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Abstract: Let Fn,d be the class of all functions f : {−1,1}n → [−1,1] on the n-
dimensional discrete hypercube of degree at most d. In the first part of this paper,
we prove that any (deterministic or randomized) algorithm which learns Fn,d with
L2-accuracy ε requires at least Ω((1−

√
ε)2d logn) queries for large enough n, thus

establishing the sharpness as n → ∞ of a recent upper bound of Eskenazis and
Ivanisvili (2021). To do this, we show that the L2-packing numbers M(Fn,d ,∥ · ∥L2 , ε)
of the concept class Fn,d satisfy the two-sided estimate

c(1− ε)2d logn f logM(Fn,d ,∥ · ∥L2 , ε) f
2Cd logn

ε4

for large enough n, where c,C > 0 are universal constants. In the second part
of the paper, we present a logarithmic upper bound for the randomized query
complexity of classes of bounded approximate polynomials whose Fourier spectra
are concentrated on few subsets. As an application, we prove new estimates for the
number of random queries required to learn approximate juntas of a given degree,
functions with rapidly decaying Fourier tails and constant depth circuits of given
size. Finally, we obtain bounds for the number of queries required to learn the
polynomial class Fn,d without error in the query and random example models.
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ALEXANDROS ESKENAZIS, PAATA IVANISVILI, AND LAURITZ STRECK

1 Introduction

For any function f : {−1,1}n→ R, there exist unique real coefficients {f̂ (S)}S¦{1,...,n} such that

∀ x ∈ {−1,1}n, f (x) =
∑

S¦{1,...,n}
f̂ (S)wS (x), (1)

where the Walsh functions wS : {−1,1}n→ {−1,1} are defined by wS (x) =
∏

i∈S xi . We say that the
function f has degree at most d ∈ {0,1, . . . ,n} if f̂ (S) = 0 for all sets S with |S | > d.

1.1 Learning functions on the hypercube

Let F be a class of functions on the discrete hypercube of dimension n. The learning problem
for the class F can be described as follows. Consider an unknown function f ∈ F . Given
access to examples (X1, f (X1)), . . . , (XQ, f (XQ)), the goal is to algorithmically construct a hypoth-
esis function h : {−1,1}n → R which effectively approximates f . Different access models to
examples give rise to concrete versions of the learning problem. The two most standard such
models are the query model, in which the algorithm can sequentially request the values of
f at any Q-tuple of points X1, . . . ,XQ from {−1,1}n, and the random example model, in which
the data points X1, . . . ,XQ are generated uniformly and independently from {−1,1}n. In the
query model, the goal is to construct a function h satisfying ∥h − f ∥2L2 f ε whereas in the ran-

dom example model, the desired output is a random function h satisfying ∥h − f ∥2L2 f ε with
probability at least 1− ¶, where ε,¶ ∈ [0,1) are pre-fixed accuracy and confidence parameters
respectively. The least number Q of examples required to solve the learning problem in each
case is called the query complexity of the model and shall be denoted by Q(F , ε) for the query
model and by Qr(F , ε,¶) for the random example model.

The query complexity of learning problems has been studied extensively for various classes
F of functions on the discrete hypercube (see [33, 37]). One of the first rigorous results of this
kind is the Low-Degree Algorithm of Linial, Mansour and Nisan [31], who considered the class

Fn,d
def
=

{

f : {−1,1}n→ [−1,1] : f has degree at most d
}

(2)

and showed the estimate Qr(Fn,d , ε,¶) f 2nd
ε log(2n

d

¶ ) for any ε,¶ ∈ (0,1). In the recent work
[16], which followed an intermediate Od,ε,¶(nd−1 logn) asymptotic1 improvement in [21], it was
shown that this classical estimate is largely suboptimal as n→∞ and in fact

Qr(Fn,d , ε,¶) fmin









exp(Cd3/2
√

logd)

εd+1
,
4dnd

ε








log

(
n

¶

)

(3)

1We shall use the standard asymptotic notation throughout the article. For a,b > 0, we write a =O(b) or b =Ω(a)
if there exists a universal constant c > 0 such that a f cb. Moreover, we shall write a =Θ(b) for a =O(b) and b =O(a).
We shall also write OÀ (·), ΘÈ(·) to indicate that the implicit constants depend on À or È respectively.
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LOW-DEGREE LEARNING AND THE METRIC ENTROPY OF POLYNOMIALS

The first goal of the present paper is to investigate lower bounds for the query complexity,
which in particular imply that (3) is asymptotically optimal as n→∞, that is

Qr(Fn,d , ε,¶) =Θd,ε,¶(logn). (4)

Consider the class

Bn,d
def
=

{

f : {−1,1}n→ {−1,1} : f has degree at most d
}

¢ Fn,d . (5)

We will prove the following lower estimate for the complexities of this class.

Theorem 1. For any n ∈N, d ∈ {1, . . . ,n}, ε ∈ [0,1) and ¶ ∈ (0,1), we have

Q(Bn,d , ε) gmax
{

(1−
√
ε)2d−2 log2n− (d +1)2d−2,d log2

(
n

d

)}

(6)

and

Qr(Bn,d , ε,¶) gmax
{

(1−
√
ε)2d−2 log2n− (d +1)2d−2,d log2

(
n

d

)}

+ log2(1− ¶). (7)

The equivalence (4) now follows due to the inequality Qr(Bn,d , ε,¶) fQr(Fn,d , ε,¶). The tools
used in the proof of Theorem 1 will be described in Section 1.3.

The second goal of this paper is to show a more robust version of the upper bound (3) that
applies to different concept classes F which are not necessarily of bounded degree. In order to
present this result we shall need some terminology (see also [37, Chapter 3]). If t g 0, we say
that the Fourier spectrum of a function f : {−1,1}n→ R is t-concentrated up to degree d if

∑

|S |>d
f̂ (S)2 f t. (8)

More generally, given a family S of subsets of {1, . . . ,n} we say that the spectrum of f is
¸-concentrated on S if

∑

S<S

f̂ (S)2 f ¸. (9)

Our main upper bound for learning is the following theorem.

