Persistent legacy effects on soil microbiota facilitate plant adaptive responses to drought

- 3 Nichole A. Ginnan^{1,2*}, Valéria Custódio^{3*}, David Gopaulchan^{3*}, Natalie Ford^{1,4}, Isai
- 4 Salas-González⁵, Dylan H. Jones³, Darren M. Wells³, Ângela Moreno⁶, Gabriel Castrillo^{3#},
- 5 Maggie R. Wagner^{1,4#}
- 7 1 Kansas Biological Survey and Center for Ecological Research, University of Kansas,
- 8 Lawrence, KS, USA 66045
- 9 ² One Health Microbiome Center, Huck Institutes of the Life Sciences, Penn State University,
- 10 State College, PA, USA
- 11 ³ School of Biosciences, University of Nottingham, Sutton Bonington, UK
- 12 ⁴ Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- **13** 66045

16

- 14 ⁵ Centre for Genomics Sciences. Universidad Nacional Autónoma de México
- 15 ⁶ Ministério da Agricultura e Ambiente, Cabo Verde
- 17 *These authors contributed equally
- 18 *Corresponding authors (gabriel.castrillo@nottingham.ac.uk and maggie.r.wagner@ku.edu)

19 Abstract

- 20 Both chronic and acute drought alter the composition and physiology of soil microbiota by
- 21 selecting for functional traits that preserve fitness in dry conditions. Currently, little is known
- 22 about how the resulting precipitation legacy effects manifest at the molecular and physiological

23 levels and how they influence neighboring plants, especially in the context of subsequent 24 drought. We characterized metagenomes of six prairie soils spanning a steep precipitation 25 gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental 26 profiles, we identified bacterial taxa and functional gene categories associated with precipitation. 27 This microbial precipitation legacy persisted through a 5-month-long experimental drought and 28 mitigated the negative physiological effects of acute drought for a wild grass species that is 29 native to the precipitation gradient, but not for the domesticated crop species maize. In 30 particular, microbiota with a low-precipitation legacy altered transcription of a subset of host 31 genes that mediate transpiration and intrinsic water use efficiency during drought. Our results 32 show how long-term exposure to water stress alters soil microbial communities with 33 consequences for the drought responses of neighboring plants.

34 Introduction

The increasing frequency and intensity of droughts associated with global climate change are threatening plant health and survival in both natural and agricultural ecosystems. However, the ability of soil microbial communities to quickly adapt to environmental shifts¹ may bolster the resilience of plants and ecosystems to drought stress². Additionally, the cumulative effects of past stress exposure can influence microbial communities' responses to future environmental challenges, a phenomenon referred to as legacy effects or ecological memory³. Despite the growing recognition of microbial legacy effects, little is known about the mechanisms driving them, their long-term persistence, and whether their effects extend uniformly across different plant species.

To investigate microbial drought legacy effects and isolate the drivers and impacts of 45 microbial adaptations to water limitation, we (1) evaluate natural soil metagenome variation 46 across a steep regional precipitation gradient, (2) test the ability of legacy effects to persist

47 through experimental perturbation, and (3) evaluate the impacts of microbiome precipitation
48 history on plant responses to acute drought at the molecular and physiological levels. Finally, we
49 assess the extent to which microbiome legacy effects are transferable across plant species. Our
50 results demonstrate that legacy effects of historical exposure to dry conditions are more salient
51 at the metatranscriptomic level than at the taxonomic or metagenomic levels, and that they
52 trigger transcriptional changes in plant roots that improve resistance to subsequent acute
53 droughts, at least in some plant species.

55 Results

54

68

56 Mineral nutrient accumulation and precipitation impact soil microbiota taxonomic

57 composition

To identify microbial markers of precipitation legacy effects, we sequenced the metagenomes of soils from six never-irrigated remnant prairies spanning ~568 km of a steep precipitation gradient in Kansas, USA (Fig. 1a,b; Supplementary Table S1). Although bacterial alpha diversity was similar among soils (Extended Data Fig. 1a), community composition showed a strong biogeographic signature (PERMANOVA, R²=0.11, p=0.001) and precipitation explained 5.3% of the variation. The first principal coordinate axis, which explained 10.6% of the total variation, separated the bacterial communities of the two highest-precipitation sites from the other soils (Fig. 1c). In line with previous findings⁴, Actinomycetota and Bacillota were enriched in low-precipitation soils, whereas Pseudomonadota and Acidobacteriota were enriched in high-precipitation soils (Extended Data Fig. 1b).

To disentangle the influence of precipitation from co-varying edaphic properties⁵, we examined 24 trace element profiles in each soil using ICP-MS. Nutrients are known drivers of taxonomic 71 composition and functional capacity in soil microbiomes, particularly bacterial communities^{6,7}. Mineral nutrient content differed among the six soils, with precipitation explaining 28.6% of the 73 variation. The first principal coordinate axis of the soil mineral nutrient profiles, which explained 74 39.6% of the total variation, separated the three lower-precipitation sites, from the three 75 higher-precipitation sites (Extended Data Fig. 1c). Concentrations of K, Mg, Ca, Li, and P were 76 negatively correlated with mean annual precipitation, while Cd, Mn, Se, As, Zn, Co, Pb, Rb, Fe, 77 and Cr were positively correlated (Extended Data Fig. 1d-e). The mineral nutrient dissimilarities 78 among soils were correlated with the corresponding microbiota composition dissimilarities 79 (Mantel, r=0.384; *p*-value=1e-04; Extended Data Fig. 1f). This suggests that precipitation 80 patterns might influence the accumulation of mineral nutrients in these soils, and both 81 precipitation and nutrients may impact microbial communities. For example, precipitation can 82 drive mineral weathering and solute production in soils⁸, although this process also depends on 83 many other geochemical and biological factors⁹.

Next, we used X-ray computed tomography to quantify soil porosity of undisturbed soil cores. Soil porosity is directly related to soil hydraulic properties; in general, lower porosity results in lower water retention and infiltration¹⁰. Therefore, it is a good indicator of how precipitation affects the actual water content in the soil. Consistently, soil porosity decreased with depth to about 3.5 cm before stabilizing, and increased with precipitation (Extended Data Fig. 2a-b). Notably, precipitation might affect soil porosity in surface layers of soils¹¹, potentially affecting soil niche properties and, consequently, microbial communities. Nevertheless, we found no correlation between the porosity dissimilarities and the microbiota composition dissimilarities of these soils (Extended Data Fig. 2c), suggesting either that soil porosity is not a key element

84

94 controlling the overall microbial community composition in these soils, or that the influence of 95 porosity is masked by precipitation legacy.

Finally, to identify taxonomic biomarkers of precipitation legacy, we modelled the relative abundances of bacterial taxa in relation to precipitation levels while controlling for soil porosity and soil elemental composition. This analysis revealed distinct clusters of bacterial taxa whose relative abundances varied significantly along the precipitation gradient (Extended Data Fig. 2d-f). Across the six soils, 19 taxa (NCBI taxIDs) were positively correlated and nine were negatively correlated with precipitation (Fig. 1d). Additionally, 15 of the most abundant (>0.1%) and prevalent (>20%) taxa were enriched or depleted in the three lower-precipitation soils relative to the higher-precipitation soils (Fig. 1e). Together, these results indicate that water availability shapes soil bacterial communities, possibly by selecting for functions necessary to adapt to dry conditions and/or subsequent re-wetting¹².

107 Functional category enrichments and strain-level genetic analysis suggest molecular
108 mechanisms of precipitation legacy effects

106

we used assembled metagenomic contigs to explore the functional potential of the soil communities spanning the precipitation gradient. To focus on functions that are associated with water availability rather than site-specific variation, we collapsed our six soils into two groups representing our sites with low-precipitation vs. high-precipitation histories. These groupings preserved the observed similarities in taxonomic composition, mineral nutrient content, and processity (Fig. 1c; Extended Data Fig. 1c, 2a). In total, 62 Gene Ontology (GO) categories and KEGG reactions were differentially abundant between groups (Extended Data Fig. 2g; 16 Supplementary Table S2). Biological processes enriched in low-precipitation soils included in nitrogen cycling, fatty acid biosynthesis, DNA repair, and glucan metabolism, all of which have

were depleted in low-precipitation soils, including ion transport (involved in osmotic adjustment), lipid catabolism (relevant for membrane integrity), and metabolism of cellular aldehydes and lipid ketones (involved in oxidative stress)^{16,17} (Extended Data Fig. 2g). The observed differences in lipid functional potential between low-precipitation and high-precipitation sites suggest that these microbiomes are functionally adapted to local precipitation levels, making them excellent candidates for exploring how microbial precipitation legacy affects plant drought tolerance.

Next, we investigated precipitation-associated genetic variation within 33 focal bacterial species, including the previously-identified bacterial biomarkers and other highly abundant and prevalent taxa. Shotgun metagenomic reads were mapped to reference genomes from the NCBI database, and sequence variants were identified. Analysis of genetic distances showed variations in strain-level microbiome structure across the precipitation gradient (Extended Data Fig. 3a) and between precipitation levels (Extended Data Fig. 3b).

Subsequently, we conducted a genotype-environment association analysis and identified genetic variants associated with mean annual precipitation in several bacterial lineages, including Streptomyces, Luteitalea, Rubrobacter, Lacibacter, and Rhizobium, and three gradyrhizobium lineages (Extended Data Fig. 3c, Supplementary Table S3). Most of the associated variants were located within or near protein-coding regions. Notably, some of the corresponding genes have known adaptive functions such as the phenolic acid stress response for (PadR family transcriptional regulator)^{18,19}, maintenance of cellular functions under iron starvation and oxidative stress (Fe-S cluster assembly protein SufD and SufB)²⁰, and fatty acid starvation and oxidative stress (Fe-S cluster assembly protein SufD and SufB)²⁰, and fatty acid synthesis (acetyl-CoA carboxylase biotin carboxylase subunit)²¹, which impacts membrane composition and stress tolerance¹⁷ (Extended Data Fig. 3c; Supplementary Table S3). These indicate that precipitation legacy effects manifest through genetic differentiation within bacterial species, not just variation in community composition. Further study of these variants could reveal mechanisms by which precipitation shapes soil microbiota over ecological and the volutionary time.

146 Metagenomic and especially metatranscriptomic precipitation legacies are resilient to 147 short-term perturbations

145

156

To assess the effects of short-term perturbations on soil microbiome legacy, we exposed the six focal soils to a five-month-long conditioning phase experiment. Replicate pots of each soil were either left unplanted or planted with a seedling of *Tripsacum dactyloides* (eastern gamagrass, which is native to Kansas), and were either drought-challenged or well-watered, in a factorial design (Extended Data Fig. 4a). Compared to well-watered plants, the droughted plants were shorter and had more root aerenchyma (Fig. 2a; Supplementary Fig. 4a,b), confirming that the conditioning phase drought treatment was severe enough to induce stress responses in the plants, and presumably in the microbes²².

157 Next, we explored how precipitation legacy affected the microbial communities' responses to 158 intermittent drought and watering events. Congruent with observations from the field-collected 159 soils, water availability did not affect bacterial community alpha diversity regardless of whether a 160 plant was present (Extended Data Fig. 4b). Although phylum-level taxonomic profiles were also 161 similar across treatments, constrained ordination of metagenomic sequences indicated that the 162 conditioning phase watering and host treatments explained 4.3% and 1.1% of the variation in 163 metagenome content, respectively (Extended Data Fig. 4c-d). In contrast, precipitation legacy 164 explained 14.1% of the metagenome variation, confirming that the conditioning phase 165 treatments did not erase the ecological memory of these soils (Fig. 2b). Additionally, we still 166 detected significant taxonomic differences between high- and low-precipitation soils 167 (Supplementary Fig. 2a,b) and the previously-identified taxonomic markers of drought legacy 168 (Supplementary Table S4) generally followed the expected enrichment and depletion patterns,

169 regardless of conditioning phase treatment. This resilience was particularly evident in soils with 170 low-precipitation legacies (Fig. 2b, Supplementary Fig. 2b).

171

182

To assess whether precipitation legacy effects on strain-level genetic variation were also robust to experimental perturbation, we investigated genetic variants within the identified bacterial markers and other prevalent species across the samples, as described previously. A principal coordinate analysis of standardized pairwise genetic distances based on those variants revealed that samples clearly separated along the first axis based on precipitation legacy rather than the experimental treatments (Fig. 2c). Furthermore, our experimental perturbations did not affect allele frequencies (Supplementary Fig. 3a,b) whereas a genome-environment association analysis identified precipitation-associated genes in *Luteitalea* and two *Bradyrhizobium* lineages, recapitulating results from the pre-conditioning phase soils (Supplementary Fig. 3c, 181 Supplementary Table S5).

183 Next, we tested whether functional potential still differed between low- and high-precipitation 184 soils after 5 months of experimental perturbation. GO terms related to the nitrogen cycle 185 metabolic process. including purine-containing compound metabolic process 186 pyrimidine-containing compound metabolic process, were enriched in dry-legacy soils, while 187 GO terms related to ion transport and amino acid catabolic process were depleted in the 188 dry-legacy soils, regardless of conditioning treatment (Supplementary Fig. 4a, Supplementary 189 Table S6). These enrichment patterns mirrored the original field soil observations: of the 62 GO 190 categories that were associated with precipitation legacy in the pre-conditioning soils, 49 191 retained the same pattern after five months of experimental drought, and 50 did so after five 192 months of ample watering (Extended Data Fig. 2g, Supplementary Table S7). These results 193 show that the legacy effect of precipitation on the functional capacity of soil metagenomes was 194 robust to the conditioning phase perturbations.

195

210

196 Metagenome data often includes unexpressed genes and sequences from dormant or dead 197 organisms, which could exaggerate the robustness of soil legacy effects. Therefore, we also 198 quantified metatranscriptomes from the same samples to focus on biologically active processes 199 across the treatments and soils. Constrained ordination showed that precipitation history 200 explained 24.9% of the variation in microbial gene expression while conditioning phase drought 201 and host treatments explained only 12.3% and 1.8% of the variation, respectively (Fig. 2d; 202 Extended Data Fig. 5a). Furthermore, metatranscriptome-based taxonomic enrichment patterns 203 confirmed the metagenome-based results: even after five months of experimental perturbation, 204 transcriptionally active Actinomycetota and Bacillota remained enriched in low-precipitation soils 205 while Acidobacteriota, Planctomycetota, and Pseudomonadota remained enriched in 206 high-precipitation soils (Extended Data Fig. 5b). In general, the differences in transcriptionally 207 active bacterial taxa between low- and high-precipitation soils mirrored our previous 208 taxonomic-level observations, regardless of the conditioning treatments (Supplementary Fig. 2a; 209 Extended Data Fig. 5c, 6a).

Notably, the metatranscriptome analysis revealed GO categories and KEGG reactions that remained enriched in low-precipitation soils after five months of experimental perturbation, such as tetrapyrrole metabolic process, response to osmotic stress, liposaccharide metabolic process, heme metabolic process, and trehalose catabolic process (Extended Data Fig. 6b; Supplementary Table S8-S9). These results confirm that precipitation legacy strongly shapes both functional potential and gene expression in soil microbiota, and remains robust to perturbation (e.g., five-month-long acute drought). The functional resilience of the soil microbiota creates the potential for microbial legacy effects to influence host responses to environmental changes in natural ecosystems, conceivably enhancing plant resilience to future droughts.

222 Microbiome precipitation legacy alters host plant responses to subsequent drought despite

223 taxonomic convergence of root microbiomes

221

240

224 During the conditioning phase, we observed that droughted T. dactyloides plants grown in 225 low-precipitation-legacy soils were larger and produced more aerenchyma compared to plants 226 grown in high-precipitation-legacy soils (Fig. 2a). To confirm that these effects of soil 227 precipitation legacy were conferred by the microbiome rather than by co-varying soil properties, 228 we extracted the microbial communities from the conditioning phase pots and used them to 229 inoculate a new generation of T. dactyloides seedlings (Extended Data Fig. 4a). These "test 230 phase" plants were divided between well-watered control conditions (N=100) and a drought 231 treatment (N=200; Extended Data Fig. 4a), which we confirmed was severe enough to impair 232 plant growth (Supplementary Fig. 5a). We uprooted five-week-old gamagrass plants for 233 phenotyping and sampled crown roots, which are highly active in water acquisition^{23,24}, for 16S 234 rRNA gene microbiome profiling and RNA-seg analysis. We focused on bacterial microbiomes 235 because of evidence that fungi from these soils were insensitive to drought²⁵, and because 236 bacterial sequences accounted for 93.63% of metagenomic reads in field-collected soils and 237 89.99% in conditioning-phase soils (Supplementary Fig. 6a,b). To best capture the precipitation 238 gradient extremes, we measured gene expression only in plants inoculated with microbiota 239 derived from the two lowest-precipitation and two highest-precipitation soils.

Precipitation legacy affected neither alpha diversity nor taxonomic composition of the 242 gamagrass root microbiome (Fig. 3a). Bacterial taxonomic composition was impacted by the 243 test phase drought treatment (ANOVA.CCA, $F_{1,139}$ =2.58, p=0.003) but not inoculum precipitation 244 legacy (ANOVA.CCA, $F_{1,139}$ =0.89, p=0.55) (Fig. 3b); together these factors explained 2.2% of

245 root microbiome variation (ANOVA.CCA, $F_{2,139}$ =1.74, R^2 =0.022, p=0.01). To assess root 246 microbiome stability, we calculated beta-dispersion, a measure of within-group variability, and 247 found it to be equal among treatment groups (Fig. 3c; ANOVA, $F_{1,144}$ =0.57, p=0.45). Together, 248 these results suggest that gamagrass exerts a strong homogenizing influence during root 249 microbiome formation, resulting in a stable and drought-resistant microbiota. Because eastern 250 gamagrass shares a long evolutionary history with Kansas soil microbes²⁶, this result supports 251 previous findings that co-evolution promotes stable community assembly^{27,28}.

252

253 Although precipitation legacy did not shape 16S rRNA gene diversity within the T. dactyloides 254 root microbiome, its clear effect on the metagenome and metatranscriptome (Fig. 2c,d) 255 suggested high potential to influence plant phenotype. Indeed, the gene expression profiles in 256 crown roots of plants inoculated with dry-legacy microbiota were distinct from those of plants 257 inoculated with wet-legacy microbiota. Fifteen T. dactyloides genes were differentially expressed 258 in plants receiving a high-precipitation vs. low-precipitation inoculum (Fig. 4a; Supplementary 259 Table S10). Furthermore, inoculum precipitation legacy influenced the responses of 183 T. 260 dactyloides genes to acute drought (Fig. 4b). Of these, 55% were unresponsive to drought in 261 plants grown with a dry-legacy microbiota but were down-regulated or up-regulated in plants 262 grown with a wet-legacy microbiota (Fig. 4b, gene sets I and II, respectively; Supplementary 263 Table S10). This strongly suggests that soil microbiota from low-precipitation sites tend to 264 dampen the transcriptional response of gamagrass to acute drought. For instance, 50 T. 265 dactyloides genes were downregulated due to the drought treatment, but only in plants that had 266 been inoculated with high-precipitation-legacy microbiota (Fig. 4b gene set I). These included 267 five orthologs of maize genes predicted to be involved in ethylene- or ABA-mediated signalling (Td00002ba004498, Td00002ba024351, Td00002ba011993, 268 Of water stress 269 Td00002ba005402, Td00002ba000033), and a heat shock protein linked to temperature stress 270 (Td00002ba042486) (Supplementary Table S10). Notably, the latter three genes were not identified as drought-sensitive when averaging across inocula, demonstrating that the microbial context is necessary for a complete understanding of molecular plant drought responses. We note that these signatures of microbiota precipitation legacy on host gene expression are averaged across all treatments applied during the conditioning phase (Extended data Fig. 4a), again confirming that microbiome legacy effects are robust to short-term perturbations.

276

289

277 Next, we assessed whether microbial precipitation legacy altered host physiological and 278 morphological drought responses. For each of 63 traits, we calculated a drought susceptibility 279 index (S-index) that measures the stability of a trait under drought relative to control plants that 280 received the same inoculum type (Supplementary Table S11). We used a random forest model 281 to identify the ten most important traits for describing the phenotypic effects of microbiome 282 precipitation legacy (Supplementary Fig. 7a,b). Redundancy analysis revealed that microbiome 283 precipitation legacy explained 5% of the total variation in host phenotypic response to acute 284 drought (ANOVA.CCA, $F_{1,187}$ =10.1, R^2 =0.05, p=0.001; Extended Data Fig. 7a). Microbiota 285 precipitation legacy impacted six of the top eight non-collinear traits: transpiration, leaf 286 chlorophyll content, maximum root width, metaxylem area, median root diameter, Cu, K, and 287 intrinsic water use efficiency (iWUE)—an important plant drought response trait^{29,30} (Extended 288 Data Fig. 7b-j).

To solidify the mechanisms linking microbiome legacy to plant phenotype, we used mediation analysis to determine whether phenotypic drought responses were mediated by expression patterns of the 198 genes that were responsive to inoculum precipitation legacy (Fig. 4a-c), summarized in two dimensions (MDS1 and MDS2). MDS1 mediated 18% of the total drought-induced decrease in iWUE (p < 0.001), and 8.9% of the total decrease in transpiration (p = 0.018); Fig. 4d). In contrast, MDS2 mediated 11% of the iWUE response to drought (p = 0.03), but in the opposite direction, meaning that the activity of these genes counteracted the negative

effects of acute drought on iWUE. Four of the top eight genes with the strongest positive loadings on MDS2 were orthologs of the maize gene *ZmNAS7* (nicotianamine synthase); two of these were also in the top 5% of genes with the strongest negative loadings on MDS1 (Extended Data Fig. 8), indicating that they stabilize iWUE during drought. All four *ZmNAS7* orthologs were up-regulated in response to drought, but only in plants that were inoculated with dry-legacy microbiota (Fig. 4b, gene set IV), suggesting a possible mechanism by which low-precipitation-legacy microbiota confer drought tolerance. Consistent with this, salicylic was acid—a key regulator of root microbiome assembly legacy in metal transport, the load overexpression of *NAS* genes has conferred drought tolerance, including maintenance of photochemical efficiency at pre-drought levels, in rice and in the grass *Lolium perenne* for photochemical efficiency at pre-drought levels, in rice and in the grass *Lolium perenne* for drought response of eastern gamagrass.

311 Beneficial microbiome legacy effects do not extend to the crop species Zea mays

310

321

312 To explore whether the observed microbial legacy effects were transferable across hosts, we 313 simultaneously applied the same inocula to seedlings of maize ($Zea\ mays\ ssp.\ mays$), a relative 314 of eastern gamagrass that is non-native to Kansas (Extended Data Fig. 4a). Unlike eastern 315 gamagrass, the maize root microbiome retained taxonomic signatures of both the inoculum 316 precipitation legacy (Fig. 3e., ANOVA.CCA, $F_{1,255}$ =4.25, p=0.001) and the drought treatment 317 (ANOVA.CCA, $F_{1,255}$ =8.06, p=0.001) (Fig. 3e), which together explained 4.1% of the variation in 318 the data (ANOVA.CCA, $F_{2,255}$ =6.16, $F_{2,255}$ =6.16, $F_{2,255}$ =0.041, p=0.001). Also unlike in gamagrass, drought 319 treatment significantly increased beta-dispersion and decreased alpha diversity (Fig. 3d,f; 320 ANOVA $F_{1,262}$ =18.17, p<0.001), indicating lower microbiome stability.

