Ultra-Low Power Logic and Photonics:
Challenges and Opportunities

H':_'
i
:
- E .
RS o
R {

Prof. Mantu Hudait, Virginia Tech

Advanced Devices & Sustainable Energy Laboratory (ADSEL)
(Semiconductors Research Group)
Bradley Department of Electrical and Computer Engineering
http://adsel.ece.vt.edu

j
@ ECE, ICTAS

WMED 2023, Boise

3/31/2023

Ack: ESt ECCS-2042079

M VirginiaTech

Invent the Future

Advanced Devices & Sustainable Energy Laboratory



Outline

« Introduction
« Our research towards (Materials -to-devices of non-Si materials)

»Energy-efficient devices for logic and memory at ultra-low
voltage (Ge, GeSn on In(GaAl)As)
» Tunnel FETs and FinFETs

» High-k dielectrics, MOS-Cs on Ge and strained Ge (c-Ge)

»>MBE growth 2> materials analysis > device/modeling feedback
> Defect control, strain and bandgap engineering group IV & III-V materials

> Heterointerface control at atomic level

»6Group IV GeSn quantum materials for photonics
> Magnetotransport on strained Ge

> Carrier lifetime on group IV (Ge, ¢-6e, GeSn) materials

+ Summary & Challenges
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Why Do We Need Now? -
-,

Mobile
Devices

L4
o L
)Y

http://www.business2community.com/big-data/internet-things-iot-going-impact-business-01572401
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Data Explosion in IoT Era

GROWTH IN THE INTERNET OF THINGS

THE NUMBER OF CONNECTED DEVICES WILL EXCEED 50 BILLION BY 2020

BILLIONS OF DEVICES
50

1992 7
™ INCEPTION

0 . o
1988 1992 1996 2000 2004 2008 2012 2016 2020
Source: CISCO

By 2020, 50B connected devices with 2 Zeta Byte annual data traffic
MVirginiaTech
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Total Energy for Computing in IoT Era -I
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Solution: Energy Efficient Low-
|power Devices: Materials-
|Devices-Circuits-System
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By 2040, World’s energy production is less than energy needed for computing !
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Conventional CMOS Technology:

st 3
1% Generation 15t Generation High-k

Strained Silicon 65nm Metal Gate 45 nm node FinFET/
Trigate 22nm and below

Source: Intel 1

Alternate channel Alternate channel CMOS??
CMOS (non-Si)  NSFET (non-Si)

Why look beyond Si CMOS?

HWN =

Scaling Limit : Quantum effects

Limited mobility : Supply and power leakage
Photonic integration and light source is a challenge
Diminishing ROI & yield (?)

Advanced Devices & Sustainable Energy Laboratory

Scaling & Architecture

Source: IEEE Spectrum

deid 9o

Al,In, As

TFET Nanosheet-FET Gate-all-around (GAA)

Non-Si
based

Topic -1 of
discussion TODAY

MVirginiaTech

Invent the Future




ITI-V and Ge for High Performance Computing

IBM-spends-3-billion-to-push-the-far-future-of-computer-chips

: Si/Ge Gate All Around (GAA)
n5.n3 l ‘ ' . Vertical or Horizontal
’ : Improved electrostatics I B M
Y * Precision etch and CMP
n22, n14 n10, n7 l ' ‘ ‘ « Scaled metals July 9, 2014 4:02 PM
' l - High Aspect Ratio ALD
g od ~

~

IV FinFET
Improved mobility

» Epi structure
3 llI-V gate interface
Si FinFET Si/Ge FinFET & « New material CMP

Vertical
TFET

Improved SS
» Epi structure
Multi-pass CMP

(100) and (110) +  Precision etch & CMP

Applied Materials, which manufactures chipmaking tools, envisions chips
made with a 3nm ("n3") manufacturing process.

http://www.cnet.com/news/ibm-spends-3-billion-to-push-the-far-future-of-computer-chips/

Hudait et al: “Extreme high mobility CMOS logic”
Patent # 9548363 (2017); 8802517 (2014); 8518768 (2013); 8183556 (2012) "m"v s
irginialech
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What Should non-Si CMOS Accomplish to Reach the Market? =

Speed

Operating
Frequency
> 6GHz

Computation
rate

Advanced

Density

Large
number of
gates per
die

Power

Vertical
integration

.

Low static
current

Minimize
Cost

Low
dynamic
current

Low voltage
(Vpp and
Vin)

Devices & Sustainable Energy

Scalability

Feature size

ROI on
scaling

lLaboratory

Compatible

with Si

Leverage
existing fab

Leverage
existing
tech

Reliability

Die-to-Die
yield

Gate-to-
Gate
reliability

ImINi

Compatible
with
Photonics

Beyond
electronics
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FUTURE
Monolithic?

ECL

/ Modulator S——
= - = o ultiple
Integration: silicon R 2 ,/_ Channels
devices into hybrid A N ) """""-w-..ﬁ

modules P — Sy

Integrated in Silicon

]

Level of integration
Determined by
Application/cost

Source: Intel Photonics Group

Time

MVirginiaTech
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Chip-scale Electronic-Photonic Systems: Powerful Computer | 3

Memory to processor link

———————————————————— Read data [
: Chip (processor mode) : : Chip (memory mode) '
|
I ! | |
[ O =91 q L Transmitter | [
I i Receiver W | | Optical Ly : '
| | I amplifier Lo 1 |
[ i o [ ! [
t | . | - 1
= ~
: . L e Do Laser 50/50 power splitter R ! = [
3 2 ; 8 |
[ 2 5 I [ 2 z [
[ o £ [ " ! 8 g [
| o o | ' | @ [7] |
a © | € =
! = g ! = o I
I 2 £ | : = I
I 2 o i -
| [is = B I : Single-mode fibre | e T TR :
| ! v o E [
[ }DDO I Optical L 1 [
I A amplifier | A — I
| A |
| |
| |

— | _Trenemiter = | D S
Solution: Monolithically/Heterogeneously

Integrated Tunable Laser
Topic -2 of
discussion TODAY

Chen Sun et al, “Single-chip _microprocessor that
communicates directly using light’, Nature 528, 534,
24/31 December 2015.

» Tea-pot was generated using the above
fabricated microprocessor, but the laser was
externally coupled to the processor.