Theorem 2. Fix n,m ∈ N, d ∈ {1, . . . ,n} and t,¸ ∈ [0,1). Let F be a class of bounded functions
f : {−1,1}n→ [−1,1] such that the Fourier spectrum of any f ∈ F is t-concentrated up to degree d
and is ¸-concentrated on a family S (f ) of subsets of {1, . . . ,n} satisfying #S (f ) fm. Then,

∀ ε,¶ ∈ (0,1), Qr(F ,¸ + t + ε,¶) f











18m
ε

log










2
¶

d∑

r=0

(

n

r

)




















. (10)

In Remark 14 below we will see how this statement implies the estimate (3) of [16].
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1.2 Fourier concentration and learning upper bounds

In this section we shall present concrete applications of Theorem 2 for various concept classes
F . We start with the class of approximate juntas of a given degree. Recall that a function
f : {−1,1}n→ R is called a (k,¸)-junta if there exists a subset Ã ¦ {1, . . . ,n} with |Ã | f k and a
map g : {−1,1}n→ R depending only on the variables (xi)i∈Ã such that ∥f − g∥2L2 f ¸. Consider
the class

Jn,k,¸ =
{

f : {−1,1}n→ [−1,1] : f is a (k,¸)-junta
}

. (11)

We shall prove the following estimate on the randomized query complexity of Fn,d ∩Jn,k,¸ .

Corollary 3. In the setting above, for ε,¶ ∈ (0,1) we have

Qr

(

Fn,d ∩Jn,k,¸ ,2¸ + ε,¶
)

f













18
ε

min{d,k}
∑

r=0

(

k

r

)

log











2
¶

min{d,k}
∑

r=0

(

n

r

)






















. (12)

In particular, choosing d = n, we get

Qr

(

Jn,k,¸ ,2¸ + ε,¶
)

f 2k+5

ε
log










2
¶

k∑

r=0

(

n

r

)








. (13)

Corollary 3 can be concretely applied in view of the large available literature on junta
theorems in Boolean analysis. To motivate a first application along these lines, observe that
the upper bound (3) of [16] differs from that of [31] in its dependence on ε as ε→ 0+. While
we do not know whether the ε−d−1 asymptotic behavior is needed to learn Fn,d , Corollary 3
combined with a structural result of Nisan and Szegedy [36] gives the following upper bound
for the complexity ofBn,d , alas with a somewhat worse dependence on d.

Corollary 4. For any n ∈N, d ∈ {1, . . . ,n} and ε,¶ ∈ (0,1), we have

Qr(Bn,d , ε,¶) f
36 · d2d2

ε
log

(
n

¶

)

. (14)

Combining Theorem 2 with a deep junta theorem of Dinur, Friedgut, Kindler and O’Donnell
[13], we will deduce that bounded functions which are sufficiently close to polynomials of
degree d can be learned from Od(logn) samples. For t g 0, consider the class Fn,d(t) consisting
of functions f : {−1,1}n → [−1,1] whose spectra are t-concentrated up to degree d. In other
words, Fn,d(t) consists of all bounded functions which are

√
t-close (in L2) to a polynomial of

degree at most d. Corollary 3 has the following consequence.

Corollary 5. There exists a universal constant C > 0 such that the following holds. For any n ∈N,

d ∈ {1, . . . ,n}, t ∈ [0,1) and ¸ g Cd2logd
log(1/t) , we have

∀ ε,¶ ∈ (0,1), Qr

(

Fn,d(t),¸ + ε,¶
)

f 2Cd
2

¸2dε
log

(
n

¶

)

. (15)
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It is worth emphasizing that as t → 0+, we can also take ¸ = ¸(t)→ 0+ in the statement
above. Corollary 5 is a robust version of the main theorem of [16]. On the one hand, the
method of [16] seems unfit to provide estimates for the complexity of Fn,d(t) as it uses the
Bohnenblust–Hille inequality [10], which heavily relies on the fact that the unknown function
is a bounded polynomial. On the other hand (see also Remark 14), Corollary 5 gives a worse
estimate on the complexity of Fn,d = Fn,d(0) in terms of d,ε than the bound (3) of [16].

To the best of our knowledge, Corollary 5 is the best known upper bound for the randomized
query complexity of the class Fn,d(t) for t > 0 after the Low-Degree Algorithm of [31] which

gives the estimate Qr(Fn,d(t), t + ε,¶) f 2nd
ε log

(
2nd
¶

)

. It remains an interesting problem to
understand whether one can sharpen the dependence on d of the lower bound for ¸ in Corollary
5. Specifically for the case of Boolean functions, the implicit dependence of ¸ on t,d can be
exponentially improved due to an important junta theorem of Bourgain [8]. For t > 0, denote
byBn,d(t) the class of all Boolean functions f : {−1,1}n→ {−1,1} satisfying (8).

Corollary 6. There exists a universal constant C > 0 such that the following holds. For any n ∈N,

d ∈ {1, . . . ,n}, t ∈ [0,1) and ¸ g t1+o(1)d 1
2+o(1), we have2

∀ ε,¶ ∈ (0,1), Qr

(

Bn,d(t),¸ + ε,¶
)

f 2Cd
2

ε
log

(
n

¶

)

. (16)

Finally, we present a concrete application of Corollary 6 to Boolean functions which can be
represented by constant depth circuits. We refer to [37, Chapter 4] for the relevant definitions.
For readers which are unfamiliar with this class, we just point out that DNF formulas, i.e. func-
tions which are representable as logical ( of terms, each of which is a logical ' of variables xi
or their negations ¬xi , are circuits of depth 2. Similarly, CNF formulas, in which the roles of (
and ' are reversed, are also circuits of depth 2. Corollary 6 combined with estimates on the
Fourier concentration of constant depth circuits [19, 31, 20] has the following consequence.

Corollary 7. Let Cn,d,s be the class of all Boolean functions on {−1,1}n computable by a depth-d
circuit of size s > 1. Then, for every ε,¶ ∈ (0,1), we have

Qr(Cn,d,s, ε,¶) f exp
(

O(log(s/ε))2(d−2) · (logs)2 · (log(1/ε))2
)

log
(
n

¶

)

. (17)

Learning constant depth circuits (also known as AC0 circuits) in quasi-polynomial time is
the main focus of the seminal work [31] of Linial, Mansour and Nisan which prompted them to
design the Low-Degree Algorithm. Moreover, it is known (see [22]) that quasi-polynomial time
is also necessary to learn this class, conditionally on some standard cryptographic assumptions.
The contribution of Corollary 7 is the fact that the query complexity of this learning problem is
(exponentially) smaller than the corresponding running time [31] for large enough n (see [26]
and the references therein for the long-standing open problem of understanding the running
time required to learn DNF). It is worth emphasizing that the reason Corollary 7 follows
from Corollary 6 is that AC0 circuits have strong enough Fourier concentration. It remains an

2The explicit nature of the o(1)-terms in the exponents will be made precise in Section 3.

DISCRETE ANALYSIS, 2023:17, 23pp. 5



ALEXANDROS ESKENAZIS, PAATA IVANISVILI, AND LAURITZ STRECK

interesting problem to understand whether Corollary 6 can be boosted to encapsulate classes of
Boolean functions with weaker concentration such as linear threshold functions or functions of
many hyperplanes [2, 39].

