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Figure 1: Sensor-based task assistants typically require substantial training for a single target task and still suffer from
error-prone interactions. Our PrISM framework facilitates more scalable development of such context-aware assistants. (A) It
supports the efficient training of sensing models from a demonstration. (B) It adapts its understanding of the user’s actions and
context through mixed-initiative dialogue. (C) Such scalable training for new tasks and real-time adaptation enhances the
system’s tracking accuracy and interaction quality, all without additional user effort (numbers are extracted from the results of

Studies #1 and #2, latte-making task).
Abstract

Daily tasks such as cooking, machine operation, and medical self-
care often require context-aware assistance, yet existing systems
are hard to scale due to high training costs and unpredictable and
imperfect performance. This work introduces the PrISM frame-
work, which streamlines the process of creating an assistant for
users’ own tasks using demonstration and dialogue. First, our track-
ing algorithm effectively learns sensor representation for steps in
procedures from a single demonstration. Second, and critically, to
tackle the challenges of sensing imperfections and unpredictable
user behaviors, we implement a dialogue-based context adaptation
mechanism. The dialogue refines the system’s understanding in real
time, thereby reducing errors such as inappropriate responses to
user queries. Evaluated through multiple studies involving several
examples of daily tasks in a user’s life, our approach demonstrates
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improved step-tracking accuracy, enhanced user interaction, and
an improved sense of collaboration. These results promise a scal-
able, multimodal, context-aware assistant that effectively bridges
the gap between human guidance and adaptive support in diverse
real-world applications.
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« Human-centered computing — Ubiquitous and mobile com-
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1 Introduction

While performing daily tasks like cooking or machine operation,
users face challenges, such as missing critical steps and forget-
ting what to do. Digital assistants can help overcome these chal-
lenges by providing situated guidance and proactive intervention
as though another human were present [42, 77]. Such assistants re-
quire context awareness [36]. One popular way to provide context
is by using a camera [16, 35, 77], but a more practical, privacy-
preserving, and comfortable alternative to a camera is a watch-
based system [43, 52] (i.e., microphones and IMUs).

Our PrISM framework, Procedural Interaction from Sensing
Module, supports people performing various real-world tasks by
enabling context-aware assistants powered by multimodal sensors
such as smartwatches. To provide the required context during user
activities, PrISM-Tracker [8] applies a graph-based tracking algo-
rithm to multimodal Human Activity Recognition (HAR) data, iden-
tifying which step a user is currently performing within a procedure.
Building on this, PrISM-Q&A [5] augments Large Language Models
(LLMs) with tracking outputs to enable context-aware question
answering (Q&A), while PrISM-Observer [6] enables proactive inter-
ventions by reminding users of important steps as they approach
the appropriate time to perform them.

These systems are in various stages of deployment in clinics and
postoperative patient homes to help users recover and care for their
surgical wounds [30, 73]. Although promising in a lab setting, when
used in clinics and homes, such sensing-based systems struggle
for two reasons. First, training these ML-based systems involves
significant effort; for instance, a PrISM-Observer study [6] reported
needing 17 user sessions for a single cooking task. Second, some
sensors (especially non-visual ones) have a low signal-to-noise ra-
tio, leading to noisy ML models. When tested in real time, these
models result in erroneous interactions, such as ill-timed reminders
and inappropriate responses to user queries. Even when used in a
controlled lab environment, a PrISM-Q&A study [5] reported that
27% of the responses of a context-aware assistant were incorrect
due to erroneous sensing of user actions. These deficiencies are
consistent with other studies, too; even when cameras are used [83].
Consequently, sensor-based task assistants are limited in scalabil-
ity because they require extensive data collection effort to train
the sensing model for every new task and can still remain very
inaccurate with no ability to recover from errors.

To address these challenges and improve the scalability of sensor-
based task assistants in prior work [5, 6, 8], we introduce two
features to the PrISM framework: (i) an efficient training method
for sensing models (Figure 1A) and (ii) a mixed-initiative dialogue
between the user and the assistant to update the assistant’s con-
textual understanding in real-time (Figure 1B). We make training
efficient by using a single demonstration of the procedure to achieve
tracking accuracy comparable to prior methods that use data from
multiple sessions from multiple users. This demonstration does not
involve any cameras, and all sensor data (motion and sound) is from
a consumer watch. To extract more signal from less data, our model
integrates a filtering mechanism to distinguish crucial moments
from idle moments and estimates how users transition between
steps to refine the tracking output. To further improve performance
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and adapt to the user’s variable context, the PrISM assistant uti-
lizes mixed-initiative [2] dialogues to gather real-time feedback
that refines its contextual understanding and addresses uncertainty
during the interaction. Specifically, it infers the context from spon-
taneous dialogue exchanges, such as Q&A [5], user self-narration,
and the assistant’s proactive reminders [6] and confirmation. For
instance, the PrISM assistant can both proactively inquire about the
user’s current step in cases of high uncertainty and remind the user
about critical steps, updating its contextual understanding based on
the user’s response. We employ an LLM-based pipeline to extract
contextual information from various dialogue exchanges and utilize
it to improve the stochastic modeling of the user behavior.

We conducted three studies to evaluate the PrISM assistant. First,
we demonstrated the efficacy of the training method in seven daily
procedural tasks with smartwatch sensors (Study #1, total 190 ses-
sions). For instance, with just one demonstration of a latte-making
task, the proposed tracking resulted in 49.7% frame-level accuracy
(Macro-F1), while the prior PrISM-Tracker resulted in 13.1% accu-
racy. At first glance, these performance numbers seem low, but the
models provide a warm start to facilitate dialogue between the user
and machine, and as the dialogue increases, users derive increased
benefits from these sensing models.

Next, we developed a watch-based prototype to assist novice
users in making a latte with an unfamiliar espresso machine with no
human intervention. We conducted a user study (Study #2, N=20),
comparing the PrISM assistant, which can adapt to the user context
through collaborative mixed-initiative dialogue, against a passive
Q&A system that only answered user questions (i.e., [5]). Powered
by user input and clarifications, the online context adaptation mech-
anism improved frame-level tracking accuracy from 45.4% to 71.3%.
Further, due to the improved tracking, participants experienced
fewer inappropriate responses from the collaborative assistant (9.4%
vs. 27.1%) and reported an improved sense of collaboration and less
cognitive load.

The flexibility offered by our mixed-initiative dialogue design
appears critical in achieving a good balance of control between
users and the PrISM assistant, as demonstrated in our multi-session
study (Study #3, N=6). We observed that all participants engaged
effectively with the assistant and that the number of queries and
task completion times reduced over time.

Recent Al and sensing advances amplify the promise of intelli-
gent assistants for physical tasks [69]. However, such sensor-based
systems will need to be scalable and practical. This work provides
an efficient and easy-to-train step tracker algorithm and a dialogue-
based context adaptation mechanism to address uncertainty during
interactions. As a result, the integrated PrISM framework allows
end-users to create their own task assistants in various contexts,
such as physics experiments, knitting, and exercising, as demon-
strated by our student participants in Section 8. We open-source our
code at https://github.com/cmusmashlab/prism, and will continue
to maintain it with continued deployments across use cases and
populations.


https://github.com/cmusmashlab/prism
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2 Related Work

Our work builds primarily on the fields of human activity recogni-
tion, context-aware task-support interactions, and human-in-the-
loop systems.

2.1 Human Activity Recognition (HAR)

For task assistants, capturing the dynamic context—specifically,
what the user is doing within a procedure—is essential [36]. One
common approach is to develop specialized hardware [65, 72] or use
camera-based systems [18, 35, 39]. However, creating new devices
can be costly and may not generalize well to different tasks. Camera-
based systems also pose challenges, such as placement, ensuring a
good view of the action, privacy concerns, and user discomfort [47].