M VirginiaTech
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Futuristic CMOS-compatible Intra-chip Photonics -I

Detector
(O-to-E bit conversion)

Laser (light source)

Electrical
Data Out

Silicon Photonics Engine

Electrical
Data In

Modulator Data In

(E-to-O bit conversion)

Filter

(Muxing / Demuxing) Fiber coupler
(chip-to-fiber interface)

Courtesy CEA-Lefi

» Aims to achieve Group-IV based devices compatible o Si photonics

Topic -2 of

| | R o | discussion TODAY
Julien Happich, “CMOS-compatible intra-chip photonics brings new class of sensors”, http://www.analog-eetimes.com/news/cmos-

compatible-intra-chip-photonicsbrings-new-class-sensors. EE Times, October 15, 2013. T Vj. - = Te Ch
Advanced Devices & Sustainable Energy Laboratory as
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Plenty of Room at the Bottom?

e In 1959, Richard Feynman delivered a talk
titled “Plenty of Room at the Bottom” at the
American Physical Society.

e Feynman envisioned the ability to manipulate
things at the atomic level, leading to:

- New Materials
— Miniaturized Motors
— Miniaturized Computers

MVirginiaTech
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Selection of non-Si Materials for CMOS and Optoelectronics g

G%*ysnyﬂinﬂ%ligﬁah -X

>214 ::-‘:_'5 INn=19 % —m——| Indirect bandgap
L i AV =<
S P - w.l.‘-.'“-:
=25 |§°F" R

N 38 2% AISb
> 1] Gal ,Ih ] H"'"p--- Nirect e InSb or InGaAs on Si has large
T il ! rectgap lattice mismatch - needs

Al -gi‘:O-...__ N gaSb'lL - - Indirect gap lattice adapter to mitigate
Si a AN
8
4

defects and dislocations

4% 12 6%
T sn=0% 9 18 | S 1O
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M VirginiaTech

Advanced Devices & Sustainable Energy Laboratory Invent the Future




Electronics
TFET & FinFET (Topic-1a, 1b)
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Scaling of Si Transistor: Thermal Challenges

108 c
90 Active power density 28
nm 102 - 5
.
2003 <l
Ghani, o o
IEDM 03 Z 10 .
g 107 |- :
65nm g 3
107 ®
2005 § Subthreshold § &
Tyagi, 210 power density C
IEDM 05 g5
10 =
5
45nm ‘ 1l]':} 01 {]I1 1 E%ﬂ
- - m E
2007 | Gate length (pm)
Mistry, E. J. Nowak, IBM J. Res. & Dev., 46, 169 (2002)
IEDM 07
32nm 22nm
2009 2011
Intel
Packan,
IEDM 07

Tech
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Mobile Devices: Power Consumption

Linear | Saturation . 2 P: Total Power Consumption
T P =n(aCVipf +IoprVpp + IscVpp) n: Number of Transistors
. e * * C: Load Capacitance
3, framyy) T 3 Vpp: Supply Voltage
E Tk Tri-Gate Active Leakage Leakage f: Operation Frequency
° 8% Cedueed Power Power Power Iopp: OFF-state Leakage Current
| ceakagecument oﬁﬁg a : Activity factor
1E-0500 02 04 06 08 10 ISC: OFF-state Current when both P-
Srieelees and N-MOS are ON
Inverter
VDD Low Power Consumption >V, I . §
| Out 1= VBCox 2
n ON 2L bD TH Ion: ON-state current
v W: Gate Width
Need to be Cox: Oxide Capacitance
w: Carrier Mobility
scaled together
L: Gate Length
V.t Threshold Voltage
High Performance (High l,y) > V7, |
I_I'm'l_l " L4 L4
Advanced Devices & Sustainable Energy Laboratory WV]'Ig]maTeCh
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Lower Limit of MOSFET Subthreshold Slope =
-  0000O0O0O0O0O0O0O0O0O0OoOo 1

g dv;
| [ a(qi/KT)
. = @@

Lower V;, of MOSFET
10° dVG kT CD g | Egg— —
EyERPE=C ) = === - — ln(lo) 1 _I_ - —-—— IE:I-'
. il Viu dlps q Cox
: xponential incregss

of E.,FFin MOSFEWFOSFET

102

= In(10)

107

Ideal transistor

Drain current density, I,s (A/um)

— %ln(lO) [mV/dec]

10

MOSFET
gﬁzi-:;o&es-s) IOFF - IDS . 10_VTH/SS
107 1
0 0.3 06 0.9 . .
Gate voltage, Vi (V) New FET architectures need to satisfy:
1) Steep SS characteristics
2) Low V
3) Low OFF-state current
Zhu and Hudait, Nano Technology Rev. 2, 637 (2013) Tunnel FETs can satisfy these requirements!

MVirginiaTech
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Comparison Between MOSFETs and Tunnel FETs

N-MOSFET

Control Ves =0V, OFF
Voltage ? VGS >0V, ON
Positive
Bias

O+
n* p n*
Source Channel Drain

Ground 205V

N-TFET v
Control Ves =0V, OFF

1 v Voltage ? Ves >0V, ON
Db Positive
1 P Bias

O+
p* Intrinsic n*
Source Channel Drain

Ground Lower Energy
Lower Voltage

<03V
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00 o .~
® 000.9.09
C
E E

Valence band
No conduction

Valence band
No conduction

OFF t ON

Thermionic Emission

Band-to-band Tunneling

X
e
OFF ON
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Tunnel Transistor (<0.3V): Band Alignment Engineering

Tunneling distance A

. 4N2m E.?
wks ~ eXP(= 3 5 G T By

Sze SM, Physics of Semiconductor Devices, 3rd. Ed.

Ev

Design Criteria and Materials Selection:
1) Low A - Abrupt, defect-free tunneling interface.
2) Low m*-> Low E_ or strained materials.
3) Low E, > Heterojunction tunneling interface and strained materials.
Tensile Strained Ge/lnGaAs and GaAsSbh/InGaAs have the potential to
meet all criteria!

Larger tunneling Reduced tunneling Zero tunneling
distance distance distance

MVirginiaTech
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Comprehensive Consideration of a TFET Design -

Lattice matched - Low dislocations | ¢gm| Low lattice

ngh_ON-current or strained system at heterointerface mismatch | | High crystalline quality
ﬂ —1 Direct band
High Tunneling Low m* III-V, Ge(Sn) (tensile) Low OFF-current
Probability Low drain doping
I
Non-degenerated source . =
Lower tunnel ’ Pocket source Asymmetric :
barrier doping bandgap and doping Low ambipolar |—
High source doping 7
Larger drain bandgap
Smaller source bandgap || Proper Source bandgap 4| Larger bandgap Low SRH G-R —
Staggered or Broken gap | ™= | Staggered gap | == | Staggeredor | | Larger tunnel || Low tunnel | |
Homojunction | | barrier leakage
Sharp interface at flomepl dlopiag praiile
Source/Channel Mini : s
Inimum atoms intermixing

Reduced interface traps
Steep SS Low interface scattering
No Al component in channel

|| BOUCT GAE | oy High-« gate dielectric
control

Y. Zhu et al, Nanotechnology Review (2013)
I_I'm'l_l L Ll Ll
Advanced Devices & Sustainable Energy Laboratory WV]'Ig]maTeCh
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Tunnel Transistor (TFET) Materials Selection

2.8 Target GaSh/InAs TFET @0.3V :
A‘u:' Ge/InGaAs 100.000 - X |
g Y - ALAS~ ) I
2.4 é _:~ i g S Mlxed AS/Sb o 10.000 - . 51:((:)‘ W TFEI:I- MOSFET
% § 1.000 1v(8 Intel 1I-V
; ::3 ' Wm‘ 1v(e) 0.5V(9)1V(3) : M
8 o 0.100 - :
I'IZJ E 0.5V(10) :
:_-' ~ A% 0.010 - ¢ 0.5V (1) E
S o8| \\; 0.001 . ’ i .
= 8% o IMo7GagAS 0 20 40 60 80
g _(' e " © ') Subthreshold Swing (mV/decade)
0.0.0 | L1 | | | | | | |
5.4 5.6 5.8 6.0 6.2 6.4 Ian A Yong et al., IEDM, 22.1 (2015) (Intel)