Next, we identified amplicon sequence variants (ASVs) that were differentially abundant between droughted vs. control plants in a manner that depended on the precipitation legacy of the inoculum. These included only two ASVs in gamagrass roots (*Azospirillum* sp. and *Enterobacteriaceae*), but 100 ASVs in maize roots (Supplementary Fig. 8a-b, Supplementary Table S12). Again, this result indicates that gamagrass root microbiomes are more stable—*i.e.*, they experience less change in microbiome taxonomic composition and assembly—than those of maize, in response to varying water availability and inoculation with different starting communities.

330

331 RNA-seq analysis identified four sets of orthologous genes that were sensitive to microbiota 332 legacy in both maize and gamagrass, but none showed congruent drought responses 333 (Supplementary Note 1). In maize, 23 genes were up-regulated plants inoculated with 334 dry-legacy microbiota, relative to those that received wet-legacy inocula (Extended Data Fig. 335 9a). These included six defense-related genes, particularly related to jasmonic acid signalling, 336 suggesting that low-precipitation-legacy microbiota were perceived as pathogens by maize but 337 not gamagrass. Other notable functions that were up-regulated by the dry-legacy inocula 338 include root development and iron acquisition (Supplementary Table S10). Additionally, 109 339 maize genes responded to drought treatment in a manner that was dependent on inoculum 340 precipitation legacy. Only 30 of these were identified as drought-responsive when averaging 341 across inocula (Extended Data Fig. 9b), reinforcing the importance of microbial context for 342 understanding plant drought responses. Like in gamagrass, most of these genes were 343 drought-responsive only in wet-legacy-inoculated or only in dry-legacy-inoculated plants; 344 relatively few reversed the direction of their drought response (Extended Data Fig. 9c). For 345 example, 30 genes were up-regulated in response to drought only in plants grown with 346 wet-legacy microbiota (Extended Data Fig. 9c, gene set I). These genes included several 347 related to pathogen defense (Zm00001eb116230, Zm00001eb150050, Zm00001eb222540) and 348 response to symbiotic fungi (*Zm00001eb033580*), suggesting that soils in high-precipitation 349 regions contain both harmful and beneficial microorganisms and that interactions with both 350 groups are activated under water deprivation in maize (Supplementary Table S10). Notably, one 351 of the genes that reversed its drought response depending on the inoculum's precipitation 352 legacy was *TIP3*, which encodes an aquaporin that regulates water storage in the vacuole³⁵. In 353 plants inoculated with wet-legacy microbiota, *TIP3* expression increased 7-fold due to drought, 354 but decreased nearly 3-fold in plants inoculated with dry-legacy microbiota (Extended Data Fig. 355 9c, gene set VI). Averaged across the two inocula, however, *TIP3* was not differentially 356 expressed between droughted and well-watered plants; thus, its role in drought response was 357 apparent only when accounting for microbiota precipitation legacy.

Finally, we investigated whether the beneficial effects of microbiome legacy on gamagrass phenotype (Fig. 4d-e) were also conferred on maize. Overall, microbiome precipitation legacy separate only 2.0% of the phenotypic variation in maize (Extended Data Fig. 15a., ANOVA.CCA, $F_{1,175}$ =3.72, $F_{1,175}$ =0.02, $F_{1,175}$ =0.001), a weaker effect than observed in eastern gamagrass. In general, we observed no significant phenotypic differences attributable to microbiome legacy (Extended Data Fig. 10b,c). Thus, the capacity to integrate the beneficial seffect of soil drought legacy is host-specific and may be related to the ability of the host to maintain a stable microbiota in response to drought stress.

367 Discussion

358

368 Microbially-mediated legacy effects of water limitation can affect plant performance during 369 subsequent droughts^{36,37}. Our results reveal how these legacy effects manifest in terms of 370 microbiota taxonomic composition, functional potential, gene expression, and strain-level 371 genetic variation, and how they affect host responses to water-scarce conditions. We identified

372 bacterial taxa and numerous microbial genes and functional pathways that are associated with 373 mean annual precipitation, including those suggesting an increased nitrogen-metabolizing and 374 DNA repair capacity in dry-legacy microbiota. Thus, we provide evidence for the ecological and 375 molecular mechanisms involved in the formation of soil drought memory and demonstrate its 376 robustness to a five-month perturbation, which could mimic a particularly dry or wet season.

378 We have shown that these metagenomic precipitation legacies have significant implications for 379 plant response to drought. Inoculation with dry-legacy microbiota altered the transcription of key 380 genes controlling plant drought responses. In the prairie grass *Tripsacum dactyloides*, dry- and 381 wet-legacy soil microbiomes give rise to taxonomically similar root bacterial communities yet 382 have strikingly different effects on plant gene expression and phenotypes during a subsequent 383 acute drought. These benefits largely did not extend to maize, which also had a relatively 384 unstable root microbiome and reduced physiological and morphological sensitivity to soil 385 microbiome legacy during drought. However, further research is needed to confirm whether root 386 microbiome stability is a mechanism of adaptive plant responses to drought. Importantly, 387 differences between gamagrass and maize responses to microbiome history indicate that crops 388 may not reap the same benefits as native plant species from potentially beneficial microbial 389 communities. Therefore, our discoveries significantly contribute to our mechanistic 390 understanding of microbiome drought legacy effects, their resistance to perturbation, and their 391 role in plant drought responses, with implications for agricultural and ecosystem management.

392 Online Methods

377

393 No statistical methods were applied to predetermine sample size. The experiments were 394 randomized, and investigators were blinded to allocation during experiments and outcome 395 assessment.

396 1. Legacy phase: Characterization of soils across precipitation gradients

397 1.1 Region selection and soil collection

398 Soils were sampled from six never-irrigated native prairies across Kansas, USA in October 399 2020. This selection includes eastern Kansas tallgrass prairies: Welda Prairie (WEL), Clinton 400 Wildlife Reserve (CWR), and Konza Wildlife Reserve (KNZ), as well as western Kansas 401 shortgrass prairies: Hays Prairie (HAY), Smoky Valley Ranch (SVR), and Kansas State 402 University's Tribune Southwest Research Center (TRI). The GPS coordinates of each collection 403 site are available in the Supplemental Table S1. For soil collection, each site was split into three 404 subplots. In each subplot, the surface soil (≈10 cm) containing thick plant root masses was 405 removed with a bleach-sterilized metal shovel. Then, approximately 2.5 L of soil was collected 406 from each site and pooled into a clean plastic bag, for a total of ≈7.5 L of soil collected per 407 geographical location. Soil was held at room temperature for transport back to the laboratory 408 where it was then stored at 4°C until use in the growth chamber experiments (~1 month).

Sub-samples for downstream metagenomic sequencing and nutrient mineral content analyses 411 were air-dried in sterile plastic trays at room temperature for 1 week and then sieved using a 2 412 mm sieve to remove rocks, big soil particles, and vegetable debris. The sub-samples were 413 shipped to the University of Nottingham for further processing, and all sub-samples were stored 414 at 4 °C until use (~3 days).

416 1.2 Precipitation data collection

409

415

419

Daily precipitation from 1981 to 2021 was extracted from the NASA POWER database based on the latitude and longitude of each site³⁸.

420 1.3 Soil elemental content analysis

421 The soil mineral nutrients and trace elements profiles were determined using inductively 422 coupled plasma mass spectrometry (ICP-MS). The soil samples were dried using plastic 423 weighing boats in the fume hood for approximately 72 h at ambient temperature. Five grams of 424 soil were weighed in 50 mL conical tubes with a four-decimal balance, and treated with 20 mL of 425 1 M NH₄HCO₃, 5 mM diamine-triamine-penta-acetic acid (DTPA), and 5 mL 18.2 MΩcm Milli-Q 426 Direct water (Merck Millipore), for 1 h at 150 r.p.m. in a rotary shaker (adapted from³⁹) to extract 427 available elements. Each treated sample was gravity-filtered through a quantitative filter paper 428 (Whatman 42- WHA1442070) to obtain approximately 5 mL of filtrate. Prior to the digestion, 20 429 µg/L of Indium (In) was added to the nitric acid Primar Plus (Fisher Chemicals) as an internal 430 standard for assessing error in dilution, variations in sample introduction and plasma stability in 431 the ICP-MS instrument. Next, 0.5 mL of the soil filtrates were open-air digested in glass Pyrex 432 tubes using 1 mL of concentrated trace metal grade nitric acid spiked indium internal standard 433 for 2 h at 115 °C in dry block heater (DigiPREP MS, SCP Science; QMX Laboratories, Essex, 434 UK). After cooling, the digests were diluted to 10 mL with 18.2 MΩcm Milli-Q Direct water and 435 elemental analysis was performed using an ICP-MS, PerkinElmer NexION 2000 equipped with 436 Elemental Scientific Inc 4DXX FAST Dual Rinse autosampler, FAST valve and peristaltic pump. 437 The instrument was fitted with PFA-ST3 MicroFlow nebulizer, baffled cyclonic C3 high sensitivity 438 glass spray chamber cooled to 2°C with PC3X Peltier heated/cooled inlet system, 2.0 mm i.d. 439 quartz injector torch and a set of nickel cones. Twenty-three elements were monitored including 440 following stable isotopes: ⁷Li, ¹¹B, ²³Na, ²⁴Mg, ³¹P, ³⁴S, ³⁹K, ⁴³Ca, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni, ⁶³Cu, 441 ⁶⁶Zn, ⁷⁵As, ⁸²Se, ⁸⁵Rb, ⁸⁸Sr, ⁹⁸Mo, ¹¹¹Cd, ²⁰⁸Pb and ¹¹⁵In. Helium was used as a collision gas in 442 Kinetic Energy Discrimination mode (KED) at a flow rate of 4.5 mL/min while measuring Na, Mg, 443 P, S, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Pb to exclude possible polyatomic interferences. 444 The remaining elements were measured in the standard mode. Any isobaric interferences were 445 automatically corrected by the instrument Syngistix™ software for ICP-MS v.2.3 (Perkin Elmer).

447 ranging from 25 to 50 ms depending on the element, 20 sweeps per reading and three 448 replicates. The ICP-MS conditions were as follows: RF power – 1600 Watts, auxiliary gas flow 449 rate 1.20 L/min. Torch alignment, nebulizer gas flow and quadrupole ion deflector (QID) voltages 450 (in standard and KED mode) were optimized before analysis for highest intensities and lowest 451 interferences (oxides and doubly charged ions levels lower than 2.5%) with NexION Setup 452 Solution containing 1 μg/L of Be, Ce, Fe, In, Li, Mg, Pb and U in 1% nitric acid using a standard 453 built-in software procedure. To correct for variation between and within ICP-MS analysis runs, 454 liquid reference material was prepared using pooled digested samples, and run after the 455 instrument calibration, and then after every nine samples in all ICP-MS sample sets. Equipment 456 calibration was performed at the beginning of each analytical run using seven multi-element 457 calibration standards (containing 2 μg/L In internal standard) prepared by diluting 1000 mg/L 458 single element standards solutions (Inorganic Ventures; Essex Scientific Laboratory Supplies 459 Ltd) with 10% nitric acid. As a calibration blank, 10% nitric acid containing 2 μg/L In internal 460 standard was used and it was run throughout the course of the analysis.

462 Sample concentrations were calculated using the external calibration method within the
463 instrument software. Further data processing, including the calculation of final elements
464 concentrations was performed in Microsoft Excel. First, sample sets run at different times were
465 connected as an extension of the single-run drift correction. Linear interpolation between each
466 pair of liquid reference material standards was used to generate a theoretical standard for each
467 sample that was then used to correct the drift by simple proportion to the first liquid reference
468 material standard analysed in the first run. Liquid reference material composed of pooled
469 samples was used instead of the CRM to match the chemical matrix of the samples as closely
470 as possible, thereby emulating the sample drift. Second, the blank concentrations were
471 subtracted from the sample concentrations and each final element concentration was obtained

461

472 by multiplying by the dilution factor and normalizing the element concentrations to the sample's 473 dry weight.

475 1.4 Soil porosity analysis

474

481

487

476 To quantify soil porosity, we used X-ray computed tomography. First, six soil samples were 477 collected in October 2020 from each of the selected locations in Kansas (see materials and 478 methods 1.1). The top layer of soil was removed (10 cm), and the soil samples were collected 479 using polyvinylchloride (PVC) columns of 5 cm internal diameter and 7 cm length. After the soil 480 collection, the bottom of each column was sealed with tape to retain the soil in the column.

The undisturbed soil columns were non-destructively imaged using Phoenix v|tome|x MDT (Waygate Technologies GmbH, Wunstorf, Germany) at The Hounsfield Facility, University of Nottingham. Scans were acquired by collecting 2695 projection images at 180 kV X-ray energy, με 200 μA current and 334 ms detector exposure time in fast mode (15 min total scan time per column). Scan resolution was 55 μm.

488 1.5 Metagenomic analysis of free-living soil microbiota - DNA extraction

489 For metagenomic analysis, approximately 5 g of each soil sample was transferred into 50-mL 490 conical tubes containing 20 mL of sterile distilled water. To remove large plant debris and soil 491 particles, the samples were shaken thoroughly and filtered into new sterile 50-mL tubes using 492 100-μm nylon mesh cell strainers. The filtered soil solutions were centrifuged at high speed for 493 20 min in a centrifuge Eppendorf 5810R and most of the supernatants were discarded. The 494 remaining 1-2 mL of supernatants were used to dissolve the soil pellets. The resulting 495 suspensions were transferred to sterile 1.5-mL Eppendorf tubes. Samples were centrifuged 496 again at high speed in a benchtop centrifuge and the supernatants were discarded. The

497 remaining pellets were stored at - 80°C for DNA extraction. For DNA isolation we used 498 96-well-format MoBio PowerSoil Kit (MOBIO Laboratories; QIAGEN) following the 499 manufacturer's instructions. Before starting the extraction, all samples were manually 500 randomized by placing them in a plastic bag that was shaken several times. Samples were then 501 taken individually from the bag and loaded in the DNA extraction plates. This random 502 distribution was maintained throughout library preparation and sequencing.

504 1.6 Metagenomic library preparation and sequencing

503

505 DNA sequencing libraries were prepared using the Rapid PCR Barcoding Kit (SQK-RPB004) 506 from Oxford Nanopore Technologies, UK. In brief, 1 µL Fragmentation Mix (FRM) was added to 507 3 µL DNA (2-10 ng/µL), and the reaction was mixed by gently finger-flicking. The DNA was 508 fragmented using the following conditions: 30°C for 1 min, then 80°C for 1 min in an Applied 509 Biosystems Veriti 96-Well Thermal Cycler (Applied Biosystems, CA, USA). The fragmented DNA 510 was cooled, then barcoded and amplified in a PCR reaction containing 20 µL nuclease-free 511 water, 25 µL LongAmp Tag 2X master mix (New England Biolabs, MA, USA), 4 µL fragmented 512 DNA, and 1 µL barcode adaptor. The reaction was gently mixed and amplified using the 513 following conditions: 95°C for 3 min, 20 cycles of denaturation at 95°C for 15 s, annealing at 514 56°C for 15 s and extension at 65°C for 6 min, and a final extension of 65°C for 6 min. The 515 resulting DNA library was purified using 0.6X Agencourt AMPure XP beads (Beckman Coulter, 516 CA, USA) and eluted in 10 µL 10 mM Tris-HCl pH 8.0, 50 mM NaCl. The library concentration 517 was determined using a Qubit 4 Fluorometer with the Qubit dsDNA HS Assay Kit (Thermo 518 Fisher Scientific, USA). Equimolar quantities of individual barcoded sample libraries were 519 pooled and the volume was adjusted to 10 µL using 10 mM Tris-HCl pH 8.0, 50 mM NaCl. 520 Subsequently, 1 µL rapid sequencing adapter (RAP) was added to the pooled library and the 521 tube was incubated at room temperature for five minutes. Then, 34 µL Sequencing Buffer, 25.5 522 μL Loading Beads, and 4.5 μL nuclease-free water were added to the tube, and the contents 523 were mixed gently. The prepared pooled library was added to a verified and primed 524 FLO-MIN106 R9.4.1 flow cell (Oxford Nanopore Technologies, UK) in a MinION (Oxford 525 Nanopore Technologies, UK) following the manufacturer's instructions. DNA sequencing was 526 conducted with default parameters using a MinIT (Oxford Nanopore Technologies, UK) with 527 MinKNOW v2.1.12 (Oxford Nanopore Technologies, UK). Fast5 files were base-called with 528 Guppy v4.0.15 using the template_r9.4.1_450bps_hac.jsn high accuracy model (Oxford 529 Nanopore Technologies, UK).

531 1.7 Metagenomic sequences processing

530

541

546

The initial dataset underwent demultiplexing, and primer and barcode sequences were trimmed using qcat v1.1.0 (Oxford Nanopore Technologies Ltd., UK). Reads with ambiguous barcode assignments were excluded from further analysis. The reads were filtered with NanoFilt v2.8.0⁴⁰ to discard low-quality sequences (Q-score < 9) and sequences < 100 bp. We used the Kraken v2.1.2 pipeline⁴¹ to classify the whole metagenome shotgun sequencing reads. The reads were classified using the Kraken 2 archaea, bacteria, viral, plasmid, human, UniVec_Core, protozoa, and fungi reference database (k2_pluspf_20220607). To estimate relative abundances, the Bracken v2.7 pipeline⁴² was applied to the classification results. Subsequently, Pavian v1.0⁴³ was used to extract abundance and taxonomic tables.

542 1.8 Precipitation Gradient Data Analysis

543 1.8.1 Precipitation data analysis

To determine the differences in precipitation levels across regions, we compared the mean annual precipitation in each region by fitting a linear model with the following formula:

Mean annual precipitation ~ Region

548 Differences between regions were indicated using the confidence letter display derived from 549 Tukey's *post hoc* test implemented in the package multcomp v.1.4.25⁴⁴. We inspected the 550 normality and variance homogeneity (here and elsewhere) using Q-Q plots and the Levene test, 551 respectively. We visualized the results via a point range plot using the ggplot2 v3.5.1 R 552 package⁴⁵.

554 1.8.2 Soil elemental content analysis

547

553

563

569

For the soil elemental profile, we created a matrix in which each cell contained the calculated element concentration in one sample. Then, we applied a z-score transformation to each ion across the samples in the matrix. Afterward, we applied a principal component analysis (PCA) using the Euclidean distance between samples and the z-score matrix as input to compare the elemental profiles of soils. Additionally, we estimated the variance explained by porosity, precipitation, region, and the interaction between them by performing a PERMANOVA via the function adonis2 from the vegan v.2.6-4 R package⁴⁶. The significant variables were visualized via a stacked bar plot using the *ggplot2* v3.5.1 R package.

To visualize the mineral content in each region, the z-score matrix created above was hierarchically clustered (method *ward.D*, function *hclust*), and we visualized the results using a heatmap. The rows in the heatmap were ordered according to the dendrogram order obtained from the clustered ions, and the regions were ordered according to the precipitation gradient (low precipitation to high). The heatmap was coloured based on the z-score.

570 To explore the relationship between ion concentrations and the precipitation gradient, we 571 performed a correlation test using *cor* function from *stats* v.4.3.1 package in R⁴⁷ of the average

572 z-score measurement of each ion against the precipitation gradient. Afterward, we plotted the 573 correlation coefficient for each ion in a barplot.

575 1.8.3 Soil porosity analysis

574

585

595

The soil core images taken using x-ray computed tomography were analyzed using ImageJ v. 1.54b⁴⁸. First, XY slice projection images were filtered using a median function to remove any noise from the raw data then an automatic threshold (Li method) was applied to produce binary images. In the binary images pores and solid particles were represented by black and white pixels, respectively. Afterwards, a region of interest (ROI) was defined in the central part of each projection to remove any potential border effect, cropping to a 600x600 pixel area. From the ROI defined in each image we extracted soil features, including particle area, perimeter, circularity, roundness, solidity, compactness, percentage of pores and pore size using the *measurement* function.

To remove the variability in the topsoil due to transportation and handling, we used two strategies. Firstly, we plotted the pore average size (mm) and soil porosity (%) for each sample. Then, we excluded from the analysis all projections having a value of soil porosity > 40% and considered the topsoil of those samples as the first projections after the exclusion. The second strategy was applied to samples with an irregular shape (e.g., mountain-like shape) at the topsoil level. We discarded all the projections with an irregular shape until we found projections with a regular distribution of soil layers. We created a data frame with the projection number (or soil slice) and the soil depth (projection number multiplied by the resolution). The soil porosity for each soil type was visualized via a point plot using ggplot2 v3.5.1 R package⁴⁵.

To compare the soil elemental profiles against soil porosity, first, we applied a z-score transformation of each ion and soil porosity across the samples. Then, we estimated the distance between samples using Euclidean distance. Afterwards, we contrasted the dissimilarity matrices of each pair of datasets (soil elemental profile vs. soil porosity) using the *mantel* test implemented in the vegan v.2.6-4 R package⁴⁶. Finally, we computed the significance of the correlation between matrices by permuting the matrices 10,000 times⁴⁴.

603 1.8.4 Taxonomic data analysis

602

609

616

619

To compare the alpha diversity across regions, we calculated the Shannon diversity index using the diversity function from the vegan v.2.6-4 package in R⁴⁶. We used an ANOVA to test the alpha diversity differences between regions. Differences between regions were indicated using the confidence letter display derived from Tukey's *post hoc* test implemented in the R package multcomp v.1.4.25⁴⁴.

The beta diversity analysis (Principal Coordinates Analysis, PCo) was based on Bray-Curtis dissimilarity matrices calculated using the rarefied relative abundance tables. Additionally, we estimated the variance explained by soil porosity, precipitation, regions, and the interaction between them by performing a PERMANOVA via the function adonis2 from the vegan v.2.6-4 R package⁴⁶. The significant variables were visualized via a stacked bar plot using ggplot2 v3.5.1 R package⁴⁵.

The relative abundance of bacterial phyla was depicted using a stacked bar plot using ggplot2 v3.5.1 package.

620 To compare the microbiome composition against the elemental profiles and soil porosity, we 621 contrasted the dissimilarity matrices of each pair of datasets (soil microbiome vs. soil elemental

profile and soil microbiome vs. soil porosity) using the *mantel* test implemented in the vegan v.2.6-4 R package⁴⁶. Briefly, we calculate the microbiome dissimilarity matrix using Bray-Curtis distance. Next, we applied a z-score transformation of each ion and soil porosity across the samples. Afterward, we calculated the soil elemental dissimilarity matrix and soil porosity dissimilarity matrix using Euclidean distance. Finally, we used the *mantel* test to compare and test the significance of the correlation between matrices by permuting the matrices 10,000 times⁴⁴.

630 1.8.5 Heatmap and enrichment analysis

629

636

643

We used the R package DESeq2 v.1.40.2⁴⁹ to compute the bacterial enrichment profiles in the soils across the precipitation gradient. For each taxID (NCBI's taxonomic identifier assigned to the taxa) in the rarefied table, as well as at the species, and family levels, we estimated difference in abundance compared to the wettest collection site (Welda Prairie) using a generalized linear model (GLM) with the following design:

Abundance ~ Region

637 We extracted the following comparisons from the fitted model: CWR vs WEL, HAY vs WEL, KNZ 638 vs WEL, SVR vs WEL, TRI vs WEL. A taxID, species, or family was considered statistically 639 significant if it had a *p*-value < 0.05. We visualized the results using a heatmap. The rows in the 640 heatmap were ordered according to the dendrogram obtained from the tax ID, species and 641 family analysis. The relative abundance matrix was standardized across the significant tax ID, 642 species, and family by using the z-score and the heatmap was coloured based on this value.

