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Abstract

Human navigation is shaped by cognitive strategies, spatial
awareness, and learned heuristics, yet existing models strug-
gle to capture individual differences in wayfinding. To investi-
gate the cognitive basis of navigational behavior, we conducted
a virtual reality experiment where participants maneuvered
around a human obstacle in a controlled, static environment.
Using trajectory-based features, we classified participants with
PartNet, a neural network that outperformed ElasticNet and
Random Forest classifiers. While PartNet captured subtle yet
consistent behavioral patterns, its interpretability was limited.
To address this, we developed an analysis pipeline revealing
key behavioral factors, showing that navigational styles differ
primarily in midline adherence and speed. Clustering and em-
bedding analyses further demonstrated participant separability,
highlighting both individual distinctions and shared tenden-
cies. By identifying structured variability in navigation, our
work advances cognitive models of spatial decision-making,
informing theories of wayfinding, predictive modeling of hu-
man movement, and applications in assistive navigation and
urban design.
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pretability

Introduction

Modeling human navigation is crucial for urban planning
and the safe management of public events (Koumetio Tek-
ouabou, Diop, Azmi, Jaligot, & Chenal, 2022; Casali, Ay-
din, & Comes, 2022; Sohn et al., 2020). A key challenge
is accounting for navigation around social obstacles, which,
unlike physical barriers, involve complex social rules and in-
dividual differences (Kim et al., 2015). Traditional particle-
based models fail to capture these nuances (Vizzari, Crociani,
& Bandini, 2020), such as the varying acceptable distances
when passing in front of or behind a person. Addressing this
gap requires a deeper understanding of how people navigate
in dynamic environments, balancing shared movement ten-
dencies with individual differences.

Identifying whether navigational behaviors cluster into
common styles or remain highly individualized has signifi-
cant implications. If behaviors generalize across individu-
als, predictive models can be simplified and applied broadly.
Conversely, strong individual differences may necessitate
more personalized approaches. To explore this, we conducted
a controlled virtual reality experiment to analyze fine-grained
trajectory features and classify participants based on their
navigation tendencies.

We introduce PartNet, a neural network that surpasses
ElasticNet and Random Forest classifiers in distinguishing

participants while capturing subtle yet consistent navigational
tendencies. However, the strength of complex models of-
ten comes at the cost of interpretability, limiting their prac-
tical application. To bridge this gap, we designed an analysis
pipeline that identifies key behavioral features, revealing how
individuals differ in midline adherence, speed, and obstacle
avoidance strategies. By focusing on interpretability, we aim
to connect machine learning-driven insights with real-world
applications in public health policy and urban planning. This
allows us to articulate the factors influencing navigation, jus-
tify behavioral clusters transparently, and translate findings
into practical guidelines (Burkart & Huber, 2021; Carvalho,
Pereira, & Cardoso, 2019).

Related Work

Proxemics theory, introduced by Edward T. Hall, examines
how humans use and perceive space (Hall, 1968). Hall iden-
tified concentric zones around individuals, each serving dif-
ferent social functions: public, personal, and intimate ar-
eas (Watson, 2014). Subsequent research has revealed cul-
tural variations and contextual factors influencing these spa-
tial preferences (Cristani et al., 2011). The model was later
refined to account for asymmetry, considering differences be-
tween the front and back of the body (Hayduk, 1981), as
well as the dominant and non-dominant hands (Gérin-Lajoie,
Richards, Fung, & McFadyen, 2008). Recent advancements
have expanded on Hall’s model, introducing concepts such
as activity spaces and affordance areas (Schaumann, Sohn,
Usman, Haworth, & Kapadia, 2019; Frohnwieser, Hopf, &
Oberzaucher, 2013), providing a more nuanced understand-
ing of spatial dynamics in social interactions.