LATTICE CONSTANT [A]

Previous: InAs, InGaAs, Si, Ge, GaAs (Homojunction); GaAs, Sb, /In,Ga, ,As (Heterojunction)

New: Tensile Ge/ln,Ga,_ As (Heterojunction)

MVirginiaTech
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Tensile Strain Engineering of Ge for TEFT and Photonics
S’rr'am & Bandgap Engineerin

— M/ \J,.. » Aims to achieve direct bandgap Ge by
2 0 510 : : : .
) 12 | strain or alloying with Sn (i.e,GeSn)
3 05t Gefln, ;,Ga, o, As | & 05 ] Gelln, ,,Ga, - As
o 0.0 = : fg 0.0F //\ o
W ost /”E‘-” {Wost A\”
- 0 ] - SO
{1 /SN T I VS 1 qot A VIR0
L r X, L T X,
5 POU (b|§ e Benefits of tensile Ge for TFETSs:
20
/'5 1) 1 E 9ITWKB 9IION
1.5 A, 3
. i 12) Indirect E, to direct E; > | Tyyp >F Ion

>10 L\ 3) Tunable dlrect E, > Ge Laser
05| ';
2 3
2 0ot LH ]
Wos (’{i

1_02 NPT BV B

0.0 0.1 02 0.3
74 In content

k point
(c) e =1.96% (d) Energy vs In content

Hudait et al, ACS Appl. Electron. Mater. (2021)

MVirginiaTech
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Theoretical Understanding of Ge/InGaAs TFET Performance -I

1.2

‘® Ge Homo TFET E,.

[001] (a)P-type HTFET (b) N-type HTFET n- type
vV ; 10 f- b wm WHomoy <FFET- E Trend
Gate (Vo) _ . Gate (Vg) ® ; )

[100] Drain (VDS) Drain (VDS) v%
LT T —
& g
Gate (V) Gate (V¢) @ o. s E
Evac x EVaC Evac Evac -g’ 1-0. j ® G H TFET E 1 ty 2/ $t g‘
InGaAs Xge XGe T’ p type e Homo- — ' s _p-type, % Hnml;a_rlFI;;l;' -
+AEpen Xge +GAEBGN +AEpgy Ximgans | mean E 0.8 + g
Ebers _/ E E. E - Evers +AEpgn |E o6k ‘ __________ PR W S %
- 9ECE  © B get o é L S g
E \I\- E e vV E 9.6e" = . : e, | 5 b M M <
P E B E B T Swl WY o A 3
nlnGaAs| i-Ge p-Ge Eg ingass HTIE] S sy i R e z ! E e reu e SR B @

B p-Ge \i-InGaAs| nInGaAs 0.0 . i : ; 025 000 025 050 40" 0° 100 10° 100 10 10 10
—E, 1.0 1.5 2.0 2.5 3.0 3.5 Ve-Vorr Current Density (uA/pum)
In-Plane Biaxial Tensile Strain (%)
Structural models and simulated Strain-induced reduction of Current-voltage and subthreshold
schematic band diagrams the E, ¢ Simulation swing characteristics

» Modeling work suggests significant advantage of Ge/InGaAs TFETs than GaAsSb/InGaAs system
= Developed a compact model with the experimental results as a function of strain in Ge for both n-
and p-channel TFETs

Liu, Clavel, Hudait, IEEE TED (2015). - .
(2015).  1mMVi Tech

Advanced Devices & Sustainable Energy Laboratory
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\

m\m\\\\\\ !

T

- Dual Chamber MBE for ITI-V and Ge(Sn) @ ADSEL =

T
—
—
g,
Ry
e

=g =
=
N =

2

* No restriction for e-Ge growth on [lI-V buffers
» Shallow angle Sn source restrict the amount of Sn flux -
required to mount with Ge source (upward port) .
- Sn effusion cell
\5' Advanced Devices & Sustainable Energy Laboratory @Vlrgliﬁ}”aigitﬁuhm




Epitaxial Ge Directly Grown on Si

\

002 001000 00T 002 O S A 5
\ ?r ?u) fr.l.us
(i) XTEM (ii) RSMs
A.Ghosh et.al, AIP Adv., 2017, 7, 095214,
E)
8
Cross section TEM micrograph of: g ——135nm Ge on Si (expl)
(=]
h t=2.8 ns, R* =0.98408
i. Ge grown on Si showing interfacial | § \\‘ \ 1=19 s, R = 074078
o
misfit and threading dislocations. X
ii. Poor carrier lifetime 40 0 10 20 30 40 50
Time (ns)
(ifi) Carrier recombination e
[T
Advanced Devices & Sustainable Energy Laboratory WV]'rg]maTECh
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Surface Oriented un-strained Ge Layers: In-situ RHEED 3

(100)/2-6° GaAs (110) GaAs (111)A GaAs

GaAs (2-fold) | GaAs (4-fold) GaAs (1-fold) | GaAs (1-fold) || GaAs (2-fold) | GaAs (2-fold)
! |
Substrate &

f Ge (1-fold
Ge (1-fold) e ( 'o. )

Ge

30A GaAs (2- | 30A GaAs 30A GaAs A 30A GaAs (2- | 30A GaAs (2-

= . fold
TOp GaAs fold) (weak 4-fold) (1-fold) fold) o )‘

« (e surface reconstructions were excellent !
« Each orientation exhibited different surface reconstruction

Hudait et al, JVST-B (2013) m VirginiaTeCh

Advanced Devices & Sustainable Energy Laboratory Invent the Future




Ge/InGaAs Tunnel Transistor Structures: Experimental =

IR b —

p* GaAs Be: 5x10' cm™ n* In,Gaq..As Si: 2x10'® cm™

Source »
Channel _

In,Ga;..As (uid)

Intrinsic Ing 16Gag.a:AS Intrinsic Ing 20Gag 71AS

n* Ing.16Gao s4AS In6.24Ga0.76AS (uid) p* Ing 29Gag 71As

D ra i n [ Si: 2x108 cm3 Be: 5x10'8 cm3
Graded
B Uffe r GaAs Buffer GaAs Buffer GaAs Buffer

GaAs (100) 2° Substrate

(a) (b) (c)

GaAs (100) 2° Substrate

GaAs (100) 2° Substrate

Separate lll-V and Ge Growth || Tunable Strain: Modulate E, ., || Sharp Heterointerface:
Chambers: Minimize atomic || m*and T, through £ and In Results in lower A, higher
interdiffusion alloy composition. T'wks and increased /.