Researchers have also explored more ubiquitous approaches,
such as using smartwatches [14, 37, 57] or ambient sensors [26,
60, 61] to recognize user actions, i.e., Human Activity Recogni-
tion (HAR). Various sensors have been explored, including micro-
phones [43, 79], IMU sensors [38], Doppler RADAR [1, 46], 2D
LiDAR [49, 61], or a combination of these [52, 54]. However, their
limited accuracy remains a major challenge for designing context-
aware interactions, particularly when sensors are applied to real-
world, complex task scenarios [21]. Procedural tasks often include
steps that generate subtle signals, making them difficult for sensors
to detect [13, 68].

Prior work has sought to improve tracking accuracy by incorpo-
rating task transition information as post-processing for frame-level
HAR [8, 41, 81], but these methods still fall short, reporting almost
50% errors. This poses a critical issue, as misinterpreted context
can lead to unhelpful, even annoying, interactions, especially when
errors persist. Moreover, existing methods necessitate numerous
demonstrations, which complicates the process of developing a
new sensing model for a procedure. Ideally, a user should need to
demonstrate only once, allowing the sensing model to be initialized
with reasonable accuracy. This work introduces such an approach
and demonstrates its feasibility.

2.2 Context-Aware Task-Support Interactions

HCI researchers have long studied interactions for physical task
support in a variety of applications, such as physical computing
system for electronics [78], smart kitchen for cooking [31, 65, 72]
and mixed-reality for cooking [83], assembly [3, 66], and machine
operation [17, 35]. Among them, voice-based interactions have
become popular due to their availability on different platforms
(e.g., smartwatches, home speakers etc.) [63] and the recent surge in
the development of LLMs [27, 53], leading to many supporting sys-
tems in various daily scenarios [28, 36, 75]. We focus on augmenting
these task-support voice assistants with sensing technology.
Question-answering (Q&A) is a popular form of interaction
for users engaged in complex tasks. Several studies employing
the Wizard-of-Oz method [24] have analyzed the types of ques-
tions users frequently ask [36, 74, 75], reporting that step-related
questions (e.g., next action) are common in procedural tasks. The
rapid advancement in LLMs has largely improved Q&A quality
with various applications being proposed [20, 51]. Here, sharing
context is essential in developing effective dialogue-based inter-
actions [5, 12, 22, 74], as users often struggle to articulate queries
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clearly enough to receive accurate responses [9, 85] and frequently
rely on references that are hard for language models to understand,
such as pronouns [29]. Our prior work, PrISM-Q&A [5] extended
the LLM-based Q&A with the HAR technology to generate context-
aware responses.

Proactive intervention from assistant systems is another form of
interaction to prevent inherent errors [34]. Chan et al. [18] devel-
oped a wearable-camera-based system for detecting clinical medi-
cation errors. Laput et al. [43] proposed a smartwatch-based inter-
action that leads users step-by-step by leveraging HAR techniques.
Our prior work, PrISM-Observer [6] extended Laput et al.’s ap-
proach to enable system interventions as users naturally perform
tasks instead of having to wait for step-by-step guidance.

While different interaction styles have been proposed, there has
been limited exploration into how an assistant that integrates mul-
tiple forms of interaction can effectively support users, especially
when there is uncertainty in context understanding. Multiple stud-
ies have documented instances of failure when the sensing model
erred, prompting the need for solutions [5, 18]. This highlights a gap
in prior research employing the Wizard-of-Oz [24] method to ex-
plore the imaginary perfect interaction for voice assistants [36, 74].
Here, we argue that the interaction should be reciprocal: the assis-
tant should adapt and update its context understanding through
dynamic feedback from users, even when such human feedback
is spontaneous within the dialogue. This work introduces such an
online context adaptation mechanism and demonstrates its effec-
tiveness.

2.3 Real-Time Human-in-the-Loop Systems

Human-in-the-loop systems involve humans actively participating
in running automated processes, allowing humans to provide feed-
back, make adjustments, or intervene when necessary to improve
system performance or outcomes [80]. This approach is commonly
used in interactive systems to ensure that the system adapts to real-
world complexities while benefiting from human judgment and
input [7, 19, 33, 48, 87]. For instance, Hatori et al. [33] developed
a pick-and-place robot that can interactively execute tasks while
talking to human operators to clarify ambiguity.

While the efficacy of human-in-the-loop systems has been demon-
strated, most rely on an explicit, dedicated feedback process. De-
pending solely on this approach, however, can burden users, and
they might not provide sufficient data in real-world scenarios, as
noted by Unhelkar et al. [71]. To address this, researchers are explor-
ing the use of natural but less structured signals, such as real-time
reactions to a robot’s performance [4, 10, 40]. These methods must
be developed with care, as the feedback is implicit and difficult
to capture accurately. In this work, we propose a computational
approach that integrates unstructured dialogue exchanges with a
structured step-tracking state of task assistants.

3 Proposed Approach

Figure 2 shows our proposed PrISM framework, which integrates
and extends our prior work in PrISM-Tracker [8], PrISM-Q&A [5],
and PrISM-Observer [6]. To address the scalability issue, this work
makes the following novel technical advances:
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Figure 2: In the PrISM framework, multimodal sensor signals are processed by a step tracker to infer task context, enabling the
assistant to engage in a mixed-initiative dialogue. This paper presents (A) an efficient training method for the step tracker and
(B) an online context-adaptation mechanism. We evaluate this framework using a watch-based prototype in this paper.

o An efficient training method for the step tracking that effec-
tively learns from a demonstration with signal filtering and
automatic generation of a transition graph (Figure 2A).

o A method to identify contextual information using a mixed
initiative dialogue framework [2] and dynamically update
contextual understanding to improve the stochastic model-
ing of the step tracker (Figure 2B).

Our real-time system maintains low latency while processing
speech and sensor data and managing the dialogue state. The engi-
neering behind this integration is described in Appendix A. This sec-
tion focuses on the key research contributions enumerated above.

3.1 Efficient Training for the Step Tracker

As one of the state-of-the-art models for multimodal step track-
ing, PrISM-Tracker [8] processes sensor data using a HAR model
and refines the estimated step probabilities based on transition
graph probabilities. When there are T frames and S steps for the
task, PrISM-Tracker prepares S X T hidden states, each labeled as
h(i,7) (1 £i<85,1 <1 <T). Here, h(i,7) denotes that the user
has spent at least 7 frames on the i-th step at time ¢. Then, p; (i, 7)
is used to indicate the probability that the user is at h(i, 7) at time
t. PrISM-Tracker keeps updating the probability for every hidden
state, pi’idde” ={p:(i,7)} € RS*XT | with frame-level HAR output
pi"” € RS as well as a transition graph G. In this context, the vector
Pl is the HAR output at time ¢, and the sum of its elements is 1.
G holds information on the transition probability between steps
and the time an average user spends at each step, which is learned
from the demonstration sessions.

The effectiveness of this prior method is limited because it treats
all frames equally, including moments of inactivity or irrelevance
to the action of interest. In such instances, a probability distribution
pi’“r, nearly randomly estimated by the HAR model, is used to
update the hidden state, which can confuse the tracking result.
Moreover, multiple demonstrations are needed to obtain G, which
adds to the cost of training. To address these issues, we propose
a filtering technique and a method to automatically generate the
transition graph.

Sensor data from watch Spent time
* i i’ i Audio 5 =1 | =2 | =8 | .. | =T
2 +2 |Step1| 001 | 001 | 0.02
ol J " [2)
D‘LFRM Motion ’qc: Step2| 0.04 | 0.06
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grinds Filter out idle o Sos
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_ _ pgzidden
¥| h t
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[t graph G
L] |_——Stay at the current step—>

Figure 3: The step tracker filters sensor signals with unsu-
pervised anomaly detection and selectively applies the HAR
model to update pi”'dde", leading to efficient tracking when
the training data is limited.