1.3 Metric entropy and learning lower bounds

Let (X,dX) be a metric space and ε > 0. A subset P ¦ X is an ε-packing of X if for any
p , p′ ∈P, we have dX(p,p′) > ε. The largest size of an ε-packing is called the packing number
of X and is denoted by M(X,dX , ε). A subset C ¦X is an ε-cover of X if for any q ∈X, there
exists some p ∈ C with dX(p,q) f ε. The smallest size of an ε-cover is called the covering number
of X and is denoted by N(X,dX , ε). The quantity log2N(X,dX , ε) is called the ε-metric entropy
of X. It is well known (see [43, Lemma 4.2.8]) that packing and covering numbers are closely
related via the elementary inequalities

∀ ε > 0, M(X,dX ,2ε) f N(X,dX , ε) fM(X,dX , ε). (18)

The pertinence of metric entropy in the context of learning lower bounds stems from the
classical observation that concept classes with large covering (or packing) numbers cannot be
efficiently learned from few queries (see, for instance, the works [4, 32, 14]). In our setting, we
shall need the following concrete estimate which we could not locate in the literature.

Proposition 8. Fix n ∈N and letB be a class of Boolean functions on {−1,1}n. Then,

∀ ε > 0, Q(B , ε) g log2M(B ,∥ · ∥L2 ,2
√
ε) (19)

and

∀ ε > 0, ∀ ¶ ∈ (0,1), Qr(B , ε,¶) g log2M(B ,∥ · ∥L2 ,2
√
ε) + log2(1− ¶), (20)

where ∥Æ−È∥L2 =
√

Ex(Æ(x)−È(x))2 is the L2-norm with respect to the uniform probability measure.

The classBn,d defined in (5) contains all Walsh functions {wS }|S |fd and thus

∀ ε ∈ (0,
√
2), M(Bn,d ,∥ · ∥L2 , ε) g

d∑

k=0

(

n

k

)

g n
d

dd
, (21)

as ∥wS −wT ∥L2 =
√
2 for any S , T . Combining this simple lower bound with Proposition 8 we

already deduce the asymptotic sharpness of (3) as n→∞. In order to derive a sharper estimate
for Q(Fn,d , ε) as a function of the degree d, we shall prove the following improved lower bound
on the packing numbers ofBn,d along with a qualitatively matching upper bound for the metric
entropy of Fn,d .

Theorem 9. Fix n ∈N, d ∈N with d f log2n and ε ∈ (0,1). Then, we have

log2M(Bn,d ,∥ · ∥L2 ,2ε) g (1− ε)2d−2 log2n− (d +1)2d−2 (22)
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Moreover,

log2N(Fn,d ,∥ · ∥L2 , ε) f
2Cd

ε4
logn+»(d,ε), (23)

where C > 0 is a universal constant and »(d,ε) > 0 depends only on d and ε.

Proof of Theorem 1. Inequality (6) is a direct consequence of (19), (21) and (22), while (7) follows
from (20), (21) and (22).

Having presented Theorem 9, some observations related to the implicit dependencies in (4)
are in order. In [16] it was shown that

Qr(Fn,d , ε,¶) f
e8d2

εd+1
(B{±1}d )2d log

(
n

¶

)

, (24)

where B{±1}d is an important approximation theoretic parameter called the Bohnenblust–Hille

constant of the hypercube (see [5, 11]). While it is widely believed that B{±1}d grows at most

polynomially in d, the best known upper bound due to [10] states that B{±1}d f exp(C
√

d logd)
for some universal constant C > 0 which, combined with (24), leads to (3). A polynomial bound

on B{±1}d combined with (24) would almost match, up to a logarithmic term in the exponent, the
asymptotic behavior as d→∞ of the lower bound (7) of Theorem 1. We mention at this point

that we are not aware of any non-constant (as d→∞) lower bound for the constant B{±1}d .
The existence of a large separated set attaining the lower bound (22) is proven via a proba-

bilistic construction of random decision trees with prescribed depth. On the other hand, the
upper bound (23) is a consequence of the deep junta theorem of [13] but, to the extent of our
knowledge, had not been previously observed in the literature. It is quite surprising that while
Fn,d lies in a Od(nd)-dimensional space, its metric entropy is logarithmic in the dimension of
this space rather than polynomial. The reason for this is the strong restriction that Fn,d consists
of functions which are bounded in L∞-norm yet it is endowed with the Hilbertian L2-metric.
The existence of such small nets is often useful in theoretical computer science and probability
theory, in particular in the derandomization literature [34, 40, 29] and in the study of suprema
of stochastic processes [43, Chapters 7-8].

1.4 Exact learning

Having established reasonable bounds on the number of queries required to learn a function in
Fn,d up to error ε > 0, we proceed to investigate the exact case ε = 0. As it turns out, the number
of random queries required to learn a function f ∈ Fn,d up to a constant error ε ∈ (0,1) using
the classical Low-Degree Algorithm [31] is in fact the same (up to constants depending only
on d) as the number of queries required to exactly learn the concept class Fn,d . Formally, our
results is this setting are summarized in the following theorem.

DISCRETE ANALYSIS, 2023:17, 23pp. 7
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Theorem 10. Fix n ∈N, d ∈ {1, . . . ,n} and ¶ ∈ (0,1). Then,

Q(Fn,d ,0) =
d∑

j=0

(

n

j

)

(25)

and there exists a universal constant C > 0 such that

Qr(Fn,d ,0,¶) f Cd2dnd log
(
n

¶

)

. (26)

Remark 11. Throughout this paper and [16], we study learning algorithms for Fn,d and Bn,d

equipped with the Hilbertian L2-metric. This choice allows us to use Parseval’s identity and thus
exploit properties of individual Walsh coefficients to study the distance between f and the hypothesis
function h. However as the constructed hypothesis functions h are always of degree at most d
themselves, this can be generalized to any Lp norm, where 0 < p <∞, since these are equivalent to the
L2 norm on the space of degree-d polynomials up to constants depending only on d (see [37, §9.5]
and [7, 6, 15] for more on moment comparison of polynomials).

Structure of the paper

In Section 2, we prove our main lower bounds for learning, namely Proposition 8 and Theorem
9. In Section 3, we prove Theorem 2 and deduce from it the Corollaries of Section 1.2. Finally,
in Section 4, we prove Theorem 10 on exact learning.