MVirginiaTech
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Strain Relaxation of e€-6e/In,Ga,_,As/GaAs: Experimental =
-1

5550
Vertical alignment of (115) _(004)
e-Ge RLPs with InGaAs .y
virtual substrates confirms = 5400 I;-C;a- -
pseudomorphic Ge epitaxy. -— B
=
~ 5300 |
o ; /A
8 () N 16Gagsihs Ing 24Gay 76AS
Minimal tilt observed in high © *riis)
strain samples due to full % ' 0.75% ¢-Ge
relaxation of InGaAs buffer. ,, 5600r N
O j == == -——-
‘ 6500
6400}
£ = 0.75%, Ing 14Gay ssAS (b) Ing.16Gag oA

e = 1.60%, Ing 2,Gay 7cAs Q, x 10000 (a.u. r.L.u.)
e =1.94%, In, ,0Ga, ;4As

Lattice Constant (A) In Tensile Critical
. . Material Out-of-Plane In-Plane Relaxed =~ Composition  Strain, Layer
Increased Ge RLP intensity © (@) ) (%) Ge(®)
due to waveguide formation. £-Gellng 1,Gay g4AS 5.7201 5.7123 5.7164 15.7 0.75 270.8
e-Gellng ,,Ga, 76AS 5.7506 5.7478 5.7492 237 1.6 426
e-Gellng ,,Gag 11AS 5.7693 5.7677 5.7685 285 1.94 25.9

I_I'm'l_l L - -
Advanced Devices & Sustainable Energy WV]'Ig]maTeCh
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Atom Probe Tomography (APT) of 1.6% c-Ge/InGaAs (A) 3

(a)
The reconstructed volume

is 75x75x170 nm?3

Ge Galn As

Intel Corporation
(d) 100

Ge Atoms removed

Concentration (at%)
w
o

5nm 0 ot i
-09 8 -7 6 5-4-3-2-1012 3 456 7 8 910
Distance (nm)

M. B. Clavel et al, Phys. Rev. Appl. ,2022, 18, 064083-1-12.
I_I'm'l_l L - -
Advanced Devices & Sustainable Energy Laboratory WV]'Ig]maTeCh

Invent the Future




TFET Structural and Heterointerface Quality: Experimental =
R I ————

InGaAs/GaAs buffer
accommodates lattice
mismatch-induced defects.

4

Dislocation- and defect-free
active area and Ge/InGaAs
tunnel junction.

— /| G : !

Strained Ge epitaxy
observed in lattice indexing
and FFT analysis.

¥

TFET: AP Tl 2 Ionl
MVirginiaTech

Invent the Future

INg24Gag 76AS

M. B. Clavel et al, Phys. Rev. Appl. ,2022, 18, 064083-1-12.
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Depth Dependent Defect Analysis of ¢-Ge: Experimental

Hudait et al, ACS Appl. Electron.
Materials (2021)

 Low defect density e-Ge
layer

PV-TEM

1.6% &-Ge (30 nm)

Ing,,Ga, 76As (500 nm)
In,Ga, ,As LGB (1 pm)

0.03=x=<0.24
GaAs Buffer (250 nm)

Defect-free
e-Ge?

GaAs (100) 2° Substrate

Clavel et al, Phys. Rev. Appl. ,2022, 18, 064083-1-12.

MVirginiaTech
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Ge/InGaAs Tunnel Transistors: Experimental (Raman & XPS) =

Strain Analysis Band alignment & E,

— Ge/AlAs/GaAs
—— Ge Substrate

—— Gelln,,GaAs/GaAs/Si A= 0.14 cm’”’
——Gelln,,GaAs/GaASISi ¢ = -0,035% 0.6} £=0.75% .

5‘04'
5 0.2

N\

Aw=-4.96 cm’
g, =1.19%

Normalized
Intensity (a.u.)

Aw=-3.45 cny
g, =0.83% 8 ool _
280 285 290 295 300 305 310 ' '
o 0.2

Wavenumber (cm’)

A3 <> Tensile Strain, Raman (g) -1'5€ N 04l i
‘TE ----LinearFitofs, ¢ =1.19% ] 18 _ ® AEc —— AEc Trend
_— i isfi P
S ol Theoret c:l I\is(;" t83°/ 1.0 8. 0.6} L AEV AEVTrend 1
t o /i " o L —— 2 o 2
£ |w=04. 05E 00 01 02 03 04 05 06
— o M S o
£ 5 &=011% m_ 345 = In,Ga, , As Composition (% In)
S 100 @
E O Measured Raman Shift (Ac) A“’_ 39| 2
----LinearFitofAw = (b) 5 @ M. Clavel et al, ACS Appl. Mater. Interfaces (2015); IEEE J-EDS
805000 005 010 015 02 F (Special Issue TFET, 2015)
In Compsition (percent) m ViroiniaTech

{1 87 2}
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Temp Dependent Mobility in 1.6 7% Strained Ge on InGaAs/GaAsi

1.6% £-Ge (30 nm)

Iny ,,Ga; ;cAs (500 nm)
In,Ga,_ As LGB (1 pm)

0.03=x=<0.24
GaAs Buffer (250 nm) ADSEL0154
No Temp(SV) Current[A] Bulk Con. SheetCon. SheetResistance Mobility
o 1 90 1.00E-03 -1.54E+18 -4.63E+12 1.58E+03 8.62E+02
GaAs (100) 2 SUbStrate 2 115 1.00E-03 -1.61E+18 -4.82E+12 1.54E+03 8.50E+02
3 140 1.00E-03 -1.68E+18  -5.03E+12 1.49E+03 8.36E+02
4 165 1.00E-03 -1.76E+18 -5.27E+12 1.46E+03 8.13E+02
5 190 1.00E-03 -1.83E+18 -5.48E+12 1.46E+03 7.82E+02
6 215 1.00E-03 -1.92E+18 -5.77E+12 1.46E+03 7.44E+02
7 240 1.00E-03 -2.04E+18 -6.13E+12 1.42E+03 7.19E+02
8 265 1.00E-03 -2.28E+18  -6.85E+12 1.33E+03 6.88E+02
9 290 1.00E-03 -2.50E+18  -7.50E+12 1.26E+03 6.63E+02
10 315 1.00E-03 -2.45E+18 -7.36E+12 1.29E+03 6.56E+02
. L] L] . L] L]
Electron mobility increases with decreasing temperature Clavel et al, Phys. Rev.

Appl. (2022)

MVirginiaTech
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* Increase in mobility indicates superior quality e-Ge
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Highly Tensile Strained (4%) Ge on InGaAs or InAlAs buffers =
e

Ack: Patrick Goley

MVirginiaTech
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Schematics of Ge/In Ga;_,As TFET Device Structures =

(b) P-type (¢) Process flow: Nano-pillar TFET

Surface cleaning: Degreasing and native oxide removal

Blanket deposit Mo on source contact
Define Ti/Cr etch mask

Dry etch Mo and source/channel layer to the drain

Wet etch undercut source/channel layer
Deposit high-k gate dielectric

Deposition and lift-off self aligned gate metal
Device isolation

Planarization with BCB and etch back

GaAs buffer .
(LT nucleaction and HT layer) Remove Pd and high-k on top of Mo

GaAs buffer
(LT nucleaction and HT layer)

Lift-off source, drain and gate contact pads

Collaboration with Prof. S. Datta @ Georgia Tech

« Demonstrated better control of E, 4 both simulation and experiment
« Developed a growth methodology that enable to increase the critical layer thickness
and strain in Ge