644 1.8.6 Identification of marker taxa associated with precipitation gradients

645 To identify the corresponding bacterial isolates considered as "biomarker" taxa associated with 646 precipitation gradients, we identified the principal components (PCs) that explain more than 647 80% of the variance in the data. These identified PCs were used to control the effects of soil

648 elemental profile on the taxa abundances. Then, we fit five models: Poisson, negative binomial, 649 two zero-inflated, and a multiple regression model. 650 For Poisson and negative binomial models, we fitted the following design: Abundance ~ precipitation + offset (porosity) + offset (soil elemental profile: six first PCs) 651 652 653 In parallel, we fitted the zero-inflated models using the following design: Poisson: Abundance ~ precipitation + offset (porosity) | 1 + offset (soil elemental profile) | 1 654 655 Negative binomial: Abundance ~ precipitation + porosity | porosity + soil elemental profile | soil elemental profile 656 657 658 Next, to assess the statistical significance, we applied ANOVA to the best-performing model for 659 each taxon according to the Akaike Information Criterion (AIC). Additionally, we applied a 660 multiple regression model with the following design: Abundance ~ precipitation + porosity + soil elemental profile 661 662 663 Then, we applied ANOVA to find taxIDs with a significant partial regression coefficient for 664 precipitation. 665 666 A taxa ID was considered a "marker" if it had a relative abundance > 0.01 and a prevalence > 667 20%. We visualized the average standardized relative abundance (z-score) of the significant 668 taxa ID in a point plot using ggplot2 v3.5.1 package⁴⁵. 669 670 1.8.7 Enrichment of bacteria biological functions associated with precipitation gradients 671 To identify biological processes enriched within the microbial communities, the sequence reads 672 were assembled into contigs for each sample using metaFlye from the Flye v2.9 package⁵⁰ with 673 default mode. The contigs generated were then grouped and deduplicated using the dedupe.sh 674 tool in BBTools v38.76⁵¹ to eliminate redundancies. Next, we determined the relative abundance 675 of the contigs by mapping the reads from the samples to the contigs using minimap2 v2.17⁵², 676 and extracting the relative abundance counts using CoverM v0.6.1⁵³ in the 'contig' mode and 677 reads_per_base coverage method. Taxonomic classification of the contigs was performed using 678 the CAT v8.22 taxonomic classification pipeline⁵⁴. Subsequently, the contigs were filtered to 679 retain only bacteria sequences. DESeq2 v1.40.0⁴⁹ was used to determine the contig enrichment 680 profiles by fitting a GLM with the following design:

681

682

Abundance ~ Legacy + Biological Replicate

683 The low-precipitation soil versus the high-precipitation soil contrast was extracted from the fitted 684 model. Contigs meeting the criteria of an FDR-adjusted p-value (q-value) <0.05 and a 685 log₂-transformed fold change >2 were selected for further analysis. Open reading frames 686 encoded within the contigs were predicted using FragGeneScanRs v1.1.055 with default 687 settings. This was followed by functional annotation of the predicted proteins using the 688 eggNOG-mapper v2.1.956 pipeline with the eggNOG v5.0.2 database57 with Diamond v2.0.1158 689 and MMseqs259. The genes annotated with Gene Ontology (GO) classifications were 690 subsequently extracted, and a GO enrichment analysis focusing on biological processes was 691 conducted. This involved employing adaptive GO clustering in conjunction with Mann-Whitney 692 U testing, using the GO MWU tool⁶⁰, which evaluates the enrichment of each GO category 693 based on whether genes linked to the GO category are significantly clustered at either the top or 694 bottom of a globally ranked gene list. First, genes were ranked based on the signed 695 log₂-transformed fold change values. For each gene, any missing parental terms for specific GO 696 categories were then automatically added. Next, fully redundant categories (those containing 697 identical sets of genes), were collapsed into the more specific GO term. To further streamline 698 the analysis, highly similar categories were grouped using complete linkage clustering based on 699 the fraction of shared genes. We used default settings, where GO categories were merged if the most dissimilar pair within a group shared more than 75% of the genes in the smaller category. The merged group was named after the largest category. Significantly enriched and depleted GO categories were then determined by an adjusted *p*-value of <0.05. This approach simplified the GO hierarchy and addressed multiple testing which improved the statistical power of the GO rough enrichment analysis. The most prominent enriched and depleted GO categories shared across comparisons were visualized in ggplot2 v3.4.2 and coloured based on the square root transformed delta rank values (enrichment score) of the GO categories.

707 1.8.8 Analysis of genetic variation among bacterial lineages along the precipitation gradient 708 To assess genetic differences between bacteria lineages along the precipitation gradient, we 709 focused on 15 of the identified bacterial markers (Pseudomonas ID287, Salmonella ID28901, 710 Sorangium ID56, Bradyrhizobium ID722472, Luteitalea ID1855912, Bradyrhizobium ID1355477, 711 Flavisolibacter ID661481, Bradyrhizobium ID858422, Rubrobacter ID2653851, Bradyrhizobium 712 ID1437360, Candidatus Koribacter ID658062, Streptomyces ID1916, Klebsiella ID573, 713 Bradyrhizobium ID1325107, Edaphobacter ID2703788), as well as 18 additional abundant and 714 prevalent species (Rubrobacter ID49319, Bacillus ID1428, Bradyrhizobium ID1274631, Priestia 715 ID1404, Lacibacter ID2760713, Bradyrhizobium ID1325100, Candidatus Solibacter ID332163, 716 Burkholderia ID28450, Flavisolibacter ID1492898, Bacillus ID1396, Escherichia ID562, 717 Rhizobium ID384, Rubrobacter ID2653852, Microvirga ID2807101, Archangium ID83451, 718 Pseudomonas ID303, Paenibacillus ID1464, Nitrosospira ID1231) across the samples, as 719 proxies for the broader bacterial communities. These taxa were selected for their high genome 720 coverage across samples, enabling more precise allele frequency estimates. Reference 721 genomes for each species were retrieved from the NCBI Genome database, and the filtered 722 shotgun metagenomic reads were aligned to these genomes using minimap2 v2.17-r941⁵². 723 Alignments were sorted and indexed with SAMtools v1.1861, followed by variant calling using 724 BCFtools v1.18⁶². This process identified 23,197,278 sequence variants, which were then filtered using VCFtools v0.1.16⁶³, to retain only biallelic single nucleotide polymorphisms (SNPs) for further analysis. SNP filtering criteria included a variant quality score >20, a minor allele frequency (MAF) >0.01, <50% missing data, and a minimum sequencing depth of 10x in each sample. After filtering, 23,061 high-quality biallelic SNPs were retained. Genetic distances were computed using PLINK v1.90p⁶⁴, and reduced to two dimensions through classical multidimensional scaling with the stats v4.3.0 package. PCoA plots were created with ggplot2 v3.4.2⁴⁵, colored by soil type, precipitation levels and geographical region.

To identify genes potentially under selection across the precipitation gradient, we conducted a genetic-environment association (GEA) analysis. For this, SNPs were re-filtered using VCFtools v0.1.16⁶³ with the same criteria, but allowing <50% missing data and a minimum sequencing depth of 5x per sample. After filtering, 93,013 biallelic SNPs were retained. Subsequently, GEA analysis was performed using a general linear model in the rMVP v1.1.1 package⁶⁵, with native SNP data imputation, and average precipitation at each sampling location as the environmental variable. The genetic structure in the data was corrected using the first 10 principal components (PCs). Manhattan plots were generated using CMplot v4.5.1⁶⁶ and significant associations were identified using the permutation method within the rMVP package.

743 2. Conditioning phase: Soil drought legacy is resilient to short-term perturbations

744 2.1 Experimental design

732

742

The six soils collected from across the Kansas precipitation gradient, as described in materials 746 and methods 1.1, were used in this experiment. The conditioning perturbations imposed in 747 these experiments took place over approximately 20 weeks at the University of Kansas from 748 December 17th, 2020 to May 5th, 2021. Each of the six input soils remained independent

749 throughout the experiment. Mesocosms consisted of a 1:1 (v/v) mixture of field-collected soil to 750 sterile turface MVP (Turface Athletics, Buffalo Grove, IL). A total of 192 sterile 100 mL pots were 751 filled with the six soils and which were then randomly assigned to one of four conditions in a 752 fully-factorial design: with or without a host, and either water-stressed or well-watered. Half the 753 pots were planted with seedlings of the native prairie grass *Tripsacum dactyloides* (Eastern 754 gamagrass, cultivar "Pete"); the rest remained unplanted. These 24 treatment groups (6 soils X 755 2 water-stressed/well-watered X 2 planted/unplanted) each had *N*=8 replicates for a total of 192 756 experimental soils in pots. All mesocosms were allowed to adapt to their watering regimes in a 757 growth chamber set to a 12-hour day cycle, 27°C/23°C, and ambient humidity. Well-watered 758 control pots were watered every 1-2 days and water-stressed plants were watered every 3-5 759 days when plants displayed drought symptoms (e.g., leaf curling). All pots were fertilized with 35 760 mL of 1mL/L concentration of Bonide 10-10-10 plant food (Bonide Products LLC, Oriskany, NY) 761 on week 8 and week 12.

763 2.2 Sample collection

762

To characterize the baseline microbial communities going into the conditioning treatments, we sampled four replicates of each soil/treatment combination one week after beginning the experiment. To collect the samples, the top centimeter of soil was discarded and the remaining soil was homogenized to ensure even sampling of the top, middle, and bottom of the pot. Two grams of this homogenized soil were placed in a 15mL tube, flash-frozen in liquid nitrogen, and stored at -80°C for microbial DNA and RNA extraction. To characterize the effects of the four treatments on the microbial communities, we sampled all remaining replicates at the end of the 20-week conditioning phase. Soil samples were collected as described for the baseline communities, but an additional 6 g of homogenized soil was preserved at 4°C in 50 mL conical tubes for use as inocula in a downstream experiment. Additionally, for the planted pots, we

774 measured *T. dactyloides* shoot height before uprooting the plants. We collected samples of a 775 crown root from each plant (3 cm long each, beginning 2 cm from the base of the plant) and 776 stored them in 50% ethanol at 4°C for downstream laser ablation tomography analysis. The 777 remaining roots and shoots were dried in an oven at 225°C for 12 hours and then weighed 778 separately.

780 2.3 Changes in bacterial community structure associated with drought and well-watered 781 conditioning with and without a host.

782 2.3.1 DNA extraction

779

786

783 Total DNA was extracted from baseline and post-conditioning soil sub-samples using the DNA 784 Set for NucleoBond RNA Soil Kit (Macherey-Nagel, Düren, Germany) according to the 785 manufacturer's instructions.

787 2.3.2 Library preparation and sequencing

788 DNA sequencing libraries were prepared using the Rapid PCR Barcoding Kit (SQK-RPB004) 789 from Oxford Nanopore Technologies, UK, and sequenced on a FLO-MIN106 R9.4.1 flow cell 790 (Oxford Nanopore Technologies, UK) in a MinION (Oxford Nanopore Technologies, UK), with a 791 MinIT (Oxford Nanopore Technologies, UK) using MinKNOW v2.1.12⁶⁷ (Oxford Nanopore 792 Technologies, UK) as described in materials and methods section 1.6.

793 2.3.3 Sequence processing

794 Raw sequence data were demultiplexed and primer and barcode sequences were trimmed 795 using qcat v1.1.0 (Oxford Nanopore Technologies Ltd., UK). Reads with ambiguous barcode 796 assignments were excluded from further analysis. The reads were filtered with NanoFilt v2.8.0⁴⁰ 797 to discard low-quality sequences (Q-score <9) and sequences <100 bp. We used the Kraken

798 v2.1.2 pipeline⁴¹ for classifying the whole metagenome shotgun sequencing reads. The reads
799 were classified using the Kraken 2 archaea, bacteria, viral, plasmid, human, UniVec_Core,
800 protozoa and fungi reference database (k2_pluspf_20220607). To estimate relative
801 abundances, the Bracken v2.7 pipeline⁴² was applied to the classification results. Subsequently,
802 Pavian v1.0⁴³ facilitated the extraction of abundance and taxonomic tables. Functions in
803 phyloseq v1.44.0⁶⁸ with microbiome v1.22.0 and microbiomeutilities v1.0.17⁶⁹ were used to filter
804 the dataset and remove samples with low read depth (<1000 reads), remove unidentified taxa
805 and singletons, transform abundance values using rarefaction, subset and merge sample and
806 taxonomic groups and perform other data frame manipulations.

807 2.4 Plant biomass

809

822

808 Root and shoots were detached, dried in an oven at 225°C for 12 hours, and then weighed.

810 2.5 Root Laser Ablation Tomography (LAT) analysis

811 We collected samples of a crown root from each plant (3 cm long each, beginning 2 cm from the 812 base of the plant) and stored them in 50% ethanol at 4°C. The samples were shipped to the 813 University of Nottingham for downstream LAT analysis. Briefly, root segments were dehydrated 814 in 100% methanol for 48 hours, transferred to 100% ethanol for 48 hours, then dried with an 815 automated critical point dryer (CPD, Leica EM CPD 300, Leica Microsystem). Root anatomical 816 images were acquired using a laser ablation tomograph (LATScan, Lasers for Innovative 817 Solutions LLC). This utilises a combination of precise positioning stages with a guided pulsed 818 UV (355 nm) laser, to thermally vaporise thin sections of the root, and then to illuminate the 819 exposed surface. The tomograph was retrofitted with a microscopic imaging system, using a 820 machine vision camera unit (Model Grasshopper3, FLIR) and infinity-corrected long working 821 distance magnifying objectives (Mitutoyo (UK) Ltd.)

2.6 Changes in gamagrass morphological features under drought and well-water conditioning
1.8 To identify morphological features in gamagrass that changed with the conditioning (drought and
1.8 well-watered) treatments, we used Image J to quantify the average area aerenchyma, number
1.8 aerenchyma, number metaxylem, cortical cell layers, total area metaxylem, average area
1.8 metaxylem, stele min. diameter, stele max. diameter, stele area, stele perimeter, total area
1.8 aerenchyma, adjusted cortex area, root min. diameter, cortex min. diameter, root max. diameter,
1.8 cortex max. diameter, total perimeter, cortex perimeter, root total area, and cortex area.
1.8 Additionally, we quantified the root-shoot ratio, number of leaves, number of green leaves, root
1.8 mass, shoot mass, and shoot height.

833 2.7 Metatranscriptome analysis

834 2.7.1 RNA isolation

832

839

Total RNA was extracted from baseline and post-conditioning soil sub-samples with the NucleoBond RNA Soil Kit (Macherey-Nagel, Düren, Germany) using the manufacturer's instructions. Isolated RNA was treated with Turbo DNA-free (Applied Biosystems, Waltham, MA, USA) to remove contaminating DNA, following the manufacturer's instructions.

840 2.7.2 Library preparation and sequencing

RNA libraries were prepared using 1 μg of total RNA according to established protocols with modifications. Briefly, poly(A)-tail-containing RNA was removed from the RNA samples using Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences, Marlborough, MA, USA) and then the samples were subjected to ribodepletion with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA samples using the NA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA samples using the NA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA samples using the NA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA samples using the NA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was removed from the RNA samples using the NA protocols with the NEBNext rRNA Depletion Kit (New England Biolabs, MA, USA), following the manufacturers' instructions.

848 cDNA synthesis was performed using a mixture of 0.8 µL reverse transcriptase, 2 µL 100 mM 849 DTT, 0.4 μL 25 mM dNTP, 0.5 μL RNAseOUT (40U/μL), 10 μL RNA, and 6.3 μL Milli-Q water. 850 The reactions were incubated at 25°C for 10 min, 42°C for 50 min, and 70°C for 15 min. 851 Second-strand cDNA synthesis was performed by adding a master mix of 18.4 µL Milli-Q water, 852 5 μL 10X second strand buffer, 1.2 μL 25 mM dNTP, 0.4 μL RNAse H (5U/μL), and 5 μL DNA 853 Pol I (10U/µL) to the sample, followed by incubation at 16°C for 1 h. The samples were then 854 purified using Agencourt AMPure XP beads. Subsequently, the libraries were end-repaired with 855 a mixture of 30 µL sample, 2.5 µL of 3 U/µL T4 DNA polymerase, 0.5 µL of 5 U/µL Klenow DNA 856 polymerase, 2.5 μL of 10 U/μL T4 PNK, 5 μL of 10X T4 DNA ligase buffer with 10 mM ATP, 0.8 857 μL of 25 mM dNTP mix, and 8.7 μL Milli-Q water, incubated at 20°C for 30 min, and purified 858 again using Agencourt AMPure XP beads. Following this, the RNA libraries were adenylated in 859 a mix containing 34 μL of the end-repaired sample, 3 μL of 5 U/μL Klenow exo-, 5 μL of 10X 860 Enzymatics Blue Buffer, 1 µL of 10 mM dATP, and 9 µL of Milli-Q water. The mixture was 861 incubated at 37°C for 30 min, followed by 70°C for 5 min, and then purified using Agencourt 862 AMPure XP beads. Individual samples were indexed through ligation using a mix of 10.25 µL 863 sample, 1 µL of 600 U/µL T4 DNA ligase, 12.5 µL of 2x Rapid Ligation Buffer, and 1.25 µL of 2.5 864 µM indexing adapter from the KAPA Dual-Indexed Adapter Kit (Kapa Biosystems, MA, USA). 865 The samples were incubated at 25°C for 15 min, followed by the addition of 5 µL of 0.5 M EDTA 866 pH 8. The libraries were purified twice with Agencourt AMPure XP beads. The libraries were 867 enriched in a reaction containing 20 µL sample, 25 µL of 2X KAPA HiFi HS Mix (Kapa 868 Biosystems, MA, USA), 2.5 µL of 5 µM I5 primer, and 2.5 µL of 5 µM I7 primer. The reactions 869 were initially heated to 98°C for 45 seconds, followed by 14 cycles of 98°C for 15 seconds, 60°C 870 for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C for 1 minute. The 871 resulting RNA libraries were purified using Agencourt AMPure XP beads, quantified on a Qubit 872 4 Fluorometer (Thermo Fisher Scientific, USA), and the library size was assessed using High 873 Sensitivity D1000 ScreenTape on the Agilent 4200 TapeStation (Agilent Technologies, Santa 874 Clara, CA). Equimolar quantities of individual barcoded RNA libraries were pooled in a 875 randomized manner and shipped on dry ice to Beijing Genomics Institute (BGI, Shenzhen, 876 China). Each library pool was sequenced on an MGI Tech MGISEQ-2000 sequencing platform 877 to generate a minimum of 10 million 100 bp paired-end reads per sample.

879 2.7.3 Taxonomic classification of transcripts

Cutadapt v4.6⁷⁰ was used to remove primer and barcode sequences and low-quality sequences from the paired-end reads of the sequenced RNA libraries. To identify taxa with enriched gene expression activity, the reads were classified using the Kraken v2.1.2 pipeline⁴¹ with the archaea, bacteria, viral, plasmid, human, UniVec_Core, protozoa and fungi reference database (k2_pluspf_20220607), and the Bracken v2.7 pipeline⁴² was applied to the classification results to estimate the relative abundances. The counts table was generated from Pavian v1.0⁴³. Data filtering and statistical analysis were then performed as before using phyloseq v1.44.0⁶⁸ with microbiome v1.22.0⁷¹ and microbiomeutilities v1.0.17⁶⁹.

889 2.8 Data Analysis

878

888

890 2.8.1 Changes in bacterial community structure associated with drought and well-watered 891 conditioning with and without a host 892 To assess the alpha diversity across the samples, we calculated the Shannon Diversity Index 893 using phyloseq v1.44.0⁶⁸. We used ANOVA to test for significant differences in Shannon 894 Diversity indices between groups and means were separated using Tukey's honestly significant 895 difference (HSD) test from the agricolae v1.3.5 R package⁷². For beta diversity, Bray-Curtis 896 dissimilarity matrices were calculated using phyloseq v1.44.0 and the variance explained by 897 legacy, conditioning, and host were estimated by performing permutational multivariate analysis 898 of variance (PERMANOVA) using the adonis2 function in vegan v2.6.4 R package⁴⁶.

899 Constrained ordination of beta-diversity was plotted using canonical analysis of principal 900 coordinates (CAP) based on Bray-Curtis dissimilarity matrices calculated with vegan v2.6.4. We 901 visualized differences with the CAP analysis, using the following models:

```
~ legacy + Condition (conditioning + host + biological replicate)
```

~ conditioning + Condition (legacy + host + biological replicate)

~ host + Condition (legacy + conditioning + biological replicate)

903

905

911

912

922

The relative abundance of taxa was plotted as a stacked bar representation using phyloseq v1.44.0. The tax_glom function in phyloseq v1.44.0 was used to agglomerate taxa, and the aggregate_rare function in microbiome v1.22.0 was used to aggregate rare groups. We used DESeq2 v1.40.0⁴⁹ to calculate the enrichment profiles by fitting a generalized linear model (GLM) with the following design:

Abundance ~ Legacy + Conditioning + Biological Replicate

913 We extracted the following comparisons from the fitted model: wet soil legacy with watered 914 conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil 915 legacy (baseline), dry soil legacy (baseline) vs wet soil legacy (baseline), dry soil legacy with 916 watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning 917 vs wet soil legacy (baseline). Taxa were considered significant if they had an FDR-adjusted 918 p-value (q-value) <0.05. The results of the GLM analysis were rendered in heatmaps, coloured 919 based on the log₂-transformed fold change output by the GLM. Significant differences between 920 comparisons with a q-value <0.05 with log₂-transformed fold change >2 were highlighted with 921 black squares.

923 Relative abundances of the taxonomic markers were extracted, and an ANOVA was performed 924 to assess significant differences between treatment groups. Tukey's Honest Significant 925 Difference (HSD) test, implemented using the agricolae v1.3.5 R package⁷², was used for 926 post-hoc pairwise comparisons. To further explore the effects of watering and drought 927 treatments, with and without a host, on the relative abundances of the taxonomic markers, we 928 subset the data and applied a generalized linear model (GLM) using DESeq2 v1.40.0⁴⁹. The 929 model was structured as follows:

Abundance ~ Legacy + Conditioning + Host + Biological Replicate

We then extracted the following comparisons from the fitted model for each soil legacy: water conditioning vs baseline, drought conditioning vs baseline, water conditioning with host vs baseline, drought conditioning with host vs baseline. Markers were considered significant if the passible FDR-adjusted p-value (q-value) was < 0.05. Results from the GLM analysis were visualized in a heatmap, with colours representing log2-transformed fold changes. Comparisons showing significant differences (q-value < 0.05 and log2-transformed fold change > 2) were highlighted with black squares.

