,1}" — X, where C depends only on the type 2 constant of X. It
is an open problem whether one can remove € in the statement of the inequality (9), i.e., remove the
constant 7 and take € = 0 in the power of the logarithm.

In this direction we make the following improvement.

Theorem 3. Let h > 0 be nondecreasing with 0 < [ lmh(t)% < oo and X a normed space of type 2. Then

1/2

o 1/2 n
\|f—1Ef\2<12T2(X)</1 hg)dt) Z Dl (10)

IDif ]2
( 08 uDjful)

forall f:{—1,1}" - X and alln > 1.

The choice A(t) = t'~¢ recovers (9). One can consider more sophisticated examples such as h(t) =
m or h<t) - log(2+t)(10gltog(10+t))1+5 forany £ > 0.

It is worth noting that if a normed space X satisfies (10) for some /4 as above, then by considering
linear functions f(€) =Y, &x;, we see that X must be of type 2.

In Sections 3, 4, 5 we present proofs of Theorems 1, 2, 3, respectively. In Section 6 we present
Propositions 6.1 and 6.2 showing that the main steps in the proofs of our theorems give sharp bounds.

2 Background

Consider the space of vector-valued functions f: {—1,1}" — X, defined on the discrete hypercube, for
which (X, || - ||) is a normed space. Define the L”(X) norm on such functions as

O Ca MV CID

ee{-1,1}"
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It is often helpful to think about f in terms of its Fourier-Walsh expansion

fle)="Y ase’,
Sc{l,...,n}
where
8 817 & '—>H817 E )
€S

are called Walsh functions. A straightforward computation yields
as=ReSf(e) forall SC{l,..n}
Much of what we will prove in this paper relies on the rich theory of the heat semigroup on the discrete

hypercube. With the discrete derivative operators D; defined as in the introduction, define the discrete
Laplacian A on functions f: {—1,1}" — X as follows

- i,lef(S)

We then define the heat semigroup P, = €™ as

R(f)e)= Y ase PleS forall 1>0.

An important property satisfied by the heat semigroup is hypercontractivity: for all p,q satisfying

l<p<g<owande 2’<Z ll,wehave

1B fllg < N f1lp- (11)

One of the key ingredients in obtaining Theorem 1 is going to be the following pointwise identity

obtained in [6]. For a normed space (X, ||-||) and a function f: {—1,1}" — X, we have
d
—at e = e Z 8;(1)D;f (€€(1)), (12)

where €& (1) = (€1& (1), ...,€E,(t)), and the &;(¢) are i.i.d. random variables with

1+e?

P{&(r) =+1} = 7

and 6 — 5;() Eét([)
Var(&i(1))”
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3 Proof of Theorem 1

The lower bound 75 (X ) /2 < Tkkw(X) follows by applying (4) to linear functions f(€) = €1x; + ...+ &x,
and using the simple inequality E| f —Ef||*> < E| f(e) — f(")|>*

To get the upper bound in Theorem 1 we proceed as follows. Without loss of generality we assume
max<x<n E||Dif|| > 0 otherwise f is constant and hence there is nothing to verify. By applying (12) to
the function P;(f), and using the chain rule, we obtain

L Pufle) = E525 D,Bf(eE(1)).

We then proceed by integrating both sides with respect to t and note that Py f = f, and lim; .. P, f = Ef.
It follows that

dt

N (13)

fle)~Ef=2. /0 Ee Y 8(1)D;Pf(£E (1))
j=1
Next, we take L? norms and apply both the triangle and Jensen’s inequality, which yields

Eamonre so)" 2

201

If - Ef\|z<2/ Ee .

Since (E||f(g) — £(€")]|*)"/? < 2||f —Ef||2, we will shift to exclusively obtaining upper bounds on the
right hand side (RHS) of the inequality above. Notice that (8, & €) has the same distribution as (8, ¢€). We
thus replace £ & with € via a change of variables, i.e.

dt

If —Ef| < RHS ;:2./: (Egﬁ i5j(l)Dthf(8)H2)l/Zezt_l.
=

In addition, a symmetrization argument using E8;(¢) = 0 yields the following inequality

e -gomrse|) "

21_1

)

RHS < 2- / Etgree

where §] is a copy of ; depending on &', which is an independent copy of &, and ¢’ € {—1,1}" is an
independent copy of €. Since our normed space X is of type 2, applying the definition to the average over
€’ we obtain

