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19 Abstract

20 Both chronic and acute drought alter the composition and physiology of soil microbiota by
21 selecting for functional traits that preserve fithess in dry conditions. Currently, little is known

22 about how the resulting precipitation legacy effects manifest at the molecular and physiological


https://doi.org/10.1101/2024.08.26.609769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

23 levels and how they influence neighboring plants, especially in the context of subsequent
24 drought. We characterized metagenomes of six prairie soils spanning a steep precipitation
25 gradient in Kansas, USA. By statistically controlling for variation in soil porosity and elemental
26 profiles, we identified bacterial taxa and functional gene categories associated with precipitation.
27 This microbial precipitation legacy persisted through a 5-month-long experimental drought and
28 mitigated the negative physiological effects of acute drought for a wild grass species that is
29 native to the precipitation gradient, but not for the domesticated crop species maize. In
30 particular, microbiota with a low-precipitation legacy altered transcription of a subset of host
31 genes that mediate transpiration and intrinsic water use efficiency during drought. Our results
32 show how long-term exposure to water stress alters soil microbial communities with

33 consequences for the drought responses of neighboring plants.

34 Introduction

35 The increasing frequency and intensity of droughts associated with global climate change are
36 threatening plant health and survival in both natural and agricultural ecosystems. However, the
37 ability of soil microbial communities to quickly adapt to environmental shifts' may bolster the
38 resilience of plants and ecosystems to drought stress?. Additionally, the cumulative effects of
39 past stress exposure can influence microbial communities’ responses to future environmental
40 challenges, a phenomenon referred to as legacy effects or ecological memory®. Despite the
41 growing recognition of microbial legacy effects, little is known about the mechanisms driving
42 them, their long-term persistence, and whether their effects extend uniformly across different
43 plant species.

44 To investigate microbial drought legacy effects and isolate the drivers and impacts of
45 microbial adaptations to water limitation, we (1) evaluate natural soil metagenome variation

46 across a steep regional precipitation gradient, (2) test the ability of legacy effects to persist
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47 through experimental perturbation, and (3) evaluate the impacts of microbiome precipitation
48 history on plant responses to acute drought at the molecular and physiological levels. Finally, we
49 assess the extent to which microbiome legacy effects are transferable across plant species. Our
50 results demonstrate that legacy effects of historical exposure to dry conditions are more salient
51 at the metatranscriptomic level than at the taxonomic or metagenomic levels, and that they
52 trigger transcriptional changes in plant roots that improve resistance to subsequent acute
53 droughts, at least in some plant species.

54

55 Results

56 Mineral nutrient accumulation and precipitation impact soil microbiota taxonomic

57 composition

58 To identify microbial markers of precipitation legacy effects, we sequenced the metagenomes of
59 soils from six never-irrigated remnant prairies spanning ~568 km of a steep precipitation
60 gradient in Kansas, USA (Fig. 1a,b; Supplementary Table S1). Although bacterial alpha diversity
61 was similar among soils (Extended Data Fig. 1a), community composition showed a strong
62 biogeographic signature (PERMANOVA, R?°0.11, p=0.001) and precipitation explained 5.3% of
63 the variation. The first principal coordinate axis, which explained 10.6% of the total variation,
64 separated the bacterial communities of the two highest-precipitation sites from the other soils
65 (Fig. 1c). In line with previous findings*, Actinomycetota and Bacillota were enriched in
66 low-precipitation soils, whereas Pseudomonadota and Acidobacteriota were enriched in
67 high-precipitation soils (Extended Data Fig. 1b).

68
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69 To disentangle the influence of precipitation from co-varying edaphic properties®, we examined
70 24 trace element profiles in each soil using ICP-MS. Nutrients are known drivers of taxonomic
71 composition and functional capacity in soil microbiomes, particularly bacterial communities®’.
72 Mineral nutrient content differed among the six soils, with precipitation explaining 28.6% of the
73 variation. The first principal coordinate axis of the soil mineral nutrient profiles, which explained
74 39.6% of the total variation, separated the three lower-precipitation sites, from the three
75 higher-precipitation sites (Extended Data Fig. 1c). Concentrations of K, Mg, Ca, Li, and P were
76 negatively correlated with mean annual precipitation, while Cd, Mn, Se, As, Zn, Co, Pb, Rb, Fe,
77 and Cr were positively correlated (Extended Data Fig. 1d-e). The mineral nutrient dissimilarities
78 among soils were correlated with the corresponding microbiota composition dissimilarities
79 (Mantel, r=0.384; p-value=1e-04; Extended Data Fig. 1f). This suggests that precipitation
8o patterns might influence the accumulation of mineral nutrients in these soils, and both
81 precipitation and nutrients may impact microbial communities. For example, precipitation can
82 drive mineral weathering and solute production in soils®, although this process also depends on
83 many other geochemical and biological factors®.

84

85 Next, we used X-ray computed tomography to quantify soil porosity of undisturbed soil cores.
86 Soil porosity is directly related to soil hydraulic properties; in general, lower porosity results in
87 lower water retention and infiltration™. Therefore, it is a good indicator of how precipitation
g8 affects the actual water content in the soil. Consistently, soil porosity decreased with depth to
89 about 3.5 cm before stabilizing, and increased with precipitation (Extended Data Fig. 2a-b).
90 Notably, precipitation might affect soil porosity in surface layers of soils', potentially affecting
91 soil niche properties and, consequently, microbial communities. Nevertheless, we found no
92 correlation between the porosity dissimilarities and the microbiota composition dissimilarities of

93 these soils (Extended Data Fig. 2c), suggesting either that soil porosity is not a key element
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94 controlling the overall microbial community composition in these soils, or that the influence of
95 porosity is masked by precipitation legacy.

96 Finally, to identify taxonomic biomarkers of precipitation legacy, we modelled the relative
97 abundances of bacterial taxa in relation to precipitation levels while controlling for soil porosity
98 and soil elemental composition. This analysis revealed distinct clusters of bacterial taxa whose
99 relative abundances varied significantly along the precipitation gradient (Extended Data Fig.
100 2d-f). Across the six soils, 19 taxa (NCBI taxIDs) were positively correlated and nine were
101 negatively correlated with precipitation (Fig. 1d). Additionally, 15 of the most abundant (>0.1%)
102 and prevalent (>20%) taxa were enriched or depleted in the three lower-precipitation soils
103 relative to the higher-precipitation soils (Fig. 1e). Together, these results indicate that water
104 availability shapes soil bacterial communities, possibly by selecting for functions necessary to
105 adapt to dry conditions and/or subsequent re-wetting'?.

106

107 Functional category enrichments and strain-level genetic analysis suggest molecular
108 mechanisms of precipitation legacy effects

109 We used assembled metagenomic contigs to explore the functional potential of the soil
110 communities spanning the precipitation gradient. To focus on functions that are associated with
111 water availability rather than site-specific variation, we collapsed our six soils into two groups
112 representing our sites with low-precipitation vs. high-precipitation histories. These groupings
113 preserved the observed similarities in taxonomic composition, mineral nutrient content, and
114 porosity (Fig. 1c; Extended Data Fig. 1c, 2a). In total, 62 Gene Ontology (GO) categories and
115 3396 KEGG reactions were differentially abundant between groups (Extended Data Fig. 2g;
116 Supplementary Table S2). Biological processes enriched in low-precipitation soils included
117 nitrogen cycling, fatty acid biosynthesis, DNA repair, and glucan metabolism, all of which have

118 been linked to drought or stress tolerance"°. Additional processes linked to stress responses
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119 were depleted in low-precipitation soils, including ion transport (involved in osmotic adjustment),
120 lipid catabolism (relevant for membrane integrity), and metabolism of cellular aldehydes and
121 ketones (involved in oxidative stress)'®'” (Extended Data Fig. 2g). The observed differences in
122 functional potential between low-precipitation and high-precipitation sites suggest that these
123 microbiomes are functionally adapted to local precipitation levels, making them excellent
124 candidates for exploring how microbial precipitation legacy affects plant drought tolerance.

125 Next, we investigated precipitation-associated genetic variation within 33 focal bacterial
126 species, including the previously-identified bacterial biomarkers and other highly abundant and
127 prevalent taxa. Shotgun metagenomic reads were mapped to reference genomes from the
128 NCBI database, and sequence variants were identified. Analysis of genetic distances showed
129 variations in strain-level microbiome structure across the precipitation gradient (Extended Data
130 Fig. 3a) and between precipitation levels (Extended Data Fig. 3b).

131 Subsequently, we conducted a genotype-environment association analysis and identified
132 genetic variants associated with mean annual precipitation in several bacterial lineages,
133 including Streptomyces, Luteitalea, Rubrobacter, Lacibacter, and Rhizobium, and three
134 Bradyrhizobium lineages (Extended Data Fig. 3c, Supplementary Table S3). Most of the
135 associated variants were located within or near protein-coding regions. Notably, some of the
136 corresponding genes have known adaptive functions such as the phenolic acid stress response
137 (PadR family transcriptional regulator)'®'®, maintenance of cellular functions under iron
138 starvation and oxidative stress (Fe-S cluster assembly protein SufD and SufB)¥, and fatty acid
139 synthesis (acetyl-CoA carboxylase biotin carboxylase subunit)?’, which impacts membrane
140 composition and stress tolerance'” (Extended Data Fig. 3c; Supplementary Table S3). These
141 results indicate that precipitation legacy effects manifest through genetic differentiation within
142 bacterial species, not just variation in community composition. Further study of these variants
143 could reveal mechanisms by which precipitation shapes soil microbiota over ecological and

144 evolutionary time.


https://doi.org/10.1101/2024.08.26.609769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

145

146 Metagenomic and especially metatranscriptomic precipitation legacies are resilient to

147 short-term perturbations

148 To assess the effects of short-term perturbations on soil microbiome legacy, we exposed the six
149 focal soils to a five-month-long conditioning phase experiment. Replicate pots of each soil were
150 either left unplanted or planted with a seedling of Tripsacum dactyloides (eastern gamagrass,
151 which is native to Kansas), and were either drought-challenged or well-watered, in a factorial
152 design (Extended Data Fig. 4a). Compared to well-watered plants, the droughted plants were
153 shorter and had more root aerenchyma (Fig. 2a; Supplementary Fig. 4a,b), confirming that the
154 conditioning phase drought treatment was severe enough to induce stress responses in the
155 plants, and presumably in the microbes?.