940 2.8.2 Gene Ontology (GO) term enrichment analysis

930

931

939

948

949

To identify enriched biological processes within the microbial communities, sequence reads from individual samples were assembled into contigs using metaFlye from the Flye v2.9 package⁵⁰ with default parameters, as described in Methods Section 1.8.7. Relative abundance counts were then determined, and the resulting contigs were subjected to taxonomic classification and filtering, also as outlined in Methods Section 1.8.7. We used DESeq2 v1.40.0⁴⁹ to determine the bacterial contig enrichment profiles by fitting a generalized linear model (GLM) with the following design:

Abundance ~ Legacy + Conditioning + Biological Replica

950 We extracted the following comparisons from the fitted model: wet soil legacy with watered 951 conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil 952 legacy (baseline), dry soil legacy (baseline) vs wet soil legacy (baseline), dry soil legacy with 953 watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning 954 vs wet soil legacy (baseline). Contigs meeting the criteria of an FDR-adjusted p-value (q-value) 955 < 0.05 and a \log_2 -transformed fold change > 2 were selected. Open reading frames were 956 predicted and functionally annotated, and genes with GO classifications were subjected to GO 957 enrichment analysis with the GO_MWU tool⁶⁰.

958

974

959 2.8.3 Changes in gamagrass morphological features under drought and well-water condition 960 For each root feature identified, we used ANOVA to test for significant differences between 961 groups and means were separated using Tukey's honestly significant difference (HSD) test from 962 the agricolae v1.3.5 R package⁷² Subsequently, the feature values were normalized using the 963 rescale function from the scales v1.2.1 R package. The mean normalized feature values were 964 then visually represented on a heatmap using ggplot2 v3.4.2. Subsequently, Pearson correlation 965 coefficients between these features and corresponding p-values were computed using the rcorr 966 function from the Hmisc v5.0.1 package⁷³. The results of the correlation analysis were 967 graphically presented using ggplot2 v3.4.2, where the colour of the plots reflected the 968 correlation coefficient values. Significant correlations (p <0.05) were emphasized with black 969 squares on the plots. Furthermore, the coefficient of variation for the feature values was 970 calculated and depicted using ggplot2 v3.4.2. The three plots were integrated based on the 971 hierarchical clustering of the Pearson correlation coefficients of the features. The clustering 972 employed the ward.D2 method within the hclust function in R, utilizing Euclidean distances 973 calculated using the dist function.

975 2.8.4 Metatranscriptome sequence analysis

983

985

990

976 To assess transcriptional differences in the activity of the bacterial community, Bray-Curtis 977 dissimilarity matrices were calculated. The variance explained by legacy, conditioning, and host 978 was estimated using permutational multivariate analysis of variance (PERMANOVA) with the 979 adonis2 function from the vegan v2.6.4 R package⁴⁶. Beta-diversity patterns were visualized 980 through constrained ordination using canonical analysis of principal coordinates (CAP). We 981 applied CAP analysis to visualize differences using the following models:

```
~ Legacy + Condition (conditioning + host + biological replicate)
```

~ Conditioning + Condition (legacy + host + biological replicate)

~ Host + Condition (legacy + conditioning + biological replicate)

986 Transcriptional activity among taxa was displayed as a stacked bar plot using phyloseq v1.44.0. 987 We employed DESeq2 v1.40.0⁴⁹ to calculate enrichment profiles by fitting a generalized linear 988 model (GLM) with the following design:

989 Abundance ~ Legacy + Conditioning + Biological Replicate

From the fitted model, we extracted the following comparisons: wet soil legacy with watered conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil legacy (baseline), dry soil legacy with watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning vs wet soil legacy (baseline). Taxa were considered differentially abundant if the FDR-adjusted p-value (q-value) was <0.05. Results from the GLM analysis were visualized in heatmaps, where colours represent log2-transformed fold changes. Comparisons showing significant differences (q-value <0.05 and log2-transformed fold change >2) were highlighted with black squares.

1001 Additionally, high-quality filtered reads of the transcriptome were de novo assembled into a 1002 reference metatranscriptome using Trinity v2.15.174 with default parameters. Open reading 1003 frames in transcripts were predicted with TransDecoder v5.7.175 with default settings. Functional 1004 annotation of the predicted proteins was performed using the eggNOG-mapper v2.1.9⁵⁶ pipeline, 1005 utilising the eggNOG v5.0.2 database⁵⁷ with Diamond v2.0.11⁵⁸ and MMsegs2⁵⁹. The taxonomic 1006 classification of transcripts was conducted using the CAT v8.22 taxonomic classification 1007 pipeline⁵⁴. Sequence reads were further filtered using SortMeRNA v4.3.6⁷⁶ with the 1008 smr v4.3 default db.fasta database to remove residual amplified rRNA sequences. Transcript 1009 quantification analysis was performed using Salmon v1.10.0 in the mapping-based mode with 1010 the de novo assembled reference metatranscriptome. Subsequently, the transcript-level 1011 abundance estimates from salmon were extracted for the identified transcripts using the R 1012 package tximport v1.28.044 as raw counts in default setting⁷⁷. DESeg2 v1.40.0⁴⁹ was utilized to 1013 determine the bacterial transcript enrichment profiles by fitting a generalised linear model (GLM) 1014 as described before. Genes meeting the criteria of an FDR-adjusted p-value (q-value) <0.05, a 1015 log₂-transformed fold change >2, and had GO classifications, were subjected to GO enrichment 1016 analysis with the GO MWU tool⁶⁰.

1018 2.8.5 Analysis of genetic variation among bacterial lineages

1000

1017

1019 Filtered shotgun metagenomic reads were aligned to the reference genomes of 33 selected 1020 taxa, including 22 identified bacterial markers and 11 additional abundant and prevalent species 1021 (see Supplementary Materials and Methods 1.8.8), using Minimap2 v2.17-r941⁵². The resulting 1022 alignments were sorted and indexed with SAMtools v1.18⁶¹. Variant calling was performed using 1023 BCFtools v1.18⁶², and variants were filtered with VCFtools v0.1.16⁶³. Filtering criteria included a 1024 variant quality score >20, a minor allele frequency (MAF) >0.01, <50% missing data, and a

1025 minimum sequencing depth of 10x in each sample. After filtering, a total of 8,293 high-quality 1026 biallelic SNPs were available for further analysis. To assess genetic variation within and 1027 between groups, we analysed molecular variance (AMOVA) using poppr v2.9.6⁷⁸. The 1028 significance of the AMOVA results was determined with a permutation test using the randtest 1029 function in ade4 v1.7.22⁷⁹. To determine the extent of genetic differentiation between groups, we 1030 calculated the Fixation index (FST) values using the hierfstat v0.5.1180 package. Principal 1031 coordinates analysis (PCoA) plots were generated as previously described in Supplementary 1032 Materials and Methods 1.8.8, and coloured to reflect soil legacy, drought/ well-watered and host/ 1033 no-host treatments. To identify genes associated with soil legacy, we conducted a genome-wide 1034 association study (GWAS). SNPs were re-filtered using VCFtools v0.1.1663, applying the same 1035 criteria but allowing for up to 70% missing data and a minimum sequencing depth of 3x in each 1036 sample. GWAS was conducted using a general linear model in the rMVP v1.1.1 package⁶⁵. 1037 Associations were identified by comparing bacterial lineages from dry legacy soil to those from 1038 wet legacy soil. Genetic structure was accounted for by incorporating the first 10 principal 1039 components. Significant associations were identified through permutation testing within the 1040 rMVP package, and Manhattan plots were generated using CMplot v4.5.166.

1042 3. Test phase: Effects of soil microbiome legacy on plant tolerance to drought

1043 3.1 Experimental design and non-destructive phenotypic measurements

1041

1044 At the end of the "Conditioning Phase", homogenized soil was collected from each pot by 1045 discarding the top one centimeter of soil, mixing the soil in the pot with a clean plastic spatula, 1046 and placing six grams in a sterile 50 mL conical tube. For rhizosphere samples (i.e., planted 1047 pots), plants were gently pulled from the pots and the soil particles adhered to and within the 1048 root bundle were shaken into a sterile 50 mL conical tube. The rhizosphere particles were 1049 homogenized with a clean plastic spatula and particles were poured out of the tube until six 1050 grams remained. Soil and rhizosphere samples were stored at 4°C overnight.

1051

1060

1076

1052 Soil microbes were extracted from the 6 g soil or rhizosphere sample the following day by 1053 adding 25 mL of autoclaved 1X PBS with 0.0001% Tween-89 to the 50 mL tube containing the 1054 sample. Tubes were vigorously shaken to mix and break up large soil aggregates. Large 1055 particles were allowed to settle to the bottom of the tube; the supernatant was then filtered 1056 through autoclaved Miracloth (Sigma-Aldrich) into a new sterile 50 mL conical tube. Filtered 1057 samples were then centrifuged at 3600g for 25 min at 4°C. The supernatant was discarded, and 1058 the microbial pellet was resuspended in 6 mL of 1X PBS buffer using a vortex. The resuspended 1059 pellets were stored at 4°C until used for inoculations a few hours later.

1061 As stated in section 2.1, the conditioning phase had 24 treatment groups with eight replicates of 1062 each treatment (192 pots total). For the test phase, microbial extracts from all eight replicates of 1063 each group (plus sterile buffer-only control inoculums) were each inoculated into a pot planted 1064 with gamagrass (N=200) and a pot planted with maize (N=200) that were then maintained under 1065 watered-stress (drought) conditions. Furthermore, four of the eight replicate extracted microbial 1066 inoculants (as well as four sterile buffer-only control inoculums) were each inoculated into an 1067 additional gamagrass planted (N=100) and maize planted (N=100) pots, which were then 1068 maintained under well watered control conditions. This makes for a total of N=600 plants at the 1069 start of the test phase. Throughout the experiment, nine water-stressed maize and five 1070 well-watered maize were lost (no gamagrass died). Therefore, phenotype measurements were 1071 completed on a total of N=586 plants. We chose this design because resource and space 1072 limitations prevented us from testing all 192 inocula under both drought and control conditions, 1073 and we were primarily interested in microbial effects on plant function under drought; we 1074 therefore opted to maximize our power to test for differences among the inocula under water 1075 limitations.

1077 To create the inoculum, the resuspended pellet was inverted three times to mix and 1 mL of the 1078 sample was added to 100 mL of sterile 0.5X MS liquid medium, for a microbial titer equivalent to 1079 0.01 g soil per mL. The "mock inoculation" controls were created by substituting 1 mL of sterile 1080 PBS for the resuspended microbial pellet. Finally, 25 mL of this suspension was inoculated onto 1081 the soil surface of each Test Phase pot. Thus, each microbial community extracted from one of 1082 the 192 conditioning phase pots was used to inoculate either two or four plants in the Test 1083 Phase. To maintain statistical independence of the experimental replicates from the conditioning 1084 phase, no pooling was performed.

1086 Before inoculation, pots were planted with 3-4-day old gamagrass or maize germinants.

1087 Gamagrass seeds were soaked in 3% hydrogen peroxide for 24 hours and germinated in seed

1088 trays filled with sterile clay. Maize seeds were soaked in 70% ethanol for 3 minutes, then soaked

1089 in 5% NaClO on a rotator for 2 min, and then rinsed with sterile DI water three times. Treated

1090 maize seeds were germinated on sterile damp paper towels inside sealed plastic bags.

1085

1091

1092 Pots were fully randomized and, prior to inoculation, were filled with a homogenized 5:1 (w/w) 1093 mixture of all-purpose sand (TechMix All-purpose 110241) and calcined clay (Pro's choice rapid 1094 dry) that had been sterilized by autoclaving on a one-hour liquid cycle. Pots were autoclaved on 1095 a 30 min liquid cycle and then filled with the sand:clay mixture, leaving one inch of room at the 1096 top of the pot. To help keep the mixture from falling out of the drain holes in the bottom of the 1097 pots, a sterile filter paper was shaped into a cone, pushed to the bottom of the pot, and a sterile 1098 marble was used to weigh the paper down. This effectively blocked the substrate, but still 1099 allowed water to exit the drainage holes. Plants were grown under 12-h days, 27°C/23°C 1100 (day/night), and ambient humidity, with the light setting set to 1, which is equivalent to 312 1101 μmol/m²s. Three-day old gamagrass and maize leaf photosynthetic rates and gas exchange 1102 were measured using the LI-6800 (LI-COR, Lincoln, NE, USA), across 3 days for each host.

1103 The LI-6800 aperture was 2 cm, warmup tests were performed at the start of each 1104 measurement session, the Fluorometry was set to "on", the APD_Leaf to set to 1.5 kpa. The 1105 newest fully emerged leaf, which was most commonly the 4th leaf, on each plant was clamped 1106 in the chamber and allowed to stabilize until all measurements were stable for at least 30 secs 1107 before the measurements were recorded, which took approximately five minutes per leaf. 1108 Similarly, the leaf chlorophyll content was also measured using the MC-100 Chlorophyll 1109 Concentration Meter (apogee instruments, Logan, UT, USA).

Maize plants were sampled four weeks after planting and gamagrass was sampled five 1111 weeks after planting. In total, we measured 300 T. dactyloides plants (200 droughted, 100 1112 well-watered) and 286 maize plants (191 droughted, 95 well-watered).

1114 At the end of the Test Phase, uprooted plants were gently shaken to remove the soil attached to 1115 roots, prior to the collection of phenotypic, transcriptomic, and microbiome data as described 1116 below. One crown root was cut off with a ceramic blade and placed in a 1.7 mL tube on dry ice 1117 for downstream DNA extraction for 16S rRNA gene sequencing. Another crown root (0.15 - 0.2 1118 g) was cut off with a ceramic blade, placed in a 1.7 mL tube, and flash frozen in liquid nitrogen 1119 for downstream RNA extraction. In between plants, the ceramic blade, plastic tweezers, plastic 1120 cutting board, and gloves were cleaned with 30% bleach. All samples were held on dry ice and 1121 then transferred to a -80°C freezer for storage. Next, the root and shoot were separated with a 1122 ceramic blade. Three cm of crown root beginning ~2 cm from the base of the shoot was cut with 1123 a ceramic blade and submerged in 50% EtOH for LAT analysis. The rest of the root system was 1124 submerged in 70% EtOH in a 50 mL centrifuge tube for downstream root architecture scanning. 1125 Shoot height and number of leaves were recorded. Shoots were placed in individual paper 1126 bags, dried in an oven at 225°C for 12 hours, and the shoot dry weight was recorded.

1128 3.2 Root system architecture and root biomass analyses

1113

1127

1129 A Perfection V600 flatbed scanner (Epson, Nagano, Japan) was used to scan intact maize and 1130 gamagrass root systems collected from Test Phase plants. The scanner was set to professional 1131 mode, reflective, document, black and white mode, 600 dpi, with a threshold of 55. A clear 1132 plastic tray filled with clean water was placed on the scanning bed. Each root system was 1133 placed in the tray with water and the tangled roots were gently pulled apart using plastic 1134 tweezers until they were no longer overlapping. A small amount of fine fibrous roots that fell off 1135 during this process were pushed to the corner of the tray and not included in the root cluster 1136 scan. The scanned root images were then analyzed using Rhizovision Explorer software v. 1137 2.0.381 in "whole root" mode and converted to 600 dpi. The region of interest tool was used to 1138 outline the main root bundle before pressing play to collect feature measurements. Finally, after 1139 collection of root system architecture data, the roots were dried in an oven at 225°C for 12 hours 1140 and then weighed.

1142 3.3 Root Laser Ablation Tomography (LAT) analysis

1141

1151

1143 We collected one crown root from each plant (3 cm long each, beginning 2 cm from the base of 1144 the plant) and stored them in 50% ethanol at 4°C. These samples were shipped to the 1145 University of Nottingham for LAT analysis. Briefly, root segments were dried with an automated 1146 critical point dryer (CPD, Leica EM CPD 300, Leica Microsystem). Then, samples were ablated 1147 by a laser beam (Avia 7000, 355 nm pulsed laser) to vaporize the root tissue at the camera focal 1148 plane ahead of an imaging stage and cross-sectional images were taken using a Canon T3i 1149 camera with a 5×micro-lens (MP-E 65 mm) on the laser-illuminated surface. ImageJ software 48 1150 was used to measure root anatomical traits captured in the high-quality LAT images.

1152 3.4 Leaf ionome and shoot biomass analyses

1153 The elemental profiles of the shoots were measured using Inductively Coupled Plasma Mass
1154 Spectrometry (ICP-MS). The shoot biomass from all uprooted plants was dried in an oven at

1155 225°C for 12 h and then weighed. The dried biomass samples were cut into small pieces using 1156 a clean ceramic scalpel and placed in 5 mL Eppendorf tubes with 3 zirconium oxide beads. 1157 Shoots were pulverized using a Tissue Lyzer II (Qiagen) using 2 cycles of 60 seconds at the 1158 frequency of 30 s⁻¹. Next, 5-10 mg of pulverized shoot samples were weighted on a Mettler 1159 five-decimal analytical scale, and 1-3 mL (depending on the sample dry weight) of concentrated 1160 trace metal grade nitric acid Primar Plus (Fisher Chemicals) was added to each tube. Prior to 1161 the digestion, 20 µg/L of Indium (In) was added to the nitric acid as an internal standard to 1162 assess putative errors in dilution or variations in sample introduction and plasma stability in the 1163 ICP-MS instrument. The samples were then digested in DigiPREP MS dry block heaters (SCP 1164 Science; QMX Laboratories) for 4 h at 115°C. After cooling down, the digested samples were 1165 diluted to 10-30 mL (depending on the volume of the nitric acid added) with 18.2 MΩcm Milli-Q 1166 Direct water. The elemental analysis was performed using an ICP-MS, PerkinElmer NexION 1167 2000 equipped with Elemental Scientific Inc 4DXX FAST Dual Rinse autosampler, FAST valve 1168 and peristaltic pump. The instrument was fitted with a PFA-ST3 MicroFlow nebulizer, baffled 1169 cyclonic C3 high sensitivity glass spray chamber cooled to 2 °C with PC3X Peltier heated/cooled 1170 inlet system, 2.0 mm i.d. quartz injector torch and a set of nickel cones. Twenty-four elements 1171 were monitored including the following stable isotopes: ⁷Li, ¹¹B, ²³Na, ²⁴Mg, ³¹P, ³⁴S, ³⁹K, ⁴³Ca, 1172 ⁴⁸Ti, ⁵²Cr, ⁵⁵Mn, ⁵⁶Fe, ⁵⁹Co, ⁶⁰Ni, ⁶³Cu, ⁶⁶Zn, ⁷⁵As, ⁸²Se, ⁸⁵Rb, ⁸⁸Sr, ⁹⁸Mo, ¹¹¹Cd, ²⁰⁸Pb and ¹¹⁵In. 1173 Helium was used as a collision gas in Kinetic Energy Discrimination mode (KED) at a flow rate 1174 of 4.5 mL/min while measuring Na, Mg, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Pb to 1175 exclude possible polyatomic interferences.

1177 The remaining elements were measured in the standard mode. The instrument Syngistix™
1178 software for ICP-MS v.2.3 (Perkin Elmer) automatically corrected any isobaric interferences. The
1179 ICP-MS measurements were performed in peak hopping scan mode with dwell times ranging
1180 from 25 to 50 ms depending on the element, 20 sweeps per reading and three replicates. The

1176

1181 ICP-MS conditions were adjusted to an RF power of 1600 Watts and an auxiliary gas flow rate 1182 of 1.20 L/min. Torch alignment, nebuliser gas flow and quadrupole ion deflector (QID) voltages 1183 (in standard and KED mode) were optimized before analysis for highest intensities and lowest 1184 interferences (oxides and doubly charged ions levels lower than 2.5%) with NexION Setup 1185 Solution containing 1 µg/L of Be, Ce, Fe, In, Li, Mg, Pb and U in 1% nitric acid using a standard 1186 built-in software procedure. To correct for variation between and within ICP-MS analysis runs, 1187 liquid reference material was prepared using pooled digested samples and run after the 1188 instrument calibration and then after every nine samples in all ICP-MS sample sets. Equipment 1189 calibration was performed at the beginning of each analytical run using seven multi-element 1190 calibration standards (containing 2 µg/L In internal standard) prepared by diluting 1000 mg/L 1191 single-element standards solutions (Inorganic Ventures; Essex Scientific Laboratory Supplies 1192 Ltd) with 10% nitric acid. As a calibration blank, 10% nitric acid containing 2 µg/L In internal 1193 standard was used, and it was run throughout the analysis. Sample concentrations were 1194 calculated using the external calibration method within the instrument software. Further data 1195 processing, including the calculation of final element concentrations, was performed in Microsoft 1196 Excel.

1198 3.5 Crown root transcriptomics

1197

1203

1199 3.5.1 RNA extraction and sequencing

1200 For RNA extractions and sequencing, flash-frozen crown roots were freeze-dried for 48 hours
1201 and finely ground with pellet pestles. The RNA extraction protocol was carried out according to
1202 the NucleoSpin RNA Plant kit (Macherey-Nagel, Düren, Germany).

1204 For the 132 maize samples, remnant DNA was removed from purified RNA using the DNA-Free 1205 kit (Invitrogen, Carlsbad, CA, USA). RNA-seq libraries were prepared using the QuantSeq 3'

1206 mRNA-Seq V2 kit with unique dual sequences and the unique molecular identifier (UMI) module 1207 (Lexogen, Vienna, Austria) following the manufacturer's recommendations. Libraries were 1208 pooled at equimolar concentrations and then sequenced (2x150bp, but reverse reads were not 1209 used) on a NovaSeq S4 flow cell (Illumina, San Diego, CA, USA) along with a 25% PhiX 1210 spike-in. Maize RNA-seq library preparations and sequencing were performed by the RTSF 1211 Genomics Core at Michigan State University. For the 132 *T. dactyloides* samples, RNA-seq 1212 libraries were prepared using the NEBNext Ultra II Directional Library Kit with the oligo-dT 1213 magnetic isolation module (New England Biolabs, Ipswich, MA, USA) and sequenced on the 1214 Illumina NovaSeq 6000 platform at the Genomic Sciences Laboratory at North Carolina State 1215 University to generate a minimum of 40M read pairs (2x150bp) per sample.

1216 3.5.2 Sequence processing

1228

1217 For the maize sequence reads, UMIs were removed from all sequences and added to the read 1218 headers using UMI-tools⁸². Next, cutadapt version 4.2⁷⁰ was used to remove the first four bases 1219 of each read, remove poly-A tails (if present), remove spurious poly-G runs using the 1220 --nextseq-trim=10 parameter, and remove adapter sequences. Reads that were <10 bp long or 1221 that aligned to maize rRNA gene sequences were removed; the remaining reads were aligned 1222 to the maize reference genome B73 RefGen_v5⁸³ using HISAT2 version 2.2.1⁸⁴. Aligned reads 1223 were converted to BAM format, sorted, and indexed using samtools version 1.9⁶¹. We then used 1224 UMI-tools⁸² to de-duplicate reads that both shared a UMI and had identical mapping 1225 coordinates. Finally, we used the FeatureCounts function of the subread package version 2.0.5⁸⁵ 1226 with the maize genome annotation version Zm00001eb.1 and parameters -O --fraction -M 1227 --primary -g ID -t gene to generate a table of transcript counts.

1229 For the *T. dactyloides* sequence reads, we first used cutadapt to remove NEBNext adapter 1230 sequences, poly-A tails, spurious poly-G runs, and low-quality tails using the -q 20,20 parameter

1231 and other default parameters. The cleaned reads were aligned to the T. dactyloides reference 1232 genome (Td-KS B6 1-REFERENCE-PanAnd-2.0a⁶¹ using HISAT2. The alignments were 1233 name-sorted so that mate-pairs could be fixed using the fixmate function of samtools⁶¹, and then 1234 re-sorted based on coordinates, de-duplicated, and converted to indexed BAM files using the 1235 same software. Finally, a table of transcript expression estimates was generated using the 1236 FeatureCounts function of the subread package with parameters -p -O --fraction -M --primary -q Т. dactyloides 1237 ID -t gene and the genome annotation version 1238 Td-KS B6 1-REFERENCE-PanAnd-2.0a Td00002ba.2.