Proxemics plays a crucial role in social navigation, which
studies how individuals move through environments popu-
lated by others, who can be in turns sources of information
to approach (Dalton, Holscher, & Montello, 2019) or obsta-
cles to avoid (Crociani, Vizzari, & Bandini, 2018; Haghani &
Sarvi, 2017) . This field has significant implications for ur-
ban planning (Farr, Kleinschmidt, Yarlagadda, & Mengersen,
2012), socially aware robotics (Rios-Martinez, Spalanzani,
& Laugier, 2015), and crowd simulation (Daza, Barrios-
Aranibar, Diaz-Amado, Cardinale, & Vilasboas, 2021). Tra-
ditional proxemics studies are limited by their focus on static,
fixed areas. In contrast, model-based approaches offer a
more dynamic representation of social navigation (Helbing



& Molnar, 1995; Corbetta & Toschi, 2023; Yue, Manocha,
& Wang, 2022) but often overlook individual differences
(Zheng, Zhong, & Liu, 2009).

Data-driven clustering techniques present a promising al-
ternative (Alahi et al., 2017), capturing real-world behav-
ioral patterns while accounting for individual variability
(Antonenko, Toy, & Niederhauser, 2012). Clustering meth-
ods offer several advantages: they reflect authentic human
behavior (Du, 2010) rather than theoretical assumptions and
they are flexible, adapting to specific contexts and environ-
ments. In addition, they can identify common patterns across
diverse individuals, and they can potentially reveal unex-
pected navigation strategies not accounted for in existing
models (Atev, Miller, & Papanikolopoulos, 2010). Super-
vised methods in particular can help capture more nuanced
patterns in trajectory data (Bian, Tian, Tang, & Tao, 2018).
By leveraging actual trajectory data, clustering techniques
provide a more nuanced and realistic foundation for under-
standing and predicting social navigation behaviors.

Field experiments in social navigation, while offering
strong ecological validity, often present challenges in con-
trolling environmental variables and comparing conditions
due to inherent noise. These limitations are an obstacle to
the extraction of clear, generalizable insights. Laboratory-
based experiments offer an alternative, providing greater con-
trol over variables (Haghani, 2020). In addition to greater
control over environmental conditions, VR experiments of-
fer several key advantages, like the ability to rapidly present
diverse scenarios, and to consistently replicate experimen-
tal conditions across participants (Haghani & Sarvi, 2018).
The recent proliferation of commercial virtual reality (VR)
headsets has significantly increased the feasibility and effi-
ciency of conducting virtual social navigation experiments.
Research has demonstrated that human behavior in VR envi-
ronments closely mimics real-world behavior, supporting the
validity of VR-based studies (Haq, Hill, & Pramanik, 2005;
Kinateder & Warren, 2016; Dong et al., 2022).

In this study, we examined the impact of environmental
factors, such as mask usage and perceived safety, on tra-
jectory quality. Given that a primary challenge of machine
learning clustering techniques is their lack of interpretabil-
ity (Doshi-Velez & Kim, 2017), we prioritized this aspect
throughout our evaluation process.

Dataset

We conducted a comprehensive human behavioral experi-
ment in virtual reality to investigate human navigational be-
haviors under various conditions. The study involved 33 par-
ticipants (17 females and 16 males), all of whom were under-
graduate students at a university whose Institutional Review
Board (IRB) approved the study protocol. Four individuals
were excluded from the analysis: three for not adhering to
instructions and one due to incomplete data.

The participants were tasked with navigating through a vir-
tual room (wide: -2.25m < x <2.25m, length: Om <y < 6m)

by maneuvering around an obstacle at (0, 3) to reach a door
on the opposite end at (0, 6) (Figure 1). To ensure a thor-
ough exploration of factors influencing navigation behavior,
we implemented a full factorial design with four trial condi-
tions:

e Obstacle type: human standing and wearing surgical
mask, human standing unmasked, human sitting in a chair
masked, human sitting in a chair unmasked.

¢ Obstacle orientation: the 4 cardinal directions, where
north points toward the exit.

* Environment safety: following or not following COVID-
safety protocols.

« Participant safety: wearing or not wearing a face mask.