3.1.1 Filtering out Idle Moments. We adopt real-time, unsupervised
anomaly detection for filtering based on the method described by
Yamanishi et al. [82] (See Figure 3). This method evaluates incoming
sensor data to determine deviations from historical data distribu-
tions, where multimodal sensor data is concatenated over modali-
ties. The rationale for employing this technique is that procedural
actions typically alter sensor signals, unlike periods of inactivity.
Essentially, this method helps isolate periods pertinent to active
task execution before conducting frame-level HAR.

Concretely, with a predefined threshold f, sensor data frames are
identified as either critical (key moments) or non-critical. Frames
deemed critical are further processed by a HAR model to derive pi’“r
(Figure 3 red arrow), which updates pi‘idde”. Conversely, if a frame
is classified as non-critical, ps4+1(i, 7) = p; (i, 7 — 1), indicating the
continuation of the current procedural step (Figure 3 blue arrow).

This filtering process benefits not only the tracking but also
the training phase of the HAR model because incorporating too
many idle moments with similar signal patterns across different
procedural steps can lead to misclassification. We found that exces-
sive filtering may reduce the frequency at which pi"" is generated,
potentially impacting the tracker’s performance. We empirically
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Figure 4: We categorized utterances between the user and
the assistant based on the mixed-initiative design of Allen et
al. [2], then introduced an online context adaptation mecha-
nism for the step tracker. In this example, the user first asks
a query and then confirms the assistant’s response by saying
“Ok”, so the assistant updates its hypotheses H to focus on
those matching the context.

identified S for each task, and it classified approximately 10% of the
training data as non-critical.

Note that the HAR model is trained in a supervised manner using
step labels synchronized with sensor data. In practice, these labels
can be obtained through various methods, such as users pressing
a button on their watch at the beginning of each step or verbally
narrating their actions while performing the task.

3.1.2  Generating the Transition Graph. The parameters for the
transition graph G include (1) the transition probabilities between
each step and (2) the mean and standard deviation of the time users
spend at each step. The first parameter reflects a logical pattern in
performing a procedural task, which we anticipate can be automati-
cally guided by LLMs. Specifically, we instruct an LLM to generate a
reasonable order of steps and repeat this process K times to estimate
the transition probabilities as a proxy. For the second parameter,
we use the time spent during demonstrations as the mean, and a%
of this value as the standard deviation for each step. Although these
are somewhat naive heuristics, we empirically show they remain
effective, especially when the number of training samples is limited.
K and a were empirically set to be 20 and 10, respectively.

3.2 Online Context Adaptation through
Mixed-Initiative Dialogue

Although our approach improves the step-tracking accuracy and
provides a warm start for the sensing model (as presented in Study #1
result), sensing imperfection remains. Given that sensing imper-
fections can severely degrade the real-time user experience, we
designed a dialogue between the user and the assistant that then
informs an online context adaptation mechanism. The overview is
presented in Figure 4.

3.2.1 Dialogue Design. We first organize the roles of utterances
exchanged between the user and the assistant. Building on prior
research discussing versatile user interactions with voice assis-
tants [36, 75], we categorize user utterances into three types: queries,
self-narrations, and responses. Queries enable users to ask task-
related questions or request actions from the assistant, such as set-
ting a timer, with the expectation of receiving a reply. In contrast,
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self-narrations involve users describing their actions voluntarily
without expecting a specific response. Finally, users can also re-
spond to the assistant’s utterances, such as reacting to its reminder.

On the other hand, the assistant’s utterances are categorized
into responses to user queries and interventions that occur when the
assistant initiates dialogue based on its contextual understanding.
Examples of interventions include reminding the user of important
steps (e.g., “Do not forget to do ...” and “Have you done ...?”) and asking
questions when there is high uncertainty in the estimating context
(e.g., “Can you tell me what you are doing?”). A hyperparameter
controls the maximum number of times the assistant can intervene
to ensure we do not overly burden the user. The details are provided
in Appendix A.

The assistant’s role is rooted in a mixed-initiative design that
supports the user achieving a shared goal with an agent [2]. For
example, the assistant’s confirmation about the user’s current step is
a type of subdialogue initiation, while its reminder can be associated
with unsolicited reporting. When and what the assistant should say
are carefully designed from this perspective, specifically,

e When the user asks a query, the assistant responds to the
query.

e When the user self-narrates, the assistant acknowledges and
provides additional information, such as suggesting the next
step.

e When the user responds, the assistant evaluates whether
further interaction is needed.

o If the assistant is unsure of the user’s current step, it initiates
a clarifying question.

e When the assistant identifies that the user is approaching
predefined steps, it triggers a reminder.

The dialogue is generated with an LLM-based pipeline that is
prompted to behave as outlined above. It is important to note that
our assistant’s context-awareness focuses on step information using
multimodal sensors, and thus, queries that require visual informa-
tion cannot be answered in a certain scenario. If such a query is
posed, the assistant responds, ‘T don’t know.”

3.2.2  Extracting Step Context from Dialogue. Our assistant esti-
mates step-related context from the dialogue exchange, determin-
ing either the current step or whether a specific step has been
completed. For example, if a user asks, “What should I do next after
washing my hands?” the assistant can infer that the user’s current
step is washing hands. Similarly, if the assistant asks, “Have you
washed your hands?” and the user responds, “No, not yet,” the assis-
tant can deduce that this step has not been completed. An LLM is
prompted with task-specific information and the entire dialogue
exchanged between the user and the assistant to determine whether
the conversation included (i) current step information, (ii) past step
information, (iii) future step information, or (iv) no-context infor-
mation. If the LLM estimates (i), (ii), or (iii), it also estimates which
step is involved.

3.2.3 Updating the Step Tracker. The estimated step context is
then used to update the tracker accordingly. Our step tracker calcu-
lates and maintains the best hypotheses on the sequence H(i, 7) =
{h(1,1),...h(i, t)} given the user is currently at (i, t). The prob-
ability for the hypotheses can be denoted as Pthypo = {P:(i, 1)},
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where P; (i, 7) indicates the probability for the assistant to follow
H(i,7) at time t. This mechanism only marginally increases the
algorithm’s space complexity by storing at most S X T hypotheses.

The context information is used to update Pth YP° For instance,
if the assistant estimates that the user is currently at the i-th step,
hypotheses that contradict the context will be rejected (i.e., their
probability is set to be 0). Similarly, if the assistant knows whether
the user has already completed the i-the step or not, the probability
of any hypotheses that conflict with the information is set to be 0.

3.3 Prototype Implementation

We developed a prototype using an Apple Watch Series 7 and a
MacBook Pro with a 16GB M1 processor. The audio and motion
data, sampled at 16 kHz and 50 Hz, respectively, are streamed from
the watch to the laptop via a custom app. The watch is worn on the
wrist of the non-dominant hand to match user preference. The user
also wears Bluetooth-connected earbuds to talk to and listen to the
server. We used the HAR model developed by Mollyn et al. [52]
within the step tracker (See Figure 2). More details are described
in Appendix A. The system operates in real-time, with the dialogue
latency of approximately 2 seconds from the end of user speech to
the onset of the system’s response.

4 Overview of Studies

We present a series of user studies to explore the effectiveness of
our approach. The following is an overview of the key results: in
Study #1, with a total of 190 session data, we demonstrate that the
proposed training method achieves better step-tracking accuracy
compared to the previous tracker when using a single demonstra-
tion; in Study #2, we show that the online feedback from mixed-
initiative dialogue helps our assistant recover from errors and un-
certainty, offering more accurate supports and enhancing user ex-
perience (N=20); in Study #3, we find that the assistant is perceived
positively by supporting various user behaviors that evolve over
time (N=6, four days). We obtained approval from our institution’s
ethics board before conducting the studies.