MVirginiaTech

Invent the Future
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Materials Synthesis-Device Properties-Trap Characterization _

of n-and p-channel Ge/In Ga, ,As TFET Devices i

TFET DESIGN III-V/Ge MBE Epitaxial Growth

Gate (V) - ~

Drain (V

/ TRAP
Gate (V) | | CHARACTERIZATION &
DEVICE BENCHMARK

TFETs Characterization

= I sue i3
: : UH =

Advanced Devices & Sustainable Energy Laboratory Invent the Future




Electronics
FinFET

MVirginiaTech
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Epitaxial Ge on Si using GaAs and AlAs buffers for Ge FinFET =
- 1

no (115) S
5700 e
7050

5650

7000~
3600

6950

5550

6900

Q(001) x 10000 (rlu)

3500
6850
5450 -
6800

50 0 50 100 1800 1850
Q(110) x 10000 (rlu) Q(110) x 10000 (rlu) Q(110) x 10000 (rlu)

Our x-ray characterization capabilities can precisely determine
each layer in our grown device structure

Hudait et al, Scientific Reports 4: 6964 (2014)

Advanced Devices & !lggl-‘ijrl:[}g;];[:l]jEli]:EEf(:]t]-
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Atomic View of Ge/AlAs/GaAs/Si Heterostructure via TEM ¢

Hudait et al, Scientific Reports 4: 6964 (2014)

[ HITTIN 1
Advanced Devices & Sustainable Energy Laboratory Wvl]‘g]IHaTeCh
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Band Offsets “Look-up Table” on Si =
s

6 —
4 -
55 |, Can we have similar to
: 0.8
2 - 05 os |14 |10 23 |15 [1.9 (100)66 and (IIO)GZ
< V. . ) . .
= [ | 0.1 orientations?
S 0
ks 1.8
, 30 123 fo 4 los |aa 25 [34 |32
-4 o Experimental?
“r HfO.,
- Si Sio, SiN, T3205 ~BazrO3 ZrO2 Y50y ZrSi04 LaAlO3
6L SrTiO3 AlD; La,0; HISIO4

Predicted barrier heights for a range of high-k gate oxides on Si

J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265-291 (2004) ) ..
MVirginiaTech
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41

Perovskite, BaTiO; Integration on (110)Ge
A

(110) GaAs

&

VA

3w

-

0).Ge' 7

(110) Ge

‘ F oy .
i ’:f). P )

§ # 4
! P, F o

Hudait et al, ACS Applied Materials & Interfaces, 5: 11446-11452 (2013) mm . .
mVirginiaTech
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Atomic Layer Deposited HfO, on (110)Ge =
R

(110)Ge/HfO, interface

(110)Ge

(110)GaAs

—— 10 nm

= HR-TEM micrograph shows absence of interfacial layer
= Sharp interface between HfO, and Ge as well as Ge and (110) GaAs | o e o e oot ot o e

and the impact of surface pretreatments” Appl. Phys. Lett.
85, 3824 (2004).

Hudait et al, APL 102: 093109 (2013 . . .
udatt et2 2083 M VirginiaTech
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Experimental Band Offsets “"Look-up Table” on (110)Ge -I

30
2.0
_ 2.5 | 2.66 1.4 199
— — 0.78
- 1.19
E 1.0 = ]o.49 0.29 J L 0.61 Jo.ea
= L e el il bkl bl ikl el bt et .
oo |- E, Ge = 0.67eV
3 -
c O —-——I- —————————————————————————————————————————————————— ——
Ll — 0.26
. GaAs
-1.0 —
— 334 1228 1199 |15 | 2.38 2.9 2.67 |3.63 2 65
20 =
0 E ALO, Hfo, BTO  ceo, Tio, !Ta,0. STO TaSiO, Nb,O.
Adv_an.na:[]evines&SustainahIEEnergyLahnratnry QV]-rg]maTeCh
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X308 :uoLledLjrubew paledLpul

ALD Al,O; on (100)6e and (110)Ge: TEM & Carrier lifetime study 'I

* Sharp heterointerface of
| high-k and Ge
1500 nm ||* High carrier lifetime after
10" . o
> b2) Tiigce p =440 Ns A|203 dEPOSItlon
C_CU -1 H\‘-——.-(m) T(110)Ge UP = 260 ns (PaSS|VatIOI‘I)
' '09))1 0 o (82) Tionce p = 06O NS
o (a1) Y(100Ge UP = 390 ns
O
D'_ 10 (€2) Tainge P = 65 ns
= 'CI'” T111Ge up = 80 NS
107° P Hudait et al (under review, 2023)

500 1000 1500 2000
Time (ns)

MVirginiaTech
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C-V Characteristics of Al,O03;/(100)Ge and (110)Ge MOS-Cs =
A A

(100) Ge/AIAs/GaA;|

0.7 . !f 044 S g: 50.8 nrt.lTiN/100 nmAl
£ 750 kHz ]| B 0422 5 T ~—
G 06 z <5 0405 9 0.7}
e 500 kHz | © 0389 © 06}
‘d-; 05 5 0.36 % % 60 nm Au/
o 1MHz | 3 w2 a 5 05} 40 nm P/
S 04l 54 0.34 ¢ S 0.4f ; . 0.4 nmTiN
5 , 300K} & 032 > & ' Vg
g 0.3 FGA 300°C 2 min | 5 0302 O 03f S 1 MHz
S (100 | 3, 0.28 £ 0.2 R , 300 K
0.2 5 . s : 5 -2 -1 0 1 L -2 -1 0 1 2
Gate Voltage (V
Gate Voltage (V) ge (V) 0 Gate Voltage (V)
(110) Ge/AlAs/GaA 0.l 0.8 N TIN00 nm Al
~ 0.7 —m — 5 : :
S = N 044S O 0.7} \/
£ T £ O
S = 8 042= 8 o6k
“u: 06F = - 50 o c .
E Q5 o %S & o5 :
" ] ~ 038 © [ : : 60 nm Au/
Q0.5 =) ?—__Is.o = 8 04 7 40 nm Pt/
E 93- < M0 0.36 g % | 1 MHz 773 my 04 nmTiN|
£ ., i 4 LR 034 e O 0372 ——
g 04r FGA 300°C2min| D LN 0.32 > 0.2 , A
3 (100) | 2 0.30 & -2 -1 0 1 2
L L L :
0.3 v 5 ; > 37 x 0 10.28 T Gate Voltage (V)
Gate Voltage (V) Gate Voltage (V) P Nguyen et al, Microelectronic

Engineering 199: 80-86 (2018) [ VirgjnjaTeCh
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Composite Gate Dielectrics on Ge and ¢-Ge -

e E———————

2.0 L ——1 kHz 2.0 ——1 kHz
15 -——100 kHz 15 | —— 100 kHz P

5'—1 MHz | /

Capacitance (uF cm?)
>

Capacitance (uF cm™)
o

0.5 Teeo, =550°C| S 0.5F Teeo, = 550°C
 0.2% =-Ge fgeo, = 0.5 min 1.2% &-Ge tgeo, = 0-5 min
0-0 RN T T TR N TR TR T T (N TR TR TN SR N T 0-0 2 2 L 2
-0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
(a)  Gate Voltage (V) (b? Gate Voltage (V)
S p—— K 0 F —— 1 kHz
- —— 100 kHz = © 0.9 F ——100 kHz 1 kHz