Each participant completed 64 trials composed of all combi-
nations of these conditions (4 obstacle types x 4 orientations
x 2 environment safety conditions x 2 participant safety
conditions) in approximately 20 minutes. This experimental
setup allowed us to collect rich trajectory data for the analysis
of human movement patterns in constrained environments.

During each trial, we recorded the position of the partici-
pant’s VR headset at 50Hz as they moved through the envi-
ronment and smoothed out lateral head movement to reflect
the movement of their center of mass (Kavanagh, Morrison,
& Barrett, 2005). To further improve data quality, we trun-
cated the start of each participant’s data below the threshold
y = Im to remove noise associated with participants getting
situated at the beginning of each trial (Figure 1). We also re-
moved trials exceeding a duration threshold of 10 seconds,
reducing the total number of trials from 1,856 (64 trials X
29 participants) to 1,834. This criterion was based on the av-
erage room-crossing time of 6-7 seconds. Longer trials typ-
ically resulted from participants deviating from instructions
to walk naturally, instead becoming distracted or interacting
with VR artifacts.

Figure 1: The above figure shows experimental setup in VR.
The participant needs to move around the obstacle (beige)
facing the red line to reach the brown door.

Feature Extraction

The 64 trial conditions were encoded as 6 condition features:
2 binary values for whether the human obstacle was sitting



and whether it was masked (1,2), 2 values representing the
orientation of the obstacle as a unit vector (3,4), and 2 binary
values for environment safety and participant safety (5,6).
From the position data, we extracted a comprehensive set
of navigation metrics to characterize each participant’s be-
havior: (7) average distance of the participant from the mid-
line x = 0 (ADFM), (8) maximum distance from the mid-
line (MDFM), (9) horizontal distance from the obstacle at y
=3, (10) average speed, (11) maximum speed, (12) trajectory
duration, (13) whether the participant moves left or right to
avoid the obstacle, and (14) average angular velocity. Since
many of the trajectories were observed to follow a Gaussian
curve along the midline, the parameters of a Gaussian dis-
tribution were fitted to each trajectory, from which the mean
(15) and the standard deviation (16) were used as additional
metrics. Finally, we added a metric for the closest the partici-
pant gets to the obstacle (17) as well as a direction alignment
metric (18), which outputs 1 when the participant chooses to
move in front of the obstacle facing east or west, -1 when
the participant moves behind the obstacle facing east or west,
and 0 when the obstacle is facing north or south. This rich
set of features captures both spatial and temporal aspects of
the participants’ movement, with a focus on understanding
proxemics behavior and avoidance patterns.

Participant Classification

Our analysis on the separability of human navigational be-
haviors begins with modeling the participant classification
problem, where we predict which participant produced a set
of navigational metrics given the trial conditions. More for-
mally, the input consists of 18 features (i.e., the 12 naviga-
tion metrics and 6 condition features), and the output is rep-
resented as a 29-dimensional vector, where the correct partic-
ipant’s dimension is set to 1 and all others are 0.

We consider three models for learning to classify partic-
ipants: ElasticNet (Zou & Hastie, 2005), the Random For-
est Classifier (RFC) (Breiman, 2001), and PartNet —our
proposed neural network. ElasticNet was chosen to repre-
sent linear regression models (over logistic regression), be-
cause it penalizes the learned coefficients in 2 ways (Lasso
(Tibshirani, 1996) and Ridge (Hoerl & Kennard, 1970)) to
improve the predictive performance and interpretability of
linear regression models. By combining these penalties, Elas-
ticNet addresses the individual limitations that Lasso and
Ridge regression have in dealing with multicollinearity (e.g.,
between ADFM and MDFM or average and maximum speed)
and performing feature selection respectively. The RFC com-
plements Elastic Net by addressing its limitations in model-
ing nonlinear relationships. It leverages an ensemble of de-
cision trees to capture intricate interactions and dependencies
among features, while still offering interpretability through
feature importance scores.