RHS < 270): [ (Byge X (5,0~ 80 IDRS@) 5 (4

Next, we have Eg/ ¢ (6;(t) — 5;(t))2 = 2, which we can plug into (14) to obtain the following estimate

dr
32,
RHS <2 /0 ( § ID; P,fH2> T
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Moreover, the commutativity D ;F; = F,D; along with hypercontractivity gives us

IDPFIE < DI 4o

It thus follows that
o s 2 12 dt
RHS < 23/2. (X / (Z \|D,f||1+c 2,) AT

By Holder’s inequality, we have

IDis 11\
IDifIFw <UD DR < 10313 (s ,
JJ 42 J JJ 12 JJ 2 ||D f||2

. We have therefore obtained the following inequality

where 6 = 1+ =

e—2t

3 1z DS\ e dr
lf—Efi!z§23/2-Tz<X>-(,;nDij%) g <mkax’ ) ’1> V-1

IDef |2 e —

D, . t
Let a := maxy HD’Z}CH; € (0,1]. Since llj_r:,y > 1and \/T < 1, we have

(o] _t
are ™ (aje)'=¢" e ar ,

S S ® et e ldt
—< a‘ ——=<e-
0 Ve —1 0 vVi—et 0 1—e™?!

Performing the substitution s = /(1 —e~*)log(e/a) then gives us

o0 Loet log(e/a)
e / (aje)'™¢ cdr 2 / e ds
0 Vi—e* /log(e/a) o

whence the desired result follows immediately.

eVn
log(e/a)’

IN

4 Proof of Theorem 2

(15)

(16)

The proof of Theorem 2 proceeds in the same way as the proof of Theorem 1, therefore, to avoid
repetitions we briefly sketch the argument. We take L” norms in both sides of (13), and apply the triangle
and Jensen’s inequality, as well as the same symmetrization arguments. By Cauchy—Schwarz, we have

E[8;(r) — 8;(1)] < 2P/2_ Then using hypercontractivity and Holder’s inequality we obtain

1— 672t

po
ag
IDALI <UD, e 2,3b5(m]gxbk> . where 69—

Finally note that for any a € (0, 1] we have
et e 'dt

o 1N dr oo
/ al+(p—l)e’2’ R S / al _
0 Ve —1 0 V1—e!
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after which the rest of the proof proceeds verbatim as in Section 3.

Let us remark that the converse implication to Theorem 2 also holds true: if (X, || -||) is an arbitrary
normed space, and the inequality (8) holds with 2e/27 T,(X) replaced by some universal constant, then
the normed space X must be of type p. Indeed, the conclusion follows by choosing f =} ;€&;x; and
aj="bj=|x.

5 Proof of Theorem 3

The first steps of the proof proceed along the same lines as in Theorem 1, except that we do not take the
maximum over k in (15). We thus end up with the following inequality:

17672r
DfHZ It 2 1/2 dr
e <2 (B (220w
—t 1D, fll1 e’
We then note that since 1 + — > 1—eand I D; h < 1, as well as the fact that ——— eZt m, we can

bound the right hand side in (17) by
/m<f:W)fW,<W%fh>let>”z e ldi
o \= DS Vi—e
Using this estimate, we can perform the substitution s = /1 — e, which allows us to rewrite the integral

above as 1
1/1< - > (ID;iflIn Y’
> ID;fl5- ds.
3 Jo (B2 ([, 1

Let us denote g(+/s) = h(s). Note that our theorem is satisfied if we can show

1 .z.(HDijl)Sz)”z (e >/< 1011 >1/2
[ (Eowe (Jpar) ) s[4 £ )" o

[D;fll

L £)|12 .
Next, denote ¢; = Hi’fl‘%f ~ and X; = ng;H; forall j=1,...,n. Then, dividing both sides of (18)
8 1081 Dif >
JJ I

n 1/2
y ( Y c j> gives us the following:
j=1

1/ n 1/2 - 1/2
€j $ 8(s)
/0 (,;( i >~X,,- g(log1/2(1/Xj))> ds < 12V2 (/1 S3ds) .