1239 3.5.3 Statistical analyses

1249

1254

Because the maize and *T. dactyloides* RNA-seq datasets were generated using different approaches (3' tag sequencing vs. full-length sequencing, respectively) we analyzed them in parallel rather than comparing them directly. For each species, we used DESeq2⁴⁹ to identify genes that were differentially expressed between plants inoculated with microbiomes from a low-precipitation climate ("dry legacy") vs. those inoculated with microbiomes from a high-precipitation climate ("wet legacy"). A single negative binomial model with default parameters was used to estimate log₂-fold changes in gene expression due to inoculum legacy, while also controlling for the other experimental factors, using the model:

1248 Counts ~ Legacy + ConditioningPhaseWater + ConditioningPhaseHost + TestPhaseWater

1250 Statistical support was obtained using the Wald test with Benjamini-Hochberg FDR correction.

1251 All available samples were included in each analysis; thus, these results should be interpreted

1252 as the gene expression response to microbiome precipitation legacy, averaged across all levels

1253 of the other experimental factors.

1255 In addition, we investigated whether plants' gene expression responses to limited *vs.* ample 1256 water during the Test Phase were affected by inoculum precipitation legacy. To do so, we used 1257 DESeq2 to fit a model with the formula:

Counts ~TestPhaseWater*Legacy

1258

1259

1266

1279

1280

1260 Then, we extracted the estimated \log_2 -fold changes due to acute drought (relative to 1261 well-watered conditions) for both dry-legacy-inoculated and wet-legacy-inoculated plants. We 1262 inferred a meaningful interaction between these variables when the 95% confidence intervals of 1263 the two drought-induced \log_2 -fold changes did not overlap at all. These interacting genes are 1264 candidates for linking real-time plant drought response to the microbiome's historical 1265 environmental conditions.

1267 Finally, we conducted a mediation analysis to determine whether the *T. dactyloides* genes that 1268 were sensitive to inoculum legacy were implicated in phenotypic responses to subsequent acute 1269 drought. A gene was considered legacy-sensitive if its expression was significantly affected by 1270 the main effect of inoculum legacy, or if it was affected by the interaction between inoculum 1271 legacy and test phase drought treatment, as described above. We summarized expression 1272 patterns of this subset of genes (normalized as transcripts per million, calculated using the full 1273 set of expressed genes) using non-metric multidimensional scaling of the Bray-Curtis distances 1274 among all *T. dactyloides* plants, which resulted in two axes of variation: MDS1 and MDS2. Next, 1275 we used the mediation package in R⁸⁶ to compare the direct effects of test phase drought 1276 treatment on each focal plant trait (see section 3.7.1. *Plant trait feature selection*) to the indirect 1277 effects of the drought treatment mediated through MDS1 and MDS2. Each mediation analysis 1278 used the linear models:

Trait value ~ MDS + Test phase drought treatment

MDS ~ Test phase drought treatment

where MDS represents the "site score" of each individual plant on either MDS1 or MDS2.

Separate models were fit to test the potential roles of MDS1 and MDS2 as mediator variables;

however, a follow-up analysis using both MDS1 and MDS2 as simultaneous mediators,

implemented in lavaan⁸⁷, yielded equivalent conclusions.

1286 3.5.4 Gene annotation

1285

1299

1287 We downloaded maize and eastern gamagrass genome assemblies and annotations from 1288 MaizeGDB^{83,88}. Functional information for maize genes was taken from the *Zea mays* genome 1289 annotation version Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1 and accessed using 1290 MaizeGDB's MaizeMine tool^{83,88-90}. For *Tripsacum dactyloides* genes, we relied on DNA 1291 sequence homology with annotated maize genes to infer function. We used BEDtools⁹¹ to 1292 extract gene coordinates and protein-coding sequences from the *T. dactyloides* reference 1293 genome Td-KS_B6_1-REFERENCE-PanAnd-2.0a⁹², and then used OrthoFinder⁹³ to compare 1294 coding sequences from the two species. OrthoFinder identified 32,785 *T. dactyloides* genes 1295 (71.5% of the total) as homologs of maize genes, grouping them into 21,658 distinct 1296 orthogroups. All differential gene expression analyses, however, considered the entire set of 1297 expressed genes; those without maize orthologs, or with unannotated maize orthologs, were 1298 considered to be of unknown function.

1300 3.6 16S rRNA amplicon sequencing

1301 3.6.1 DNA extractions and library preparation

1302 One crown root from each plant was cut off with a ceramic blade and placed in a 1.7 mL tube 1303 and flash frozen in liquid nitrogen for downstream amplicon library preparation. After collection, 1304 root sub-samples were kept on dry ice and ceramic tweezers were used to transfer the whole 1305 root to 1.1 mL cluster tubes (USA Scientific, Ocala, FL, USA). Tweezers were sterilized with

1306 80% EtOH between samples. Roots were selected at random for placement in cluster tubes and 1307 were stored at -80°C until DNA extraction, at which time roots were freeze-dried for 48 hours in 1308 a FreeZone lyophilizer (Labconco, Kansas City, MO, USA). After freeze-drying, roots were flash 1309 frozen in liquid nitrogen. To break apart thick roots, sterile forceps and a dissecting needle were 1310 used before placing the rack of cluster tubes in an HT Lysing Homogenizer (OHAUS, 1311 Parsippany, NJ, USA) with two clean 5/32" steel balls in each tube. Samples were homogenized 1312 at 25 Hz for 1 min. Root material was then transferred to 2 mL bead-beating 96-well plates 1313 containing sterile 1 mm garnet beads with 850 μL of lysis buffer (1M Tris, pH = 8.0; 100 mM 1314 NaCl; 10 mM EDTA).

1315

1331

1316 A positive (ZymoBiomics Microbial Community Standard) and negative control, (800 μ L of lysis 1317 buffer) were included on each plate. Bead-beating plates were stored at -20°C until extraction. 1318 After thawing, 10 μ L of 20% sodium dodecyl sulfate (SDS) was added to each well before 1319 homogenizing for a total of 20 min at 20 Hz. Plates were incubated in a water bath (55°C for 90 1320 min) and centrifuged (6 min at 4500 x g). 400 μ L of the resulting supernatant was transferred to 1321 new 1 mL 96-well plates containing 120 μ L of 5 M potassium acetate in each well and incubated 1322 overnight at -20°C. After thawing the plates, they were centrifuged (6 min at 4500 x g) and 400 1323 μ L of the supernatant was transferred to a new 1 mL 96-well plate containing 600 μ L of diluted 1324 SPRI-bead solution (protocol derived from 94). These plates were mixed thoroughly for 5 min at 1325 1000 r.p.m. on an orbital plate shaker. Samples were allowed to incubate for 10 min so DNA 1326 could bind to beads, after which the plate was centrifuged (6 min at 4500 x g) and placed on a 1327 magnet rack for 10 min. The supernatant was removed, and the beads were washed twice with 1328 900 μ L of 80% EtOH. After washing, the supernatant was decanted and the beads were 1329 air-dried. DNA was eluted in 75 μ L of pre-heated 1x TE (pH = 7.5; 37°C) and transferred to 1330 clean 0.45 mL plates and stored at -20°C.

1332 16S-v4 rRNA gene amplification was performed using paired 515f/806r primers^{95,96}. PCR 1333 reactions contained DreamTag Master Mix (Thermo Fisher Scientific, Waltham, MA, USA), 10 1334 mg/μL bovine serum albumin (BSA), 100 μM peptide nucleic acid (PNA), and PCR-grade water. 1335 BSA was used to enhance PCR amplification while PNA was used to suppress primer binding 1336 and subsequent amplification of mitochondrial and chloroplast 16S regions⁹⁷. The PCR included 1337 an initial denaturation step at 95°C for 2 min, followed by 27 cycles of an additional denaturation 1338 at 95°C for 20 s, PNA annealing at 78°C for 5 s, primer annealing at 52°C for 20 s, and 1339 extension at 72°C for 50 s. This was followed by a final extension step for 10 min at 72°C. PCR 1340 products were purified by incubating at 37°C for 20 min and then 15 min at 80°C after mixing 1341 with 0.78 µL of PCR-grade water, 0.02 µL of 10 U/µL exonuclease I (Applied Biosystems), and 1342 0.2 µL of 1U/µL shrimp alkaline phosphatase (Applied Biosystems) per 10 µL PCR product. Two 1343 µL of the purified amplicons were used as template DNA in an indexing PCR to attach barcoded 1344 P5 and P7 Illumina adaptors. The 10 μL reaction included 5 μM each of P5 and P7 adaptors, 1x 1345 DreamTag Master Mix (Thermo Fisher Scientific), 10 mg/mL BSA, 100 µM PNA, and PCR-grade 1346 water. An initial denaturation step was performed at 95°C for 2 min. For 8 cycles, an additional 1347 denaturation was carried out at 95°C for 20 s, PNA annealing at 78°C for 5 s, primer annealing 1348 at 52°C for 20 s, and extension at 72°C for 50 s. A final extension step was performed at 72°C 1349 for 10 min. PCR products were verified via 2% agarose gel electrophoresis and then pooled by 1350 96-well plate using the "Just-a-Plate" PCR cleanup and normalization kit (Charm Biotech, St. 1351 Louis, MO, USA). Pools were size selected and combined in equimolar concentrations before 1352 being sequenced on an Illumina SP flow cell on the NovaSeq 6000 platform (2x250bp reads).

1354 3.6.2 Amplicon data processing

1353

1355 We removed primer sequences from raw 16S-v4 Illumina reads using cutadapt⁷⁰, requiring at 1356 least 5 nucleotides of overlap. Additional quality control and processing was performed with the

1357 DADA2 software⁹⁸. Forward reads were discarded if they had more than 6 expected errors, 1358 otherwise they were truncated at 200 nucleotides; for reverse reads the parameters were 7 1359 expected errors and 170 nucleotides. Error rates were estimated separately for forward and 1360 reverse reads based on a sample of 1x10⁸ bases, then used to denoise and dereplicate reads 1361 using the standard DADA2 functions. Chimeric sequences were detected and removed using 1362 the "consensus" procedure in DADA2. Each individual sample was processed in parallel, after 1363 which all of the resulting amplicon sequence variant (ASV) tables were merged. Finally, 1364 taxonomy of each ASV was assigned by comparison to the RDP database⁹⁹.

1366 3.6.3 Root bacterial community diversity analysis

1365

1377

1378

1367 All statistical analyses were performed using R (v4.4.0). Unfortunately, some samples were lost 1368 due to a 96-well plate being dropped during the sample DNA extraction and due to filtering of 1369 samples based on sequence quality. Ultimately, 156 gamagrass root microbiome and 276 maize 1370 root microbiome samples were included in these analyses. The cleaned and prepared 1371 microbiome data, as phyloseq objects, were loaded into R⁶⁸. The phyloseq object sample data 1372 table was replaced with an updated metadata file. The "mock" samples were removed from the 1373 dataset and the data was subset by the test phase host, maize and gamagrass using 1374 phyloseq::subset_samples (v1.48.0). Maize and gamagrass root bacterial microbiome Shannon 1375 Diversity was fit to a mixed-effects model using the lme4 (v1.1-35.4) package¹⁰⁰ and lmer() 1376 function, using the following model:

expShannon~TestWater+Legacy + (1|DNAplate)

1379 A type III ANOVA was performed using stats::anova()¹⁰¹ to test for significance, followed by 1380 pairwise comparisons and significance tests using emmeans (v1.10.2) package¹⁰² with false 1381 discovery rate adjustments. Data visualizations were generated using ggplot2 (v3.5.1)⁴⁵, the

1382 error bars represent standard error and the points are estimated marginal means. All plots were 1383 saved in PDF format. Composite figures were created in Adobe Illustrator.

1385 Bacterial community beta diversity was accessed with a Constrained Analysis of Principal 1386 Coordinates, using phyloseq::ordinate, method="CAP", and distance="Euclidean" with the 1387 following formula:

~TestWater+Legacy+Condition(DNAplate)+Condition(CondHost)+ 1388 1389

1384

1390

1402

Condition(CondWater)

1391 An ANOVA-like permutation test was used to test for model significance using the 1392 vegan::anova.cca() function⁴⁶. The anova.cca by=term option was used to determine the 1393 significance of the TestWater and Legacy variables separately. CAP1 and CAP2 axes were 1394 plotted using ggplot2, including 95% confidence interval ellipse (stat ellipse()). To evaluate 1395 treatment group beta-dispersion, Euclidean distances were calculated for the centered-log ratio 1396 transformed counts using phyloseq::distance(). Both "Legacy" and "TestWater" terms were 1397 tested for beta-dispersion differences using the Euclidean distances matrix and 1398 vegan::betadisper() and vegan::permutest() to test for significance⁴⁶. Distances were then 1399 extracted from the results output and fit to a linear model. Estimated marginal means were 1400 calculated and plotted using the same methods as above. The error bars represent standard 1401 errors.

1403 Then, an ASV differential abundance analysis was performed on gamagrass- and 1404 maize-associated ASVs separately. Centered-log ratio transformed counts of ASVs were each 1405 fit to a linear model using an iterative for-loop. Each ASV was subset using 1406 phyloseg:subset taxa and the phyloseg::psmelt() function was used to reformat the phyloseg 1407 object into a data frame. Then the ASV abundance was fit to the following model:

Abundance ~ Legacy*TestWater

1410 Then, stats::anova() was used to test for significance, followed by an FDR p-value adjustment 1411 using stats::p.adjust(). ASVs with significant (≤0.05) adjusted p-values for the Legacy*TestWater 1412 interaction terms were extracted and z-scores of the center-log ration transformed counts were 1413 plotted in a heatmap using pheatmap::pheatmap()¹03 with clustering_method="complete".

1415 3.7 Plant trait data analyses

1408

1409

1414

1425

1416 3.7.1 Plant trait feature selection

1417 All plant data was loaded into RStudio. The intrinsic water use efficiency (iWUE) was calculated 1418 using the ratio of photosynthetic rate (A) and stomatal conductance (gs) or A/gs ((μmol m⁻² 1419 s⁻¹)/(mol m⁻² s⁻¹)). Data was subset by Test Phase host treatment groups (gamagrass and 1420 maize). For the feature selection, the "mock" treatment was removed. The 67 features that were 1421 selected for testing were subset into a data frame. Three sample rows were removed from the 1422 dataset because they had missing data. The drought susceptibility index (S-index) was 1423 calculated for each of these features using the following formula:

1426 Then, for each host, a random forest model was used to select the top 10 most important 1427 features from the 67 total s-index measurements using randomForest()¹⁰⁴, with "Legacy" as the 1428 predictor. Correlations (stats::cor()) were estimated for the top ten traits and if any two of the top 1429 10 traits were highly correlated ($r \ge 0.7$), the trait that ranked lower in the random forest model 1430 was removed. Non-correlative top features from the test water treatment groups (drought vs. 1431 watered control) were combined for each test phase host (maize and gamagrass). Vegan:rda() 1432 was used to perform a redundancy analysis on the top features using the following formula:

Top features~ Legacy + Condition(CondGroup), scale=TRUE 1433 1434 **1435** 3.7.2 Feature analyses 1436 An ANOVA-like permutation test was used to test for model significance using the 1437 vegan::anova.cca() function. A biplot was created using ggplot2 plotting RDA1 and PC1 axes, 1438 as well as the species scores (represented by arrows), and stat ellipse was used to plot 95% 1439 confidence intervals of the site scores. 1440 1441 Finally, s-indices for each of the top features and iWUE were fit to mixed-effects models, when 1442 possible, or a fixed-effects model if overfitting of the mixed effects model occurred. Each feature 1443 or trait was visually assessed for outliers, which were removed. Removing the outliers did not 1444 impact the interpretation of any of the results. Formulas used for the mixed effects or linear 1445 model, respectively, include: Imer(s-index ~ Legacy + (1|CondGroup)) 1446 Im(s-index ~ Legacy + CondGroup) 1447 1448 1449 The fit of the model was accessed and if needed, the s-index was transformed using sqrt(), 1450 exp(), or log() to improve the fit. ANOVA was used to assess significance and estimated 1451 marginal means were calculated and plotted as described above. 1452 Data availability 1453 The 16S rRNA gene amplicon sequencing data, shotgun metagenomic data, and 1454 metatranscriptome data associated with this study have been deposited in the NCBI Sequence 1455 Read Archive under the BioProject IDs PRJNA1267293, PRJNA1267715, PRJNA1268489, and

1456 PRJNA1186942. The raw RNA-seq data from gamagrass and maize have been deposited in the 1457 Gene Expression Omnibus under accessions GSE282586 and GSE282587, respectively.

1458 Code availability

1459 We deposited all scripts and additional data structures required to reproduce the results of this 1460 study in a Zenodo repository (http://doi.org/10.5281/zenodo.13821006). Source data are 1461 provided in the Zenodo repository and with this paper.

1462 Acknowledgements

1463 We thank Dr. Arun Seetharam, Dr. Toby Kellogg, Dr. Matthew Hufford, and the PanAnd 1464 consortium for granting early access to the Tripsacum dactyloides genome and annotation. We 1465 thank Dr. Mitch Greer, Michaela VonLintel, Justin Roemer, Dr. Alan Schlegel, and the Nature 1466 Conservancy for granting access to soil collection sites in Kansas, and Dr. Peter Balint-Kurti for 1467 providing maize seeds. We thank Dr Craig J. Sturrock and Dr Brian S. Atkinson from the 1468 Hounsfield Facility at the University of Nottingham for their assistance with the analysis of the 1469 CT images. We are grateful to the undergraduate student researchers and technicians who 1470 helped to set up experiments and collect data: Felicity Tso, Hannah Reid, and Carmen 1471 Rodriguez. Thank you to Dr. Joel Swift, Ceyda Kural-Rendon, Dr. Ben Sikes (University of 1472 Kansas), Dr. Manuel Kleiner (North Carolina State University), Dr Omri Finkel (The Hebrew 1473 University of Jerusalem, Israel), and Dr Nicholas Girkin (University of Nottingham, UK) for 1474 critical reading of the manuscript. This work was supported by a UKRI/BBSRC - NSF/BIO Lead 1475 Agency Opportunity, National Science Foundation award #IOS-2016351 and BBSRC grant 1476 #BB/V011294/1. Maize root transcriptome library preps and sequencing were performed in the 1477 RTSF Genomics Core at Michigan State University. T. dactyloides library preps and RNA-seq 1478 were performed at the NC State University Genomic Sciences Laboratory (Raleigh, NC, USA).

1479 Research reported in this publication was made possible in part by the services of the KU 1480 Genome Sequencing Core. This lab is supported by the National Institute of General Medical 1481 Sciences (NIGMS) of the National Institutes of Health under award number P30GM145499. We 1482 thank the University of Kansas Medical Center – Genomics Core for generating the 16S 1483 amplicon sequence data sets. The Genomics Core is supported by the Kansas Intellectual and 1484 Developmental Disabilities Research Center (NIH U54 HD 090216), the Molecular Regulation of 1485 Cell Development and Differentiation – COBRE (P30 GM122731), The NIH S10 High End 1486 Instrumentation Grant (NIH S10OD021743) and the Frontiers CTSA Grant (UL1TR002366).

1488 Author contributions

1487

1489 Conceptualization: N.A.G., V.C., D.G., G.C., and M.R.W. Data curation: N.A.G., V.C., D.G., and 1490 M.R.W.; Formal analysis: N.A.G., V.C., D.G., I.S.-G., and M.R.W.; Investigation: N.A.G., V.C., 1491 D.G., N.F., D.D.J., D.M.W., A.M., G.C., and M.R.W.; Methodology: G.C. and M.R.W.; Project 1492 administration: G.C. and M.R.W.; Software: N.A.G., V.C., D.G., and M.R.W.; Supervision: G.C. 1493 and M.R.W.; Visualization: N.A.G., V.C., D.G., and M.R.W.; Writing – original draft: N.A.G., G.C., 1494 and M.R.W.; Writing – review & editing: V.C. and D.G.

1496 Competing interests

1497 The authors declare no competing interests.

1498 References

1499 1. Chase, A. B., Weihe, C. & Martiny, J. B. H. Adaptive differentiation and rapid evolution of a

- soil bacterium along a climate gradient. *Proc. Natl. Acad. Sci. U. S. A.* **118**, (2021).
- 1501 2. Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in
- novel environments. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 14058–14062 (2012).
- 1503 3. Canarini, A. et al. Ecological memory of recurrent drought modifies soil processes via
- changes in soil microbial community. *Nat. Commun.* **12**, 5308 (2021).
- 1505 4. Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection
- influence bacterial community dynamics in the grass root microbiome. *ISME J.* 11,
- **1507 2691–2704** (2017).
- 1508 5. Custódio, V. et al. Sculpting the soil microbiota. Plant J. 109, 508–522 (2022).
- 1509 6. Liu, Z. et al. Shifts in microbial communities and networks are correlated with the soil
- ionome in a kiwifruit orchard under different fertilization regimes. *Appl. Soil Ecol.* **149**,
- 1511 103517 (2020).
- 1512 7. Dai, Z. et al. Metallic micronutrients are associated with the structure and function of the soil
- microbiome. *Nat. Commun.* **14**, 8456 (2023).
- 1514 8. Stewart, B. W., Capo, R. C. & Chadwick, O. A. Effects of rainfall on weathering rate, base
- cation provenance, and Sr isotope composition of Hawaiian soils. *Geochim. Cosmochim.*
- 1516 Acta 65, 1087–1099 (2001).
- 1517 9. Sverdrup, H. Chemical weathering of soil minerals and the role of biological processes.
- 1518 Fungal Biol. Rev. 23, 94–100 (2009).
- 1519 10. Guellouz, L., Askri, B., Jaffré, J. & Bouhlila, R. Estimation of the soil hydraulic properties
- from field data by solving an inverse problem. Sci. Rep. 10, 9359 (2020).
- 1521 11. Rousseva, S., Torri, D. & Pagliai, M. Effect of rain on the macroporosity at the soil surface.
- 1522 Eur. J. Soil Sci. 53, 83–93 (2002).
- 1523 12. Schimel, J. P. Life in dry soils: Effects of drought on soil microbial communities and
- processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
- 1525 13. Sun, Y., Wilkinson, B. J., Standiford, T. J., Akinbi, H. T. & O'Riordan, M. X. D. Fatty acids

- regulate stress resistance and virulence factor production for Listeria monocytogenes. J.
- 1527 Bacteriol. 194, 5274–5284 (2012).
- 1528 14. Woodcock, S. D. et al. Trehalose and α-qlucan mediate distinct abiotic stress responses in
- 1529 Pseudomonas aeruginosa. *PLoS Genet.* **17**, e1009524 (2021).
- 1530 15. Gil-Quintana, E. et al. Local inhibition of nitrogen fixation and nodule metabolism in
- drought-stressed soybean. J. Exp. Bot. **64**, 2171–2182 (2013).
- 1532 16. Singh, S. et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic
- stress. Free Radic. Biol. Med. **56**, 89–101 (2013).
- 1534 17. Lebre, P. H., De Maayer, P. & Cowan, D. A. Xerotolerant bacteria: surviving through a dry
- spell. Nat. Rev. Microbiol. 15, 285–296 (2017).
- 1536 18. Gury, J. et al. Inactivation of PadR, the repressor of the phenolic acid stress response, by
- molecular interaction with Usp1, a universal stress protein from Lactobacillus plantarum, in
- 1538 Escherichia coli. *Appl. Environ. Microbiol.* **75**, 5273–5283 (2009).
- 1539 19. Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative
- damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot.
- **2012**, 1–26 (2012).
- 1542 20. Yuda, E. et al. Mapping the key residues of SufB and SufD essential for biosynthesis of
- iron-sulfur clusters. *Sci. Rep.* **7**, 9387 (2017).
- 1544 21. Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis.
- 1545 *Prog. Lipid Res.* **52**, 249–276 (2013).
- 1546 22. Zhu, J., Brown, K. M. & Lynch, J. P. Root cortical aerenchyma improves the drought
- tolerance of maize (Zea mays L.). Plant Cell Environ. 33, 740–749 (2010).
- 1548 23. Gao, Y. & Lynch, J. P. Reduced crown root number improves water acquisition under water
- deficit stress in maize (Zea mays L.). *J. Exp. Bot.* **67**, 4545–4557 (2016).
- 1550 24. Ahmed, M. A. et al. Root type matters: measurement of water uptake by seminal, crown,
- and lateral roots in maize. *J. Exp. Bot.* **69**, 1199–1206 (2018).