L —— 1 MHz

F —— 1 MHz
1 MHz

o
oo

« Composite dielectric constant is

Capacitance (uF cm
© o
o ~

Capacitance (uF cm
o

T = 550°C _ o
lower than HfO, on Ge , § 80 o : Teeo, = 550°C
. " 1.2% ¢-Ge Ge02 L 1.2% ¢-Ge lGeo, = 2.5 min
« Change in process parameters for 05—t 05 e
unstrained Ge and strained Ge © Gate Voltage (V) d) Gate Voltage (V)

Hudait et al (under review, 2023) ) ..
M VirginiaTech

Invent the Future
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In-situ Si Passivation Layer on Ge via ALD Si Precursor

2
10" FB0S PrePulse O1s ——TaS0100)Ge
R H,0 Pulse BOSPuse | @ :Eg:gfgmggg
< = 40T 'c
— S1OHY a0, Puse > Tadd  Tadi
n ol\l)let:;l L Y = | Tadp
-2 s), i0; S Z . .
100)/(110) Ge % 10° m ! g W Si2s Si2
= U A 2
=
10" L— 6:1 Ta:Si Super Cycle — (b) | .
0 20 40 60 80 100 600 400 200 0
Deposition Time (s) Binding Energy (eV)
Tad 720 L [52 Jos

10 o4
{5 Jo2
,,,,,,, 0
0.6 §-0
£30 /05
IL 80 3

10 nm (110)Ge

35 30 25 20 15 106 104 102 100 98 534 532 530 528

M. B. Clavel et al, RSC Materials Advances 2022.

MVirginiaTech
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Monolithically Integrated Ultra-low power Ge/InGaAs CMOS =
I ———————————

P-channel FET —

N-channel FET —

Metamorphic —
buffer

& n-Ge

P - InyGajg As (x = 10 - 53%)

In Al As buffer layer

GaAs buffer layer

(100)/2° SI-GaAs

Proposed Cointegrated Stack

(a)

Cross-sectional view

InAlAs Metamorphic Buffer

Substrate

Top layout view

Input

1In

AlAs

/

\ iiiAi Biﬂ'il‘ /

Advanced Devices & Sustainable Energy Laboratory
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p-Ge and n-InGaAs FinFET Calibration

| (a)

(A/um)
>
i Y

Drain Current
—
o
&

- — Simulation

O Reference [24]

(c)

-
o
,
-

Advanced Devices & Sustainable

-08 06 -04

-0.2

Gate Voltage(V)

Drain Current

(Aflum)

—
<
iy

—
S
(=}]

1078

Meta SiOx

\ InGaAs

InAlAs

= Simulation
O Reference [33]

(f)

0.2

0.4 0.6 0.8

Gate Voltage(V)

Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022).

Energy

lLaboratory

AV,
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Ge/InGaAs FinFETs: Threshold Voltage

* V.y: Leakage

Tensile Strain on Ge (%)
[Iﬁ4 1.34 21]3 271 339

0.5 -n-an
7= | V|

0.5 ;
. Strain I Eg (Ge) l Vip l
10.4 _
103 2| In % I ....................

Indium composition (%o)

IR DRI SR B B
10 20 30 40 50

lo1 (InGaAs)

Advanced Devices & Sustainable Energy Laboratory as

Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022). ) o
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Ge/InGaAs FinFETs: ON Current

.
.
e
.
.
.

= [on : Drive capability and speed

Strain ﬂh IONp

Lm)

In %

[—
=
=

Iu_w_p (LA um)

2

A A .I..I..I..I..I..I.I.

He Lonn

IGN,“ (LA

[—
=
-y
=

- .I..I..I..I..I..I.

] ] | 1
40 50
Indium composition (%) 1. V. change will affect currents.

2. Effective mass change will affect QC, in turn

affecting V and currents

| | !
10 20 30

Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022). ) o
MVirginiaTech
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Ge/InGaAs FinFETs: OFF Current

" [on/lopp ratio : Leakage and dissipation

Fr 1 1 r 1 T 1|]'5|E_ T T 7T 10°
~ 100 -n_lDFF,n 100 = : == IoxTorF)n
E +I i = T + l ."l] ) z J,,...:—'
= 1 OFF.p 10 3 ,Emnf (Lox/lorr)p 105 %
< - o [ P
= 1 1 ‘-i— qz [ :?-
= =l | S10't 10 9
© 01 0.1 ¢ ~
0.01 0.01 10° 10°
1 " | L | L | L | F | 1 | 1 | 1 | 1 | L
10 20 30 40 50 10 20 30 40 S0
Indium composition (%) Indium composition (%bo)

Let's understand why ......

Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022). M 75 o
Advanced Devices & Sustainable Energy Laboratory WV]'Ig]maTeCh
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Ge/InGaAs FinFETs: ON/OFF Ratio

" [on/lopp ratio : Leakage and dissipation

IONp f

Eg ( Ge) I .::: “‘ ::..' "“--
Strain and V. i | orrp f Ratio(p)

In%I

Lonn f
Eg (InGaAs) l n, I
and Vp, & :|Ratio(n) ‘

MVirginiaTech
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Ge/InGaAs FinFETs: Subthreshold Swing

= SS : Speed and Power

*

S 180

o
9 160

S 140!
E L
=120
ol
® 100
80

10 20 30 40 50
Indium composition (%)

1803
(13}
160 $
g

140>

'120%“ In %
7))

1009

80

1)

IOFFn

5
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Ge/InGaAs CMOS: Inverter Characteristics

0.5F Strong - pFET 0.24F i
s 0.28
_ 04r 10-53%Imdium | 20k 10.26
o~ i 9 Y
E{_ 0.3 — 1 =10% E’O 16k 0.24 ?-*
= - : 1
=
>° 0.21 e [ = 30% E ] 0.22 >
01 I w——n=35% | 0.J2F - 0.20
'Strong _ nFET _Ill =53% 0.08 [ | 0.18
O'O-I A P PR B R P I PR PR R
0,0 01 0.2 0. 04 05 10 20 30 40 50
V.. (V) Indium composition (%)
1. Sharp transition at 0.25V.
2. In=~ 20 % is the region where response is most
noise immune.
Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022). L
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Summary: 6e/InGaAs CMOS

1.3% Strain % 2.7%

Higher delay o e e iy Ge critical

—— Optimum region forh thickness

| e
CMOS operation: [ limitation

Higher mismatch a) High frequency Higher mismatch
b) Matched rise and H

n-FET is fall I p-FET is

inoperable ¢) V,y & NM ~V../2 [ inoperable
d) Low leakage
Lower SS e) 1:1 fin ratio I Lower bandgap
Higher Vy, V. f) Equal fin InGaAs, Ge

dimensions _

Lower leakage - o e Lower NM and V,,

20% Indium composition (%) 40%

1. In =20 % is an optimum design choice in terms of CMOS performance
2. In compositions in InGaAs predicts the individual FInFET operation

Rutwik Joshi et al, IEEE TED 69 (8): 4175-4182 (2022). [T V].
bt
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Ge/InGaAs CMOS at N5 Node with QC effect

| b |
— 0
10-4 In = 20 A) N5
N
- 6 Ge p-FinFET InGaAs n-FinFE
= 10”° FNy=6x10"" cm?/ N, =5x10" cm
3 DIBL=38mV/V, DIBL=71mV/V
<ﬂ 10-8 SS=94mV/dec SS=85mV/dec
— Lon/Iopr=97 Ion /Lo =800k
-1 0_10 W=6 nm
(i) L =18 nm
] AR — I8 ]
0.0 0.5 1.0
Gate Voltage (V)

1. Symmetric complementary response
2. Sharp transitions
3. Arelatively high doping in Ge is needed due to low Eg to maintain negative V ;

Rutwik Joshi et al, IEEE TED 69 (12): 6616-6623 (2022).
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QC Effect on 6e/InGaAs CMOS: Vth & ON/OFF Ratio

Veg = Vg, + e Apou (W)

CGI

Channel doping has a significant QC effect,
so 1t must be treated as a design variable

Rutwik Joshi et al, IEEE TED 69 (12): 6616-6623 (2022).