In contrast to these more interpretable models, we propose
PartNet, a simple neural network comprising of linear lay-
ers that learn relationships between features and can change

their dimensionality, BatchNorm layers that stabilize training
(Ioffe & Szegedy, 2015), ReLU layers that introduce non-
linearity (Agarap, 2018), and a Softmax layer to ensure that
the output is a probability distribution over the 29 partici-
pants. Figure 2 illustrates how these layers are organized
in the PartNet architecture and includes their output dimen-
sions. The blue highlighted embedding layer is an interme-
diary feature representation within PartNet, which we later
extract for analysis. PartNet is trained for 50 epochs using
stochastic gradient descent to optimize its parameters with
a learning rate of 0.01, momentum value of 0.9 (Sutskever,
Martens, Dahl, & Hinton, 2013), and a weight decay of 0.001
to prevent overfitting by penalizing large weights. The model
used Cross-Entropy Loss to quantify the difference between
the predicted participant probabilities and the ground truth
participant labels.
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Figure 2: The above diagram is of PartNet’s architecture.

In order to train ElasticNet, the RFC, and PartNet, the
1,834 data points were randomized 30 times and for each ran-
domization, an 80-20 training-testing split was made. While
the condition features were already normalized, the naviga-
tion metrics had to be standardized according to the training
set of each randomized split. Figure 3 shows the traditional
accuracy of each model trained on all features (All Feat.) at
k =1, where only a model’s top guess is evaluated. Looking
at this result alone, it appears that RFCs outperform Elastic-
Net and PartNet on average, but this comes with an exorbitant
standard deviation. On the other hand, PartNet is significantly
better than the RFC in consistency and ElasticNet in accuracy.

Looking beyond the traditional top guess of each model,
we observe an interesting linear signature to the RFC’s accu-
racy curve as the number of guesses k increases. It appears
that the RFC’s learned features are shallow and overfitted, be-
cause its accuracy increases linearly with £ much like random
chance. In contrast, PartNet and ElasticNet exhibit asymptot-
ically greater increase in accuracy, which permanently over-
take the RFC after k =2 guesses for PartNet and k = 4 guesses
for ElasticNet. Put another way, to achieve ~70% accuracy,
PartNet requires 3 guesses, ElasticNet requires 5 guesses, and
the RFC requires 9 guesses on average. PartNet and Elastic-
Net share similar logarithmic accuracy signatures, but Part-
Net is consistently more performant. This signature (and how
it differs from the linear signatures) is informative of the sep-
arability of participants’ navigational behaviors at a coarse
level. The large initial leap in accuracy suggests that there
are navigational behaviors that are shared among some par-
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Figure 3: The above plot shows the accuracy of ElasticNet,
the RFC, and PartNet as a function of the top-k guesses with
and without obstacle-related features.

ticipants. The fewer the people that share a behavior, the ear-
lier (in terms of guesses) it will yield an improvement in accu-
racy. If all behaviors were unique (i.e., maximally informa-
tive), a model with enough predictive power would achieve
100% for all k, and if all behaviors were shared (or totally
random, which are both minimally informative), the model
accuracy would look like random chance. The two signatures
(linear and logarithmic) lie on the continuum between these
theoretical extremes. We assert that the RFC does not have
enough predictive power to learn meaningful similarities be-
tween participants (hence the linear growth), though it learns
some meaningful differences on average (hence the high ini-
tial accuracy).

Feature Analysis

Figure 4 shows that ElasticNet and the RFC similarly under-
value condition features (Figure 4, left) as well as directional
features (left/right and alignment), and they both value dis-
tance and speed-based metrics (Figure 4, middle). However,
the RFC finds more value in metrics that inform on trajec-
tory shape (Figure 4, right) with more fidelity such as angular
velocity (which encodes some curvature) or the fitted Gaus-
sians’ parameters. This aligns with our prior assertion that it
tries to learn differences better.