- 1552 25. Swift, J. F. et al. Drought stress homogenizes maize growth responses to diverse natural
- soil microbiomes. *Plant Soil* (2024) doi:10.1007/s11104-024-06853-x.
- 1554 26. Springer, T. L. & Dewald, C. L. Eastern gamagrass and other Tripsacum species. in
- 1555 Warm-Season (C4) Grasses 955–973 (American Society of Agronomy, Crop Science
- Society of America, Soil Science Society of America, Madison, WI, USA, 2016).
- 1557 27. Batstone, R. T., O'Brien, A. M., Harrison, T. L. & Frederickson, M. E. Experimental evolution
- makes microbes more cooperative with their local host genotype. *Science* **370**, 476–478
- **1559** (2020).
- 1560 28. Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust
- habitat and host genotype-dependent selection. Proceedings of the National Academy of
- 1562 Sciences 117, 1148–1159 (2020).
- 1563 29. Hund, A., Ruta, N. & Liedgens, M. Rooting depth and water use efficiency of tropical maize
- inbred lines, differing in drought tolerance. *Plant Soil* **318**, 311–325 (2009).
- 1565 30. Schulz, P. et al. Improving plant drought tolerance and growth under water limitation
- through combinatorial engineering of signalling networks. *Plant Biotechnol. J.* **19**, 74–86
- **1567** (2021).
- 1568 31. Lebeis, S. L. et al. PLANT MICROBIOME. Salicylic acid modulates colonization of the root
- microbiome by specific bacterial taxa. *Science* **349**, 860–864 (2015).
- 1570 32. Zhou, M.-L. et al. Nicotianamine synthase gene family as central components in heavy
- metal and phytohormone response in maize. Funct. Integr. Genomics 13, 229–239 (2013).
- 1572 33. Lee, D.-K. et al. The rice OsNAC6 transcription factor orchestrates multiple molecular
- mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought
- tolerance. *Plant Biotechnol. J.* **15**, 754–764 (2017).
- 1575 34. Zhang, Z.-X. & Zheng, Y.-Z. Overexpression of nicotianamine synthase (NAS) gene results
- in enhanced drought tolerance in perennial Ryegrass. *Biotechnol. Biotechnol. Equip.* 22,
- 1577 938–941 (2008).

- 1578 35. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J. & Jung, R. Aquaporins constitute a
- large and highly divergent protein family in maize. *Plant Physiol.* **125**, 1206–1215 (2001).
- 1580 36. de Vries, F., Lau, J., Hawkes, C. & Semchenko, M. Plant-soil feedback under drought: does
- history shape the future? *Trends Ecol. Evol.* **38**, 708–718 (2023).
- 1582 37. Evans, S., Allison, S. & Hawkes, C. Microbes, memory and moisture: Predicting microbial
- moisture responses and their impact on carbon cycling. Funct. Ecol. (2022)
- doi:10.1111/1365-2435.14034.
- 1585 38. Stackhouse, P. Nasa power. https://power.larc.nasa.gov/.
- 1586 39. Soltanpour, P. N. & Schwab, A. P. A new soil test for simultaneous extraction of macro- and
- micro-nutrients in alkaline soils. *Commun. Soil Sci. Plant Anal.* **8**, 195–207 (1977).
- 1588 40. De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack:
- visualizing and processing long-read sequencing data. *Bioinformatics* **34**, 2666–2669
- **1590** (2018).
- 1591 41. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. (2019)
- doi:10.1101/762302.
- 1593 42. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species
- abundance in metagenomics data. *PeerJ Comput. Sci.* **3**, e104 (2017).
- 1595 43. Breitwieser, F. P. & Salzberg, S. L. Pavian: interactive analysis of metagenomics data for
- microbiome studies and pathogen identification. *Bioinformatics* **36**, 1303–1304 (2020).
- 1597 44. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models.
- 1598 Biom. J. **50**, 346–363 (2008).
- 1599 45. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. (Springer, Berlin, Germany,
- 1600 2016).
- 1601 46. Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.8-5. (2007).
- 1602 47. The R Project for Statistical Computing. http://www.R-project.org/.
- 1603 48. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image

- analysis. *Nat. Methods* **9**, 671–675 (2012).
- 1605 49. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
- 1606 RNA-seg data with DESeg2. *Genome Biol.* **15**, 550 (2014).
- 1607 50. Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat
- graphs. *Nat. Methods* **17**, 1103–1110 (2020).
- 1609 51. BBTools. DOE Joint Genome Institute https://jqi.doe.gov/data-and-tools/bbtools/ (2016).
- 1610 52. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34,
- 1611 3094–3100 (2018).
- 1612 53. Woodcroft, B. J. CoverM: Read Coverage Calculator for Metagenomics. (Github).
- 1613 54. von Meijenfeldt, F. A. B., Arkhipova, K., Cambuy, D. D., Coutinho, F. H. & Dutilh, B. E.
- Robust taxonomic classification of uncharted microbial sequences and bins with CAT and
- 1615 BAT. Genome Biol. 20, 217 (2019).
- 1616 55. Van der Jeugt, F., Dawyndt, P. & Mesuere, B. FragGeneScanRs: faster gene prediction for
- short reads. BMC Bioinformatics 23, 198 (2022).
- 1618 56. Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J.
- eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain
- Prediction at the Metagenomic Scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
- 1621 57. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically
- annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids*
- 1623 Res. 47, D309–D314 (2019).
- 1624 58. Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale
- using DIAMOND. *Nat. Methods* **18**, 366–368 (2021).
- 1626 59. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the
- analysis of massive data sets. *Nat. Biotechnol.* **35**, 1026–1028 (2017).
- 1628 60. Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with
- white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371

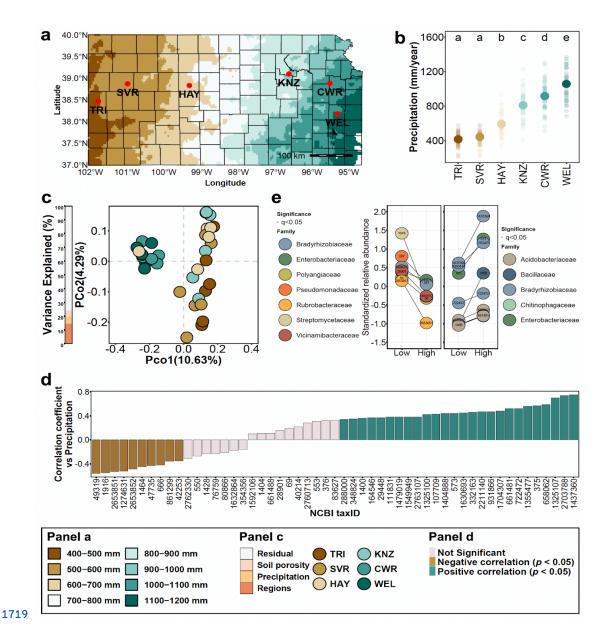
- **1630** (2015).
- 1631 61. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
- 1632 2078–2079 (2009).
- 1633 62. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021).
- 1634 63. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158
- 1635 (2011).
- 1636 64. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
- datasets. *Gigascience* **4**, 7 (2015).
- 1638 65. Yin, L. et al. RMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated
- tool for genome-wide association study. Genomics Proteomics Bioinformatics 19, 619–628
- 1640 (2021).
- 1641 66. LiLin-Yin. CMplot: Circle Manhattan Plot. CRAN: Contributed Packages The R Foundation
- https://doi.org/10.32614/cran.package.cmplot (2015).
- 1643 67. Faisal, M., Silander, O. & Freed, N. Starting a MinION sequencing run using MinKNOW v1.
- 1644 (2020) doi:10.17504/protocols.io.bfwqjpdw.
- 1645 68. McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis
- and graphics of microbiome census data. *PLoS One* **8**, e61217 (2013).
- 1647 69. Shetty, S. Lahti L. microbiomeutilities: microbiomeutilities: Utilities for Microbiome Analytics.
- 2022. Preprint at (2023).
- 1649 70. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
- 1650 EMBnet.journal 17, 10–12 (2011).
- 1651 71. Shetty, S. A. & Lahti, L. Microbiome data science. J. Biosci. 44, (2019).
- 1652 72. De Mendiburu, F. & Simon, R. Agricolae Ten years of an open source statistical tool for
- experiments in breeding, agriculture and biology. *PeerJ* (2015)
- doi:10.7287/peerj.preprints.1404.
- 1655 73. The Hmisc and rms Packages. in Biostatistics and Computer-based Analysis of Health Data

- using R 173–186 (Elsevier, 2016).
- 1657 74. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a
- reference genome. *Nat. Biotechnol.* **29**, 644–652 (2011).
- 1659 75. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the
- Trinity platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494–1512 (2013).
- 1661 76. Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal
- RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211–3217 (2012).
- 1663 77. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq:
- transcript-level estimates improve gene-level inferences. *F1000Res.* **4**, 1521 (2015).
- 1665 78. Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of
- populations with clonal, partially clonal, and/or sexual reproduction. *PeerJ* 2, e281 (2014).
- 1667 79. Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. (Springer, New
- 1668 York, NY, 2019).
- 1669 80. Goudet, J. hierfstat, a package for r to compute and test hierarchical *F*-statistics. *Mol. Ecol.*
- 1670 Notes **5**, 184–186 (2005).
- 1671 81. Seethepalli, A. et al. RhizoVision Explorer: open-source software for root image analysis
- and measurement standardization. *AoB Plants* **13**, lab056 (2021).
- 1673 82. Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique
- Molecular Identifiers to improve quantification accuracy. *Genome Res.* **27**, 491–499 (2017).
- 1675 83. Hufford, M. B. et al. De novo assembly, annotation, and comparative analysis of 26 diverse
- maize genomes. *Science* **373**, 655–662 (2021).
- 1677 84. Guo, J., Gao, J. & Liu, Z. HISAT2 parallelization method based on Spark cluster. J. Phys.
- 1678 Conf. Ser. **2179**, 012038 (2022).
- 1679 85. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
- assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).
- 1681 86. Yimer, B. B., Lunt, M., Beasley, M., Macfarlane, G. J. & McBeth, J. BayesGmed: An

- R-package for Bayesian causal mediation analysis. *PLoS One* **18**, e0287037 (2023).
- 1683 87. Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. *J. Stat. Softw.* 48, 1–36
- **1684** (2012).
- 1685 88. Portwood, J. L., 2nd et al. MaizeGDB 2018: the maize multi-genome genetics and
- genomics database. *Nucleic Acids Res.* **47**, D1146–D1154 (2019).
- 1687 89. Woodhouse, M. R. et al. A pan-genomic approach to genome databases using maize as a
- model system. *BMC Plant Biol.* **21**, 385 (2021).
- 1689 90. Shamimuzzaman, M. et al. MaizeMine: A Data Mining Warehouse for the Maize Genetics
- and Genomics Database. *Front. Plant Sci.* **11**, 592730 (2020).
- 1691 91. Quinlan, A. R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr. Protoc.*
- Bioinformatics 47, 11.12.1–34 (2014).
- 1693 92. Stitzer, M. C. et al. Extensive genome evolution distinguishes maize within a stable tribe of
- grasses. bioRxivorg (2025) doi:10.1101/2025.01.22.633974.
- 1695 93. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
- genomics. *Genome Biol.* **20**, 238 (2019).
- 1697 94. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for
- multiplexed target capture. *Genome Res.* **22**, 939–946 (2012).
- 1699 95. Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA
- 806R gene primer greatly increases detection of SAR11 bacterioplankton. *Aquat. Microb.*
- 1701 *Ecol.* **75**, 129–137 (2015).
- 1702 96. Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small
- subunit rRNA primers for marine microbiomes with mock communities, time series and
- global field samples. *Environ. Microbiol.* **18**, 1403–1414 (2016).
- 1705 97. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical
- innovations for high-throughput amplicon sequencing. *Nat. Methods* **10**, 999–1002 (2013).
- 1707 98. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data.

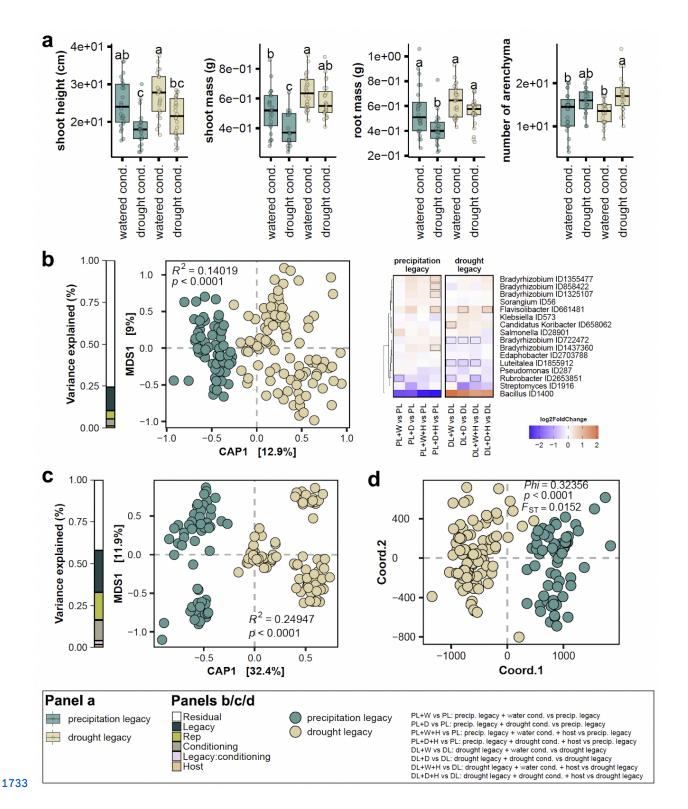
- 1708 Nat. Methods 13, 581–583 (2016).
- 1709 99. Cole, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA
- analysis. *Nucleic Acids Res.* **42**, D633–42 (2014).
- 1711 100.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models
- 1712 Usinglme4. J. Stat. Softw. 67, (2015).
- 1713 101.R: A Language and Environment for Statistical Computing: Reference Index. (2010).
- 1714 102.https://CRAN.R-project.org/package=emmeans.
- 1715 103.pheatmap: Pretty Heatmaps. Comprehensive R Archive Network (CRAN)
- https://CRAN.R-project.org/package=pheatmap.
- 1717 104.CRAN: R News. https://CRAN.R-project.org/doc/Rnews/.

1718 Figures



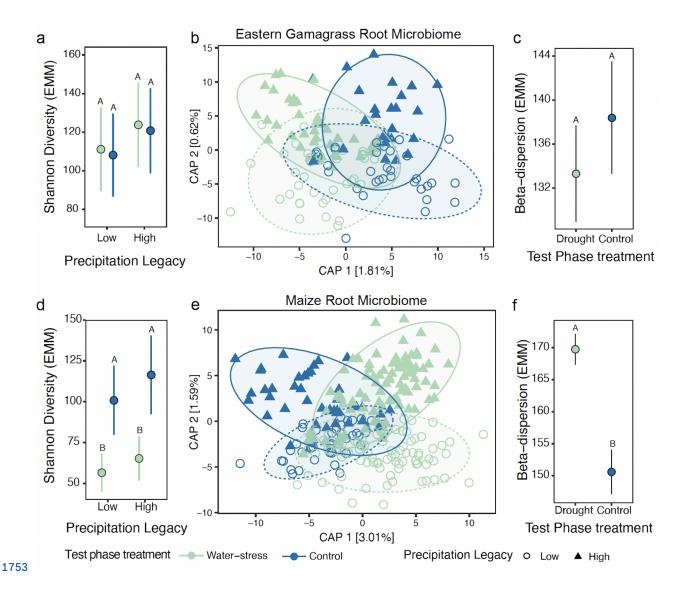
1720 Fig. 1. Bacterial markers of precipitation after statistically controlling for other soil 1721 properties. a. Map of Kansas, USA, showing the collection locations of the soils used in this 1722 work. b. Precipitation (mm/year) at each collection site from 1981 to 2021. Large points 1723 represent the mean. Statistical difference between soils was determined via ANOVA followed by 1724 Tukey *post-hoc* test (p<0.05). c. Principal coordinate analysis of the soil microbiota across the

1725 precipitation gradient. The bar on the left denotes the percentage of the overall variance 1726 explained by the independent variables. d. Pearson correlation coefficients between each 1727 bacterial taxon (NCBI taxID) and mean annual precipitation. e. Relative abundances of bacterial 1728 taxa identified in soils exposed to low or high precipitation levels after statistically controlling for 1729 soil porosity and mineral nutrient content. Coloured points represent the mean standardized 1730 relative abundance for each bacterial taxa. The line connecting both points is the difference 1731 between low and high precipitation soils. A black line indicates statistical significance (q < 0.05).



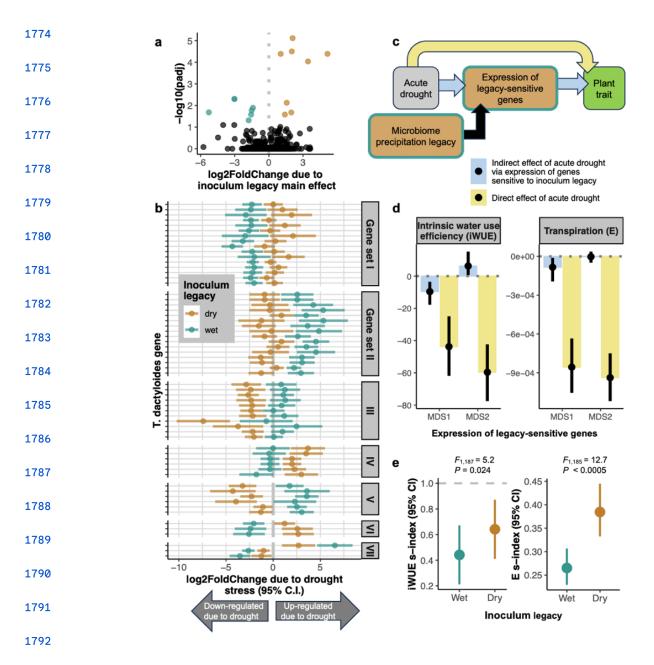
1734 Fig. 2. Precipitation legacy effects on the soil microbiota are resilient to short-term 1735 perturbations. a. Box plots showing phenotype distributions of *Tripsacum dactyloides* plants

1736 grown during the conditioning phase, in which they experienced five months of drought (+D) or 1737 well-watered (+W) conditions and were grown in soils with either low-precipitation legacies 1738 ("DL", brown) or high-precipitation legacies ("PL", blue) (for additional phenotypes, see 1739 Extended Data Fig. 4b,d). PL and DL indicate the baseline soils prior to the initiation of 1740 conditioning phase treatments. Box edges represent the first and third quartiles; whiskers 1741 indicate the range of data points that fall within 1.5 times the interquartile range of the first and 1742 third quartiles; the center lines indicate the medians. b. Left: Constrained ordination of soil 1743 metagenome taxonomic composition after the conditioning phase treatments. Right: enrichment 1744 patterns of precipitation biomarker taxa in response to the different treatments, relative to the 1745 pre-conditioning baseline. Rectangles outlined in black indicate bacterial markers that were 1746 significantly enriched (red) or depleted (blue) (q < 0.1). c. Constrained ordination of soil 1747 metatranscriptome content after the conditioning phase treatments. d. Principal coordinates 1748 analysis of standardized pairwise genetic distances calculated from SNPs in the genomes of the 1749 precipitation biomarker taxa. For panels b-d, note that even after five months of experimental 1750 perturbation, there is a clear separation of the samples on the first axis based on the 1751 precipitation legacy.



1754 Fig. 3. Root bacterial microbiome composition is more stable in *T. dactyloides* (eastern 1755 gamagrass) than *Z. mays* (maize) plants exposed to varying inocula and water 1756 treatments. For panels a,c,d,f the points are estimated marginal means (EMMs); error bars 1757 represent standard errors; letters indicate statistical contrasts (ANOVA with Tukey's post hoc 1758 test p<0.05). a. Shannon diversity (e^Shannon index) was not impacted by precipitation legacy 1759 or test phase water treatment. b. Ordination constrained by test phase water treatment and 1760 inoculum precipitation legacy (ANOVA.CCA, full model $F_{2,139}$ =1.74, R²=0.022, p=0.01) indicates 1761 that test phase water treatment (ANOVA.CCA by term, $F_{1,139}$ =2.58, p=0.003), but not legacy 1762 (ANOVA.CCA by term, $F_{1,139}$ =0.89, p=0.55) significantly impacted the *T. dactyloides* root

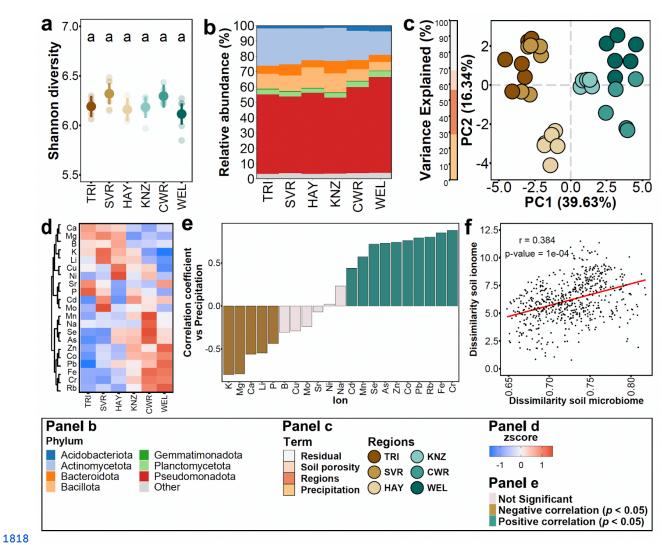
1763 bacterial microbiome composition. Ellipses represent the 95% confidence intervals. **c.** Drought 1764 treatment did not impact the within-group variation (β-dispersion) of the T. dactyloides root 1765 microbiome. **d**. $Zea\ mays$ (maize) root microbiome Shannon diversity was significantly impacted 1766 by test phase water treatment, but not the precipitation legacy of the inoculum. **e**. Ordination 1767 constrained by test phase water treatment and inoculum precipitation legacy (ANOVA.CCA, 1768 $F_{2,255}$ =6.156, $F_{2,255}$ =6.156, $F_{2,255}$ =6.156, $F_{2,255}$ =6.156, $F_{2,255}$ =8.051, $F_{2,255}$ =8.058, $F_{2,255}$ =8.058



1793 Fig. 4. The precipitation legacy of the microbial inoculum mediates transcriptional and 1794 physiological responses of *T. dactyloides* (eastern gamagrass) to acute drought. a. 1795 Fifteen genes were differentially expressed between plants inoculated with 1796 low-precipitation-legacy microbiota *vs.* high-precipitation-legacy microbiota. b. In total, 183 *T.* 1797 *dactyloides* genes responded to drought in a manner that was dependent on the drought legacy 1798 of the soil microbiota (the inoculum legacy*drought treatment interaction; Supplementary Table

1799 10). Only genes with a drought response of ≥4-fold and with annotated maize ortholog(s) are 1800 shown for illustration purposes. Each pair of points represents one gene; the position of each 1801 point illustrates how the gene's transcription level responded to drought treatment in plants 1802 inoculated with low-precipitation-legacy (brown) or high-precipitation-legacy microbiota 1803 (turquoise). Genes sets correspond to patterns of how inoculum legacy altered their drought 1804 responses. c. The model used for mediation analysis to test whether the expression of the 198 1805 legacy-sensitive genes (a-b) contributed to the overall effect of acute drought on plant 1806 phenotype. d. Mediation analysis confirmed that the expression of legacy-sensitive genes 1807 (summarized in two dimensions, MDS1 and MDS2) is involved in drought-induced decreases in 1808 intrinsic water-use efficiency (iWUE, units: µmol/mol) and transpiration (E, units: mol m⁻² s⁻¹). 1809 Yellow bars indicate the "direct" effect of the drought treatment on trait values, i.e., the portion of 1810 the trait response that is independent of the transcription levels of microbiota legacy-sensitive 1811 genes. Blue bars show the portion of the trait response that is mediated by microbiota 1812 legacy-sensitive genes. Error bars: 95% confidence intervals. e. Low-precipitation-legacy 1813 microbiota (brown) stabilized iWUE and E during acute drought. The s-index describes trait 1814 values scaled by the mean value of well-watered control plants, such that an s-index of 1 1815 indicates that droughted plants were phenotypically identical to non-droughted plants. Points are 1816 EMMs and error bars indicate 95% confidence intervals.