Y
k=1

Viewing the —~— as probabilities, we can obtain the result above, and thus prove Theorem 3 immediately
Z Ck

by proving the following:
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Lemma 5.1. Forall g > 0 with [;° gt(%)dt < oo, we have that

/01 (Estg(logl/z(l/X)))l/zdsS (V2+8y/7) (/lm‘gg)ds>l/2 (19)

for all random variables 0 < X < 1.

To prove this, rewrite X = e~ ¥ ’ where Y isa non-negative random variable. We thus have that

Now write p; = P(2% <Y < 2Kt1) and use the fact that 7 — ™" is decreasing and 7 — g(¢) is nonde-
creasing for ¢ > 0, we get

1 1/2 1 i , 1/2
/0 (Ee*(s”zg(Y)) ds < /0 (g(1)+Zf(ﬂk)zg@"“)pk) ds.

k=0

Next, we partition the interval we are integrating over into intervals of the form (27/,27/"1] to get the
following estimate

[ (s+3

Y e (27 g2t )pk) Vs < )y (g( D+ i e H g2k )pk) Vo

k=0

Next, using subadditivity of the map ¢ — /¢ and interchanging the sums we obtain

= > 2k—j /2 . > > 22(k J)
Y (s+ X e e@ ) T2 < Ve + Y ey Y e T 27 (20)
j=1 k=0 k=0 J=1

Next, notice that

oo o 27/l k)2 1ok
Z ~257 <Z/ e—%dx:/ 5 —2/ By,

k
where the estimate f02 e/ 8dy < /27 gives us that

2w -2

™M
Q\

for all k. Using this estimate on (20) gives us

+2\/ zkﬂrze 2l <

\/7+\/E Z (2k+1)2 k\/ITk-
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However, notice that

2k+ 1

Z (2"+122’<<82/ 2 32/ s,
and g(1) <2 f{" &5 £ g5, We thus have by Cauchy-Schwarz that

o /2
NCORE S WYAEae v (v2evm) (| gs(;)ds>l.

which completes the proof of the lemma, and thus also the theorem. O

6 Concluding remarks

One may wonder how sharp the bound obtained in Lemma 5.1 is. We can show that the inequality (19) is
sharp up to a multiplicative constant.

Proposition 6.1. For any g > 0 with [{" £ 3 80) 4t < oo there exists a random variable X, 0<X <1, such

that
/ (Estg(logl/z(l /x))) ds > % ( g(i)ds) .
0 1S
Proof. Let X = e¥” and choose Y > 0 so that p, = P(2F <Y < 2kH1) = % for all k > 1. We
=1
have

Al (EXS (log'2(1/X)) )1/2 = /01 (]Ee_(sy)zg(Y)>1/2ds >

o 1/2 .
e (2 J+k+2)2g(2k)pk> / 27} >

, A 1/2
<zf>2*2f) "

where we established the final 1nequahty by considering only the k = j terms. On the other hand

Zgzj 2,>Z/’+' 81/2) 4 4/g

This finishes the proof of the proposition. O

One may also wonder whether we can prove the following inequality

w [ n o RN 1/2 . 5\ 12
[ (1o (1218 i o el o
J — .
0 j=1 HDJfH% e — 1 =1 log 1D fll2

1D flh
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with some universal finite constant C > 0. Note that (21) combined with (17) would solve the open
problem regarding setting € = 0 in (9). If the inequality (21) does not hold then this would mean that one
needs to come up with a different approach to prove or disprove the inequality (9) without €.

It was noted by the referee in [5] that if we treat b; = ||D; f||3, a; = ||D;f||? as arbitrary nonnegative
numbers satisfying b; > a; > 0, then the inequality (21) does not hold in such generality. However, in
general the numbers b ; and aj may not be arbitrary, i.e., there could be some relations between ||D; f||
and ||D;f|2. For instance, for a Boolean function f: {—1,1}" — {—1,1} we have b; = ||D;f|5 =
|D;jfll1 = \/a;j forall j =1,...,n. Therefore, it is interesting to ask whether the inequality (21) holds in
the “Boolean case”:

le 1/2 dt n bJ 1/2
b, 1 - — < — 7 22
/(Z ) N (,.leogu/bj)) 22

foralln > 1 and all b; € [0, 1]. It turns out that:

Proposition 6.2. There is no finite universal constant C' > 0 for which the inequality (22) holds for all
by,...,b, € 0,1 and alln > 1.
21