2 Metric entropy and query complexity

We start by formalizing the concepts introduced earlier. A learning algorithm on {−1,1}n
using Q queries is a mapping H : ({−1,1}n ×R)Q → L2({−1,1}n) which, given input of the
form (X1, f (X1)), . . . , (XQ, f (XQ)) produces a hypothesis function for f . In this terminology, the
randomized query complexity Qr(F , ε,¶) of a class of functions F on the hypercube is the
smallest Q ∈N for which there exists a learning algorithm H with the following property:

∀ f ∈ F , PX1,...,XQ∈{−1,1}n
{
∥
∥
∥H

(

(X1, f (X1)), . . . , (XQ, f (XQ))
)

− f
∥
∥
∥
2
L2
f ε

}

g 1− ¶. (27)

In the case of non-randomized algorithms, we need to ensure that the query points are chosen
consistently with respect to the previous data. In other words, X1 is always a fixed point on the
hypercube and for any q g 2, there exists a function ϕq : ({−1,1}n ×R)q−1→ {−1,1}n associated
to H determining the q-th query point as a function of the previous data X1, . . . ,Xq−1 and the
values y1, . . . , yq−1 of the unknown function on these points. Given a learning algorithm H and
an unknown function f ∈ F , we shall denote by X1[f ],X2[f ], . . . the sequence of points that H
queries in order to construct a hypothesis function for f . In this terminology, the deterministic
query complexity of the class F is the least Q ∈N for which there exists a learning algorithm
H using Q queries satisfying the following property:

∀ f ∈ F ,
∥
∥
∥H

((

X1[f ], f (X1[f ])
)

, . . . ,
(

XQ[f ], f (XQ[f ])
))

− f
∥
∥
∥
2
L2
f ε. (28)
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Having properly defined these notions, we may proceed to the proof of Proposition 8.
The argument relies on an information-theoretic consideration: given samples X1, . . . ,XQ, the
outputs f (X1), . . . , f (XQ) provide Q bits of information for f and thus cannot distinguish more
than log2Q functions which are reasonably far apart.

Proof of Proposition 8. LetM =M(B ,∥·∥L2 ,2
√
ε) and consider f1, . . . , fM ∈B with ∥fi−fj∥L2 > 2

√
ε

for all i , j . We start with the lower bound (19) in the deterministic case. Denote byQ =Q(B , ε)
and let X1[f ],X2[f ], . . . ,XQ[f ] be samples satisfying (28) for some learning algorithm H and all
functions f in the classB . Consider the set

Σ
def
=

{(

fi(X1[fi ]), . . . , fi(XQ[fi ])
)

: i = 1, . . . ,M
}

. (29)

Claim. |Σ| =M .

Proof. Clearly |Σ| fM . If |Σ| <M , then there exist i , j ∈ {1, . . . ,M} for which we have

∀ k ∈ {1, . . . ,Q}, fi(Xk[fi ]) = fj (Xk[fj ]). (30)

As X1[fi ] = X1[fj ]
def
= X1 by definition of H , (30) gives fi(X1) = fj (X1) which then, by consistency

of the algorithm, implies that X2[fi] = X2[fj ]
def
= X2. Continuing iteratively, we deduce that

Xk[fi ] = Xk[fj ]
def
= Xk for every k ∈ {1, . . . ,Q} and thus the common output function

h
def
= H

(

(X1, fi(X1)), . . . , (XQ, fi(XQ))
)

=H
(

(X1, fj (X1)), . . . , (XQ, fj (XQ))
)

(31)

satisfies ∥h− fi∥2L2 f ε and ∥h− fj∥
2
L2
f ε which is a contradiction as ∥fi − fj∥L2 > 2

√
ε. □

Finally, observe that as the class B consists of Boolean functions, we have the trivial
inclusion Σ ¦ {−1,1}Q which implies thatM = |Σ| f 2Q and the proof is complete.

In the random case, denote by Q =Qr(F , ε,¶) and let X = (X1, . . . ,XQ) where X1,X2, . . . are
independent random vectors, each uniformly distributed on {−1,1}n, satisfying (27) for some
learning algorithm H . For every i ∈ {1, . . . ,M}, consider the event

Bi
def
=

{
∥
∥
∥H

(

(X1, fi(X1)), . . . , (XQ, fi(XQ))
)

− fi
∥
∥
∥
2
L2
> ε

}

, (32)

which has probability P{Bi} f ¶ by (27) and, as before, consider the (random) set

Σ(X)
def
=

{(

fi(X1), . . . , fi(XQ)
)

: i = 1, . . . ,M
}

. (33)

Claim. E|Σ(X)| g (1− ¶)M .

Proof. Consider the partition {1, . . . ,M} = Ã1 ⊔ · · · ⊔ Ã|Σ(X)| depending on X such that for every
r ∈ {1, . . . , |Σ(X)|} and all i, j ∈ Ãr , we have fi ≡ fj on {X1, . . . ,XQ}. Now, suppose that there exist
two distinct i , j ∈ Ãr such that X < Bi and X < Bj . Then, the function

h
def
= H

(

(X1, fi(X1)), . . . , (XQ, fi(XQ))
)

=H
(

(X1, fj (X1)), . . . , (XQ, fj (XQ))
)

(34)

DISCRETE ANALYSIS, 2023:17, 23pp. 9



ALEXANDROS ESKENAZIS, PAATA IVANISVILI, AND LAURITZ STRECK

satisfies ∥h− fi∥2L2 f ε and ∥h− fj∥
2
L2
f ε which contradicts ∥fi − fj∥L2 > 2

√
ε. Therefore, for any r

and any X = (X1, . . . ,XQ), there exists a subset Är ¦ Ãr with |Är | g |Ãr | −1 such that X ∈ Bi for all
i ∈ Är . Adding up these inequalities and taking the expectation, we deduce that

M −E|Σ(X)| = E

[ |Σ(X)|∑

r=1

(

|Ãr | − 1
)]

f E

[ |Σ(X)|∑

r=1

|Är |
]

f E

[ |Σ(X)|∑

r=1

∑

i∈Ãr

1Bi (X)
]

=
M∑

i=1

P{Bi} f ¶M, (35)

which is the desired inequality. □

As the classB consists of Boolean functions, we have (1− ¶)M f E|Σ(X)| f 2Q.

2.1 Decision trees

In this section we will prove the lower bound (22) for the packing numbers ofBn,d and Fn,d .
First, we introduce some necessary background. Following [37, §3.2], we define a decision
tree T to be a representation of a function f : {−1,1}n→ R as a rooted binary tree in which the
internal nodes are labeled by Boolean variables xi , i ∈ {1, . . . ,n}, the edges are labeled by -1 and
1 and the leaves are labeled by real numbers. It is required that no Boolean variable xi appears
more than once on any root-leaf path. On input y ∈ {−1,1}n, the tree T computes the value f (y)
in the following way. Starting from the root, when the computation path reaches a node labeled
by xi , it follows the unique edge labeled by the value yi ∈ {−1,1}. The output f (y) of T is the
label of the leaf reached by this path. It is a classical fact (see [37, Proposition 3.16]) that if a
function f can be represented by a decision tree of depth d, then f has degree at most d.