5 Study #1: Training Efficacy

We used datasets for seven tasks, which were recorded using smart-
watch sensor data. These tasks include coffee-making, tea-making,
cereal-making, sandwich-making, latte-making, stencil-making,
and wound care. The coffee-making and cereal-making tasks each
consist of 8 atomic steps, while the tea-making and sandwich-
making tasks consist of 9 steps. We collected data across 32, 33, 26,
and 31 sessions for coffee, tea, cereal, and sandwich tasks, respec-
tively. Additionally, we incorporated the latte-making and wound
care dataset from [8], which features 19 steps from 22 sessions and
12 steps from 24 sessions, respectively. To further diversify the
task variety, we also gathered a new dataset for a stencil-making
task, consisting of 17 steps from 22 sessions. The latte-making and
stencil-making tasks represent more complex procedures involving
machinery, and wound care is a clinical task performed by patients,
while the other four are simpler, everyday activities performed in a
kitchen. Note that the order of steps to be performed was not fixed.
Details for the steps of each task are described in Appendix B.

Arakawa et al.

Table 1: Frame-by-frame tracking accuracy (Macro-F1) com-
parison for the step trackers trained with a single demon-
stration in Study #1.

Task Prior tracker [8] This work
Coffee-making 21.8 449
Tea-making 21.5 47.1
Cereal-making 27.6 34.8
Sandwich-making 23.5 44.0
Latte-making 13.1 49.7
Stencil-making 24.6 34.4
Wound care 12.8 14.0

We measured the improvement of our approach from the prior
tracker [8] with frame-level accuracy (Macro F-1 Score). We em-
ployed a leave-one-session-out evaluation while using a single
demonstration as training data. The result is presented in Table 1.
Overall, our approach outperforms the prior tracker when trained
on a single session, achieving a 16.2% (SD = 6.8) improvement in
tracking accuracy. Importantly, the relatively low absolute accuracy
underscores the inherent challenge of procedural tracking, primar-
ily due to the low signal-to-noise ratio, as discussed in Section 2.1.

Through ablation analysis, we found that filtering and task graph
generation improved tracking accuracy by 6.3% (SD = 3.3) and
12.7% (SD = 6.1), respectively, across all seven tasks. These results
demonstrate the effectiveness of the two proposed techniques, par-
ticularly the graph generation component. This improvement is
likely because PrISM-Tracker [8] was limited by insufficient data
for constructing the transition graph G.

While our improved tracker provides a warm start for the context-
aware assistant, even with only a single demonstration, the perfor-
mance varies across tasks. For instance, the accuracy for the wound
care task was notably lower than for others. Graph generation
was less effective for this task, likely because it lacks a branching
structure. Similarly, filtering had a limited impact, suggesting that
tasks with low sensor variability are inherently difficult to track,
especially when training data is limited. These results highlight
two key insights: (1) tasks must produce distinguishable sensor
signals to enable accurate tracking, and (2) sensing imperfections
persist, necessitating assistant designs that can robustly build on a
warm-started tracker.

6 Study #2: Effectiveness of Online Context
Adaptation

Study #1 reinforced our motivation to use imperfect sensing reliably,
which is contrary to prior work’s Wizard-of-Oz paradigm [36, 74].
Interestingly, Study #2 demonstrates that users benefit from such
an imperfect assistant thanks to online context adaptation using
user-assistant dialogue.

6.1 Task and System Configuration

We used the latte-making task (same as the one used in Study #1)
because of its high complexity and greater accessibility for inexperi-
enced users. We trained our step tracker with the same dataset. We
provided the content of the machine manual as a system prompt to



Scaling Context-Aware Task Assistants ...

the LLM for the Q&A module. In addition, the authors decided on
candidate steps that are meaningful for reminders (i.e., that users
often forget or that are important for safety), that is, Step 15: clean-
ing the steaming wand and Step 18: dumping coffee grinds (Also
see Figure 10 in Appendix B for the task transition graph).

6.2 Design

We followed a between-subjects design with two conditions, i.e., pas-
sive and collaborative. In the collaborative condition, we used our
proposed PrISM assistant. In the passive condition, we disabled the
state updater and proactive interventions while keeping the Q&A
function, i.e., the system answers user questions as in the collabora-
tive condition, but it does not adapt its state, trigger reminders, or
ask confirmation questions to check user context. In both conditions,
the experimenter explained that the assistant uses information from
the watch to try to keep track and answer questions. In the collabo-
rative condition, the experimenter also explained that the assistant
uses conversation to track steps, and thus, self-narration is effec-
tive in keeping the assistant informed, and the assistant may also
remind or ask confirmation questions.

For comparison, we measured several metrics: task completion
time, tracking accuracy, and subjective measures of user experience,
including NASA-TLX [32] and System Usability Scale [15]. We also
introduced three questions related to reliability and a sense of
collaboration. Specifically, we asked how much the participants
agreed with the statements “the responses to my questions are
reliable,” (response reliability) “The assistant knows what I am doing
(i.e. steps) precisely and behaves accordingly,” (tracking accuracy),
and “The assistant’s help was worth the effort involved in working
with it,” (sense of collaboration) using a 7-point Likert scale.

6.3 Procedure

We recruited 20 participants (11 female, 9 male, aged 21-38 years)
from our institution, none of whom had previously participated in
this or related projects for a between-subjects study. Our inclusion
criteria targeted individuals unfamiliar with latte preparation and
with no experience in using the machine. After onboarding, partic-
ipants rated their familiarity with voice assistants and chat-style
Als, which is summarized in Table 2 in Appendix B.

Before beginning the task, an experimenter briefly explained the
procedure by showing a list of all the steps and a video demon-
stration. Participants were informed that they could perform the
steps in any logical order as long as no steps, such as cleaning the
machine, were omitted. Given that watching such instructional
videos can prime the users to perform actions in a specific manner
and order, we created five different videos with different sequences
and randomly assigned one to each participant. Once familiar with
the system, participants performed the task at their own pace. Upon
task completion, they took the survey on subjective usability mea-
sures and participated in semi-structured interviews. The study
lasted approximately 30 minutes for each participant, and partici-
pants received a compensation of $10 USD.

6.4 Results

6.4.1 User Task Performance. There were two participants in the
passive and one in the collaborative condition who did not complete
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the full task. In the passive condition, one participant (P5) forgot to
do the cleaning process, while the other participant (P7) forgot to
place a cup, resulting in unsuccessful brewing. In the collaborative
condition, one participant (P18) used a milk jug to receive espresso
and used a cup to steam the milk instead. The completion times
among the other participants were 633.9 (SD = 283.5) and 482.0 (SD
= 115.7) seconds for the passive and collaborative conditions, re-
spectively. After confirming the normality with the Shapiro-Wilk
test, we applied the unpaired two-tailed t-test. As a result, the dif-
ference was not statistically significant (£(15) = 1.4, p = 0.19).
While there is a trend for shorter completion times in the collabo-
rative condition, the large variance indicates that the time taken to
complete the task highly depends on the user.

6.4.2 Assistant’s Tracking Accuracy. We annotated the step tim-
ings for the session data of the participants who completed the
task properly and compared them to the tracker’s predictions. Re-
moving moments when dialogue happened, the frame-by-frame
accuracy (Macro F1-Score) was 45.4% (SD = 13.2) and 71.3% (SD
= 12.8) for the passive and collaborative conditions, respectively.
After confirming the normality with the Shapiro-Wilk test, we ap-
plied the unpaired two-tailed t-test. As a result, the difference is
statistically significant (¢(15) = 9.22, p < 0.05), suggesting that the
collaborative assistant had better tracking accuracy thanks to the
iterative feedback through dialogue.