156

157 Next, we explored how precipitation legacy affected the microbial communities’ responses to
158 intermittent drought and watering events. Congruent with observations from the field-collected
159 soils, water availability did not affect bacterial community alpha diversity regardless of whether a
160 plant was present (Extended Data Fig. 4b). Although phylum-level taxonomic profiles were also
161 similar across treatments, constrained ordination of metagenomic sequences indicated that the
162 conditioning phase watering and host treatments explained 4.3% and 1.1% of the variation in
163 metagenome content, respectively (Extended Data Fig. 4c-d). In contrast, precipitation legacy
164 explained 14.1% of the metagenome variation, confirming that the conditioning phase
165 treatments did not erase the ecological memory of these soils (Fig. 2b). Additionally, we still
166 detected significant taxonomic differences between high- and low-precipitation soils
167 (Supplementary Fig. 2a,b) and the previously-identified taxonomic markers of drought legacy

168 (Supplementary Table S4) generally followed the expected enrichment and depletion patterns,
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169 regardless of conditioning phase treatment. This resilience was particularly evident in soils with
170 low-precipitation legacies (Fig. 2b, Supplementary Fig. 2b).

171

172 To assess whether precipitation legacy effects on strain-level genetic variation were also robust
173 to experimental perturbation, we investigated genetic variants within the identified bacterial
174 markers and other prevalent species across the samples, as described previously. A principal
175 coordinate analysis of standardized pairwise genetic distances based on those variants
176 revealed that samples clearly separated along the first axis based on precipitation legacy rather
177 than the experimental treatments (Fig. 2c). Furthermore, our experimental perturbations did not
178 affect allele frequencies (Supplementary Fig. 3a,b) whereas a genome-environment association
179 analysis identified precipitation-associated genes in Luteitalea and two Bradyrhizobium
180 lineages, recapitulating results from the pre-conditioning phase soils (Supplementary Fig. 3c,
181 Supplementary Table S5).

182

183 Next, we tested whether functional potential still differed between low- and high-precipitation
184 soils after 5 months of experimental perturbation. GO terms related to the nitrogen cycle
185 metabolic process, including purine-containing compound metabolic process and
186 pyrimidine—containing compound metabolic process, were enriched in dry-legacy soils, while
187 GO terms related to ion transport and amino acid catabolic process were depleted in the
188 dry-legacy soils, regardless of conditioning treatment (Supplementary Fig. 4a, Supplementary
189 Table S6). These enrichment patterns mirrored the original field soil observations: of the 62 GO
190 categories that were associated with precipitation legacy in the pre-conditioning soils, 49
191 retained the same pattern after five months of experimental drought, and 50 did so after five
192 months of ample watering (Extended Data Fig. 2g, Supplementary Table S7). These results
193 show that the legacy effect of precipitation on the functional capacity of soil metagenomes was

194 robust to the conditioning phase perturbations.
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195
196 Metagenome data often includes unexpressed genes and sequences from dormant or dead
197 organisms, which could exaggerate the robustness of soil legacy effects. Therefore, we also
198 quantified metatranscriptomes from the same samples to focus on biologically active processes
199 across the treatments and soils. Constrained ordination showed that precipitation history
200 explained 24.9% of the variation in microbial gene expression while conditioning phase drought
201 and host treatments explained only 12.3% and 1.8% of the variation, respectively (Fig. 2d;
202 Extended Data Fig. 5a). Furthermore, metatranscriptome-based taxonomic enrichment patterns
203 confirmed the metagenome-based results: even after five months of experimental perturbation,
204 transcriptionally active Actinomycetota and Bacillota remained enriched in low-precipitation soils
205 while Acidobacteriota, Planctomycetota, and Pseudomonadota remained enriched in
206 high-precipitation soils (Extended Data Fig. 5b). In general, the differences in transcriptionally
207 active bacterial taxa between low- and high-precipitation soils mirrored our previous
208 taxonomic-level observations, regardless of the conditioning treatments (Supplementary Fig. 2a;
209 Extended Data Fig. 5c¢, 6a).

210

211 Notably, the metatranscriptome analysis revealed GO categories and KEGG reactions that
212 remained enriched in low-precipitation soils after five months of experimental perturbation, such
213 as tetrapyrrole metabolic process, response to osmotic stress, liposaccharide metabolic
214 process, heme metabolic process, and trehalose catabolic process (Extended Data Fig. 6b;
215 Supplementary Table S8-S9). These results confirm that precipitation legacy strongly shapes
216 both functional potential and gene expression in soil microbiota, and remains robust to
217 perturbation (e.g., five-month-long acute drought). The functional resilience of the soil
218 microbiota creates the potential for microbial legacy effects to influence host responses to
219 environmental changes in natural ecosystems, conceivably enhancing plant resilience to future

220 droughts.
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221

222 Microbiome precipitation legacy alters host plant responses to subsequent drought despite

223 taxonomic convergence of root microbiomes

224 During the conditioning phase, we observed that droughted T. dactyloides plants grown in
225 low-precipitation-legacy soils were larger and produced more aerenchyma compared to plants
226 grown in high-precipitation-legacy soils (Fig. 2a). To confirm that these effects of soil
227 precipitation legacy were conferred by the microbiome rather than by co-varying soil properties,
228 we extracted the microbial communities from the conditioning phase pots and used them to
229 inoculate a new generation of T. dactyloides seedlings (Extended Data Fig. 4a). These “test
230 phase” plants were divided between well-watered control conditions (N=100) and a drought
231 treatment (N=200; Extended Data Fig. 4a), which we confirmed was severe enough to impair
232 plant growth (Supplementary Fig. 5a). We uprooted five-week-old gamagrass plants for
233 phenotyping and sampled crown roots, which are highly active in water acquisition?*?*, for 16S
234 rRNA gene microbiome profiling and RNA-seq analysis. We focused on bacterial microbiomes
235 because of evidence that fungi from these soils were insensitive to drought®, and because
236 bacterial sequences accounted for 93.63% of metagenomic reads in field-collected soils and
237 89.99% in conditioning-phase soils (Supplementary Fig. 6a,b). To best capture the precipitation
238 gradient extremes, we measured gene expression only in plants inoculated with microbiota
239 derived from the two lowest-precipitation and two highest-precipitation soils.

240

241 Precipitation legacy affected neither alpha diversity nor taxonomic composition of the
242 gamagrass root microbiome (Fig. 3a). Bacterial taxonomic composition was impacted by the
243 test phase drought treatment (ANOVA.CCA, F; 135=2.58, p=0.003) but not inoculum precipitation

244 legacy (ANOVA.CCA, F,13,=0.89, p=0.55) (Fig. 3b); together these factors explained 2.2% of

10
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245 root microbiome variation (ANOVA.CCA, F,;,=1.74, R?=0.022, p=0.01). To assess root
246 microbiome stability, we calculated beta-dispersion, a measure of within-group variability, and
247 found it to be equal among treatment groups (Fig. 3c; ANOVA, F,,4,=0.57, p=0.45). Together,
248 these results suggest that gamagrass exerts a strong homogenizing influence during root
249 microbiome formation, resulting in a stable and drought-resistant microbiota. Because eastern
250 gamagrass shares a long evolutionary history with Kansas soil microbes?, this result supports
251 previous findings that co-evolution promotes stable community assembly?”-28,

252

253 Although precipitation legacy did not shape 716S rRNA gene diversity within the T. dactyloides
254 root microbiome, its clear effect on the metagenome and metatranscriptome (Fig. 2c,d)
255 suggested high potential to influence plant phenotype. Indeed, the gene expression profiles in
256 crown roots of plants inoculated with dry-legacy microbiota were distinct from those of plants
257 inoculated with wet-legacy microbiota. Fifteen T. dactyloides genes were differentially expressed
258 in plants receiving a high-precipitation vs. low-precipitation inoculum (Fig. 4a; Supplementary
259 Table S10). Furthermore, inoculum precipitation legacy influenced the responses of 183 T.
260 dactyloides genes to acute drought (Fig. 4b). Of these, 55% were unresponsive to drought in
261 plants grown with a dry-legacy microbiota but were down-regulated or up-regulated in plants
262 grown with a wet-legacy microbiota (Fig. 4b, gene sets | and Il, respectively; Supplementary
263 Table S10). This strongly suggests that soil microbiota from low-precipitation sites tend to
264 dampen the transcriptional response of gamagrass to acute drought. For instance, 50 T.
265 dactyloides genes were downregulated due to the drought treatment, but only in plants that had
266 been inoculated with high-precipitation-legacy microbiota (Fig. 4b gene set |). These included
267 five orthologs of maize genes predicted to be involved in ethylene- or ABA-mediated signalling
268 of water stress (Td00002ba004498, Td00002ba024351, Td00002ba011993,
269 Td00002ba005402, Td00002ba000033), and a heat shock protein linked to temperature stress
270 (Td00002ba042486) (Supplementary Table S10). Notably, the latter three genes were not

11
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271 identified as drought-sensitive when averaging across inocula, demonstrating that the microbial
272 context is necessary for a complete understanding of molecular plant drought responses. We
273 note that these signatures of microbiota precipitation legacy on host gene expression are
274 averaged across all treatments applied during the conditioning phase (Extended data Fig. 4a),
275 again confirming that microbiome legacy effects are robust to short-term perturbations.

276

277 Next, we assessed whether microbial precipitation legacy altered host physiological and
278 morphological drought responses. For each of 63 traits, we calculated a drought susceptibility
279 index (S-index) that measures the stability of a trait under drought relative to control plants that
280 received the same inoculum type (Supplementary Table S11). We used a random forest model
281 to identify the ten most important traits for describing the phenotypic effects of microbiome
282 precipitation legacy (Supplementary Fig. 7a,b). Redundancy analysis revealed that microbiome
283 precipitation legacy explained 5% of the total variation in host phenotypic response to acute
284 drought (ANOVA.CCA, F,.;=10.1, R?>=0.05, p=0.001; Extended Data Fig. 7a). Microbiota
285 precipitation legacy impacted six of the top eight non-collinear ftraits: transpiration, leaf
286 chlorophyll content, maximum root width, metaxylem area, median root diameter, Cu, K, and
287 intrinsic water use efficiency (i\WUE)—an important plant drought response trait?**3° (Extended
288 Data Fig. 7b-j).