Since there are no readily interpretable features within
PartNet, we perform an ablation study, where we train Part-
Net with 11 subsets of the original 18 features. For conscise-
ness, we refer to omitted features using the numbers (1-18)
from the Feature Extraction Section. The features subsets
are as follows: no person sitting (1), no person masked (2),
no person orientation (3-4,18), no environment safety (5), no
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Figure 4: The above bar plots shows the magnitude of Elas-
ticNet’s coefficients and the RFC’s feature importance scores.
Features with higher values are more important for classify-
ing participants.

participant safety (6), no trial conditions (1-6,18), no obstacle
information (1-4,18), no distance from midline or DEM (7-9),
no speed (10-12), no curvature (14,16-17), and no direction
(13,18).
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Figure 5: The above plot shows the result of the PartNet abla-
tion study. Some features cause overfitting (e.g., obstacle in-
formation), while others play a crucial role to accuracy (e.g.,
distance and speed information).

If all features are productive toward learning, we expect
each ablation to increase loss. Figure 5 shows some agree-
ment with ElasticNet and the RFC in that distance- and speed-
based features are crucial, as indicated by the increases in loss
for No DFM and No Speed. However, it appears that some
features are highly counterproductive, namely condition fea-
tures carrying obstacle information (1-4), which significantly
improve performance when removed from PartNet. Environ-



ment safety was the only condition feature that did not de-
grade PartNet’s performance on average. This suggests that
for PartNet, how participants move (as captured by naviga-
tion metrics) helps to classify participants more robustly than
why they move (based on the obstacle) —a distinction that is
shared by other models but not treated as extremely as Part-
Net. We posit that this is due to the uniformity in partici-
pants’ treatment of the obstacle (Figure 1) and nonuniformity
in their treatment of the environment’s COVID-related safety
(Moran et al., 2021).

Based on this finding, we removed obstacle information
from each model and reevaluated their accuracy as a func-
tion of k (Figure 3). ElasticNet was largely unaffected by this
ablation, because it already weighs condition features lowly.
There was some visible effect on the RFC in that the mean ac-
curacy increases marginally but consistently across all k. The
most pronounced improvement was observed with PartNet,
which remains the most performant model.
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Figure 6: The above plots show different metrics mapped
onto PartNet’s embedding space after dimensionality reduc-
tion using t-SNE.

Embedding Analysis

The ablation study is a black-box evaluation method that is
useful, but there is more to gain from analyzing the fea-
ture representations within PartNet. While learning to clas-
sify participants, PartNet creates a feature representation that
tries to separate participants’ behaviors into different regions.
However, as aforementioned, a perfect separation is likely im-
possible due to shared behaviors. In PartNet’s architecture,
layers closer to the output have feature representations that
are better separated. Therefore, we extract features (colored
blue in Figure 2) before they enter the final linear layer, which

is a participant embedding.

It is difficult to interpret the individual dimensions of the
embedding, but we can determine which known features they
are correlated with by first using t-SNE (Van der Maaten
& Hinton, 2008), a dimensionality reduction technique, to
project the embeddings onto a 2D plane (Figure 6). This cre-
ates a human-interpretable view of the aforementioned “par-
ticipant regions” that has been parameterized (with perplexity
= 120) to preserve broader structures among the embeddings.
In theory, if a particular metric is important to PartNet, it will
influence the broad structure the embeddings and there should
be some observable continuity when plotting it onto this 2D
view.

Figure 6 shows environment safety, ADFM, average speed,
and the Gaussian means visualized over the 2D view. It is
clearly evident that the first three features are preserved in
the embeddings. Environment safety exhibits a clear bound-
ary between safe and unsafe behaviors that creates complex
interactions in the way that it cuts through ADFM and aver-
age speed. Interestingly, ADFM and average speed, which all
3 models consider to be the most important, are continuous
along orthogonal axes in the 2D view. The Gaussian mean,
which is considered less important, appears to increase from
the centers of the 2 clusters to the perimeters (i.e., the axis
orthogonal to both ADFM and average speed, coming out of
the page). These results are in full alignment with the feature
importance scores and ablation study (Figures 4 and 5).