In order to prove the lower bound (22) on the packing number ofBn,d , we shall need the
following combinatorial lemma on large families of sets with pairwise small intersections.

Lemma 12. Fix m,k ∈ N with k < m and ε ∈ (0,1). Then, there exists t g (2k)−k/2m(1−ε)k/2 and
subsets Ã1, . . . ,Ãt ¢ {1, . . . ,m} of size k satisfying

∀ i , j ∈ {1, . . . , t}, |Ãi ∩Ãj | < (1− ε)k. (36)

Proof. We shall use the probabilistic method. Suppose that σ is a uniformly chosen random
subset of {1, . . . ,m} of cardinality k. Then, we have

P
{

|σ ∩ {1, . . . , k}| g (1− ε)k
}

=
1
(m
k

)

∑

jfεk

(

k

k − j

)(

m− k
j

)

f kk

mk
mεk

∑

jfεk

(

k

k − j

)

f (2k)km−(1−ε)k , (37)

where we used the fact that r
s

ss f
(r
s

) f rs. If σ1, . . . ,σt are i.i.d. copies of σ, then by homogeneity

∀ i , j ∈ {1, . . . , t}, P
{

|σi ∩σj | g (1− ε)k
}

f (2k)km−(1−ε)k (38)

and thus

E
[

#{i , j : |σi ∩σj | g (1− ε)k}
]

f
(

t

2

)

(2k)km−(1−ε)k < t2(2k)km−(1−ε)k . (39)

Therefore, if t f (2k)−k/2m(1−ε)k/2, there exist Ã1, . . . ,Ãt with the desired property.
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x1

x2

xd−1

xi1

r
−1

−1
r
1

1

−1

xi2

r
−1

−1
r
1

1

1

...

xi2 xik−1

−1

x2

...
xd−1

xik−1

r
−1

−1
r
1

1

−1

xik

r
−1

−1
r
1

1

1

1

The decision tree TÃ corresponding to Ã = {i1 < i2 < · · · < ik}

Equipped with Lemma 12, we proceed to the proof of the lower bound in Theorem 9.

Proof of (22). Let Ã be a subset of {d,d +1, . . . ,n} of cardinality k = 2d−1. We shall associate to Ã
a Boolean function fÃ : {−1,1}n→ {−1,1} of degree at most d represented by the decision tree
TÃ which is constructed as follows. The root of TÃ is labeled by x1 and every node which is at
distance i from the root is labeled by xi+1 for i ∈ {1, . . . ,d − 2}. If Ã = {i1, . . . , ik}, then the nodes at
distance d − 1 from the root are labeled by the distinct variables xi1 , . . . ,xik in accordance with
the lexicographic ordering fL, meaning that if (εr(1), . . . , εr(d−1)), (εs(1), . . . , εs(d−1)) ∈ {−1,1}d−1
are the labels of the edges joining the root with the nodes labeled by xir and xis , then

ir f is ⇐⇒ (εr(1), . . . , εr(d − 1)) fL (εs(1), . . . , εs(d − 1)). (40)

Finally, if given an input y ∈ {−1,1}n the tree TÃ queries the variable xij on the d-th level, then
its output is yij . This construction is depicted pictorially in the figure above. Observe that in
this picture, the restriction (40) is equivalent to i1 < i2 < . . . < ik .

Using Lemma 12, we can find t g 2−d2
d−2

(n− d +1)(1−ε)2
d−2 g 2−(d+1)2

d−2
n(1−ε)2

d−2
and subsets

Ã1, . . . ,Ãt of {d,d + 1, . . . ,n} with cardinality k satisfying (36). We will show that the family of
functions fÃ1 , . . . , fÃt ∈Bn,d is well-separated. Indeed, let r , s and suppose that Ãr = {i1, . . . , ik}
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and Ãs = {j1, . . . , jk} with i1 < . . . < ik and j1 < . . . < jk . Then, we have

∥fÃr − fÃs∥
2
L2

=
1

2d−1

k∑

ℓ=1

E(xiℓ − xjℓ )
2 =

1
2d−2

|{ℓ : iℓ , jℓ}| g
2d−1 − |Ãr ∩Ãs |

2d−2
(36)
g 2ε (41)

and the proof is complete.

While Theorem 1 provides a logarithmic lower bound for the query complexity of learning
Fn,d in both the query and the random example models, the upper bound (3) of [16] is currently
known to hold only in the random case. Derandomizing the algorithm used there or finding a
different deterministic algorithm whose query complexity is logarithmic in the dimension (and
which, ideally, has reasonable running time) remains an interesting problem.

2.2 Juntas

In this section we will prove the upper bound (23) for the metric entropy of the class Fn,d .
A general principle in analysis on the hypercube asserts that functions whose spectrum is
not spread out, effectively depend only on few variables. Many concrete instances of this
phenomenon have been studied for Boolean functions, such as the important works [17, 8, 18,
25]. The definitive junta theorem for general bounded functions, is the following deep result of
Dinur, Friedgut, Kindler and O’Donnell (DFKO) [13] (see also [38] for a quantitatively sharp
statement in terms of the dependence on d).

Theorem 13. Fix n,d ∈N, ε > 0 and let f : {−1,1}n→ [−1,1] be a function satisfying
∑

|S |>d
f̂ (S)2 f exp

(

−C(d2 logd)/ε2
)

(42)

for a large enough universal constant C > 0. Then, there exists a subset Ã ¦ {1, . . . ,n} with |Ã | f 2Cd
ε4

and a function g : {−1,1}n→ R depending only on the variables (xi )i∈Ã such that ∥f − g∥L2 f ε.

Proof of (23). Let md,ε be the size of the smallest ε4-net on the space of all bounded functions

h : {−1,1}kd,ε → [−1,1], where kd,ε =
2Cd+2
ε4

, equipped with the L2-metric and let {h1, . . . ,hmd,ε
} be

such a net. For a subset Ã ¦ {1, . . . ,n} of cardinality kd,ε and s ∈ {1, . . . ,md,ε}, define

∀ x ∈ {−1,1}n, hÃs (x)
def
= hs

(

(xi )i∈Ã
)

. (43)

Claim. The set {hÃs : s = 1, . . . ,md,ε and Ã ¦ {1, . . . ,n} with |Ã | = kd,ε} is an ε
2 -covering of Fn,d .