289

290 To solidify the mechanisms linking microbiome legacy to plant phenotype, we used mediation
291 analysis to determine whether phenotypic drought responses were mediated by expression
292 patterns of the 198 genes that were responsive to inoculum precipitation legacy (Fig. 4a-c),
293 summarized in two dimensions (MDS1 and MDS2). MDS1 mediated 18% of the total
294 drought-induced decrease in iWUE (p < 0.001), and 8.9% of the total decrease in transpiration
295 (p=0.018; Fig. 4d). In contrast, MDS2 mediated 11% of the iWUE response to drought (p=0.03),
296 but in the opposite direction, meaning that the activity of these genes counteracted the negative

12
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297 effects of acute drought on IWUE. Four of the top eight genes with the strongest positive
298 loadings on MDS2 were orthologs of the maize gene ZmNAS7 (nicotianamine synthase); two of
299 these were also in the top 5% of genes with the strongest negative loadings on MDS1
300 (Extended Data Fig. 8), indicating that they stabilize iIWUE during drought. All four ZmNAS7
301 orthologs were up-regulated in response to drought, but only in plants that were inoculated with
302 dry-legacy microbiota (Fig. 4b, gene set IV), suggesting a possible mechanism by which
303 low-precipitation-legacy microbiota confer drought tolerance. Consistent with this, salicylic
304 acid—a key regulator of root microbiome assembly®*'—is reported to induce expression of
305 ZMNAS7%. Although nicotianamine is best known for its role in metal transport, the
306 overexpression of NAS genes has conferred drought tolerance, including maintenance of
307 photochemical efficiency at pre-drought levels, in rice®* and in the grass Lolium perenne’.
308 Together, these results show that microbiomes with a low-precipitation legacy improve the
309 drought response of eastern gamagrass.

310

311 Beneficial microbiome legacy effects do not extend to the crop species Zea mays

312 To explore whether the observed microbial legacy effects were transferable across hosts, we
313 simultaneously applied the same inocula to seedlings of maize (Zea mays ssp. mays), a relative
314 of eastern gamagrass that is non-native to Kansas (Extended Data Fig. 4a). Unlike eastern
315 gamagrass, the maize root microbiome retained taxonomic signatures of both the inoculum
316 precipitation legacy (Fig. 3e., ANOVA.CCA, F,,5s=4.25, p=0.001) and the drought treatment
317 (ANOVA.CCA, F,25=8.06, p=0.001) (Fig. 3e), which together explained 4.1% of the variation in
318 the data (ANOVA.CCA, F,.5=6.16, R?=0.041, p=0.001). Also unlike in gamagrass, drought
319 treatment significantly increased beta-dispersion and decreased alpha diversity (Fig. 3d,f;
320 ANOVA F, %,-18.17, p<0.001), indicating lower microbiome stability.

321

13
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322 Next, we identified amplicon sequence variants (ASVs) that were differentially abundant
323 between droughted vs. control plants in a manner that depended on the precipitation legacy of
324 the inoculum. These included only two ASVs in gamagrass roots (Azospirillum sp. and
325 Enterobacteriaceae), but 100 ASVs in maize roots (Supplementary Fig. 8a-b, Supplementary
326 Table S12). Again, this result indicates that gamagrass root microbiomes are more stable—i.e.,
327 they experience less change in microbiome taxonomic composition and assembly—than those of
328 maize, in response to varying water availability and inoculation with different starting
329 communities.

330

331 RNA-seq analysis identified four sets of orthologous genes that were sensitive to microbiota
332 legacy in both maize and gamagrass, but none showed congruent drought responses
333 (Supplementary Note 1). In maize, 23 genes were up-regulated plants inoculated with
334 dry-legacy microbiota, relative to those that received wet-legacy inocula (Extended Data Fig.
335 9a). These included six defense-related genes, particularly related to jasmonic acid signalling,
336 suggesting that low-precipitation-legacy microbiota were perceived as pathogens by maize but
337 not gamagrass. Other notable functions that were up-regulated by the dry-legacy inocula
338 include root development and iron acquisition (Supplementary Table S10). Additionally, 109
339 maize genes responded to drought treatment in a manner that was dependent on inoculum
340 precipitation legacy. Only 30 of these were identified as drought-responsive when averaging
341 across inocula (Extended Data Fig. 9b), reinforcing the importance of microbial context for
342 understanding plant drought responses. Like in gamagrass, most of these genes were
343 drought-responsive only in wet-legacy-inoculated or only in dry-legacy-inoculated plants;
344 relatively few reversed the direction of their drought response (Extended Data Fig. 9c). For
345 example, 30 genes were up-regulated in response to drought only in plants grown with
346 wet-legacy microbiota (Extended Data Fig. 9c, gene set I). These genes included several
347 related to pathogen defense (Zm00001eb116230, Zm00001eb150050, Zm00001eb222540) and
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348 response to symbiotic fungi (Zm00001eb033580), suggesting that soils in high-precipitation
349 regions contain both harmful and beneficial microorganisms and that interactions with both
350 groups are activated under water deprivation in maize (Supplementary Table S10). Notably, one
351 of the genes that reversed its drought response depending on the inoculum’s precipitation
352 legacy was TIP3, which encodes an aquaporin that regulates water storage in the vacuole®. In
353 plants inoculated with wet-legacy microbiota, TIP3 expression increased 7-fold due to drought,
354 but decreased nearly 3-fold in plants inoculated with dry-legacy microbiota (Extended Data Fig.
355 9¢c, gene set VI). Averaged across the two inocula, however, TIP3 was not differentially
356 expressed between droughted and well-watered plants; thus, its role in drought response was
357 apparent only when accounting for microbiota precipitation legacy.

358

359 Finally, we investigated whether the beneficial effects of microbiome legacy on gamagrass
360 phenotype (Fig. 4d-e) were also conferred on maize. Overall, microbiome precipitation legacy
361 explained only 2.0% of the phenotypic variation in maize (Extended Data Fig. 15a.,
362 ANOVA.CCA, F,,5=3.72, R®>=0.02, p=0.001), a weaker effect than observed in eastern
363 gamagrass. In general, we observed no significant phenotypic differences attributable to
364 microbiome legacy (Extended Data Fig. 10b,c). Thus, the capacity to integrate the beneficial
365 effect of soil drought legacy is host-specific and may be related to the ability of the host to

366 maintain a stable microbiota in response to drought stress.

367 Discussion

368 Microbially-mediated legacy effects of water limitation can affect plant performance during
369 subsequent droughts®3’. Our results reveal how these legacy effects manifest in terms of
370 microbiota taxonomic composition, functional potential, gene expression, and strain-level

371 genetic variation, and how they affect host responses to water-scarce conditions. We identified
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372 bacterial taxa and numerous microbial genes and functional pathways that are associated with
373 mean annual precipitation, including those suggesting an increased nitrogen-metabolizing and
374 DNA repair capacity in dry-legacy microbiota. Thus, we provide evidence for the ecological and
375 molecular mechanisms involved in the formation of soil drought memory and demonstrate its
376 robustness to a five-month perturbation, which could mimic a particularly dry or wet season.

377

378 We have shown that these metagenomic precipitation legacies have significant implications for
379 plant response to drought. Inoculation with dry-legacy microbiota altered the transcription of key
380 genes controlling plant drought responses. In the prairie grass Tripsacum dactyloides, dry- and
381 wet-legacy soil microbiomes give rise to taxonomically similar root bacterial communities yet
382 have strikingly different effects on plant gene expression and phenotypes during a subsequent
383 acute drought. These benefits largely did not extend to maize, which also had a relatively
384 unstable root microbiome and reduced physiological and morphological sensitivity to soil
385 microbiome legacy during drought. However, further research is needed to confirm whether root
386 microbiome stability is a mechanism of adaptive plant responses to drought. Importantly,
387 differences between gamagrass and maize responses to microbiome history indicate that crops
388 may not reap the same benefits as native plant species from potentially beneficial microbial
389 communities. Therefore, our discoveries significantly contribute to our mechanistic
390 understanding of microbiome drought legacy effects, their resistance to perturbation, and their

391 role in plant drought responses, with implications for agricultural and ecosystem management.

392 Online Methods

393 No statistical methods were applied to predetermine sample size. The experiments were
394 randomized, and investigators were blinded to allocation during experiments and outcome

395 assessment.
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396 1. Legacy phase: Characterization of soils across precipitation gradients

397 1.1 Region selection and soil collection

398 Soils were sampled from six never-irrigated native prairies across Kansas, USA in October
399 2020. This selection includes eastern Kansas tallgrass prairies: Welda Prairie (WEL), Clinton
400 Wildlife Reserve (CWR), and Konza Wildlife Reserve (KNZ), as well as western Kansas
401 shortgrass prairies: Hays Prairie (HAY), Smoky Valley Ranch (SVR), and Kansas State
402 University's Tribune Southwest Research Center (TRI). The GPS coordinates of each collection
403 site are available in the Supplemental Table S1. For soil collection, each site was split into three
404 subplots. In each subplot, the surface soil (=10 cm) containing thick plant root masses was
405 removed with a bleach-sterilized metal shovel. Then, approximately 2.5 L of soil was collected
406 from each site and pooled into a clean plastic bag, for a total of =7.5 L of soil collected per
407 geographical location. Soil was held at room temperature for transport back to the laboratory
408 where it was then stored at 4°C until use in the growth chamber experiments (~ 1 month).

409

410 Sub-samples for downstream metagenomic sequencing and nutrient mineral content analyses
411 were air-dried in sterile plastic trays at room temperature for 1 week and then sieved using a 2
412 mm sieve to remove rocks, big soil particles, and vegetable debris. The sub-samples were
413 shipped to the University of Nottingham for further processing, and all sub-samples were stored
414 at 4 °C until use (~3 days).

415

416 1.2 Precipitation data collection

417 Daily precipitation from 1981 to 2021 was extracted from the NASA POWER database based on
418 the latitude and longitude of each site®.

419
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420 1.3 Soil elemental content analysis

421 The soil mineral nutrients and trace elements profiles were determined using inductively
422 coupled plasma mass spectrometry (ICP-MS). The soil samples were dried using plastic
423 weighing boats in the fume hood for approximately 72 h at ambient temperature. Five grams of
424 soil were weighed in 50 mL conical tubes with a four-decimal balance, and treated with 20 mL of
425 1 M NH,HCO,;, 5 mM diamine-triamine-penta-acetic acid (DTPA), and 5 mL 18.2 MQcm Milli-Q
426 Direct water (Merck Millipore), for 1 h at 150 r.p.m. in a rotary shaker (adapted from®) to extract
427 available elements. Each treated sample was gravity-filtered through a quantitative filter paper
428 (Whatman 42- WHA1442070) to obtain approximately 5 mL of filtrate. Prior to the digestion, 20
429 pg/L of Indium (In) was added to the nitric acid Primar Plus (Fisher Chemicals) as an internal
430 standard for assessing error in dilution, variations in sample introduction and plasma stability in
431 the ICP-MS instrument. Next, 0.5 mL of the soil filtrates were open-air digested in glass Pyrex
432 tubes using 1 mL of concentrated trace metal grade nitric acid spiked indium internal standard
433 for 2 h at 115 °C in dry block heater (DigiPREP MS, SCP Science; QMX Laboratories, Essex,
434 UK). After cooling, the digests were diluted to 10 mL with 18.2 MQcm Milli-Q Direct water and
435 elemental analysis was performed using an ICP-MS, PerkinElmer NexION 2000 equipped with
436 Elemental Scientific Inc 4DXX FAST Dual Rinse autosampler, FAST valve and peristaltic pump.
437 The instrument was fitted with PFA-ST3 MicroFlow nebulizer, baffled cyclonic C3 high sensitivity
438 glass spray chamber cooled to 2°C with PC3X Peltier heated/cooled inlet system, 2.0 mm i.d.
439 quartz injector torch and a set of nickel cones. Twenty-three elements were monitored including
449 following stable isotopes: “Li, ''B, #Na, #*Mg, 3'P, *S, *K, “*Ca, %Cr, *Mn, *Fe, **Co, ®Ni, **Cu,
441 %5Zn, As, 82Se, ¥Rb, %Sr, Mo, ""'Cd, *®Pb and "°In. Helium was used as a collision gas in
442 Kinetic Energy Discrimination mode (KED) at a flow rate of 4.5 mL/min while measuring Na, Mg,
443 P, S, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Pb to exclude possible polyatomic interferences.
444 The remaining elements were measured in the standard mode. Any isobaric interferences were