Figure 5 shows the ground truth step transition and the assis-
tant’s prediction during example sessions. The tracking accuracy
for these passive (above) and collaborative (below) conditions was
54.1% and 69.0% (Macro F1-Score), respectively. In the passive con-
dition, it can be seen that the assistant got confused about the user’s
step in the latter part, as there were several branches in the transi-
tion graph (See Figure 10 in Appendix B). As a result, its responses
to the user query became less grounded. For instance, in (1), the
user’s step is wrongly understood (i.e., Step 11: remove cup instead
of Step 12: pour milk to cup), and the assistant mentioned unhelpful
information in the beginning. Similarly, in (2), the user’s query was
ambiguous, “How do I clean?”, and the assistant initially misun-
derstood that the user was cleaning the steam wand and offered
an incorrect suggestion. On the other hand, in the collaborative
condition, the assistant successfully used an active intervention by
asking “Can you tell me what you are doing?” (4), which helped it
recover from the tracking loss through the response from the user.
Moreover, it successfully triggered a reminder intervention at a
relevant moment (3), which was also used to adjust the prediction
afterward. Additionally, the user proactively narrated their step to
inform the assistant of their next action (5).

Note that, for the collaborative condition, system logs indicate
that 92% of dialogue exchanges were correctly interpreted by our
context estimation module (i.e., three context types + right step
defined in Section 3.2.2). In error cases, the tracker was typically
corrected by subsequent dialogue exchanges.

6.4.3 Dialogue Behavior. We inspected the dialogue for each par-
ticipant who completed the task. The average number of user ut-
terances per session was 19.6 (SD = 18.8) and 12.7 (SD = 10.1)
for the passive and collaborative conditions, respectively. After
confirming the normality with the Shapiro-Wilk test, we applied
the unpaired two-tailed t-test. As a result, the difference was not
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Figure 5: Example session data for the passive (above) and collaborative conditions (below) in Study #2. Black dotted and red
solid lines are the ground truth and the assistant’s tracking prediction, respectively. Dialogues happened during the colored
time: green for query (e.g., “1” and “2”) and self-narration (e.g., “5”), orange for intervention (e.g., “3” for reminder and “4” for
confirmation). In the collaborative condition, the tracking was updated following each dialogue, enabling the assistants to
maintain accurate context awareness with better tracking accuracy (69.0% vs. 54.1%, in the shown example).

statistically significant according to the unpaired two-tailed t-test
(t(15) = 0.89, p = 0.39).

We checked the assistants’ responses and judged whether they
were inappropriate, then calculated the ratio of inappropriate re-
sponses each participant experienced. As a result, 27.1 (SD = 11.0)%
of the responses per session were marked as inappropriate in the
passive condition, whereas it was 9.4 (SD = 5.3)% in the collaborative
condition. After confirming the normality with the Shapiro-Wilk
test, we applied the unpaired two-tailed t-test. As a result, the dif-
ference was statistically significant according to the unpaired two-
tailed t-test (¢(15) = 4.0, p < 0.05). We observed that the majority
of inappropriate responses stemmed from incorrect estimations
of the current step, particularly when responding to ambiguous
queries such as “What is the next step?” Thus, the differences can be
attributed to enhanced tracking accuracy in the collaborative con-
dition, which is facilitated by the newly introduced state updater.

Moreover, when the participants encountered inappropriate re-
sponses, they typically rephrased their inquiries to clarify any am-
biguities and asked the assistant again to obtain the correct answer.

This could explain the reason for a few participants making many
more utterances in the passive condition, as they experienced more
inappropriate responses.

Additionally, for the collaborative condition, there were 3.9 (SD
= 0.73) active interventions from the assistant per session, i.e., re-
minders for two steps and confirmation when faced with uncer-
tainty. As discussed below, user comments indicate that they per-
ceived the reminders from the assistant as timely and helpful, and
the confirmation queries from the assistant led to an enhanced
sense of collaboration.

6.4.4 User Experience Survey. We examined the participants’ per-
ceived experience via two instruments. According to an unpaired
two-tailed t-test for each factor of the NASA-TLX measurements,
the difference was statistically significant in the required effort
(t(18) = 2.4, p < 0.05), performance quality (¢(18) = 2.5, p < 0.05),
and the total score (¢(18) = 2.5, p < 0.05). This result indicates that
the interaction in the collaborative condition, i.e., the enhanced qual-
ity of Q&A and the proactive intervention, reduced the cognitive
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Figure 6: Participants’ answers to the user experience ques-
tions in Study #2. The color indicates the 7-point Likert
scale (red: agree, blue: disagree). There is a significant differ-
ence between the conditions for (b) tracking accuracy and (c)
sense of collaboration according to a Mann-Whitney U test
(*: p < 0.05).

load imposed on users performing the task. Similarly, the System Us-
ability Scale score for the collaborative conditions was significantly
higher than the passive condition, 68.5 (SD = 18.0) and 83.3 (SD
= 10.4), respectively, according to an unpaired two-tailed t-test
(t(18) = 2.1, p < 0.05). These results indicate a preferable experi-
ence with the collaborative assistant. The participants’ comments
corroborated this analysis, as described in the next subsection.

Participants’ answers to three additional questions are presented
in Figure 6. A Mann-Whitney U test was conducted to compare
the answers for each factor between the conditions. The results
indicated a significant difference between the two conditions for
the tracking accuracy (U = 20.5, p < 0.05, Figure 6b) and sense
of collaboration (U = 19.5, p < 0.05, Figure 6¢). We expected
that the fewer inappropriate responses and the timely reminders
the participants experienced contributed to the perceived tracking
accuracy Moreover, the proactive interventions enhanced the sense
of collaboration, which we discuss more in the next subsection.

On the other hand, there was no statistically significant differ-
ence in response reliability (Figure 6a). We conjectured that the
participants rephrased their questions to get the desired answers if
the first responses were inappropriate, as described in Section 6.4.3,
and eventually found the answer reliable regardless of the condition.
This can be attributed to the designed transparency in the Q&A
interaction, that is, mentioning its context understanding first in
the response, like “If you have brewed espresso, the next step is...” [5],
which enabled easy correction by users.
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6.5 User Comments

We analyzed the interview transcription using open coding [23] to
gain qualitative insights into the user experience.

6.5.1 Perceived Tracking Accuracy. The participants seemed to
judge the assistant’s tracking accuracy through the dialogue in-
teraction. Specifically, those who received inappropriate responses
when they asked questions due to the incorrect context understand-
ing mentioned that it did not track actions very precisely. “When I
asked what’s next, what’s next, it can always give me the right answer,
except the last few parts. I guess it’s not that good to understand the
physical world as I do.” [P6, passive]. These comments imply that the
inappropriate Q&A responses negatively affected the user experi-
ence. On the other hand, participants in the collaborative condition
felt that the assistant was accurate when the reminder happened
reasonably. ‘It was amazing that the system reminded me of cleaning
the milk wand in advance, just afterI finished using it. Yeah, it was ac-
curate.” [P16, collaborative]. It was suggested that our collaborative
assistant provided fewer inappropriate answers and intervened at
reasonable moments. This made users feel the assistant understood
the context, supporting the result shown in Figure 6b.

6.5.2 Required Efforts to Use the Assistant. When participants ex-
perienced inappropriate responses, they tried articulating more
to complement the imperfect sensing and be more helpful to the
assistant. ‘I felt it was a bad idea to ask ambiguous questions like,
‘What’s the next step?’, and instead I tried to mention like, T have
done brewing coffee, what’s next?’ and it worked well for most cases.”
[P8, passive]. Further comments implied that these behaviors could
have affected their perceived cognitive load. “Since it could answer
rough questions like ‘What’s next?’, I did not make extra effort us-
ing the system.” [P19, collaborative]. “Tt was a bit frustrating that
it mistakenly understood my action, so I had to narrate everything
every time.” [P10, passive]. These comments support the results on
cognitive load discussed in Section 6.4.4.