Proof. Indeed, let f : {−1,1}n→ [−1,1] be a function of degree at most d. By Theorem 13, there
exists a subset Ã ¦ {1, . . . ,n} with |Ã | f kd,ε and a function g : {−1,1}n→ R depending only on the
variables (xi)i∈Ã such that ∥f − g∥L2 f

ε
4 . Notice that without loss of generality we can assume

that g takes values in [−1,1] as we can otherwise define g̃ : {−1,1}n→ [−1,1] by

∀ x ∈ {−1,1}n, g̃(x) =









g(x), g(x) ∈ [−1,1]
sign(g(x)), g(x) < [−1,1]

(44)
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and observe that ∥g̃ − f ∥L2 f ∥g − f ∥L2 f
ε
4 . Therefore, by definition of the covering {h1, . . . ,hmd,ε

}
there exists s ∈ {1, . . . ,md,ε} such that ∥g − hÃs ∥L2 f

ε
4 and hence ∥f − hÃs ∥L2 f

ε
2 . □

To conclude, for every s and Ã , choose an arbitrary point pÃs ∈ Fn,d satisfying ∥pÃs −hÃs ∥L2 f
ε
2 ,

provided that such exists (in the opposite case the corresponding ball can be omitted from the
cover). Then,

Fn,d ¦
⋃

s,Ã

Ball(hÃs ,
ε
2 ) ¦

⋃

s,Ã

Ball(pÃs , ε), (45)

thus proving that N(Fn,d ,∥ · ∥L2 , ε) fmd,ε
( n
kd,ε

) fmd,εn
2Cd+2

ε4 . This concludes the proof.

3 Fourier concentration and learning

To prove Theorem 2, we shall employ a modification of the algorithms of [31, 30] with one im-
portant twist from the analysis of [16]. We include the argument in full detail for completeness.

Proof of Theorem 2. Fix a parameter b ∈ (0,∞) to be determined later and denote by

Qb
def
=












2
b2

log










2
¶

d∑

r=0

(

n

r

)




















. (46)

Let X1, . . . ,XQb be independent random vectors, each uniformly distributed on {−1,1}n. For a
subset S ¦ {1, . . . ,n} with |S | f d, consider the empirical Walsh coefficient of f given by

³S =
1
Qb

Qb∑

j=1

f (Xj )wS (Xj ). (47)

As ³S is a sum of bounded i.i.d. random variables and E[³S ] = f̂ (S), the Chernoff bound gives

∀ S ¦ {1, . . . ,n} with |S | f d, P
{

|³S − f̂ (S)| > b
}

f 2exp(−Qbb2/2). (48)

Therefore, using the union bound, we get

P
{

|³S − f̂ (S)| f b, for every subset S with |S | f d
}

︸                                                          ︷︷                                                          ︸

Gb

g 1− 2
d∑

r=0

(

n

r

)

exp(−Qbb2/2)
(46)
g 1− ¶.

Consider the random collection of sets given by

Tb
def
=

{

S ¦ {1, . . . ,n} : |S | f d and |³S | g 2b
}

. (49)

Observe that if the event Gb holds, then

∀ S < Tb with |S | f d, |f̂ (S)| f |³S − f̂ (S)|+ |³S | f 3b (50)
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and
∀ S ∈ Tb, |f̂ (S)| g |³S | − |³S − f̂ (S)| g b. (51)

Now, consider the random function hb : {−1,1}n→ R, given by

∀ x ∈ {−1,1}n, hb(x)
def
=

∑

S∈Tb

³SwS (x) (52)

and write

∥hb − f ∥2L2 =
∑

S¦{1,...,n}

∣
∣
∣ĥb(S)− f̂ (S)

∣
∣
∣
2
=

∑

S∈Tb

|³S − f̂ (S)|2 +
∑

S<Tb

|f̂ (S)|2

=
∑

S∈Tb
S∈S (f )

|³S − f̂ (S)|2 +
∑

S∈Tb
S<S (f )

|³S − f̂ (S)|2 +
∑

S<Tb
S∈S (f ), |S |fd

|f̂ (S)|2 +
∑

S<Tb
S<S (f ), |S |fd

|f̂ (S)|2 +
∑

|S |>d
f̂ (S)2.

On the event Gb we then have

∑

S∈Tb
S∈S (f )

|³S − f̂ (S)|2 +
∑

S<Tb
S∈S (f ), |S |fd

|f̂ (S)|2
(50)
f (9b2) ·#S (f ) f 9b2m. (53)

On the other hand, as |³S − f̂ (S)| f b f |f̂ (S)| for S ∈ Tb, we get

∑

S∈Tb
S<S (f )

|³S − f̂ (S)|2 +
∑

S<Tb
S<S (f ), |S |fd

|f̂ (S)|2
(51)
f

∑

S<S (f )

|f̂ (S)|2 f ¸ (54)

by the Fourier concentration property. Combining the above with the assumption that the
spectrum of f is t-concentrated up to degree d, we conclude that

∥hb − f ∥2L2 f ¸ + t +9b2m f ¸ + t + ε (55)

for b2 f ε/9m. Plugging this choice of b in (46), we get the conclusion.

We are now well-equipped to prove Corollary 3.

Proof of Corollary 3. Let f ∈ Fn,d ∩Jn,k,¸ . Then, there exists a subset Ã ¦ {1, . . . ,n} with |Ã | f k
and a function g : {−1,1}n→ R depending only on the variables (xi)i∈Ã such that ∥f − g∥2L2 f ¸.
Then, f is ¸-concentrated on the collection S (f ) = {S ¦ Ã : |S | f d}, as

∑

SªÃ

f̂ (S)2 f ∥f − g∥2L2 f ¸. (56)

Similarly, the spectrum of f is ¸-concentrated up to degree min{d,k} and the conclusion of the

corollary follows from Theorem 2 since #S (f ) =
∑min{d,k}
r=0

(k
r

)

.
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We emphasize that Corollary 3 does not make any claim about the running time required to
learn approximate juntas. This is a notoriously difficult problem even for actual juntas that has
been investigated in a series of important works, see for instance [35, 27, 42].

Corollary 4 follows from Corollary 3 combined with a classical theorem of Nisan and
Szegedy [36], asserting that a Boolean function of degree d depends on at most d2d−1 variables.
We note in passing that this result has recently been improved in important work of Chiarelli,
Hatami and Saks [9] (see also [44] for the best known value of the implicit constant) who
derived the optimal conclusion that such a function only depends on O(2d ) variables, but this
refinement will be immaterial for our considerations.