445 automatically corrected by the instrument Syngistix™ software for ICP-MS v.2.3 (Perkin Elmer).
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446 The ICP-MS measurements were performed in peak hopping scan mode with dwell times
447 ranging from 25 to 50 ms depending on the element, 20 sweeps per reading and three
448 replicates. The ICP-MS conditions were as follows: RF power — 1600 Watts, auxiliary gas flow
449 rate 1.20 L/min. Torch alignment, nebulizer gas flow and quadrupole ion deflector (QID) voltages
450 (in standard and KED mode) were optimized before analysis for highest intensities and lowest
451 interferences (oxides and doubly charged ions levels lower than 2.5%) with NexION Setup
452 Solution containing 1 pg/L of Be, Ce, Fe, In, Li, Mg, Pb and U in 1% nitric acid using a standard
453 built-in software procedure. To correct for variation between and within ICP-MS analysis runs,
454 liquid reference material was prepared using pooled digested samples, and run after the
455 instrument calibration, and then after every nine samples in all ICP-MS sample sets. Equipment
456 calibration was performed at the beginning of each analytical run using seven multi-element
457 calibration standards (containing 2 pg/L In internal standard) prepared by diluting 1000 mg/L
458 single element standards solutions (Inorganic Ventures; Essex Scientific Laboratory Supplies
459 Ltd) with 10% nitric acid. As a calibration blank, 10% nitric acid containing 2 pg/L In internal
460 standard was used and it was run throughout the course of the analysis.

461

462 Sample concentrations were calculated using the external calibration method within the
463 instrument software. Further data processing, including the calculation of final elements
464 concentrations was performed in Microsoft Excel. First, sample sets run at different times were
465 connected as an extension of the single-run drift correction. Linear interpolation between each
466 pair of liquid reference material standards was used to generate a theoretical standard for each
467 sample that was then used to correct the drift by simple proportion to the first liquid reference
468 material standard analysed in the first run. Liquid reference material composed of pooled
469 samples was used instead of the CRM to match the chemical matrix of the samples as closely
470 as possible, thereby emulating the sample drift. Second, the blank concentrations were
471 subtracted from the sample concentrations and each final element concentration was obtained
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472 by multiplying by the dilution factor and normalizing the element concentrations to the sample’s
473 dry weight.

474

475 1.4 Soil porosity analysis

476 To quantify soil porosity, we used X-ray computed tomography. First, six soil samples were
477 collected in October 2020 from each of the selected locations in Kansas (see materials and
478 methods 1.1). The top layer of soil was removed (10 cm), and the soil samples were collected
479 using polyvinylchloride (PVC) columns of 5 cm internal diameter and 7 cm length. After the soil
480 collection, the bottom of each column was sealed with tape to retain the soil in the column.

481

482 The undisturbed soil columns were non-destructively imaged using Phoenix v|tome|x MDT
483 (Waygate Technologies GmbH, Wunstorf, Germany) at The Hounsfield Facility, University of
484 Nottingham. Scans were acquired by collecting 2695 projection images at 180 kV X-ray energy,
485 200 pA current and 334 ms detector exposure time in fast mode (15 min total scan time per
486 column). Scan resolution was 55 pym.

487

488 1.5 Metagenomic analysis of free-living soil microbiota - DNA extraction

489 For metagenomic analysis, approximately 5 g of each soil sample was transferred into 50-mL
490 conical tubes containing 20 mL of sterile distilled water. To remove large plant debris and soil
491 particles, the samples were shaken thoroughly and filtered into new sterile 50-mL tubes using
492 100-um nylon mesh cell strainers. The filtered soil solutions were centrifuged at high speed for
493 20 min in a centrifuge Eppendorf 5810R and most of the supernatants were discarded. The
494 remaining 1-2 mL of supernatants were used to dissolve the soil pellets. The resulting
495 suspensions were transferred to sterile 1.5-mL Eppendorf tubes. Samples were centrifuged

496 again at high speed in a benchtop centrifuge and the supernatants were discarded. The
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497 remaining pellets were stored at - 80°C for DNA extraction. For DNA isolation we used
498 96-well-format MoBio PowerSoil Kit (MOBIO Laboratories; QIAGEN) following the
499 manufacturer’s instructions. Before starting the extraction, all samples were manually
500 randomized by placing them in a plastic bag that was shaken several times. Samples were then
501 taken individually from the bag and loaded in the DNA extraction plates. This random
502 distribution was maintained throughout library preparation and sequencing.

503

504 1.6 Metagenomic library preparation and sequencing

505 DNA sequencing libraries were prepared using the Rapid PCR Barcoding Kit (SQK-RPB004)
506 from Oxford Nanopore Technologies, UK. In brief, 1 yL Fragmentation Mix (FRM) was added to
507 3 L DNA (2-10 ng/pL), and the reaction was mixed by gently finger-flicking. The DNA was
508 fragmented using the following conditions: 30°C for 1 min, then 80°C for 1 min in an Applied
509 Biosystems Veriti 96-Well Thermal Cycler (Applied Biosystems, CA, USA). The fragmented DNA
510 was cooled, then barcoded and amplified in a PCR reaction containing 20 uL nuclease-free
511 water, 25 yL LongAmp Taq 2X master mix (New England Biolabs, MA, USA), 4 pL fragmented
512 DNA, and 1 pL barcode adaptor. The reaction was gently mixed and amplified using the
513 following conditions: 95°C for 3 min, 20 cycles of denaturation at 95°C for 15 s, annealing at
514 56°C for 15 s and extension at 65°C for 6 min, and a final extension of 65°C for 6 min. The
515 resulting DNA library was purified using 0.6X Agencourt AMPure XP beads (Beckman Coulter,
516 CA, USA) and eluted in 10 yL 10 mM Tris-HCI pH 8.0, 50 mM NaCl. The library concentration
517 was determined using a Qubit 4 Fluorometer with the Qubit dsDNA HS Assay Kit (Thermo
518 Fisher Scientific, USA). Equimolar quantities of individual barcoded sample libraries were
519 pooled and the volume was adjusted to 10 yL using 10 mM Tris-HCI pH 8.0, 50 mM NacCl.
520 Subsequently, 1 pL rapid sequencing adapter (RAP) was added to the pooled library and the

521 tube was incubated at room temperature for five minutes. Then, 34 pL Sequencing Buffer, 25.5
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522 uL Loading Beads, and 4.5 pL nuclease-free water were added to the tube, and the contents
523 were mixed gently. The prepared pooled library was added to a verified and primed
524 FLO-MIN106 R9.4.1 flow cell (Oxford Nanopore Technologies, UK) in a MinlION (Oxford
525 Nanopore Technologies, UK) following the manufacturer’s instructions. DNA sequencing was
526 conducted with default parameters using a MinIT (Oxford Nanopore Technologies, UK) with
527 MinKNOW v2.1.12 (Oxford Nanopore Technologies, UK). Fast5 files were base-called with
528 Guppy Vv4.0.15 using the template r9.4.1_450bps_hac.jsn high accuracy model (Oxford
529 Nanopore Technologies, UK).

530

531 1.7 Metagenomic sequences processing

532 The initial dataset underwent demultiplexing, and primer and barcode sequences were trimmed
533 using gcat v1.1.0 (Oxford Nanopore Technologies Ltd., UK). Reads with ambiguous barcode
534 assignments were excluded from further analysis. The reads were filtered with NanoFilt v2.8.0*
535 to discard low-quality sequences (Q-score < 9) and sequences < 100 bp. We used the Kraken
536 v2.1.2 pipeline*' to classify the whole metagenome shotgun sequencing reads. The reads were
537 classified using the Kraken 2 archaea, bacteria, viral, plasmid, human, UniVec_Core, protozoa,
538 and fungi reference database (k2_pluspf 20220607). To estimate relative abundances, the
539 Bracken v2.7 pipeline** was applied to the classification results. Subsequently, Pavian v1.0*3
540 was used to extract abundance and taxonomic tables.

541

542 1.8 Precipitation Gradient Data Analysis

543 1.8.1 Precipitation data analysis
544 To determine the differences in precipitation levels across regions, we compared the mean

545 annual precipitation in each region by fitting a linear model with the following formula:

546 Mean annual precipitation ~ Region

22


https://doi.org/10.1101/2024.08.26.609769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

547
548 Differences between regions were indicated using the confidence letter display derived from
549 Tukey’s post hoc test implemented in the package multcomp v.1.4.25*. We inspected the
550 normality and variance homogeneity (here and elsewhere) using Q-Q plots and the Levene test,
551 respectively. We visualized the results via a point range plot using the ggplot2 v3.5.1 R
552 package®.

553

554 1.8.2 Soil elemental content analysis

555 For the soil elemental profile, we created a matrix in which each cell contained the calculated
556 element concentration in one sample. Then, we applied a z-score transformation to each ion
557 across the samples in the matrix. Afterward, we applied a principal component analysis (PCA)
558 using the Euclidean distance between samples and the z-score matrix as input to compare the
559 elemental profiles of soils. Additionally, we estimated the variance explained by porosity,
560 precipitation, region, and the interaction between them by performing a PERMANOVA via the
561 function adonis2 from the vegan v.2.6-4 R package*®. The significant variables were visualized
562 via a stacked bar plot using the ggplot2 v3.5.1 R package.

563

564 To visualize the mineral content in each region, the z-score matrix created above was
565 hierarchically clustered (method ward.D, function hclust), and we visualized the results using a
566 heatmap. The rows in the heatmap were ordered according to the dendrogram order obtained
567 from the clustered ions, and the regions were ordered according to the precipitation gradient
568 (low precipitation to high). The heatmap was coloured based on the z-score.

569

570 To explore the relationship between ion concentrations and the precipitation gradient, we

571 performed a correlation test using cor function from stats v.4.3.1 package in R*" of the average
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572 z-score measurement of each ion against the precipitation gradient. Afterward, we plotted the
573 correlation coefficient for each ion in a barplot.