Clustering Analysis

Features embed more about participants as they pass through
PartNet. Accordingly, the early stage ablation study offers
feature-centric insights, and the mid-stage embedding analy-
sis bridges features and participants. We now conduct a late
stage clustering analysis to fully connect this pipeline. For
each test case, PartNet outputs a probability distribution over
participants, which implicitly encodes which participants it
is confused about and to what degree. All of these distri-
butions are aggregated into the confusion matrix in Figure
8, which has been averaged cell-wise across all 30 training-
testing splits. We apply Louvain community detection on the
matrix (treating it like an adjacency graph) to cluster partici-
pants based on how much they were confused with each other
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008; Brusco
& Steinley, 2006). Table 1, rows 3 and 6 list the 14 detected
clusters. Looking at the confusion matrix’s diagonal, it is ev-
ident that some participants’ values are high (indicating low
confusion), while others’ are low (indicating high confusion).
We quantify this confusion more accurately using the Shan-
non entropy of each row (Shannon, 1948) (Table 1, rows 2
and 5).

This entropy is precisely what measures the titular sepa-
rability of participants. This is illustrated well by clusters
11 and 13. According to the high entropy of participants in
cluster 11, we expect their regions in the embedding space to
be spread out, overlapping other participants’ regions. Since



Participant 5 10 | 20 | 21 7 11 | 16 3 24 ) 12 | 29 ] 15 | 26 2 6
Entropy 3012535283539 |34]35|34J16|18]130|20]34]29
Cluster 10 (10 | 10 | 10 J 11 | 11 | 11 3 3 13 (13 112 12 2 6

Participant 1 8 13 9 18 | 28 4 | 27| 14| 23 17 | 22 ) 19| 25
Entropy 39 (3714113635 (39]139|37]41]41]136]|27]34] 25
Cluster 8 8 8 9 9 9 4 4 14 | 14 5 5 1 7

Table 1: This table shows which cluster each participant belongs to and the entropy of each participant’s row in the averaged

PartNet confusion matrix.
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Figure 7: Plots (a-d) show the points in the embedding space
corresponding to particilar participants. Participants belong-
ing to the same cluster appear to have similar distributions.

they belong to the same cluster, we expect them to overlap
with others in similar ways. On the contrary, we have cluster
13, whose participants have low entropy and thereby (in the-
ory) compact regions that are well-separated from others, but
close to each other. Figure 7 aligns completely with our ex-
pectations. Given the commonality of cluster 11’s behaviors,
we expect that their widespread regions match up with more
average distance- and speed-based features, and that cluster
13’s regions have much more extreme features values. Figure
6 strongly supports these expectations. Some clusters only
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Figure 8: The above images show the cell-wise mean and
standard deviation of 30 confusion matrices from PartNet.

have a single participant with a high entropy (e.g., cluster 1).
These clusters exhibit common behaviors in an uncommon
way, clusters 8-11 exhibit common behaviors in a common
way, cluster 13 exhibits uncommon behaviors in a common
way, and cluster 7 exhibits relatively uncommon behaviors in
an uncommon way.

Conclusion

We conducted a virtual reality experiment investigating hu-
man navigation in a small indoor environment and success-
fully classified participants according to their behavioral pat-
terns using our proposed neural network, PartNet, exceeding
the accuracy of ElasticNET and the RFC. Where PartNet was
lacking in interpretability was compensated by our proposed
analysis pipeline. The ablation study revealed feature impor-
tance and improved feature selection for learning the embed-
ding representation, the clustering analysis revealed the sep-
arability of some participants and the commonality of others,
and the embedding analysis connected the participants back
to their features for validating both the ablation study and
the clustering analysis. Participants were successfully clus-
tered into groups, suggesting the existence of navigational
styles that differ primarily with respect to their distance from
the midline and speed. The consistency and predictability of
navigation behavior across scenarios, coupled with the vary-
ing degrees of individual distinctiveness, can inform research
on egress, crowd simulation, and monitoring of large public
spaces and events. Overall, our method accurately captures
the dynamic nature of spatial decision-making across multi-
ple contexts.
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