Proof of Corollary 4. By [36, Theorem 1.2], we have the set inclusionBn,d ¦ Fn,d ∩Jn,k,0 where
k = d2d−1. Therefore, by Corollary 3, we conclude that

Qr(Bn,d , ε,¶) f
18
ε

d∑

r=0

(

d2d−1

r

)

log










2
¶

d∑

r=0

(

n

r

)








f 36 · d2d2

ε
log

(
n

¶

)

(57)

where the last inequality follows by elementary estimates.

We now proceed to prove Corollary 5, which relies on Theorem 2 and [13].

Proof of Corollary 5. Let f ∈ Fn,d(t) and ¸ g Cd2logd
log(1/t) so that

∑

|S |>d
f̂ (S)2 f t f exp

(

−C(d2 logd)/¸
)

. (58)

Instead of using Theorem 13 directly, we will use a stronger statement from its proof. In [13,
p. 405], it was shown that there exists a function h of degree at most d which depends only
on the variables (xi)i∈Ã for a subset Ã ¦ {1, . . . ,n} with |Ã | f 2O(d)/¸2 such that ∥f − h∥2L2 f ¸.
Choosing S (f ) = {S ¦ Ã : |S | f d}, we deduce that f is ¸-concentrated up to degree d and on
the collection S (f ). The conclusion follows from Theorem 2 as #S (f ) f 2O(d2)/¸2d .

We note in passing that one can replace the use of the DFKO theorem with a result of
O’Donnell and Zhao [38, Corollary 3.5] to improve the dependence of ¸ on d to ¸ g Cd2

log(1/t) at
the expense of an exponentially worse dependence of the complexity on d and ε.

Remark 14. Choosing t = 0 in Corollary 5 provides a different proof of the main result of [16],
i.e. that Qr(Fn,d , ε,¶) = Od,ε,¶(logn), using the DFKO theorem. Indeed, by Theorem 13, we have

Fn,d = Fn,d ∩Jn,k(d,¸),¸ for any ¸ > 0, where k(d,¸) =
⌈

2Cd /¸2
⌉

. Plugging this in the bound (12) and
optimizing over ¸, we deduce that there exists a universal constant C > 0 such that

∀ ε,¶ ∈ (0,1), Qr(Fn,d , ε,¶) f
2Cd

2

ε2d+1
log

(
n

¶

)

. (59)

It is worth emphasizing that, while (59) captures the correct dependence on the dimension n, it is
asymptotically worse than the bounds (3), (24) both as d→∞ and as ε→ 0+.
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On the other hand, inequality (24) is a special case of the bound (10), up to lower order terms

depending only on the degree d. Let Bd = B
{±1}
d the Bohnenblust–Hille constant of the discrete

hypercube. If for a function f ∈ Fn,d we define S (f ) to be the collection of subsets S of {1, . . . ,n} for
which |f̂ (S)| g ε d+12 B−dd , then we have

#S (f ) f ε−dB
2d2
d+1
d

∑

S∈S (f )

|f̂ (S)| 2dd+1 f
B2dd
εd

(60)

and
∑

S<S (f )

f̂ (S)2 f εB−
2d
d+1

d

∑

S<S (f )

|f̂ (S)| 2dd+1 f ε (61)

by two applications of the Bohnenblust–Hille inequality. Thus (24) follows from (10) with t = 0.

To prove Corollary 6, we will use a deep junta theorem of Bourgain [8, Proposition]. The
quantitative version which we employ below follows from [23, Theorem 7.1] (see also [24, 12]).

Theorem 15. Fix n,d ∈N and t ∈ (0,1). For any Boolean function f ∈Bn,d(t) and any parameter

¸ g exp
(

C
√

log(2/t) loglogd
)(

t
√
d + 1

2d

)

there exists a collection of subsets S (f ) of {1, . . . ,n} with
#S (f ) f 2O(d2) such that the spectrum of f is ¸-concentrated on S (f ).

To see how Theorem 15 follows from [23, Theorem 7.1], choose ´ = 2−Ω(d) in that statement
and consider S (f ) to be the collection of subsets S ¦ {1, . . . ,n} with |S | f d and S ¦ J´ . The fact
that #S (f ) f 2O(d2) then follows since |J´ | f 2O(d) and the Fourier concentration property on
S (f ) follows from the conclusion of [23, Theorem 7.1]. We note that the lower order terms on
the size of ¸ with respect to t,d can be removed from Theorem 15 in view of a result of Kindler
and O’Donnell [24] at the expense of a worse dependence of #S (f ) on d.

Proof of Corollary 6. Let f ∈Bn,d(t). If ¸ g t1+o(1)d
1
2+o(1) in the precise sense of Theorem 15, we

have that the spectrum of f is ¸-concentrated on a collection of subsets with cardinality 2O(d2).
Therefore the conclusion follows from Theorem 2 since also t = o(¸) as t→ 0+.

Remark 16. It is worth emphasizing that the constraint ¸ g t
√
d which follows from [8, 24] is in

some sense optimal if one wishes to learn the classBn,d(t) from logarithmically many samples. A
linear threshold function (LTF) is a Boolean function of the form f (x) = signïx,¹ð, where x ∈ {−1,1}n
and ¹ ∈ Sn−1 is a fixed vector. A well-known theorem of Peres [39] (see also [2]) asserts that any
LTF on n variables belongs inBn,Ω(1/t2)(t) for every t ∈ (0,1). We shall argue that there exist 2Ω(n)

LTFs which are pairwise Ω(1)-apart which, in view of Proposition 8, will imply that the class of LTFs
requires at least Ω(n) samples to be learned with accuracy 1

4 and confidence 3
4 . Equivalently, we will

show that there exist N = 2Ω(n) vectors ¹1, . . . ,¹N ∈ Sn−1 such that

∀ i , j,
∥
∥
∥signïx,¹ið − signïx,¹jð

∥
∥
∥
2
L2

= 8P
{(

ïx,¹ið,ïx,¹jð
)

∈U
}

=Ω(1), (62)
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where U is the second quadrant {(s, t) : s f 0 f t}. The corresponding estimate in Gauss space follows
from classical computations (see, e.g., [28, Lemme 1]) as

∀ u,v ∈ Sn−1,
∥
∥
∥signïg,uð−signïg,vð

∥
∥
∥
2
L2

= 2−2E
[

sign
(

ïg,uð·ïg,vð
)]

= 2− 2
Ã
arcsinïu,vð, (63)

where g ∼N (0, Idn) is a standard Gaussian random vector, and thus it suffices to choose the vectors
{¹i}Ni=1 to form anΩ(1)-net in the unit sphere. To pass from the Gaussian statement implied by (63) to
the corresponding discrete inequality (62) we shall use a classical (multivariate) Berry–Esseen theorem
(see, e.g., [3, Theorem 1.1]). In order to apply this result to the random vectors (ïx,¹ið,ïx,¹jð), it
suffices to find an Ω(1)-separated set {¹i}Ni=1 in Sn−1 with N = 2Ω(n) points such that ∥¹i∥ℓn∞ f Ä
for some small enough universal constant Ä > 0. The existence of such a set can be proven by the
probabilistic method in view of standard concentration estimates of ℓnp -norms on ℓnq -spheres, see for
instance [41, Remark 2 in p. 223] and [1, Theorem 1].