574

575 1.8.3 Soil porosity analysis

576 The soil core images taken using x-ray computed tomography were analyzed using ImageJ v.
577 1.54b*. First, XY slice projection images were filtered using a median function to remove any
578 noise from the raw data then an automatic threshold (Li method) was applied to produce binary
579 images. In the binary images pores and solid particles were represented by black and white
580 pixels, respectively. Afterwards, a region of interest (ROI) was defined in the central part of each
581 projection to remove any potential border effect, cropping to a 600x600 pixel area. From the ROI
582 defined in each image we extracted soil features, including particle area, perimeter, circularity,
583 roundness, solidity, compactness, percentage of pores and pore size using the measurement
584 function.

585

586 To remove the variability in the topsoil due to transportation and handling, we used two
587 strategies. Firstly, we plotted the pore average size (mm) and soil porosity (%) for each sample.
588 Then, we excluded from the analysis all projections having a value of soil porosity > 40% and
589 considered the topsoil of those samples as the first projections after the exclusion. The second
590 strategy was applied to samples with an irregular shape (e.g., mountain-like shape) at the
591 topsoil level. We discarded all the projections with an irregular shape until we found projections
592 with a regular distribution of soil layers. We created a data frame with the projection number (or
593 slice) and the soil depth (projection number multiplied by the resolution). The soil porosity for
594 each soil type was visualized via a point plot using ggplot2 v3.5.1 R package®.

595
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596 To compare the soil elemental profiles against soil porosity, first, we applied a z-score
597 transformation of each ion and soil porosity across the samples. Then, we estimated the
598 distance between samples using Euclidean distance. Afterwards, we contrasted the dissimilarity
599 matrices of each pair of datasets (soil elemental profile vs. soil porosity) using the mantel test
600 implemented in the vegan v.2.6-4 R package*®. Finally, we computed the significance of the
601 correlation between matrices by permuting the matrices 10,000 times**.

602

603 1.8.4 Taxonomic data analysis

604 To compare the alpha diversity across regions, we calculated the Shannon diversity index using
605 the diversity function from the vegan v.2.6-4 package in R*. We used an ANOVA to test the
606 alpha diversity differences between regions. Differences between regions were indicated using
607 the confidence letter display derived from Tukey’s post hoc test implemented in the R package
608 multcomp v.1.4.25%,

609

610 The beta diversity analysis (Principal Coordinates Analysis, PCo) was based on Bray-Curtis
611 dissimilarity matrices calculated using the rarefied relative abundance tables. Additionally, we
612 estimated the variance explained by soil porosity, precipitation, regions, and the interaction
613 between them by performing a PERMANOVA via the function adonis2 from the vegan v.2.6-4 R
614 package*®. The significant variables were visualized via a stacked bar plot using ggplot2 v3.5.1
615 R package®.

616

617 The relative abundance of bacterial phyla was depicted using a stacked bar plot using ggplot2
618 v3.5.1 package.

619

620 To compare the microbiome composition against the elemental profiles and soil porosity, we
621 contrasted the dissimilarity matrices of each pair of datasets (soil microbiome vs. soil elemental
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622 profile and soil microbiome vs. soil porosity) using the mantel test implemented in the vegan
623 v.2.6-4 R package*. Briefly, we calculate the microbiome dissimilarity matrix using Bray-Curtis
624 distance. Next, we applied a z-score transformation of each ion and soil porosity across the
625 samples. Afterward, we calculated the soil elemental dissimilarity matrix and soil porosity
626 dissimilarity matrix using Euclidean distance. Finally, we used the mantel test to compare and
627 test the significance of the correlation between matrices by permuting the matrices 10,000
628 times**.

629

630 1.8.5 Heatmap and enrichment analysis

631 We used the R package DESeq2 v.1.40.2*° to compute the bacterial enrichment profiles in the
632 soils across the precipitation gradient. For each taxID (NCBI's taxonomic identifier assigned to
633 the taxa) in the rarefied table, as well as at the species, and family levels, we estimated
634 difference in abundance compared to the wettest collection site (Welda Prairie) using a
635 generalized linear model (GLM) with the following design:

636 Abundance ~ Region

637 We extracted the following comparisons from the fitted model: CWR vs WEL, HAY vs WEL, KNZ
638 vs WEL, SVR vs WEL, TRI vs WEL. A taxID, species, or family was considered statistically
639 significant if it had a p-value < 0.05. We visualized the results using a heatmap. The rows in the
640 heatmap were ordered according to the dendrogram obtained from the tax ID, species and
641 family analysis. The relative abundance matrix was standardized across the significant tax ID,
642 species, and family by using the z-score and the heatmap was coloured based on this value.

643

644 1.8.6 Identification of marker taxa associated with precipitation gradients

645 To identify the corresponding bacterial isolates considered as “biomarker” taxa associated with
646 precipitation gradients, we identified the principal components (PCs) that explain more than

647 80% of the variance in the data. These identified PCs were used to control the effects of soil
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648 elemental profile on the taxa abundances. Then, we fit five models: Poisson, negative binomial,
649 two zero-inflated, and a multiple regression model.

650 For Poisson and negative binomial models, we fitted the following design:

651 Abundance ~ precipitation + offset (porosity) + offset (soil elemental profile: six first PCs)

652

653 In parallel, we fitted the zero-inflated models using the following design:

654 Poisson: Abundance ~ precipitation + offset (porosity) | 1 + offset (soil elemental profile) | 1
655 Negative binomial: Abundance ~ precipitation + porosity | porosity + soil elemental profile | soil
656 elemental profile

657

658 Next, to assess the statistical significance, we applied ANOVA to the best-performing model for
659 each taxon according to the Akaike Information Criterion (AIC). Additionally, we applied a
660 multiple regression model with the following design:

661 Abundance ~ precipitation + porosity + soil elemental profile

662

663 Then, we applied ANOVA to find taxIDs with a significant partial regression coefficient for
664 precipitation.

665

666 A taxa ID was considered a “marker” if it had a relative abundance > 0.01 and a prevalence >
667 20%. We visualized the average standardized relative abundance (z-score) of the significant
668 taxa ID in a point plot using ggplot2 v3.5.1 package®.

669

670 1.8.7 Enrichment of bacteria biological functions associated with precipitation gradients

671 To identify biological processes enriched within the microbial communities, the sequence reads
672 were assembled into contigs for each sample using metaFlye from the Flye v2.9 package®® with
673 default mode. The contigs generated were then grouped and deduplicated using the dedupe.sh
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674 tool in BBTools v38.76°" to eliminate redundancies. Next, we determined the relative abundance
675 of the contigs by mapping the reads from the samples to the contigs using minimap2 v2.17%,
676 and extracting the relative abundance counts using CoverM v0.6.1% in the ‘contig’ mode and
677 reads_per_base coverage method. Taxonomic classification of the contigs was performed using
678 the CAT v8.22 taxonomic classification pipeline®. Subsequently, the contigs were filtered to
679 retain only bacteria sequences. DESeq2 v1.40.0*° was used to determine the contig enrichment
680 profiles by fitting a GLM with the following design:

681 Abundance ~ Legacy + Biological Replicate

682

683 The low-precipitation soil versus the high-precipitation soil contrast was extracted from the fitted
684 model. Contigs meeting the criteria of an FDR-adjusted p-value (g-value) <0.05 and a
685 log,-transformed fold change >2 were selected for further analysis. Open reading frames
686 encoded within the contigs were predicted using FragGeneScanRs v1.1.0%° with default
687 settings. This was followed by functional annotation of the predicted proteins using the
688 eggNOG-mapper v2.1.9% pipeline with the eggNOG v5.0.2 database® with Diamond v2.0.11%
689 and MMseqs2*°.The genes annotated with Gene Ontology (GO) classifications were
690 subsequently extracted, and a GO enrichment analysis focusing on biological processes was
691 conducted. This involved employing adaptive GO clustering in conjunction with Mann—Whitney
692 U testing, using the GO_MWU tool®®, which evaluates the enrichment of each GO category
693 based on whether genes linked to the GO category are significantly clustered at either the top or
694 bottom of a globally ranked gene list. First, genes were ranked based on the signed
695 log,-transformed fold change values. For each gene, any missing parental terms for specific GO
696 categories were then automatically added. Next, fully redundant categories (those containing
697 identical sets of genes), were collapsed into the more specific GO term. To further streamline
698 the analysis, highly similar categories were grouped using complete linkage clustering based on
699 the fraction of shared genes. We used default settings, where GO categories were merged if the
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700 most dissimilar pair within a group shared more than 75% of the genes in the smaller category.
701 The merged group was named after the largest category. Significantly enriched and depleted
702 GO categories were then determined by an adjusted p-value of <0.05. This approach simplified
703 the GO hierarchy and addressed multiple testing which improved the statistical power of the GO
704 enrichment analysis. The most prominent enriched and depleted GO categories shared across
705 comparisons were visualized in ggplot2 v3.4.2 and coloured based on the square root

706 transformed delta rank values (enrichment score) of the GO categories.

707 1.8.8 Analysis of genetic variation among bacterial lineages along the precipitation gradient

708 To assess genetic differences between bacteria lineages along the precipitation gradient, we
709 focused on 15 of the identified bacterial markers (Pseudomonas D287, Salmonella 1D28901,
710 Sorangium ID56, Bradyrhizobium 1D722472, Luteitalea ID1855912, Bradyrhizobium 1D1355477,
711 Flavisolibacter ID661481, Bradyrhizobium ID858422, Rubrobacter ID2653851, Bradyrhizobium
712 ID1437360, Candidatus Koribacter 1D658062, Streptomyces 1D1916, Klebsiella 1D573,
713 Bradyrhizobium ID1325107, Edaphobacter ID2703788), as well as 18 additional abundant and
714 prevalent species (Rubrobacter ID49319, Bacillus ID1428, Bradyrhizobium 1D1274631, Priestia
715 ID1404, Lacibacter 1D2760713, Bradyrhizobium ID1325100, Candidatus Solibacter 1D332163,
716 Burkholderia 1D28450, Flavisolibacter 1D1492898, Bacillus ID1396, Escherichia 1D562,
717 Rhizobium 1D384, Rubrobacter 1D2653852, Microvirga 1D2807101, Archangium [D83451,
718 Pseudomonas ID303, Paenibacillus ID1464, Nitrosospira 1D1231) across the samples, as
719 proxies for the broader bacterial communities. These taxa were selected for their high genome
720 coverage across samples, enabling more precise allele frequency estimates. Reference
721 genomes for each species were retrieved from the NCBI Genome database, and the filtered
722 shotgun metagenomic reads were aligned to these genomes using minimap2 v2.17-r941%,
723 Alignments were sorted and indexed with SAMtools v1.18%", followed by variant calling using

724 BCFtools v1.18%2. This process identified 23,197,278 sequence variants, which were then
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725 filtered using VCFtools v0.1.16%, to retain only biallelic single nucleotide polymorphisms (SNPs)
726 for further analysis. SNP filtering criteria included a variant quality score >20, a minor allele
727 frequency (MAF) >0.01, <50% missing data, and a minimum sequencing depth of 10x in each
728 sample. After filtering, 23,061 high-quality biallelic SNPs were retained. Genetic distances were
729 computed using PLINK v1.90p%, and reduced to two dimensions through classical
730 multidimensional scaling with the stats v4.3.0 package. PCoA plots were created with ggplot2
731 v3.4.2%5, colored by soil type, precipitation levels and geographical region.