6.5.3 Factors Affecting the Sense of Collaboration. Comments from
users in the passive condition underpinned the lower sense of col-
laboration in the user experience survey (Figure 6¢). ‘T definitely
was like trying to do this collaborative thing. But when I was trying,
it didn’t know the step that I was on accurately. So that’s when I got a
little bit frustrated that I was like trying to collaborate.” [P3, passive].
To hint at the ideal behavior of the assistant, the participants agreed
that the assistant’s interventions are key to inducing a sense of
collaboration. ‘Tt felt like it was assisting me rather than collabora-
tion because when I think of collaboration, usually the effort is 50-50.
[...] For collaboration, it could offer, like, ‘Hey, is there anything I
can do to help you?’ So because it responded when I asked for help
only, it felt more like an assistant.” [P1, passive]. These comments
align with comments from participants in the collaborative condi-
tion who experienced such proactive interventions. At the same
time, being asked “Can you tell me what you are doing?” in the
collaborative condition also contributed to the enhanced sense of
collaboration. ‘T felt that sensing is not perfect. I think that being able
to talk back to the agent, the agent asking me where the procedure was
helpful to give a sense that it is following.” [P13, collaborative]. These
comments suggest that the designed mixed-initiative framework,
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specifically the assistant’s confirmation and reminder, fostered a
sense of collaboration, without overburdening the user.

6.6 Summary

In Study #2, we demonstrated the effectiveness of the online context
adaptation through mixed-initiative dialogue, which includes the
assistant’s better tracking accuracy and reduced inappropriate Q&A
responses. This also led to a better user experience in terms of
System Usability Scale and NASA-TLX, with an enhanced sense of
collaboration. The qualitative analysis further sheds light on factors
that can affect the user experience, highlighting the effectiveness of
the proactive interventions from the assistant as well as the users’
adaptive strategy to collaborate with such an imperfect assistant.

7 Study #3: Multi-Session Experience

The previous study confirmed the clear benefit of the proposed
system for a single-session experience. However, in daily tasks,
users often interact with systems repeatedly over time, with their
proficiency improved [44]. To dig deeper into how the user-assistant
interaction evolves, we conducted a multi-session study.

7.1 Task and System Configuration

We used the same latte-making task with the collaborative PrISM as-
sistant. Based on the result from Study #2, we slightly modified the
reminder feature. Specifically, since two participants did not place
a cup properly and failed in brewing, we newly considered Step 5
as a candidate for a reminder. Before each session, we asked each
participant to customize the reminders, that is, turning on which
step and how (remind-in-advance or notify-if-forgotten), ac-
cording to the way described in [6]. We used the same parameters
for other parts of the assistant as in Study #2.

7.2 Procedure

We recruited six new participants from our institution (p1-p6, 5
male and 1 female), who were all beginners in the task. Their back-
ground information is presented in Table 3 in Appendix B. During
the initial session, each participant arranged to complete four ses-
sions within the week on different days. The instructions provided
were consistent with those from Study #2. Prior to each session,
participants discussed their preferences for reminders with the
experimenter, who then configured the assistant accordingly. It
was explained that they could reasonably choose the order of steps
and adjust it across sessions, reflecting their natural approach to
task execution. Each session lasted approximately 10 minutes. Upon
completion of all sessions, we conducted 10-minute semi-structured
interviews to explore changes in participants’ usage of the assistant.
Participants were compensated $10 USD for their involvement.

7.3 Results

We report the results of the study by the participants’ dialogue
behavior, user task performance, and the PrISM assistant’s step-
tracking accuracy over the four sessions.

7.3.1 Dialogue Behavior. The number of utterances by type over
sessions for each participant is shown in Figure 7. All participants
reduced their queries as they became more familiar with the task
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Figure 8: Performance of the user and the assistant over ses-
sions for each participant in Study #3.

over time (Figure 7a). On the other hand, two distinct trends emerge
regarding self-narration (Figure 7b). While four participants (p2—
p5) stopped narrating their ongoing steps, p1 and p6 maintained a
consistent level of self-narration. As discussed later, these partici-
pants enjoyed the experience of talking to the assistant about their
step-by-step progress. The results suggested individual differences
in using our assistant over multiple sessions.

7.3.2  User Task Performance. All participants successfully com-
pleted the task in every session. The completion times for each
participant across the four sessions are shown in Figure 8a. The
results indicate that participants required more time to complete
the task during the initial session, with completion times decreasing
in subsequent sessions. Both p1 and p6 took slightly longer, which
aligned with their behavior of engaging in frequent interactions
with the assistant (i.e., self-narration), as noted earlier. In contrast,
other participants significantly reduced their completion times, as
they stopped asking questions once they became familiar with the
task and performed it more fluently.

7.3.3  Step-Tracking Accuracy of the Assistant. Figure 8b presents
the assistant’s frame-by-frame tracking accuracy for each partic-
ipant across sessions. The assistant maintained high accuracy (~
75%) for p1 and p6, as they frequently self-narrated their steps,
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which helped the assistant continuously update its context under-
standing. For other participants, the accuracy decreased as they had
less linguistic interaction with the assistant over sessions, providing
systematically less information to compensate for inherent sensing
ambiguity over time. Nevertheless, the accuracy at the last session
(~ 62%) was much better than the passive condition in Study #2 (~
45%). We conjecture that this occurred for two reasons. First, the
assistant benefited from responses to proactive interventions, such
as reminders and confirmations. Second, as participants became
more proficient, their behavior (i.e., how long to spend at each step)
increasingly aligned with the training data for the tracker, which
was based on non-beginner users.

Note that each participant performed the tasks in a non-consistent
order across sessions. We observed that participants flexibly ad-
justed the sequence, particularly for steps related to the cleaning
process, reinforcing our design choice to prioritize user agency
rather than enforcing a fixed order.

7.4 User Comments

The semi-structured interviews were analyzed using open cod-
ing [23]. Overall, participants provided positive feedback on the
experience, noting that the assistant’s support helped them learn
the task. Simultaneously, we observed individual preferences for
different dialogue types.

7.4.1 Evolving Patterns of Voluntary Utterances to the Assistant.
Participants recognized that their needs changed over time. Early
on, they wanted step-by-step instructions and detailed answers
to their questions; later, they only wanted key reminders or error
prevention cues. As we observed, four participants (p2—p5) even-
tually did not talk to the assistant voluntarily. ‘T asked a lot in the
first sessions and then I got confident and did not have to ask the
assistant.” [p2]. In contrast, p1 and pé6 liked the experience of doing
the task while talking to the assistant. ‘T naturally narrated what I
was doing after each step, which helped me remember and make sure
that I was doing the right thing. Also, hearing the answer from the
assistant made me feel I was with someone else, which was fun.” [p6].
As discussed in Section 3.2.1, our assistant responded to the user’s
self-narration to acknowledge the action and guide the next steps,
which seemed favorably accepted by these participants.

7.4.2  Different Strategies for Configuring Reminders. Participants
shared different intentions behind their choice of reminders. Three
participants mentioned that they wanted remind-in-advance re-
minders consistently even after they got familiar with the task,
saying that they could forget things easily. ‘T think giving me re-
minders anyway is helpful. I could be aware of important steps.
The timing seemed okay, corresponding to my actions.” [p6]. The
other three participants mentioned that they gradually switched
remind-in-advance tonotify-if-forgotten asthey learned the
task, saying that they thought too many reminders were not nec-
essary. At the same time, they still wanted an option to return to
reminders if they revisited the task after a long break. “For example,
if I do this process again in a month, then I would definitely want the
reminders back.” [p3]. This suggests that the customizability of the
reminder is critically helpful in adapting to individual preferences
that change over time.
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7.4.3  Acceptable Experience of the Assistant’s Confirmation Query.
The participants mentioned that one or two instances of confirma-
tion from the assistant were acceptable, even after they got used
to the task. They even mentioned that it was helpful to give their
attention back to the task. “Sometimes when the assistant is asking
what exactly are you doing...that is actually very helpful...it is easy
for me to say I'm doing that thing right now” [p4]. “It asked me what I
was doing and when I said it, it responded to it. That conversation was
fun and I felt as if I had been with someone there.” [p1]. While asking
for confirmation too frequently could become annoying, these com-
ments suggested that a limited number of proactive interactions
from the assistant were generally well-received. This underpins our
design of using a hyperparameter to control the maximum number
of interventions per session.