Finally, we prove Corollary 7 on the complexity of constant depth circuits.

Proof of Corollary 7. By the main result of [20] (which slightly improves [31, Main Lemma]; see
also the exposition in [37, Section 4.5]), every f ∈ Cn,d,s also belongs inBn,m(d,s,t)(t) for every
t > 0, where m(d,s, t) =O(log(s/t))d−2 · logs · log(1/t). The conclusion follows by choosing ¸ = ε
and t small enough such that ε g t1+o(1)O(log(s/t))d/2+o(1) and applying Corollary 6.

Running time considerations

While all the results of this section estimate the query complexity of various concept classes on
the hypercube, it is worth emphasizing that they are also algorithmic in nature. For instance,
the algorithm of Theorem 2 (which generalizes the one of [16]) has effectively the same running
time (at least for constant ε > 0) as the classical algorithm of Linial, Mansour and Nisan [31],
yet it offers an exponential improvement to the number of queries which are required as input.

4 Exact learning

In this section, we shall prove Theorem 10. We start with the deterministic case.

Proof of (25). Let Q =Q(Fn,d ,0). For the upper bound on Q, consider an enumeration X1, . . . ,Xk
of the points in the closed Hamming Ball(1,d), where 1 = (1, . . . ,1) and k =

∑d
j=0

(n
j

)

.

Claim. If f ∈ Fn,d , then the values f (X1), . . . , f (Xk) completely determine f .

Proof. As usual, for i ∈ {1, . . . ,n} we denote by

∀ x ∈ {−1,1}n, �if (x)
def
=
f (x1, . . . ,xi , . . . ,xn)− f (x1, . . . ,−xi , . . . ,xn)

2
(64)

the discrete partial derivative of f . It is straightforward to see that if f =
∑

S cswS , then

∀ x ∈ {−1,1}n, �if (x) =
∑

S : i∈S
cSwS (x). (65)
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In particular, if f has degree at most d and S = {i1, . . . , id} has cardinality d, then

�i1 ◦ · · · ◦ �id f (1) = cS . (66)

On the other hand, (64) implies that �i1 ◦ · · · ◦ �id f (1) is a linear combination of f (X1), . . . , f (Xk).
In other words, knowing f (X1), . . . , f (Xk), we can reconstruct the top-order Walsh coefficients
{cS }|S |=d . To conclude, we consider the function f −∑

|S |=d cSwS and iterate. □

Therefore, the claim implies that if the algorithm queries the values of f at X1, . . . ,Xk , then
the function can be fully reconstructed, thus proving that Q f k =∑d

j=0
(n
j

)

.
The lower bound is a simple dimension counting argument. Assume, for contradiction, that

Fn,d can be learned exactly using Q queries where Q < k =
∑d
j=0

(n
j

)

. Then, for any fixed points
X1, . . . ,XQ ∈ {−1,1}n, the linear system

∀ r = 1, . . . ,Q,
∑

|S |fd
cSwS (Xr ) = 0 (67)

with k unknowns {cS }|S |fd and Q equations has at least one nonzero solution. In other words,
there exists a nonzero function g ∈ Fn,d which vanishes on {X1, . . . ,XQ}. If X1, . . . ,XQ are the
points queried by the algorithm in order to learn g , then (67) shows the same points need to
be queried to learn the zero function 0. This is a contradictions as H would produce the same
hypothesis function for both and g is not identically zero.

Finally, we prove the upper bound (26) for the random example model.

Proof of (26). For points X1, . . . ,XQ on the hypercube, consider the (linear) evaluation operator
¨X1,...,XQ : Fn,d → RQ given by ¨X1,...,XQ (f ) = (f (X1), . . . , f (XQ)). In order to prove the upper
bound on the query complexity of the random example model without error, it suffices to show
that if Q is large enough and X1, . . . ,XQ are independent and uniformly distributed random
vectors on {−1,1}n, then the operator ¨X1,...,XQ is injective with high probability. Indeed, if this
is the case then the values of any function f ∈ Fn,d on a random sequence of samples uniquely
determine f with high probability and thus the function can be fully reconstructed by solving
a system of linear equations with respect to its Walsh coefficients.

To show that ¨X1,...,XQ is injective with high probability, fix points P1, . . . ,Pq ∈ {−1,1}n and
let X be a uniform random vector on the hypercube. Suppose that ¨P1,...,Pq is not injective and
choose a nonzero function g ∈ ker¨P1,...,Pq . Then, we have

P
{

dim ker¨P1,...,Pq ,X < dim ker¨P1,...,Pq
}

g P{g(X) , 0} g 1
2d
, (68)

where the last inequality is a classical property satisfied by nonzero functions of degree at most
d which can be proven inductively, see [37, Lemma 3.5].

To conclude the proof, consider Q > k
def
=

∑d
j=0

(n
j

)

and let X1, . . . ,XQ be independent uni-
formly random points on the hypercube. Suppose that the operator ¨X1,...,XQ is not injective.
Then, at least Q − k +1 steps in the following chain of inequalities are in fact equalities:

k g dim ker¨X1
g dim ker¨X1,X2

g · · · g dim ker¨X1,...,XQ . (69)
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By inequality (68) and the independence of X1, . . . ,XQ, we deduce that

P
{

¨X1,...,XQ is not injective
}

f
(

Q

Q − k +1

)
(

1− 1
2d

)Q−k+1 fQk−1
(

1− 1
2d

)Q−k+1 f (2Q)k−1
(

1− 1
2d

)Q
.

Choosing Q = C2dk log
(
k
¶

)

for a large enough universal constant C > 1 ensures that ¨X1,...,XQ is

injective with probability at least 1− ¶, thus completing the proof as k f (d +1)nd .

Remark 17. We point out that the query complexity estimate (26) can be realized algorithmically.
At every step of the algorithm, one has to compute the rank of the matrix ¨X1,...,Xq until it becomes
full-rank. Then, the unknown function f can be recovered by solving a system of linear equations
with respect to its Walsh coefficients.
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