732

733 To identify genes potentially under selection across the precipitation gradient, we conducted a
734 genetic-environment association (GEA) analysis. For this, SNPs were re-filtered using VCFtools
735 v0.1.16% with the same criteria, but allowing <50% missing data and a minimum sequencing
736 depth of 5x per sample. After filtering, 93,013 biallelic SNPs were retained. Subsequently, GEA
737 analysis was performed using a general linear model in the rMVP v1.1.1 package®, with native
738 SNP data imputation, and average precipitation at each sampling location as the environmental
739 variable. The genetic structure in the data was corrected using the first 10 principal components
740 (PCs). Manhattan plots were generated using CMplot v4.5.1% and significant associations were
741 identified using the permutation method within the rMVP package.

742

743 2. Conditioning phase: Soil drought legacy is resilient to short-term perturbations

744 2.1 Experimental design

745 The six soils collected from across the Kansas precipitation gradient, as described in materials
746 and methods 1.1, were used in this experiment. The conditioning perturbations imposed in
747 these experiments took place over approximately 20 weeks at the University of Kansas from

748 December 17th, 2020 to May 5th, 2021. Each of the six input soils remained independent
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749 throughout the experiment. Mesocosms consisted of a 1:1 (v/v) mixture of field-collected soil to
750 sterile turface MVP (Turface Athletics, Buffalo Grove, IL). A total of 192 sterile 100 mL pots were
751 filled with the six soils and which were then randomly assigned to one of four conditions in a
752 fully-factorial design: with or without a host, and either water-stressed or well-watered. Half the
753 pots were planted with seedlings of the native prairie grass Tripsacum dactyloides (Eastern
754 gamagrass, cultivar “Pete”); the rest remained unplanted. These 24 treatment groups (6 soils X
755 2 water-stressed/well-watered X 2 planted/unplanted) each had N=8 replicates for a total of 192
756 experimental soils in pots. All mesocosms were allowed to adapt to their watering regimes in a
757 growth chamber set to a 12-hour day cycle, 27°C/23°C, and ambient humidity. Well-watered
758 control pots were watered every 1-2 days and water-stressed plants were watered every 3-5
759 days when plants displayed drought symptoms (e.g., leaf curling). All pots were fertilized with 35
760 mL of 1mL/L concentration of Bonide 10-10-10 plant food (Bonide Products LLC, Oriskany, NY)
761 on week 8 and week 12.

762

763 2.2 Sample collection

764 To characterize the baseline microbial communities going into the conditioning treatments, we
765 sampled four replicates of each soil/treatment combination one week after beginning the
766 experiment. To collect the samples, the top centimeter of soil was discarded and the remaining
767 soil was homogenized to ensure even sampling of the top, middle, and bottom of the pot. Two
768 grams of this homogenized soil were placed in a 15mL tube, flash-frozen in liquid nitrogen, and
769 stored at -80°C for microbial DNA and RNA extraction. To characterize the effects of the four
770 treatments on the microbial communities, we sampled all remaining replicates at the end of the
771 20-week conditioning phase. Soil samples were collected as described for the baseline
772 communities, but an additional 6 g of homogenized soil was preserved at 4°C in 50 mL conical

773 tubes for use as inocula in a downstream experiment. Additionally, for the planted pots, we
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774 measured T. dactyloides shoot height before uprooting the plants. We collected samples of a
775 crown root from each plant (3 cm long each, beginning 2 cm from the base of the plant) and
776 stored them in 50% ethanol at 4°C for downstream laser ablation tomography analysis. The
777 remaining roots and shoots were dried in an oven at 225°C for 12 hours and then weighed
778 separately.

779

780 2.3 Changes in bacterial community structure associated with drought and well-watered

781 conditioning with and without a host.

782 2.3.1 DNA extraction

783 Total DNA was extracted from baseline and post-conditioning soil sub-samples using the DNA
784 Set for NucleoBond RNA Soil Kit (Macherey-Nagel, Diren, Germany) according to the
785 manufacturer’s instructions.

786

787 2.3.2 Library preparation and sequencing

788 DNA sequencing libraries were prepared using the Rapid PCR Barcoding Kit (SQK-RPB004)
789 from Oxford Nanopore Technologies, UK, and sequenced on a FLO-MIN106 R9.4.1 flow cell
790 (Oxford Nanopore Technologies, UK) in a MinlON (Oxford Nanopore Technologies, UK), with a
791 MinIT (Oxford Nanopore Technologies, UK) using MinKNOW v2.1.12% (Oxford Nanopore

792 Technologies, UK) as described in materials and methods section 1.6.

793 2.3.3 Sequence processing

794 Raw sequence data were demultiplexed and primer and barcode sequences were trimmed
795 using gcat v1.1.0 (Oxford Nanopore Technologies Ltd., UK). Reads with ambiguous barcode
796 assignments were excluded from further analysis. The reads were filtered with NanoFilt v2.8.0*

797 to discard low-quality sequences (Q-score <9) and sequences <100 bp. We used the Kraken
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798 v2.1.2 pipeline*' for classifying the whole metagenome shotgun sequencing reads. The reads
799 were classified using the Kraken 2 archaea, bacteria, viral, plasmid, human, UniVec_Core,
goo protozoa and fungi reference database (k2_pluspf 20220607). To estimate relative
801 abundances, the Bracken v2.7 pipeline*? was applied to the classification results. Subsequently,
802 Pavian v1.0* facilitated the extraction of abundance and taxonomic tables. Functions in
803 phyloseq v1.44.0% with microbiome v1.22.0 and microbiomeutilities v1.0.17° were used to filter
804 the dataset and remove samples with low read depth (<1000 reads), remove unidentified taxa
805 and singletons, transform abundance values using rarefaction, subset and merge sample and

806 taxonomic groups and perform other data frame manipulations.

807 2.4 Plant biomass

go8 Root and shoots were detached, dried in an oven at 225°C for 12 hours, and then weighed.

809

810 2.5 Root Laser Ablation Tomography (LAT) analysis

811 We collected samples of a crown root from each plant (3 cm long each, beginning 2 cm from the
812 base of the plant) and stored them in 50% ethanol at 4°C. The samples were shipped to the
813 University of Nottingham for downstream LAT analysis. Briefly, root segments were dehydrated
814 in 100% methanol for 48 hours, transferred to 100% ethanol for 48 hours, then dried with an
815 automated critical point dryer (CPD, Leica EM CPD 300, Leica Microsystem). Root anatomical
816 images were acquired using a laser ablation tomograph (LATScan, Lasers for Innovative
817 Solutions LLC). This utilises a combination of precise positioning stages with a guided pulsed
818 UV (355 nm) laser, to thermally vaporise thin sections of the root, and then to illuminate the
819 exposed surface. The tomograph was retrofitted with a microscopic imaging system, using a
820 machine vision camera unit (Model Grasshopper3, FLIR) and infinity-corrected long working
821 distance magnifying objectives (Mitutoyo (UK) Ltd.)

822
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823 2.6 Changes in gamagrass morphological features under drought and well-water conditioning

824 To identify morphological features in gamagrass that changed with the conditioning (drought and
825 well-watered) treatments, we used Image J to quantify the average area aerenchyma, number
826 aerenchyma, number metaxylem, cortical cell layers, total area metaxylem, average area
827 metaxylem, stele min. diameter, stele max. diameter, stele area, stele perimeter, total area
828 aerenchyma, adjusted cortex area, root min. diameter, cortex min. diameter, root max. diameter,
829 cortex max. diameter, total perimeter, cortex perimeter, root total area, and cortex area.
830 Additionally, we quantified the root-shoot ratio, number of leaves, number of green leaves, root
831 mass, shoot mass, and shoot height.

832

833 2.7 Metatranscriptome analysis

834 2.7.1 RNA isolation

835 Total RNA was extracted from baseline and post-conditioning soil sub-samples with the
836 NucleoBond RNA Soil Kit (Macherey-Nagel, Diren, Germany) using the manufacturer’s
837 instructions. Isolated RNA was treated with Turbo DNA-free (Applied Biosystems, Waltham, MA,
838 USA) to remove contaminating DNA, following the manufacturer’s instructions.

839

840 2.7.2 Library preparation and sequencing

841 RNA libraries were prepared using 1 pg of total RNA according to established protocols with
842 modifications. Briefly, poly(A)-tail-containing RNA was removed from the RNA samples using
843 Sera-mag oligo(dT) magnetic beads (GE Healthcare Life Sciences, Marlborough, MA, USA) and
844 then the samples were subjected to ribodepletion with the NEBNext rRNA Depletion Kit (New
845 England Biolabs, MA, USA), following the manufacturers' instructions. The purified RNA was
846 resuspended in a fragmentation mix consisting of 6.25 pL Milli-Q water, 5 pyL 5x First strand