7.5 Summary

In Study #3, we explored how user-assistant interaction changes
as users learn the task. The results demonstrated that the mixed-
initiative design effectively fostered user independence over ses-
sions through its Q&A feature while providing occasional proac-
tive interventions. Furthermore, the PrISM assistant adapted to
diverse user behaviors and preferences, including variations in the
frequency of self-narrations and the customization of reminders.
While prior work [5, 6] has focused on atomic interactions, their
impact on the entire user experience, especially across multiple ses-
sions, remained unexplored. This study provides empirical evidence
on how the integrated system supports users over time.

8 Application Scenario Exploration

Finally, we explored what kind of applications end-users might
create with the PrISM framework. Six STEM graduate students
from our institution (four male and two female, aged 26-35 years)
participated, none of whom had previously interacted with the
PrISM assistant. Initially, we introduced the concept of our task
assistant and asked them to envision a scenario where such an
assistant would be beneficial.

Each participant first defined a list of steps of their task scenario,
and demonstrated an instance of the procedure. The experimenter
noted down the timing of each step as an annotation. Then they
wrote a step-by-step instruction to supply knowledge to the as-
sistant. We consulted participants about the steps for which they
preferred to receive reminders. The collected demonstration data,
along with the documented instructions and reminder preferences,
were input into our pipeline to train the step tracker and to con-
figure the assistant. Subsequently, participants repeated the same
task, this time interacting with our watch assistant. The session
took almost an hour, and the participants received $10 USD.

The participants designed assistants for a wide variety of tasks,
including preparing glue for a physics experiment, operating a knit-
ting machine, crafting with cardboard, stretching before sports ac-
tivities, maintaining a regular office cleaning routine, and preparing
breakfast. Examples of these are illustrated in Figure 9. Additionally,
exemplary interaction scenes are showcased in the Video Figure.

Users were free to design assistants either for personal use or to
aid others. For personal applications, participants valued features
like reminders (e.g., stretching before sports, cleaning the office, or
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preparing breakfast) and the Q&A functionality for more complex
tasks (e.g., operating a knitting machine). For assisting others, they
noted that mixed-initiative dialogue was particularly beneficial for
novices (e.g., when preparing glue). The PrISM framework sup-
ports both scenarios, and exploring across-session adaptation is a
promising direction, particularly with tasks that encourage user
stereotypy, as discussed later in Section 9.3.1.

9 Discussion

We demonstrated the efficiency of our training approach in Study #1
and the effectiveness of online context adaptation through mixed-
initiative dialogue in Studies #2 and #3. These results have allowed
end users to easily prototype their own task assistants, as demon-
strated in Section 8. Here, we discuss key implications, potential
applications, and important directions for future research.

9.1 Using Imperfect Sensing Reliably

Study #1 highlighted that while training costs for sensing mod-
els can be reduced with algorithmic improvements, the accuracy
of these models is inherently limited. Therefore, we must focus
on building effective user interactions that add reliability to the
imperfection of sensing. Mackay [50] explored the idea of human-
computer partnership, where humans and intelligent agents per-
form better together than individually, while Beaudouin-Lafon et
al. [11] explored reciprocal co-adaptation, the point where both the
user and the system adapt to and affect the other’s behavior to
achieve certain goals. Studies #2 and #3 demonstrated that combin-
ing sensing and mixed-initiative dialogue offers several benefits to
facilitate such a partnership.

Becoming Robust against Uncertainty. Understanding user ac-
tions during procedural tasks perfectly is extremely challenging for
many sensors [21]. In addition, users can exhibit unexpected behav-
ior that may confuse the assistants. Using mixed-initiative dialogue,
including the assistant’s proactive query, as online feedback to the
context understanding is critical to addressing such uncertainty.

Increasing Transparency and User Trust. Users might struggle
to understand the rationale behind an intelligent system’s sugges-
tions, especially those based on complex algorithms. This lack of
transparency can erode trust and lead to misjudgment [62]. Our
assistant describes its context understanding in responses to allow
users to correct it interactively, leading to an enhanced sense of
collaboration, as discussed in Section 6.4.4.

Sharing Agency Effectively. Allowing for a flexible level of agency
to be shared between humans and intelligent agents is key to col-
laborative interaction. A system that takes over too much control
can leave users feeling disempowered [64]. For procedural tasks, it
is crucial to design a system that allows users the freedom to fol-
low their own path, disregard the system when needed, or express
disagreements.

Adapting to Individual Preference. Dialogue behavior varies by
individuals and over time [44]. Thus, maintaining a single balance of
interaction would not be optimal. Our framework enables flexibility,
such as customizing the frequency of proactive interventions and
accommodating frequent self-narrations.
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9.2 Application Space

As demonstrated in Section 8, the PrISM framework is capable of
generating a variety of sensor-based task assistants. This framework
allows for the creation of assistants by users for their own use or for
others. For example, users might create their own assistants with
proactive reminders to help them avoid mistakes in daily routines.

At the same time, tailoring our approach to specific populations
holds significant promise. For instance, individuals with low vi-
sion can greatly benefit from such support during activities like
cooking [45]. Also, postoperative skin cancer patients can be sup-
ported when performing the self-care procedure at home [30, 73]. In
this instance, the enhanced tracking capability might also provide
valuable information to enable healthcare professionals to monitor
patients’ self-care routines and track their progress. Such remote
monitoring aspects are especially promising in cases like demen-
tia, as discussed by Nunes et al. [56] and Wallace [76]. Ultimately,
the effectiveness of the assistant is influenced by various factors,
including the type of task, user demographics, and their previous
experience with repetitive tasks. We plan to deploy our assistant in
various settings to further explore these dynamics.

9.3 Limitations and Future Work

Achieving human-level collaboration in real-time human-Al inter-
action is an extremely challenging goal, and our work represents
only a first step in integrating sensing and dialogue. In this section,
we outline limitations and key directions for future research.

9.3.1 Across-Session Adaptation. Dialogue-based feedback can be
leveraged not just to update the step tracker but also to refine
the underlying HAR model and the transition graph G, as post-
deployment fine-tuning. Given that the assistant is intended for
deployment in each user’s environment, the accumulation of daily
feedback presents an opportunity for across-session adaptation.
For example, fine-tuning G for each user to reduce the variance in
the prior distribution will help improve step tracking. Additionally,
users may want to provide feedback to customize the assistant’s
behavior to match their individual preferences and evolving profi-
ciency, as observed in Study #3.

9.3.2  Implementation beyond Watch. While we focused on a watch
due to its ubiquity, our step-tracking method is designed to be ex-
tended to different platforms. For instance, for delivering interven-
tions, a display can support more visual information. Also, applying
muscle stimulation to prevent errors can serve as a powerful and
immediate reminder modality, as demonstrated by Nith et al. [55].

Moreover, other sensing techniques, as discussed in Section 2.1,
can be integrated to complement the sensing capability. Here, the
user experience is influenced by the performance of the underly-
ing HAR, as suggested in Study #2. Investigating the relationship
between sensing accuracy and end-user experience through ex-
periments will provide valuable information to further support
human-AI collaboration under uncertainty [59].

9.3.3  Assumptions about User Behavior. While our assistant is de-
signed to accommodate user initiative instead of providing step-
by-step instructions, the current implementation imposes a few
constraints on user behavior: users do not perform multiple steps
simultaneously, and do not take unexpected actions that are not in
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Stretching Cooking

2 Isitdone?
& Have you done jumping?

2 1 am wiping the pan.
& Nice. If you have cooked an
egg, the next is to grill a sausage.