MVirginiaTech
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Summary: Effect of QC on 6e/InGaAs CMOS

Rapid fall in
Ion/lopy ratio

Rapid fall in
Ion/lopp ratio

:a) Change in Vy

1  with W slows

down

Fall in SS and b) Optimum I,\/Igp Rise in SS and

DIBL | ratio, SS and DIBL
" DIBL H

~

i m e . ----’

~ 6 nm Transition fin width ~40 nm

Rutwik Joshi et al, IEEE TED 69 (12): 6616-6623 (2022).
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Ge NSFET
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Ge Nanosheet FET on AlAs

r I N - -I
| si e Ge 1 Ge I
Siy ,Ge Si Sip;Gep, | AlAs | (a) q
0.75€0.3 c o.:; 07 | S (d) (e)
.e . © : o : Metal Metal
Si Gy 3 Si Si) 3Ge, ; | AlAs
Ge Ge I Ge |
. . I : )
(a) (b) (C) : GaAs : Si Cap GeO,
l' Germanium Germanium
I I S - ‘
r--------------------------------
N 0

e) Process Flow = i
Gate Spacer

Ge

AlAs

Ge }Hen -
AlAs

N s71
wo S

GaAs

I
ey I D D D N Q

D
b

Rutwik Joshi et al, IEEE TED 70 (3): 899-907 (2023). . ..
MVirginiaTech
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Ge Nanosheet FET on AlAs : TEM of Epitaxial Ge/AlAs

Rutwik Joshi et al, IEEE TED 70 (3): 899-907 (2023). . ..
MVirginiaTech
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Ge Nanosheet FET Boost Over FinFET: Simulation

10’3 ——
T Node: NS FinFET (Trigate)
3. Lcyg =18 nm
g 10° W= 6 nm
- s AR=2
§1o7 N 12 % boost In| 9.5 % boost SS
5
o of = = FIinFET intrinsic 5.3x increase in ION/IOFF
c10 .
"© FinFET
In—
M NSFET (Quad-gate/GAA
10 00 01 02 03 04 05 06 07 (Q 5 )
Gate Voltage (V)
Architecture Work- Channel Type On-Current SS Ratio DIBL
function (eV) (KA/um)  (mV/dec) (mV/V)
FinFET 4.5 Doped 73.62 93 2.7k 37.7
FinFET 4.4 Undoped 98 95 1.4k 34
NSFET 4.4 Undoped 110 86 7.5k 42

Rutwik Joshi et al, IEEE TED 70 (3): 899-907 (2023). ) o
M VirginiaTech

Invent the Future
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Ge Nanosheet FET vs FinFET: Leakage

FinFET: AR =0.5 FinFET: AR=1 FinFET: AR =2

hDensity (cm”-3)
1.000e+20

FinFET: AR =5

4.6428+17
2.154e+15

' 1.000e+13

4.642e+10

2.154e+08
.I.NW

8 -
NSFET: AR=5 10 2

NSFET: AR =0.5 NSFET: AR=2

NSFET: AR=1

—— FinFET
—— NSFET |

Off-State Charge Density (cm™)

1 2 3 4
Aspect Ratio (AR)

Rutwik Joshi et al, IEEE TED 70 (3): 899-907 (2023). . ..
MVirginiaTech

. . {1872
Advanced Devices & Sustainable Energy Laboratory Invent the Future




Ge Nanosheet FET: HP, HD, SRAM Performances

10* 4 10*E 104
E1o® 1  Ewe E1os
Eto ] Eo iL10
€'10"‘ 3 E-—-m‘ =10*
160k N21 (3 layers) 3 10%°F—— N2.1 (3 layers) 107F——N241 (3 tayers)
42 —— N1.5 {3 layers) 42 f—— N1.5 {3 layers) 1012 E—— N1.5 (3 layers})
107F——N1 (4 1ayers) 107°F—— N1 (41ayers) f——N1 (4 layers) N2.1 HP (14,7,30)
W NOT(layers) wf——NOT(Mayers) | gl ——NoZ(@layers)
100 0z 04 06 08 1.0 1900 0z 04 06 _ 08 10 60 02 04 06 08 10 N2.1 HD (14,7,15)
Gate Voltage (V) Gate Voltage (V) Gate Voltage (V)
MO0 e 10—k {0k N2.1SRAM (14,7,7)
1200 ——NL5 - ] ——N1.5 - o ——N15 1 o
—~ | N1 < ” ’, é Aml'_Nl - ” - E ’é\m —g‘ll7 ] é N1.5 HP (12,6,25)
——"Y - f ——NO7 -~ [ ——N0. > T
gl.m_ No.7 -7 _ - |& gﬂm T ME Sef ————L—_ . =] % N1.5 HD (12,6,11)
< s00] 2 _ o -7 12—y~ -l 2T T3
2 M - 3 7 .~ 52 P =, N1.5SRAM (12,6,6)
1 5 2% 7 - Jok g M €, T k3
Feo0- 4 7 1.6 5 | Ve ] - & | z ] =
- L 7% g Bl z 1 7 - £ : N1 HP (12,5,20)
2000 —> wt , Z 1 ol
anf 77 i -’ ] #
2 — 1K ! : : 1 N1 HD (12,5,6)
2‘". L L L L L L L h L L L L L L L L L L L L L L L L
1 2 3 4 5 6 7T 8 1 2 3 4.5 6 71 3 1 2 3 4 5 6 7T 8 N1 SRAM (12,5,6)
Nano-sheet Layers (N) Nano-sheet Layers (N} Nano-sheet Layers (N) 7=
—N21 —N21 1 —N21 . NO.7 HP (12,5,15)
F——N15 {160 F——N15 150 —n~1s () SRAM
_esl—N1 — | _epl—N _oel—N1 80 NO.7 HD (12,5,6)
Q| NI S Q| —ne7 _ . S Q" | =——nNo7 S
B [— =T =Wl 8 [== = === % 120S 3 | —>__ {5 No7SRAM (12,5,6)
%9«- il i 8 E:m e g ;E:m- — g
E |7y «=— 1.7 2 | - e - = = b 3 T | EE === %07
0 - — - - = - 120 o, <« - — =
Desl - —{ B @, —> | = % =]
- = (=] (=] 1 =2
L - ] L
< 100 ]‘
W2 3 4.5 6 78 @12 3 4 5 6 7 8 W52 3 4.5 6 7 8
Nano-sheet Layers (N) Nano-sheet Layers (N) Nano-sheet Layers (N)