847 buffer, and 1.25 uL random primers (3 pg/pL) and fragmented at 94°C for 6 min. First-strand
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848 cDNA synthesis was performed using a mixture of 0.8 uL reverse transcriptase, 2 yL 100 mM
849 DTT, 0.4 pyL 25 mM dNTP, 0.5 yL RNAseOUT (40U/uL), 10 yL RNA, and 6.3 pL Milli-Q water.
850 The reactions were incubated at 25°C for 10 min, 42°C for 50 min, and 70°C for 15 min.
851 Second-strand cDNA synthesis was performed by adding a master mix of 18.4 uL Milli-Q water,
852 5 yL 10X second strand buffer, 1.2 yL 25 mM dNTP, 0.4 uyL RNAse H (5U/uL), and 5 uL DNA
853 Pol | (10U/uL) to the sample, followed by incubation at 16°C for 1 h. The samples were then
854 purified using Agencourt AMPure XP beads. Subsequently, the libraries were end-repaired with
855 a mixture of 30 uL sample, 2.5 yL of 3 U/uL T4 DNA polymerase, 0.5 uL of 5 U/uL Klenow DNA
856 polymerase, 2.5 pyL of 10 U/uL T4 PNK, 5 pL of 10X T4 DNA ligase buffer with 10 mM ATP, 0.8
857 uL of 25 mM dNTP mix, and 8.7 uL Milli-Q water, incubated at 20°C for 30 min, and purified
858 again using Agencourt AMPure XP beads. Following this, the RNA libraries were adenylated in
859 @ mix containing 34 uL of the end-repaired sample, 3 uL of 5 U/uL Klenow exo-, 5 pyL of 10X
860 Enzymatics Blue Buffer, 1 yL of 10 mM dATP, and 9 pL of Milli-Q water. The mixture was
861 incubated at 37°C for 30 min, followed by 70°C for 5 min, and then purified using Agencourt
862 AMPure XP beads. Individual samples were indexed through ligation using a mix of 10.25 yL
863 sample, 1 pyL of 600 U/uL T4 DNA ligase, 12.5 uL of 2x Rapid Ligation Buffer, and 1.25 pL of 2.5
864 UM indexing adapter from the KAPA Dual-Indexed Adapter Kit (Kapa Biosystems, MA, USA).
865 The samples were incubated at 25°C for 15 min, followed by the addition of 5 yL of 0.5 M EDTA
866 pH 8. The libraries were purified twice with Agencourt AMPure XP beads. The libraries were
867 enriched in a reaction containing 20 pL sample, 25 yL of 2X KAPA HiFi HS Mix (Kapa
868 Biosystems, MA, USA), 2.5 uL of 5 uyM |5 primer, and 2.5 yL of 5 yM I7 primer. The reactions
869 were initially heated to 98°C for 45 seconds, followed by 14 cycles of 98°C for 15 seconds, 60°C
g7o for 30 seconds, and 72°C for 30 seconds, with a final extension at 72°C for 1 minute. The
871 resulting RNA libraries were purified using Agencourt AMPure XP beads, quantified on a Qubit
872 4 Fluorometer (Thermo Fisher Scientific, USA), and the library size was assessed using High
873 Sensitivity D1000 ScreenTape on the Agilent 4200 TapeStation (Agilent Technologies, Santa
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874 Clara, CA). Equimolar quantities of individual barcoded RNA libraries were pooled in a
875 randomized manner and shipped on dry ice to Beijing Genomics Institute (BGI, Shenzhen,
876 China). Each library pool was sequenced on an MGI Tech MGISEQ-2000 sequencing platform
877 to generate a minimum of 10 million 100 bp paired-end reads per sample.

878

879 2.7.3 Taxonomic classification of transcripts

880 Cutadapt v4.6"° was used to remove primer and barcode sequences and low-quality sequences
gg1 from the paired-end reads of the sequenced RNA libraries. To identify taxa with enriched gene
882 expression activity, the reads were classified using the Kraken v2.1.2 pipeline*' with the
883 archaea, bacteria, viral, plasmid, human, UniVec_Core, protozoa and fungi reference database
884 (k2_pluspf_20220607), and the Bracken v2.7 pipeline*? was applied to the classification results
885 to estimate the relative abundances. The counts table was generated from Pavian v1.0*. Data
886 filtering and statistical analysis were then performed as before using phyloseq v1.44.0% with
887 microbiome v1.22.0”" and microbiomeutilities v1.0.17.

888

889 2.8 Data Analysis

890 2.8.1 Changes in bacterial community structure associated with drought and well-watered

891 conditioning with and without a host

892 To assess the alpha diversity across the samples, we calculated the Shannon Diversity Index
893 using phyloseq v1.44.0%. We used ANOVA to test for significant differences in Shannon
894 Diversity indices between groups and means were separated using Tukey’s honestly significant
895 difference (HSD) test from the agricolae v1.3.5 R package’. For beta diversity, Bray-Curtis
896 dissimilarity matrices were calculated using phyloseq v1.44.0 and the variance explained by
897 legacy, conditioning, and host were estimated by performing permutational multivariate analysis

89s of variance (PERMANOVA) using the adonis2 function in vegan v2.6.4 R package®.
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899 Constrained ordination of beta-diversity was plotted using canonical analysis of principal
900 coordinates (CAP) based on Bray-Curtis dissimilarity matrices calculated with vegan v2.6.4. We

901 visualized differences with the CAP analysis, using the following models:

902 ~ legacy + Condition (conditioning + host + biological replicate)
903 ~ conditioning + Condition (legacy + host + biological replicate)
904 ~ host + Condition (legacy + conditioning + biological replicate)
905

906 The relative abundance of taxa was plotted as a stacked bar representation using phyloseq
907 v1.44.0. The tax_glom function in phyloseq v1.44.0 was used to agglomerate taxa, and the
908 aggregate_rare function in microbiome v1.22.0 was used to aggregate rare groups. We used
909 DESeq2 v1.40.0*° to calculate the enrichment profiles by fitting a generalized linear model
910 (GLM) with the following design:

911 Abundance ~ Legacy + Conditioning + Biological Replicate

912

913 We extracted the following comparisons from the fitted model: wet soil legacy with watered
914 conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil
915 legacy (baseline), dry soil legacy (baseline) vs wet soil legacy (baseline), dry soil legacy with
916 watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning
917 vs wet soil legacy (baseline). Taxa were considered significant if they had an FDR-adjusted
918 p-value (g-value) <0.05. The results of the GLM analysis were rendered in heatmaps, coloured
919 based on the log,-transformed fold change output by the GLM. Significant differences between
920 comparisons with a g-value <0.05 with log,-transformed fold change >2 were highlighted with
921 black squares.

922

923 Relative abundances of the taxonomic markers were extracted, and an ANOVA was performed
924 to assess significant differences between treatment groups. Tukey's Honest Significant
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925 Difference (HSD) test, implemented using the agricolae v1.3.5 R package’, was used for
926 post-hoc pairwise comparisons. To further explore the effects of watering and drought
927 treatments, with and without a host, on the relative abundances of the taxonomic markers, we
928 subset the data and applied a generalized linear model (GLM) using DESeq2 v1.40.0*°. The
929 model was structured as follows:

930 Abundance ~ Legacy + Conditioning + Host + Biological Replicate

931

932 We then extracted the following comparisons from the fitted model for each soil legacy: water
933 conditioning vs baseline, drought conditioning vs baseline, water conditioning with host vs
934 baseline, drought conditioning with host vs baseline. Markers were considered significant if the
935 FDR-adjusted p-value (g-value) was < 0.05. Results from the GLM analysis were visualized in a
936 heatmap, with colours representing log2-transformed fold changes. Comparisons showing
937 significant differences (g-value <0.05 and log2-transformed fold change >2) were highlighted
938 with black squares.

939

940 2.8.2 Gene Ontology (GO) term enrichment analysis

941 To identify enriched biological processes within the microbial communities, sequence reads from
942 individual samples were assembled into contigs using metaFlye from the Flye v2.9 package®
943 with default parameters, as described in Methods Section 1.8.7. Relative abundance counts
944 were then determined, and the resulting contigs were subjected to taxonomic classification and
945 filtering, also as outlined in Methods Section 1.8.7. We used DESeq2 v1.40.0*° to determine the
946 bacterial contig enrichment profiles by fitting a generalized linear model (GLM) with the following
947 design:

948 Abundance ~ Legacy + Conditioning + Biological Replica

949
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950 We extracted the following comparisons from the fitted model: wet soil legacy with watered
951 conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil
952 legacy (baseline), dry soil legacy (baseline) vs wet soil legacy (baseline), dry soil legacy with
953 watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning
954 vs wet soil legacy (baseline). Contigs meeting the criteria of an FDR-adjusted p-value (g-value)
955 < 0.05 and a log,-transformed fold change > 2 were selected. Open reading frames were
956 predicted and functionally annotated, and genes with GO classifications were subjected to GO
957 enrichment analysis with the GO_MWU tool°.

958

959 2.8.3 Changes in gamagrass morphological features under drought and well-water condition

960 For each root feature identified, we used ANOVA to test for significant differences between
961 groups and means were separated using Tukey’s honestly significant difference (HSD) test from
962 the agricolae v1.3.5 R package’ Subsequently, the feature values were normalized using the
963 rescale function from the scales v1.2.1 R package. The mean normalized feature values were
964 then visually represented on a heatmap using ggplot2 v3.4.2. Subsequently, Pearson correlation
965 coefficients between these features and corresponding p-values were computed using the rcorr
966 function from the Hmisc v5.0.1 package’. The results of the correlation analysis were
967 graphically presented using ggplot2 v3.4.2, where the colour of the plots reflected the
968 correlation coefficient values. Significant correlations (p <0.05) were emphasized with black
969 squares on the plots. Furthermore, the coefficient of variation for the feature values was
970 calculated and depicted using ggplot2 v3.4.2. The three plots were integrated based on the
971 hierarchical clustering of the Pearson correlation coefficients of the features. The clustering
972 employed the ward.D2 method within the hclust function in R, utilizing Euclidean distances
973 calculated using the dist function.

974
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975 2.8.4 Metatranscriptome sequence analysis

976 To assess transcriptional differences in the activity of the bacterial community, Bray-Curtis
977 dissimilarity matrices were calculated. The variance explained by legacy, conditioning, and host
978 was estimated using permutational multivariate analysis of variance (PERMANQOVA) with the
979 adonis2 function from the vegan v2.6.4 R package. Beta-diversity patterns were visualized
980 through constrained ordination using canonical analysis of principal coordinates (CAP). We

981 applied CAP analysis to visualize differences using the following models:

982 ~ Legacy + Condition (conditioning + host + biological replicate)
983 ~ Conditioning + Condition (legacy + host + biological replicate)
984 ~ Host + Condition (legacy + conditioning + biological replicate)
985

986 Transcriptional activity among taxa was displayed as a stacked bar plot using phyloseq v1.44.0.
987 We employed DESeq2 v1.40.0* to calculate enrichment profiles by fitting a generalized linear
988 model (GLM) with the following design:

989 Abundance ~ Legacy + Conditioning + Biological Replicate

990

991 From the fitted model, we extracted the following comparisons: wet soil legacy with watered
992 conditioning vs wet soil legacy (baseline), wet soil legacy with drought conditioning vs wet soil
993 legacy (baseline), dry soil legacy (baseline) vs wet soil legacy (baseline), dry soil legacy with
994 watered conditioning vs wet soil legacy (baseline), and dry soil legacy with drought conditioning
995 vs wet soil legacy (baseline). Taxa were considered differentially abundant if the FDR-adjusted
996 p-value (g-value) was <0.05. Results from the GLM analysis were visualized in heatmaps,
997 where colours represent log2-transformed fold changes. Comparisons showing significant
998 differences (g-value <0.05 and log2-transformed fold change >2) were highlighted with black

999 squares.
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1000
1001 Additionally, high-quality filtered reads of the transcriptome were de novo assembled into a
1002 reference metatranscriptome using Trinity v2.15.17* with default parameters. Open reading
1003 frames in transcripts were predicted with TransDecoder v5.7.17° with default settings. Functional
1004 annotation of the predicted proteins was performed using the eggNOG-mapper v2.1.9% pipeline,
1005 utilising the eggNOG v5.0.2 database®” with Diamond v2.0.11°® and MMseqs2*°. The taxonomic
1006 classification of transcripts was conducted using the CAT v8.22 taxonomic classification
1007 pipeline®. Sequence reads were further filtered using SortMeRNA v4.3.6"° with the
1008 smr_v4.3 default_db.fasta database to remove residual amplified rRNA sequences. Transcript
1009 quantification analysis was performed using Salmon v1.10.0 in the mapping-based mode with
1010 the de novo assembled reference metatranscriptome. Subsequently, the transcript-level
1011 abundance estimates from salmon were extracted for the identified transcripts using the R
1012 package tximport v1.28.044 as raw counts in default setting”’. DESeq2 v1.40.0*° was utilized to
1013 determine the bacterial transcript enrichment profiles by fitting a generalised linear model (GLM)
1014 as described before. Genes meeting the criteria of an FDR-adjusted p-value (g-value) <0.05, a
1015 log,-transformed fold change >2, and had GO classifications, were subjected to GO enrichment
1016 analysis with the GO_MWU tool®®.