1817 Extended Data Figures

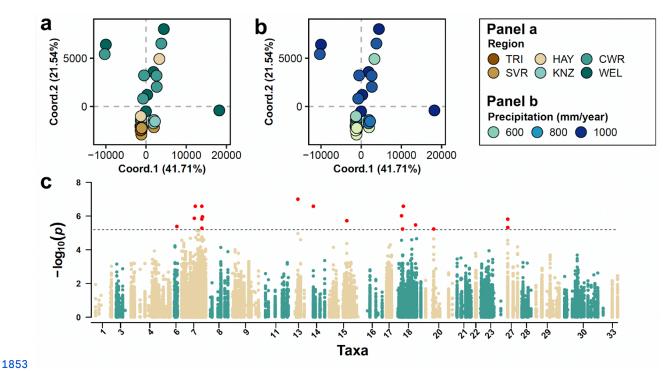


1819 Extended Data Fig. 1. Precipitation level and mineral nutrient content in Kansas soils 1820 correlate with soil microbiota composition. a. Alpha diversity (estimated using the Shannon 1821 diversity index) did not differ across soil samples. Soils are ordered according to the gradient of 1822 precipitation (Fig 1a). b. Phylogram showing the relative abundance profiles of the main 1823 bacterial phyla across soils exposed to different precipitation levels. c. Principal component 1824 analysis showing the ionomic profiles of the six focal soils (N=6 per soil). The bar on the left 1825 denotes the percentage of the variance explained by the predictor variables. d. Heatmap 1826 showing the standardized concentration (z-score) of each mineral nutrient (rows) in the 1827 collection of soil exposed to different precipitation levels. The values were clustered according to 1828 the ion concentration and the region was ordered according to the precipitation gradient (low to 1829 high). e. Bar graph showing the Pearson correlation coefficient between each mineral nutrient 1830 abundance and the level of precipitation across the collection of soils used. Coloured bars 1831 indicate statistically significant correlations (q < 0.05). f. Pairwise correlation analysis between 1832 soil mineral nutrient dissimilarities and soil microbiome composition dissimilarities in soils 1833 representing a gradient of precipitation (N=6 per soil). Each point represents one pair of soil 1834 samples. Panel shows the Mantel test r statistic and its p-value.

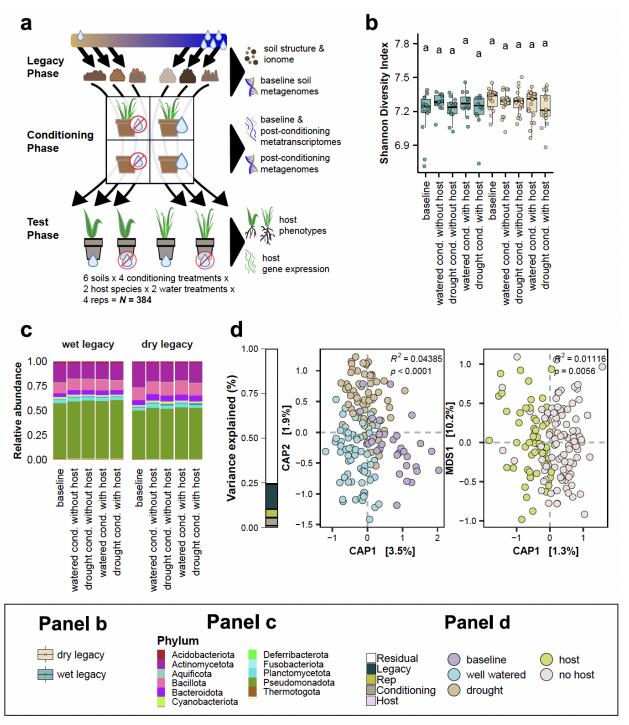


1839 Extended Data Fig. 2. Precipitation, but not soil porosity, explains microbiota 1840 composition across the Kansas soil collection. a. Percent soil porosity changes with depth

1841 in soils exposed to the precipitation gradient. **b**. Pearson correlation analysis between soil 1842 porosity (averaged across depths) and mean annual precipitation. **c**. Pairwise correlation 1843 analysis between soil microbiota dissimilarities and soil porosity dissimilarities. The panel shows 1844 the Mantel r statistic and its p-value. **d-f.** Heatmaps showing changes in the relative 1845 abundances of bacterial taxa (NCBI TaxIDs, **d**), species (**e**), and family (**f**) relative to the WEL 1846 soil, from the highest-precipitation site. In all cases, the values have been clustered according to 1847 taxonomic categories and soils. **g**. Numerous biological processes were enriched (red) or 1848 depleted (blue) in soils from low-precipitation sites (TRI, SVR, and HAY) relative to 1849 high-precipitation sites (WEL, CWR, and KNZ) (q<0.05). Gene enrichment analysis was 1850 conducted using a generalized linear model, followed by Gene Ontology (GO) classification. 1851 Enrichment scores were calculated using square root-transformed delta rank values of the GO 1852 categories.

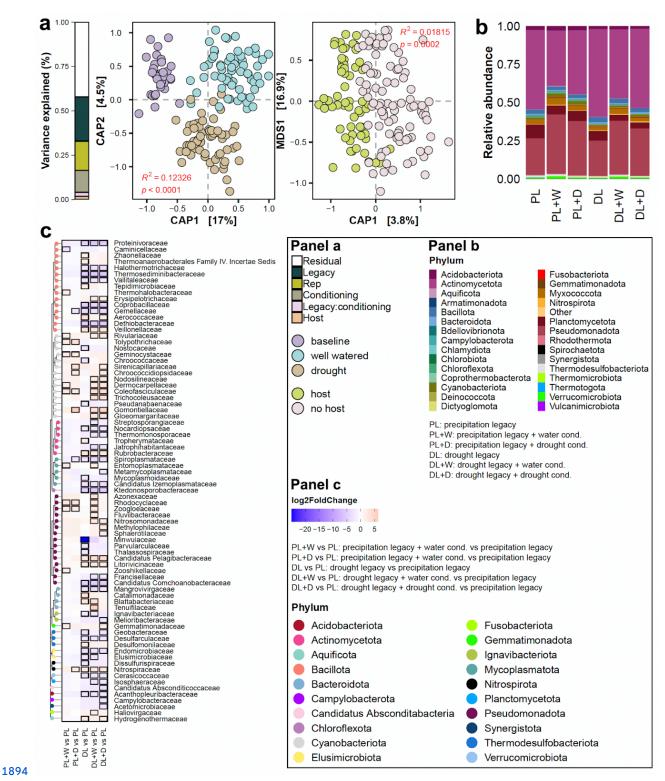


1854 Extended Data Fig. 3. Precipitation legacy shapes the genetic differentiation of bacterial 1855 lineages within taxa. To assess genetic differences between bacterial lineages along the 1856 precipitation gradient, we selected 33 bacterial species (15 of the bacterial biomarkers of 1857 precipitation, plus 18 additional abundant and prevalent taxa) that exhibited high genome 1858 coverage in our metagenomic dataset as proxies for the broader bacterial communities. 1859 Reference genomes for each species were retrieved from the NCBI Genome database, and 1860 filtered shotgun metagenomic reads were mapped to these genomes to identify high-quality 1861 biallelic single nucleotide polymorphisms (SNPs). Genetic distances between the bacterial 1862 lineages were calculated based on the identified SNPs and PCoA plots were generated and 1863 coloured by a. soil collection sites and b. mean annual precipitation. The variance explained by 1864 each axis is indicated. c. The Manhattan plot illustrates significant SNPs associated with 1865 precipitation, derived from the genetic-environment association (GEA) analysis. The GEA was 1866 conducted using a general linear model, with precipitation at each sampling location as the 1867 environmental variable. Significant associations were identified using the permutation method. 1868 The x-axis of the plot represents the SNP positions along the genomes of the selected bacterial 1869 species, while the y-axis displays the -log₁₀ p-values from the association model. The horizontal 1870 line indicates the statistical significance threshold, as determined by the permutation test. SNPs 1871 above this threshold, highlighted in red, were significantly associated with the precipitation 1872 gradient. Bacterial taxa with fewer than 1,000 high-quality biallelic SNPs after filtering, and with 1873 no significant SNPs detected from the GEA analysis, are not shown in the plot. 1874



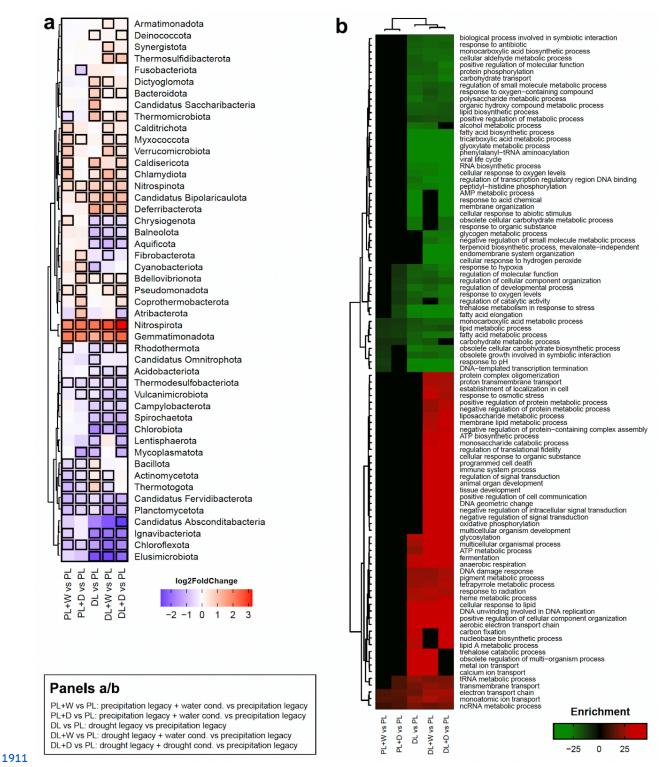
1876 Extended Data Fig. 4. Precipitation legacy effects in the soil microbiota are resilient to 1877 short-term water- and host-related perturbations. a. Schematic representation of the 1878 experimental design used to evaluate the resilience of precipitation legacy effects to 1879 perturbations and their functional importance to plant drought response. Six soils spanning the 1880 Kansas precipitation gradient ("legacy phase"), were either left unplanted or planted with 1881 seedlings of the native grass species *Tripsacum dactyloides* (eastern gamagrass), and 1882 subjected to either drought conditions or regular watering in a factorial design ("conditioning 1883 phase"). To evaluate how soil precipitation legacy affects plants, and to disentangle the role of

the microbiota from possible effects of co-varying abiotic soil properties, we then used the sexperimentally-conditioned microbial communities to inoculate a new generation of *T. dactyloides* and *Z. mays* plants. These "test phase" plants were divided between water-limited conditions and well-watered control conditions. **b.** Alpha diversity of bacterial communities was not affected by the different conditioning treatments (drought or well-watered, with or without host). **c.** Phylograms show that the different conditioning treatments (drought or well-watered, with or without host) did not impact the relative abundance profiles of main bacterial phyla. **d.** constrained ordination of metagenome taxonomic composition in response to conditioning phase treatments. Statistics are from permutational MANOVA. The bar on the left describes the percentage of the variance explained by the experimental variables.

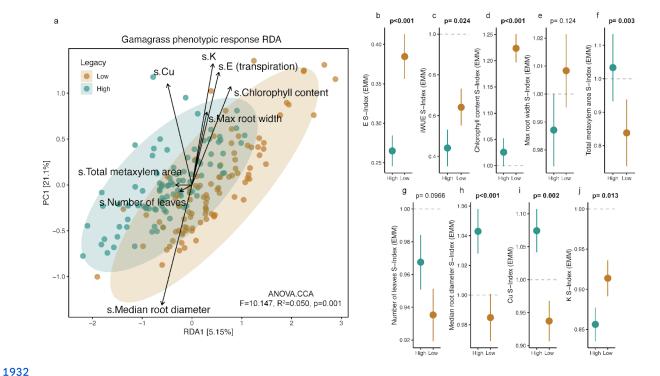


1895 Extended Data Fig. 5. Precipitation legacy effects shape the transcriptionally-active soil 1896 microbiota even after five months of experimental perturbation. a. Constrained ordination 1897 of metatranscriptome content in response to conditioning phase treatments: (left) baseline soils 1898 and soils after exposure to well-watered or drought treatment, and (right) host or no-host 1899 treatment. The bar on the left describes the percentage of the variance explained by the

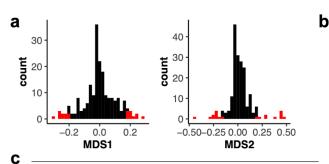
1900 experimental variables. **b**. Phylogram showing the main bacterial phyla that were 1901 transcriptionally active across soils with different precipitation legacies after five months of 1902 drought or well-watered conditions, compared to the baseline for each legacy group (PL and 1903 DL). **c**. Heatmap showing enrichment or depletion of transcriptionally active bacterial families 1904 relative to the baseline high-precipitation-legacy (PL) soil. DL indicates the baseline 1905 (pre-conditioning) low-precipitation-legacy soil; +W and +D indicate five months of well-watered 1906 or drought conditions, respectively. Heatmap was coloured based on \log_2 fold changes derived 1907 from a generalised linear model contrasting the abundance of each family in a given treatment 1908 against the high-precipitation-legacy baseline soil. Tiles outlined in black denote statistically 1909 significant enrichment (red) or depletion (blue) (q < 0.05) with a $|\log_2$ fold change| > 2. 1910 Heatmaps were clustered based on taxonomic classification (tree on the left).



1912 Extended Data Fig. 6. Transcriptional responses of soil microbiomes to short-term water 1913 perturbations are shaped by precipitation legacy. a. Heatmap showing the enrichment of 1914 transcriptionally active bacterial phyla in soils with low-precipitation (DL) or high-precipitation 1915 (PL) legacies, exposed to either drought (+D) or well-watered (+W) treatments, relative to the 1916 high-precipitation-legacy baseline (PL). DL indicates the baseline (pre-conditioning) 1917 low-precipitation-legacy soil. Colours represent log₂ fold changes derived from a generalized



1933 Extended Data Fig. 7. Precipitation legacy of microbial inoculum impacts gamagrass 1934 phenotypic drought response. a. A constrained redundancy analysis of the top non-collinear 1935 traits found that legacy explains 5.0% of the phenotypic response to acute drought in eastern 1936 gamagrass (*Tripsacum dactyloides*). Turquoise points represent plants that were inoculated with 1937 high-precipitation-legacy microbiota and brown points represent plants that were inoculated with 1938 low-precipitation-legacy microbiota. The ellipses indicate 95% confidence intervals. b-j. 1939 Assessment of individual traits indicates that microbiota with a low-precipitation legacy improved 1940 gamagrass performance under drought. Points are estimated marginal means and error bars 1941 represent the standard error, and significant p-values (≤0.05) are bolded.



Number of genes		MDS1		
		+	-	
MDC2	+	52	54	
MDS2	-	37	54	

1	op 5% of g	genes wit	h strongest	positive loadings on N	1DS1
Td_gene	MDS1	MDS2	Gene_set	Zm_orthologs	Zm_gene_symbol
Td00002ba000754	0.282	0.182	1	Zm00001eb057770	
Td00002ba018910	0.246	0.141	VII	Zm00001eb112460	cl31479_3
Td00002ba037703	0.241	-0.057	%	Zm00001eb237740	
Td00002ba002499	0.217	0.059	1	NA	
Td00002ba014047	0.21	0.021	1	Zm00001eb381580	
Td00002ba022717	0.208	0.065	III	Zm00001eb055100	
Td00002ba044330	0.205	0.103	VI	Zm00001eb199260	
Td00002ba019383	0.19	0.148	1	Zm00001eb115970	ms33
Td00002ba011993	0.181	0.078	1	Zm00001eb307550	ereb177
Td00002ba024147	0.178	0.057	1	Zm00001eb248540	umc2600a

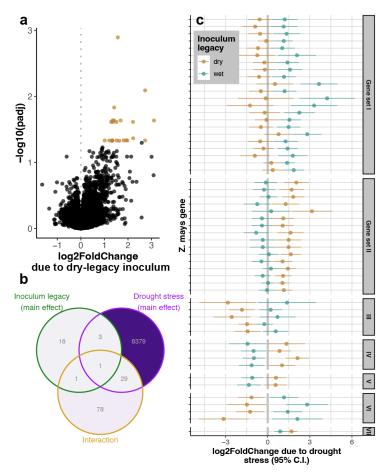
То	p 5% of ge	nes with	strongest po	sitive loadings on MD	S2
Td_gene	MDS1	MDS2	Gene_set	Zm_orthologs	Zm_gene_symbol
Td00002ba015526	-0.266	0.486	IV	Zm00001eb396120	nas7
Td00002ba015525	-0.259	0.46	IV	Zm00001eb396120	nas7
Td00002ba039891	-0.238	0.451	III	NA	
Td00002ba001144	0.168	0.447	VI	Zm00001eb053700	
Td00002ba001146	0.16	0.44	VI	Zm00001eb053700	
Td00002ba041411	-0.173	0.389	IV	NA	
Td00002ba015516	-0.141	0.272	IV	Zm00001eb396120	nas7
Td00002ba015515	-0.141	0.272	IV	Zm00001eb396120	nas7
Td00002ba033830	-0.15	0.218	٧	Zm00001eb039280	ga20ox7
Td00002ba019393	-0.154	0.199	III	Zm00001eb286420	mads58

Т	op 5% of g	enes wit	h strongest i	negative loadings on N	1DS1
Td_gene	MDS1	MDS2	Gene_set	Zm_orthologs	Zm_gene_symbol
Td00002ba046162	-0.203	0.116	٧	Zm00001eb199320	
Td00002ba046161	-0.206	0.112	II	Zm00001eb199320	
Td00002ba036367	-0.222	0.138	II	Zm00001eb199320	
Td00002ba036368	-0.224	0.132	II	Zm00001eb199320	
Td00002ba019546	-0.236	-0.222	II	Zm00001eb147080	
Td00002ba039891	-0.238	0.451	III	NA	
Td00002ba007195	-0.257	0.113	II	Zm00001eb161990	
Td00002ba015525	-0.259	0.46	IV	Zm00001eb396120	nas7
Td00002ba015526	-0.266	0.486	IV	Zm00001eb396120	nas7
Td00002ba002239	-0.304	0.188	III	Zm00001eb048620	

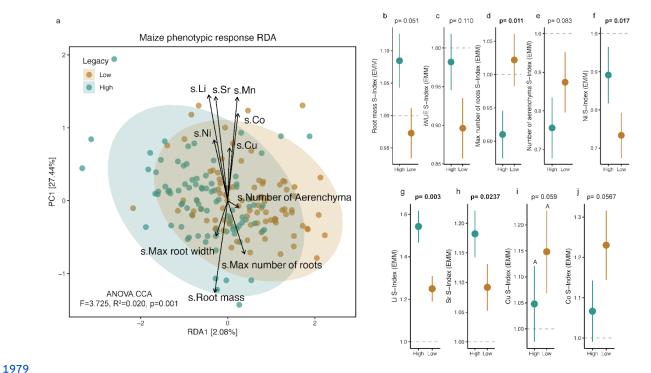
Top 5% of genes with strongest negative loadings on MDS2					
Td_gene	MDS1	MDS2	Gene_set	Zm_orthologs	Zm_gene_symbol
Td00002ba023452	-0.061	-0.166	٧	Zm00001eb027750	pat3
Td00002ba021901	0.012	-0.19	٧	NA	
Td00002ba019546	-0.236	-0.222	II	Zm00001eb147080	
Td00002ba019177	0.023	-0.222	III	Zm00001eb180130	
Td00002ba009640	-0.077	-0.222	II	Zm00001eb210740	AY110625
Td00002ba008826	-0.138	-0.224	II	Zm00001eb125560	umc1742
Td00002ba045645	-0.019	-0.24	*	NA	
Td00002ba015343	0.124	-0.267	II	NA	
Td00002ba006731	-0.084	-0.272	II	Zm00001eb210740	AY110625
				Zm00001eb211300,	
				Zm00001eb211310,	pco095801,
				Zm00001eb155430,	AY106518,
Td00002ba006546	-0.029	-0.435	VIII	Zm00001eb055690	GRMZM2G024958

* upregulated due to main effect of dry-legacy inoculum (no interaction with acute drought

1945 Extended Data Fig. 8. Expression patterns of *Tripsacum dactyloides* genes in relation to 1946 microbiome legacy and NMDS axes that mediate drought responses. a. Histograms 1947 showing the distributions of gene loadings onto both axes of an ordination based on non-metric 1948 multidimensional scaling of RNA-seq data (see Fig. 4). The top 5% of genes with the strongest 1949 positive and negative loadings onto each axis are in red. b. Breakdown of the number of genes 1950 with positive/negative loadings onto each axis. c. Lists of genes comprising the 5% tails of the 1951 distributions in panel (a). Detailed information about the expression responses of these genes is 1952 available in Supplementary Table S10. 'Gene_set' refers to the patterns of response to 1953 microbiome legacy presented in Fig. 4a-b.