Rutwik Joshi et al, IEEE TED 70 (3): 899-907 (2023). o
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Ge Nanosheet FET: Benchmarking

Ref. Material ArChleteCtur (III;‘II) W(I[:;;)D] H (E);l;) | 1;10e.e(t)sf (ub:m Ion/lopr (m\S;dec Su)I’)pl
(p-FET) [or wire] ) ) V)
Ge NSFET 90 80 40 3 1650 104 130 1
[12] and [17] Ge NSFET 90 80 40 1 717 105 105 1
[33] Si NSFET 45 30 8 7 3000 10° 64 1
[9] e-Ge Nanowire 45 13 13 1 500 103 75 0.5
[34] GeSn GAA 40 20 5 3 58 — 110 0.5
SiGe NSFET 25 100 5 1 508 5x103 79 0.5
[36] SiGe NSFET 55 100 5 1 300 3x103 67 0.5
[36] GeSn NSFET 90 30 2.4 8 170 1.6x107 64 0.5
[37] GeSn NSFET 120 87 12 4 42 2x104 89 0.5
[38] Ge Nanowire 40 9 9 2 524 5.24x103 81 0.5
This work (N3)
NSFET A Ge NSFET 18 6 6 1 69 2.18x10% 78 0.5
NSFET B Ge NSFET 18 6 6 1 99 6.32x104 70 0.5
NSFET C20 e-Ge NSFET 18 6 6 1 129 5.34x103 80 0.5
NSFET C40 e-Ge NSFET 18 6 6 1 221 1.07x103 81.2 0.5
o R?vagli(gc\)/shi jthai, f]:;EtEDYEI:;D 70 (3): 899-907 (2023). %vlrgjniarrech
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Strained Ge Photonics
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Structural Design of Tensile Strained Tunable ¢-Ge/InGa(Al)As 3
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g-Ge on GaAs with Graded In Al,_,As Buffer: X-ray and AFM =
-1
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6700} InAlAs

Q
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(a) Q_x 10000 (r.l.u.)

» (115) reciprocal space map exhibited tensile strained Ge on InAlAs
» AFM morphology demonstrate the cross-hatch morphology

M. Clavel et al, ACS Omega (2022)
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InGaAs/c-Ge/InGaAs QW Laser Structure
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M. Hudait et al, ACS Appl. Electron. Mater., 10(3): 4535-4547 (2021) mm . .z
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Structure =
is of InGaAs/s-6e/InGaAs QW Laser
Bl XTEM Analysis o
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PL Analysis: Strain-Induced PL Peak Red-shifts
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Magnetotransport Study of 1.6% ¢-Ge
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M. B. Clavel et al, Phys. Rev. Appl. ,2022, 18, 064083-1-12.
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Carrier Transport (Mobility & density): Ge and Tunable &-Ge
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M. B. Clavel et al, Phys. Rev. Appl. ,2022, 18, 064083-1-12.
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Defect Microstructures : Epitaxial Tunable e-Ge -

0.75 um
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(001)

S. Bhattacharya et al, ACS Appl. Electronic Materials (Under Review, 2023)
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Carrier Recombination: Ge & Tunable ¢-Ge
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GeSn Photonics
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Epitaxial GeSn Material Synthesis

Ge,,Sn, grown on In,Al;  As
M Large band offsets
M Superior confinement
M Lattice matched (virtually defect-free)

o No critical layer constraints

Geyg7Sn 350 nm

Ge 270 nm S GegsSNges 50 nm I?ZA;I;-XA;;LGOBL 750 nm
AlAs 170 nm AlAs 250 nm Ge 38 nm AlAs 260 nm
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S.I. substrate S.I. substrate S.I. substrate S.I. substrate

(A) (B) (@) (D)
Lattice matched PseudomorPhic PseudomorPhic Lattice matched
(Compressive) (Compressive)
0-6% Sn in GeSn/In(Al)As
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Material Analysis of GeSn: X-ray RSMs -I
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M. K. Hudait et al., [IMC-C, 2022, 10, 10530-10540. [T , i i
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X-ray Analysis of Lattice matched GeSn, o./In, {,AlAs -I
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Minority Carrier Lifetime of GeSn (0-6% Sn) -I

Microwave Reflection Photoconductive decay (u-PCD) technique @ NREL

A =1500 nm (20 mW, ~10"* cm™ injection density), E =
0.83 eV carriers in L- and /-valleys
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e
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U Low surface states induced recombination = high
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T = 468.06 ns

LSRH recombination (defect assisted) reduces carrier
lifetime

1u-PCD Signal (a.u.)
my

High minority carrier lifetimes of 220 ns to 468 ns.
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Time (ns) High carrier lifetime !!! M
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Minority Carrier Lifetimes of Ge and GeSn
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M. K. Hudait et al., JMC-C, 2022, 10, 10530-10540. S
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Energy (eV)

Energy band alignment of GeSn > Type-I =
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E. A. Kraut et al., Phys. Rev. Lett., 1980, 44, 1620-1623.
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Band offset - Atomic Interdiffusion

| I O 1 .75% g-Ge on In() 26A|0 74&
e-Ge/Ing,sAly 75As —
12 + 02507 112
_ = ==- Ge/AlAs
- This | First principles calculation-based analysis:
P 1.0 — - 1.0 <o
> = .
3 work - QU Abrupt interface M
. 0.8 408 .Y . -
< i | <] W No interdiffusion M
06 | 1 0.6 JAE, and AE_ large enough to hold carriers
- ' within GeSn, ,, layer M
o4+ 404
dGeSn (225°C) lower growth temperature
MLO ML:I .M L2. than Ge (400°C) reduces interdiffusion
Monolayers (Arsenic up-diffusion)
G. Greene-Diniz and M. Griining, Phys. Rev. Appl., 2018, 10, 044052-1-16
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Band offset - Benchmarking
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Capabilities

Materials Growth

High-resolution X-ray System

AFM System

System

Measurement System Station

Electrical Transport Cryogenic Probe
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TEM System

VT Nano Fabrication
Shared Facilities
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VT-ICTAS Measurement and Analysis Equipment

Field Emission Scanning
Electron Microscope (SEM)

Scanning Transmission Auger Electron
Electron Microscope Spectroscopy
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Outreach: VT C-Tech? Summer Camp K-12 Juniors and Seniors @ ADSEL =
-, 1

Graduate student, Michael
Clavel is explaining Ga-Al
mixing effect

Removed Students’ photos

Pl is explaining MBE system

VT-C-Tech? summer camp
K-12 juniors and seniors
in Pl's lab

Pl with C-Tech? summer camp
K-12 juniors and seniors
(women in engineering)

Pl's graduate student Michael is
demonstrating how two metals, Ga

and Al react each other MVirginiaTech
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Challenges & Summary: FETs and Laser =
- - 1

= Defect and interface control for large mismatch materials

= How to realize alternate channel Ge/InGaAs FINFETs and NSFET

= Tunable wavelength strained Ge and GeSn based QW Laser and
photodetectors

= Bridging the lattice constant for lattice matching device structure

with low defect on Si ??

= Heterogeneous Integration of III-V and Ge based Photonics and
Electronics on Si

M VirginiaTech
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