Figure 9: Sample interactions students demonstrated using the PrISM framework with a smartwatch.

the list of steps. Concurrent activity recognition remains an ongoing
research area and is considered challenging, even for camera-based
systems [70]. The second constraint is based on the transition graph
of the step tracker, which would need to be modified to accommo-
date unexpected actions for enhanced flexibility.

9.3.4  Further Authoring Techniques. Additionally, we plan to en-
hance the demonstration and configuration processes. By integrat-
ing existing task knowledge and enabling users to provide narration
during the single-demonstration phase for customization, we aim
to explore efficient authoring methods, as recently explored by
Dang et al. [25] and Yu and Mooney [84]. Also, since the assistant’s
responses are generated by LLMs, additional safeguards are needed
to prevent erroneous information. Here, providing an intuitive way
to configure the assistant’s behavior will be critical, especially for
system designers and end users [86].

10 Conclusion

Existing context-aware task assistants have significant limitations:
they require extensive data collection to train sensing models, yet
remain error-prone, frequently confusing users with inappropriate
responses. Our approach enables training of the step tracker from
a single demonstration as a warm start while addressing inherent
sensing limitations through mixed-initiative dialogue. Through a
series of studies involving various daily procedural tasks, we veri-
fied multiple benefits of our approach: improved training efficiency,
dynamic adaptation during interaction, enhanced interaction qual-
ity and user experience, support for evolving user behaviors, and
simplified creation of personalized task assistants. Though future
work is needed, this represents a significant step toward intelligent
systems by using ubiquitous yet imperfect sensing reliably.
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A Details of Implementation

While we describe our key research contributions in Section 3,
our prototype system involves several engineering efforts. In this
appendix, we describe the details of the implementation.

Dialogue Policy. To enable mixed-initiative dialogue, the system
operates three parallel processes. The first is the response process,
which receives a user’s utterance and generates a reply using an
LLM. We follow the implementation of PrISM-Q&A [5], where
task-specific instructions are embedded in the LLM’s prompt.

The second process executes the PrISM-Observer algorithm [6].
System designers or end-users can customize which steps should
trigger reminders, and whether these prompts should occur pre-
emptively or only upon detecting a missed step. Crucially, because
the observer monitors the step tracker, the dialogue exchange can
dynamically influence its behavior via the state updater. For exam-
ple, if the assistant initially believes the user is far from a target
step, but the dialogue reveals that the user is actually near it, the
system adapts and issues a reminder immediately.

The third process periodically monitors the step tracker to com-
pute the entropy of the step hypotheses’ probability distribution. If
the entropy exceeds a predefined threshold E (a hyperparameter),
it signals the dialogue module to initiate a clarification question. In
other words, when the system is uncertain about the user’s current
activity, it may ask, “Can you tell me what you are doing?”, initiating
an instance of unsolicited reporting [2]. To avoid overburdening the
user, we limit the number of such confirmation prompts per session
to a maximum value M (another hyperparameter).

Speech Processing. We define four states for the assistant to man-
age speech interaction: user speaking, assistant speaking, response
waiting, and sensor reading. For instance, after a user asks a ques-
tion, the assistant enters a response waiting state, during which
sensor reading is paused; i.e., the step tracker is not updated. Once
the assistant provides a response, it transitions back to response
waiting, awaiting the user’s reply. In other words, the step tracker
only processes sensor data when no speech interaction is occurring.

Note that we do not implement wake words. Instead, the PrISM
assistant monitors the audio channel using voice activity detection
(VAD) techniques [67] to manage state transitions. Specifically, it
uses real-time VAD with a pre-trained model from pyannote to
detect when the user is speaking, and applies a 0.7-second silence
threshold to identify the end of an utterance. This threshold is based
on prior research, which found it to be effective in minimizing recog-
nition errors [67]. User speech is transcribed using Whisper . cpp !
running locally, and Text-to-Speech is handled using the built-in
say command on macOS.

Hyperparameters. For the HAR model and step tracker, the win-
dow length and hop length are 2.88 seconds and 0.21 seconds, re-
spectively. Our PrISM assistant has the following hyperparameters:
B as a threshold for the anomaly detection filter, E as a threshold
for the entropy to trigger confirmation, and M as the maximum
number of times for the confirmation during a session. § was set to
filter out roughly 10% of the data points in the training data. Simi-
larly, M was set to be 2, and E was set to ensure that the entropy

!https://github.com/ggerganov/whisper.cpp
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exceeds E an average of M = 2 times per session in the training
data by following the approach used in [8].

LLMs. The PrISM assistant incorporates an LLM in three key
processes. We use OpenAIl’s GPT-40-mini API [58] as the underlying
model. First, the step tracker leverages the LLM to generate the
transition graph. Second, the dialogue policy employs the LLM
in the PrISM-Q&A component to produce appropriate responses.
Third, the dialogue exchange is processed by the LLM to estimate
the user’s current step context. Each of these processes uses a
tailored prompt, incorporating task-specific information (e.g., step-
by-step instructions and in-context examples). We include prompts
and task-specific inputs in the Supplemental File and our code
repository.

B Details of Studies

The detailed steps for the tasks we used in Study #1 are presented
in Figure 10. The four breakfast tasks are relatively short. The
latte-making and stencil-making tasks are longer and have multiple
branches in the transition. The wound care task is a single-thread
task, which is performed by patient participants at a clinic.

Figure 11 presents the confusion matrix of our step tracker for
each task using a single demonstration in Study #1.

Table 2 and Table 3 summarize the participant information in
Studies #2 and #3, respectively.
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Table 2: Participant information in Study #2. VA stands for voice assistant.

ID | Gender | Age | Handedness | Condition | Familiarity with VA | Familiarity with Chat AI

P1 | Female | 20s | ambidextrous passive regular user regular user

P2 | Female | 20s | right-handed passive somewhat familiar somewhat familiar

P3 | Male 20s | right-handed passive regular user regular user

P4 | Female | 20s | right-handed passive somewhat familiar regular user

P5 Male 30s | right-handed passive somewhat familiar regular user

P6 | Male 20s | right-handed passive somewhat familiar regular user

P7 | Male 30s | right-handed passive somewhat familiar regular user

P8 | Female | 30s | right-handed passive somewhat familiar somewhat familiar

P9 | Female | 20s | right-handed passive somewhat familiar somewhat familiar
P10 | Female | 30s | right-handed | collaborative regular user regular user
P11 Male 20s | right-handed | collaborative somewhat familiar regular user
P12 | Female | 30s | right-handed | collaborative regular user regular user
P13 | Female | 30s | right-handed | collaborative regular user regular user
P14 | Female | 20s | right-handed | collaborative somewhat familiar somewhat familiar
P15 Male 30s | right-handed | collaborative somewhat familiar regular user
P16 | Male 20s | right-handed | collaborative regular user regular user
P17 | Female | 20s | right-handed | collaborative somewhat familiar somewhat familiar
P18 | Female | 30s | right-handed | collaborative | somewhat familiar regular user
P19 | Male 20s | right-handed | collaborative somewhat familiar regular user
P20 | Male 20s | right-handed | collaborative first-time user regular user

Table 3: Participant information in Study #3. VA stands for voice assistant.

ID | Gender | Age | Handedness | Familiarity with VA | Familiarity with Chat Al
pl Male 20s | right-handed somewhat familiar regular user

p2 | Male 20s | right-handed first-time user regular user

p3 | Male 20s | right-handed first-time user regular user

p4 | Male 30s | right-handed somewhat familiar regular user

p5 | Male 30s | right-handed first-time user regular user

p6 | Female | 30s | right-handed first-time user somewhat familiar
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Figure 10: Transition graphs for the tasks we used in Study #1. The opacity of the arrows represents the probability of the
transition. In other words, the sum of the transitions of arrows from a single step is 1.0.
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Figure 11: Confusion matrix of our step tracker trained on a single demonstration for the tasks we tested in Study #1. Step
labels for each task can be found in Figure 10.
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