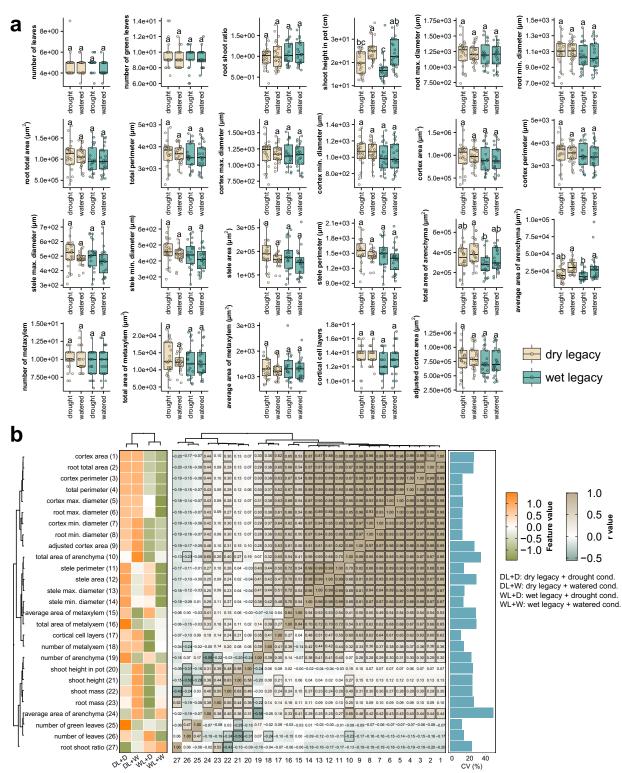
1955 Extended Data Fig. 9. Precipitation legacy of microbial inocula alters the transcriptional 1956 response to drought in the maize crown root. a. 23 genes were up-regulated in plants 1957 inoculated with soil microbiota from a low-precipitation region, relative to plants inoculated with 1958 microbiota from a high-precipitation region. b. The sets of genes that responded to the main 1959 effects of inoculum legacy and test phase drought treatment had little overlap with each other or 1960 with the set of genes that were sensitive to the interaction between the two. c. In total, 109 1961 maize genes responded to drought in a manner that was dependent on the drought legacy of 1962 the soil microbiota (the inoculum legacy * drought treatment interaction term), regardless of the 1963 inoculum's treatment during the conditioning phase. For illustration purposes, only annotated 1964 genes with |log₂FoldChange| > 1 in at least one microbial context are shown here; the full list is 1965 available in Supplementary Table S10. Each pair of points shows one gene; the position of each 1966 point illustrates how the gene's expression changed in response to drought stress during the 1967 Test Phase, depending on whether the plant had been inoculated with microbiota derived from a 1968 low-precipitation (brown) or dry-precipitation (turquoise) environment. Genes are grouped into 1969 sets according to the pattern of how inoculum legacy altered their drought responses. Note: the 1970 names of these gene sets are not meant to correspond to the names of the T. dactyloides gene 1971 sets shown in Fig. 4b; in each species, Gene set I contains the most genes, Gene set II 1972 contains the next most, and so on. 1973



1980 Extended Data Fig. 10. Precipitation legacy of the microbiota had only weak impacts on 1981 the phenotypic drought response of maize, compared to that of eastern gamagrass. For 1982 comparison, the effects of microbiota precipitation legacy on eastern gamagrass drought 1983 responses are shown in Fig. 4 and Extended Data Fig. 7. a. A constrained redundancy analysis 1984 of the top non-collinear traits found that the precipitation legacy of the microbial inoculum only 1985 explains 2.0% of the maize phenotypic response to acute drought. Turquoise points represent 1986 root microbiomes with high precipitation legacy and brown points represent those with low 1987 precipitation legacy. The ellipses indicate 95% confidence intervals. b-j. Assessment of 1988 individual traits indicates that microbiota with a low-precipitation legacy did not significantly 1989 improve maize performance under drought, but did impact several mineral nutrient 1990 concentrations. Points are estimated marginal means and error bars represent the standard 1991 error, and significant p-values (≤ 0.05) are bolded.

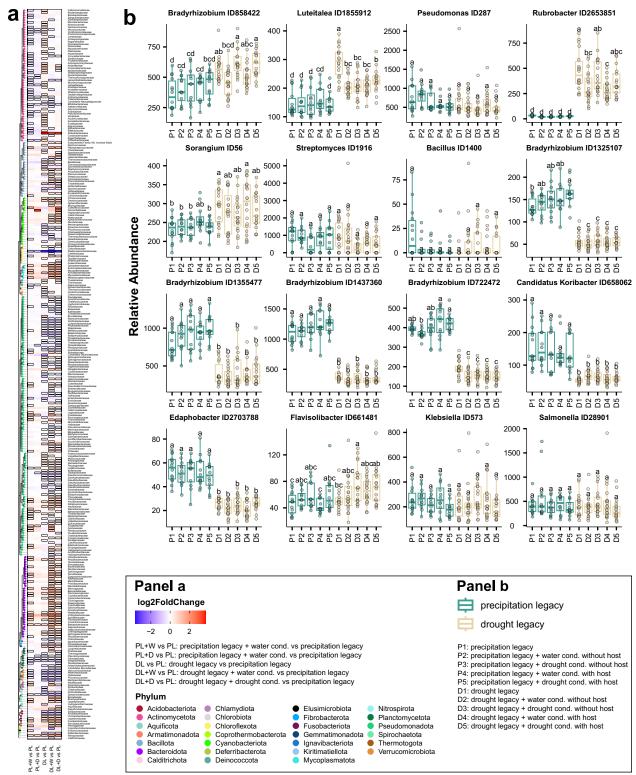
1	Supplementary Materials for
2 3 4	Persistent legacy effects on soil microbiota facilitate plant adaptive responses to drought
5 6 7 8	Nichole A. Ginnan, Valéria Custódio, David Gopaulchan, Natalie Ford, Isai Salas-González, Dylan H. Jones, Darren M. Wells, Ângela Moreno, Gabriel Castrillo, Maggie R. Wagner.
9	This PDF file includes:
10	Supplementary Fig. 1-8
11	Supplementary Tables 1-12 (Legends)
12	Supplementary Note 1

13 Supplementary Figures



Supplementary Fig. 1. Precipitation legacy effects in the soil microbiota are resilient to short-term water- and host-related perturbations. a. Box plots showing how soil group (high-precipitation or low-precipitation legacy) and treatment (droughted or well-watered) affect

phenotypic distributions of the *Tripsacum dactyloides* plants grown during the conditioning phase. ANOVA was used to partition variance among groups and estimated marginal means were compared using Tukey's post hoc test. **b**. Effects of soil group (high-precipitation or low-precipitation legacy) and treatment (droughted or well-watered) on phenotypic traits of *Tripsacum dactyloides* plants grown during the conditioning phase. The heatmap on the left depicts key plant phenotype features, coloured based on mean normalised values. The Pearson correlation coefficients (r) between these features are presented in the centre heatmap, with significant correlations (p < 0.05) highlighted by black squares. The bar plot on the right indicates the coefficient of variation of the feature values. The heatmaps are clustered based on Pearson correlation coefficient values.



Supplementary Fig. 2. Limited influence of drought and watering treatments on soil microbiota with established precipitation legacies. a. The heatmap displays the enrichment of bacterial families across soils with high-precipitation (PL) and low-precipitation (DL) legacies, exposed to either drought (+D) or well-watered (+W) treatments, in comparison to the high-precipitation soil baseline (PL). DL indicates the baseline (pre-conditioning) low-precipitation-

legacy soil. Colours in the heatmap represent \log_2 fold changes, calculated using a generalized linear model that contrasts the abundance of each bacterial family in the respective treatments with that of the high-precipitation soil baseline (PL). Tiles outlined in black denote statistically significant enrichment (red) or depletion (blue) (q < 0.05) with a $|\log_2|$ fold change| > 2. The heatmap was clustered based on taxonomic classification (represented by the dendrogram on the left). **b**. Boxplots showing the relative abundance of bacterial markers of water legacy across soils with low-precipitation legacy (D1-5) or high-precipitation legacy (P1-5) either before (P1, D1) or after (P2-5, D2-5) exposure to conditioning phase treatments (drought or well-watered, with or without host). ANOVA was performed to detect significant differences among the groups, with Tukey's post hoc test used to compare the estimated marginal means. Notice that in most cases the conditioning treatments did not affect the relative abundance of bacterial markers compared to the baseline soils.

51

52

53

54

55

56

57

58

59

60

61

62

63

64

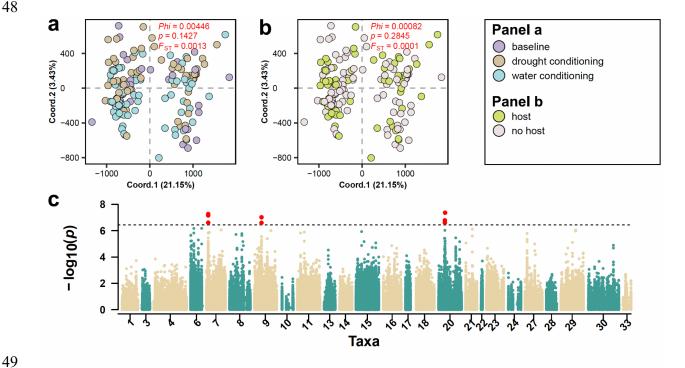
65

66

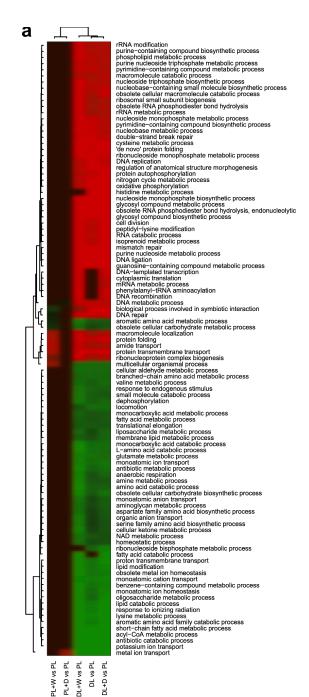
67

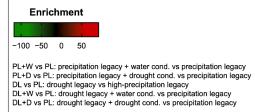
68

69 70



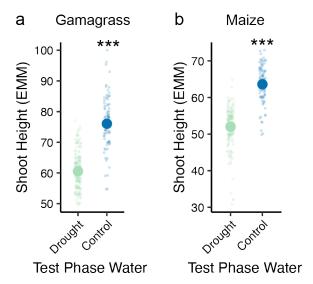
Supplementary Fig. 3. Genetic variation among bacterial lineages driven by long-term precipitation legacy remains stable despite acute drought/water perturbations and host presence/absence during the five-month-long conditioning phase. Filtered shotgun metagenomic reads were aligned to the reference genomes of 33 selected taxa, including 15 identified bacterial markers plus 18 additional abundant and prevalent taxa. Genetic distances between these bacterial lineages were calculated based on identified single nucleotide polymorphisms (SNPs). Principal Coordinate Analysis (PCoA) plots were generated and coloured to depict a. acute drought and well-watered treatments, and **b.** host and no-host treatments during the conditioning phase. Phi values, derived from Analysis of Molecular Variance (AMOVA), indicate the genetic variance between groups, while the p-value reflects the significance of the AMOVA results based on permutation testing. Fixation index (F_{ST}) values were used to measure the degree of genetic differentiation between groups. The variance explained by each axis is displayed on the PCoA plots. c. A Manhattan plot illustrated significant SNPs linked to the high-precipitation and lowprecipitation soil legacies, derived from the genetic-environment association (GEA) analysis. This analysis was conducted using a general linear model and significant associations were identified using the permutation method. In the Manhattan plot, the x-axis represents the SNP positions along the genomes of the selected bacterial species, while the y-axis displays the -log₁₀ p-values from the association model. A horizontal line represents the statistical significance threshold, determined by the permutation test. SNPs exceeding this threshold (highlighted in red) were significantly associated with soil legacy effects. Bacterial taxa with fewer than 1.000 high-quality biallelic SNPs after filtering, or with no significant SNPs detected from the GEA analysis, are excluded from the plot.



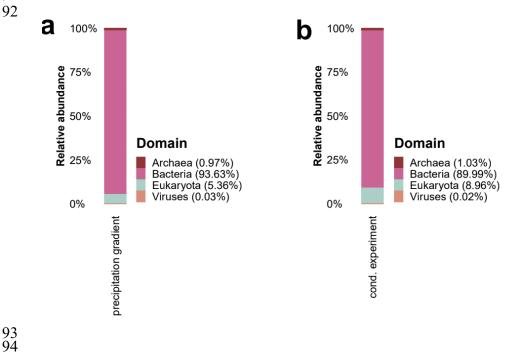


Panel a

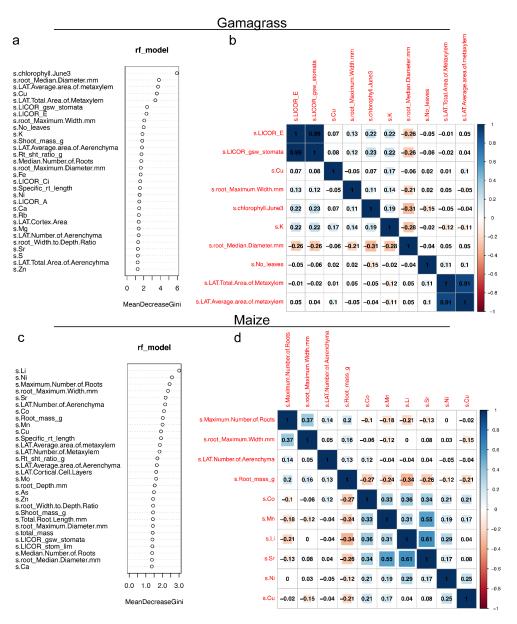
Supplementary Fig. 4. Precipitation legacies shape soil microbial functional potential and remain stable under short-term water perturbations. a. The heatmap illustrates enriched or depleted Gene Ontology (GO) categories in soils with high-precipitation legacies (PL) or low-precipitation legacies (DL), subjected to drought (+D) or well-watered (+W) treatments, in comparison to soils with the high-precipitation soil baseline (PL). DL indicates the baseline (preconditioning) low-precipitation-legacy soil. Gene enrichment analysis was conducted using a generalized linear model, followed by GO classification. Significantly enriched and depleted GO categories were identified using an adjusted p-value threshold of q < 0.05. Colours (red for enrichment, green for depletion) represent enrichment scores, calculated based on square root-transformed delta rank values of the GO categories. The heatmap is clustered by soil treatments and GO terms.



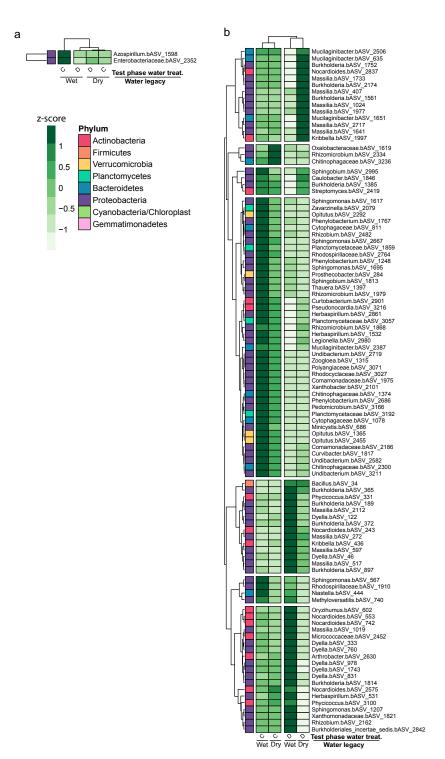
Supplementary Fig. 5. Test phase gamagrass and maize drought treatments effectively reduce plant growth. Test phase drought treatment significantly reduced shoot height (cm) in (a) gamagrass and (b) maize. Large points represent estimated marginal means, while small points show individual plant heights.



Supplementary Fig. 6. Dominance of bacterial sequences in soil metagenomes. Metagenomic profiles were dominated by bacterial sequences, which accounted for the vast majority of reads in both (a) the original soils sampled across a precipitation gradient and (b) the soils from the conditioning experiment. In contrast, archaeal, eukaryotic, and viral sequences constituted only minor fractions of the total reads.



Supplementary Fig. 7. Plant trait feature selection. a-b. Gamagrass and c-d. maize traits important in explaining legacy effects were ranked using a random forest model. The top ten traits were tested for significant correlations (≥ 0.7).



Supplementary Fig. 8. Test phase water and legacy have a large impact on ASV abundances in maize, but not gamagrass. a. Gamagrass root bacterial and b. maize root bacterial centered-log ratio transformed ASV counts were individually fit to a linear model to identify ASVs that were differentially abundant across test phase water treatments in the context of precipitation legacy. Dark green represents ASV enrichment and light green to white represents depletion. Multi-colored squares indicate phylum-level taxonomic assignments, which do not have an obvious phylogenetic pattern.

Supplementary Table Legends

Supplementary Table S1. List of soil collection sites. The soils used in this work were collected from these regions. The table also shows the coordinates associated with these regions, the state, and country.

Supplementary Table S2. Enriched KEGG reactions across the precipitation gradient (Low vs. High precipitation) in Kansas. Positive enrichment scores ("Low_vs_high_precipitation") indicate that the KEGG reaction was relatively more abundant in soil metagenomes from low-precipitation sites than in high-precipitation sites. Enrichment scores are the cumulative log2-fold changes of all differentially abundant genes within the same functional KEGG category, as determined using DESeq2.

Supplementary Table S3. Significant SNPs linked to precipitation gradient, derived from the genetic-environment association (GEA) analysis. Results of GEA based on metagenomic data from the original field-collected soils. This table specifies the genomic locations of SNPs, the reference and alternative alleles, GenBank accession numbers, and annotations when available. The 'Effect' column represents the estimated additive effect of the alternate allele (ALT) from the association model on the binary trait (0 = drought, 1 = precipitation). A positive effect indicates that the ALT allele is associated with an increased probability of precipitation conditions, while a negative effect indicates that the ALT allele is associated with an increased probability of drought conditions.

Supplementary Table S4. List of bacterial markers of soil water legacy identified in this work using soils from Kansas. In addition to the bacterial taxa ID (taxID), the table also shows taxonomical attributes (Family, Genus, label Family, and Label genus) of the bacterial markers identified. The column "DirectionEnrichment" shows the direction of the marker enrichment: "High to low" indicates that the marker taxon is enriched in the soils from high-precipitation sites relative to soils from low-precipitation sites, and vice versa.

Supplementary Table S5. Significant SNPs linked to long-term water and drought legacies even after five months of experimental perturbation. Results of GEA based on metagenomic data from soils that had undergone five months of experimental perturbation (acute drought or control conditions, with or without a host). This table specifies the genomic locations of SNPs, the reference and alternative alleles, GenBank accession numbers, and annotations when available. The 'Effect' column represents the estimated additive effect of the alternate allele (ALT) from the association model on the binary trait (0 = drought, 1 = precipitation). A positive effect indicates that the ALT allele is associated with an increased probability of precipitation conditions, while a negative effect indicates that the ALT allele is associated with an increased probability of drought conditions.

Supplementary Table S6. Enriched GO categories across the precipitation gradient after drought and watering conditioning (metagenome). At the end of the conditioning phase, 270 GO categories were significantly enriched or depleted in at least one treatment group or in the baseline low-precipitation-legacy soils, relative to the high-precipitation-legacy baseline soils. Enrichments and depletions were much more common in the low-precipitation-legacy soil group, regardless of whether the soils experienced the drought treatment ("+ drought cond.") or the well-watered treatment ("+ water cond.") during the conditioning phase. "NA" indicates that the GO category was neither enriched nor depleted.

Supplementary Table S7. Overlapping enriched GO categories across the precipitation gradient and conditioning treatments. By the end of the conditioning phase, most of the GO categories that distinguished the original field-collected soils from low-precipitation *vs.* high-precipitation sites (see Extended Data Fig. 2g) retained the same pattern of enrichment/depletion, regardless of whether the soils had experienced the drought treatment ("+ drought cond.") or the well-watered treatment ("+ water cond.") during the conditioning phase. "NA" indicates that the GO category was neither enriched nor depleted.

Supplementary Table S8. Enriched GO categories across the precipitation gradient after drought and watering conditioning (metatranscriptome). Metatranscriptomic analysis of preconditioning (baseline) and post-conditioning (5 months of drought ["+ drought cond."] or well-watered conditions ["+ water cond."]) soils revealed GO categories that were differentially abundant relative to the high-precipitation-legacy baseline soils. "NA" indicates that the GO category was neither enriched nor depleted.

Supplementary Table S9. Enriched KEGG reactions across the precipitation gradient after drought and watering conditioning (metatranscriptome). Metatranscriptomic analysis of preconditioning (baseline) and post-conditioning (5 months of drought ["+ drought cond."] or well-watered conditions ["+ water cond."]) soils revealed KEGG reactions that were differentially abundant relative to the high-precipitation-legacy baseline soils.

Supplementary Table S10. Differentially expressed genes in the roots of gamagrass and maize inoculated with low-precipitation-legacy and high-precipitation-legacy microbiota during the test phase. Tab one provides information for interpreting the column names and the four other tabs. Tab two lists gamagrass genes that are significantly up or down-regulated based on the main effects of microbial inoculum legacy. Tab three lists gamagrass genes that are significantly up or down-regulated based on the interaction of test phase water treatment and microbial inoculum legacy. Tab four lists maize genes that are significantly up or down-regulated based on the main effects of microbial inoculum legacy. Tab five lists maize genes that are significantly up or down-regulated based on the interaction of test phase water treatment and microbial inoculum legacy.

Supplementary Table S11. Test phase plant phenotypic data and microbiome metadata. Tab one provides information for interpreting the column names. Tab two provides the measurements for all plants used in the plant phenotypic analyses, including both Gamagrass and maize. Tab three provides the measurements for the plant samples used in the root bacterial microbiome data analyses, with sequencing data that passed all qualify checks and filtering.

Supplementary Table S12. Differentially abundant test phase gamagrass and maize root microbiome ASVs. Tab one provides information for interpreting the column names. Tab two lists the gamagrass root microbiome ASVs, including their full taxonomic assignment, that were differentially abundant based on inoculum precipitation legacy in the context of test phase water treatment. Tab three lists the maize root microbiome ASVs, including their full taxonomic assignment, that were differentially abundant based on inoculum precipitation legacy in the context of test phase water treatment.

Supplementary Note 1

We identified four sets of orthologous genes whose transcription patterns were sensitive to microbiota legacy in both maize and *T. dactyloides*, but none showed congruent drought responses. In maize, a peroxidase encoding gene, Zm00001eb076200, reversed its drought response depending on inoculum, while its *T. dactyloides* ortholog, Td00002ba025285, was upregulated 4-fold by drought only when inoculated with wet-legacy microbiota. The maize gene Zm00001eb077640, (L-allo-threonine aldolase) also showed a reversed drought response, whereas its ortholog Td00002ba026366 was consistently up-regulated, especially in plants inoculated with dry-legacy biota. The pathogenesis-related protein-like gene Zm00001eb150050, which has been linked to both biotic and abiotic stress responses, was up-regulated 7-fold in maize under drought, but only in plants inoculated with wet-legacy microbiota; however, its *T. dactyloides* orthologs were down-regulated 8-fold in response to low-precipitation *vs.* high-precipitation legacy inoculum, independent of watering. Finally, the tryptophan synthase encoding gene Zm00001eb301540 was up-regulated 1.7-fold in maize inoculated with wet-legacy microbiota, while; its ortholog Td00002ba012570 was down-regulated under the same conditions.