I—e

Proof. Towards a contradiction, assume that (22) holds true. We have b f e > b
the substitution s = v/1 — e the inequality (22) implies

"y 14257 12 b; 12
W) ese(Lgiim) ®

Jj=1

1+2(1-e™) . Performing

It follows from homogeneity that for all Borel measurable random variable Y > 0 we have
1/2

1 1/2 e
—Y2-2(vs)?
/0 (]Ee (¥s) > ds<C <E 3 ) . 24)

Next, choose Y so that it takes only the values 2%, k € Z with probabilities py, i.e., ¥yez px = 1. Also set
pr = 0 for k£ < 0. Then the right hand side in (24) takes the form

12
c(Lr™en)

The left hand side in (24) we can lower bound as

2- j+1

i/ (Z 8722"72(2"S)2pk> 1/2ds >
=1 k=1
i(z 2% 22"f“)2pk>1 2J>e742( >1/2 -

k>1 j>1

N2
Denoting ¢; = (e*22’ pj) 27/, j> 1, we see that (24) implies the inequality Y.~ g; < e4C():j21 q%) 172,
which by homogeneity (and slightly abusing notation) must hold for all g; > 0, resulting in the desired

contradiction.
O
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Appendix

The improved Poincaré inequality (3) for Boolean functions follows from the arguments of Kahn—Kalai—
Linial [7].

Theorem 4 (Kahn—Kalai—Linial). We have

4
~ log (e/ max Infy(f)) ;Infj(f)

Elf —Ef* < (25)

foralln>1andany f: {—1,1}" — {—1,1}.

Proof. Assume E|f —E Ef |> > 0 (and hence max; Inf;(f) > 0) since otherwise there is nothing to prove.
Let (&) = Ysc1,..n} f 7(S)eS. We start from the identity

.....

Y ISIF(s) ZEID,f!2 (26)

Sc{1,...,n}

The idea is to apply the identity (26) to to B f instead of f and integrate with respect to the measure e~ dt
over the ray [0, o). Indeed, note that P, Pf (S) = e "SI 7 (S). Therefore (26) gives

n (11) n 2
Y, e 2Blsia < Y EIRD;f? < Y (Inf;(f) 7, 7
=1

Sc{1,...,n} Jj=1

where we also used the fact that D;f € {—1,0,1}. If we let s := e~ and integrate (27) in s over (0,1)
we obtain

2, S:il ng—/ i(lnf )ids< <Zlnf )/01<m]flxlnfk(f)> =

S0 j=
On the one hand we have

N
EES

S )

S£0 S£0

Next, letting a := max Infi (f) € (0, 1], we obtain

Uy oy (1 <t by 1 P - 1 —log(a/e)
/Oa%?dsséx/o a?- xdxa_ /0 afdxg\/é/o (a/e)2dx *logla/e) y)/o e 2dy

—log(a/e
< 2
~ —log(a/e)’
This completes the proof of (25). O
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Remark 1. It follows from the proof above that fol (Inf;(f ))1%5 ds < %

Therefore, if we do not take the maximum in the proof of Theorem 4 we would obtain

n Inf;(f)
Elf —Ef <4} —
=B/ <4 L g letnt, )

which is Talagrand’s inequality for Boolean functions.

forall j=1,... n

Corollary 1. Foranyn> 1andany f:{—1,1}" — {—1,1} we have

1 1
ml?.XIl’lflngn(f) > gVar(f) og(n)’
n

where Var(f) = E|f —Ef|*

Proof. If n =1 or Var(f) = 0 there is nothing to prove. Henceforth, we assume n > 2 and Var( f)=
1—(Ef)?=: 6 € (0,1]. Let ¢ := max Infj <1<, (f) > 0. By (25) we have § < log( /t) Since £ log(e/s)

=o)L 12 :lfgg(( )))2 > 0 the map s — log(e 73 alog( )

contradiction it suffices to show

is increasing on (0, 1]. Assume the contrary, i.e., t < . To geta

4 olog(n)
In(5en/(8log(n)))

The inequality (28) is the same as 5en'/> > §log(n) for all n > 2. On the other hand, for all n > 1 we

have %(Sen]/5 —log(n)) = 6”1/% > 0 (and 5en'/> > §log(n) holds at n = 1), hence the inequality (28)
is proved. O

o>

(28)
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