1017

1018 2.8.5 Analysis of genetic variation among bacterial lineages

1019 Filtered shotgun metagenomic reads were aligned to the reference genomes of 33 selected
1020 taxa, including 22 identified bacterial markers and 11 additional abundant and prevalent species
1021 (see Supplementary Materials and Methods 1.8.8), using Minimap2 v2.17-r941%. The resulting
1022 alignments were sorted and indexed with SAMtools v1.18%'. Variant calling was performed using
1023 BCFtools v1.18%, and variants were filtered with VCFtools v0.1.16%. Filtering criteria included a

1024 variant quality score >20, a minor allele frequency (MAF) >0.01, <50% missing data, and a
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1025 minimum sequencing depth of 10x in each sample. After filtering, a total of 8,293 high-quality
1026 biallelic SNPs were available for further analysis. To assess genetic variation within and
1027 between groups, we analysed molecular variance (AMOVA) using poppr v2.9.6’. The
1028 significance of the AMOVA results was determined with a permutation test using the randtest
1029 function in ade4 v1.7.22"°. To determine the extent of genetic differentiation between groups, we
1030 calculated the Fixation index (FST) values using the hierfstat v0.5.11%° package. Principal
1031 coordinates analysis (PCoA) plots were generated as previously described in Supplementary
1032 Materials and Methods 1.8.8, and coloured to reflect soil legacy, drought/ well-watered and host/
1033 no-host treatments. To identify genes associated with soil legacy, we conducted a genome-wide
1034 association study (GWAS). SNPs were re-filtered using VCFtools v0.1.16%, applying the same
1035 criteria but allowing for up to 70% missing data and a minimum sequencing depth of 3x in each
1036 sample. GWAS was conducted using a general linear model in the rMVP v1.1.1 package®®.
1037 Associations were identified by comparing bacterial lineages from dry legacy soil to those from
1038 wet legacy soil. Genetic structure was accounted for by incorporating the first 10 principal
1039 components. Significant associations were identified through permutation testing within the
1040 rMVP package, and Manhattan plots were generated using CMplot v4.5.1°.

1041

1042 3. Test phase: Effects of soil microbiome legacy on plant tolerance to drought

1043 3.1 Experimental design and non-destructive phenotypic measurements

1044 At the end of the “Conditioning Phase”, homogenized soil was collected from each pot by
1045 discarding the top one centimeter of soil, mixing the soil in the pot with a clean plastic spatula,
1046 and placing six grams in a sterile 50 mL conical tube. For rhizosphere samples (i.e., planted
1047 pots), plants were gently pulled from the pots and the soil particles adhered to and within the
1048 root bundle were shaken into a sterile 50 mL conical tube. The rhizosphere particles were
1049 homogenized with a clean plastic spatula and particles were poured out of the tube until six
1050 grams remained. Soil and rhizosphere samples were stored at 4°C overnight.
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1051
1052 Soil microbes were extracted from the 6 g soil or rhizosphere sample the following day by
1053 adding 25 mL of autoclaved 1X PBS with 0.0001% Tween-89 to the 50 mL tube containing the
1054 sample. Tubes were vigorously shaken to mix and break up large soil aggregates. Large
1055 particles were allowed to settle to the bottom of the tube; the supernatant was then filtered
1056 through autoclaved Miracloth (Sigma-Aldrich) into a new sterile 50 mL conical tube. Filtered
1057 samples were then centrifuged at 3600g for 25 min at 4°C. The supernatant was discarded, and
1058 the microbial pellet was resuspended in 6 mL of 1X PBS buffer using a vortex. The resuspended
1059 pellets were stored at 4°C until used for inoculations a few hours later.

1060

1061 As stated in section 2.1, the conditioning phase had 24 treatment groups with eight replicates of
1062 each treatment (192 pots total). For the test phase, microbial extracts from all eight replicates of
1063 each group (plus sterile buffer-only control inoculums) were each inoculated into a pot planted
1064 with gamagrass (N=200) and a pot planted with maize (N=200) that were then maintained under
1065 watered-stress (drought) conditions. Furthermore, four of the eight replicate extracted microbial
1066 inoculants (as well as four sterile buffer-only control inoculums) were each inoculated into an
1067 additional gamagrass planted (N=100) and maize planted (N=100) pots, which were then
1068 maintained under well watered control conditions. This makes for a total of N=600 plants at the
1069 start of the test phase. Throughout the experiment, nine water-stressed maize and five
1070 well-watered maize were lost (no gamagrass died). Therefore, phenotype measurements were
1071 completed on a total of N=586 plants. We chose this design because resource and space
1072 limitations prevented us from testing all 192 inocula under both drought and control conditions,
1073 and we were primarily interested in microbial effects on plant function under drought; we
1074 therefore opted to maximize our power to test for differences among the inocula under water
1075 limitations.

1076
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1077 To create the inoculum, the resuspended pellet was inverted three times to mix and 1 mL of the
1078 sample was added to 100 mL of sterile 0.5X MS liquid medium, for a microbial titer equivalent to
1079 0.01 g soil per mL. The “mock inoculation” controls were created by substituting 1 mL of sterile
1080 PBS for the resuspended microbial pellet. Finally, 25 mL of this suspension was inoculated onto
1081 the soil surface of each Test Phase pot. Thus, each microbial community extracted from one of
1082 the 192 conditioning phase pots was used to inoculate either two or four plants in the Test
1083 Phase. To maintain statistical independence of the experimental replicates from the conditioning
1084 phase, no pooling was performed.

1085

1086 Before inoculation, pots were planted with 3-4-day old gamagrass or maize germinants.
1087 Gamagrass seeds were soaked in 3% hydrogen peroxide for 24 hours and germinated in seed
1088 trays filled with sterile clay. Maize seeds were soaked in 70% ethanol for 3 minutes, then soaked
1089 in 5% NaCIlO on a rotator for 2 min, and then rinsed with sterile DI water three times. Treated
1090 maize seeds were germinated on sterile damp paper towels inside sealed plastic bags.

1091

1092 Pots were fully randomized and, prior to inoculation, were filled with a homogenized 5:1 (w/w)
1093 mixture of all-purpose sand (TechMix All-purpose 110241) and calcined clay (Pro's choice rapid
1094 dry) that had been sterilized by autoclaving on a one-hour liquid cycle. Pots were autoclaved on
1095 a 30 min liquid cycle and then filled with the sand:clay mixture, leaving one inch of room at the
1096 top of the pot. To help keep the mixture from falling out of the drain holes in the bottom of the
1097 pots, a sterile filter paper was shaped into a cone, pushed to the bottom of the pot, and a sterile
1098 marble was used to weigh the paper down. This effectively blocked the substrate, but still
1099 allowed water to exit the drainage holes. Plants were grown under 12-h days, 27°C/23°C
1100 (day/night), and ambient humidity, with the light setting set to 1, which is equivalent to 312
1101 ymol/m?s. Three-day old gamagrass and maize leaf photosynthetic rates and gas exchange
1102 were measured using the LI-6800 (LI-COR, Lincoln, NE, USA), across 3 days for each host.
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1103 The LI-6800 aperture was 2 cm, warmup tests were performed at the start of each
1104 measurement session, the Fluorometry was set to “on”, the APD_Leaf to set to 1.5 kpa. The
1105 newest fully emerged leaf, which was most commonly the 4th leaf, on each plant was clamped
1106 in the chamber and allowed to stabilize until all measurements were stable for at least 30 secs
1107 before the measurements were recorded, which took approximately five minutes per leaf.
1108 Similarly, the leaf chlorophyll content was also measured using the MC-100 Chlorophyll
1109 Concentration Meter (apogee instruments, Logan, UT, USA).

1110 Maize plants were sampled four weeks after planting and gamagrass was sampled five
1111 weeks after planting. In total, we measured 300 T. dactyloides plants (200 droughted, 100
1112 well-watered) and 286 maize plants (191 droughted, 95 well-watered).

1113

1114 At the end of the Test Phase, uprooted plants were gently shaken to remove the soil attached to
1115 roots, prior to the collection of phenotypic, transcriptomic, and microbiome data as described
1116 below. One crown root was cut off with a ceramic blade and placed in a 1.7 mL tube on dry ice
1117 for downstream DNA extraction for 16S rRNA gene sequencing. Another crown root (0.15- 0.2
1118 g) was cut off with a ceramic blade, placed in a 1.7 mL tube, and flash frozen in liquid nitrogen
1119 for downstream RNA extraction. In between plants, the ceramic blade, plastic tweezers, plastic
1120 cutting board, and gloves were cleaned with 30% bleach. All samples were held on dry ice and
1121 then transferred to a -80°C freezer for storage. Next, the root and shoot were separated with a
1122 ceramic blade. Three cm of crown root beginning ~2 cm from the base of the shoot was cut with
1123 a ceramic blade and submerged in 50% EtOH for LAT analysis. The rest of the root system was
1124 submerged in 70% EtOH in a 50 mL centrifuge tube for downstream root architecture scanning.
1125 Shoot height and number of leaves were recorded. Shoots were placed in individual paper
1126 bags, dried in an oven at 225°C for 12 hours, and the shoot dry weight was recorded.

1127

1128 3.2 Root system architecture and root biomass analyses

45


https://doi.org/10.1101/2024.08.26.609769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1129 A Perfection V600 flatbed scanner (Epson, Nagano, Japan) was used to scan intact maize and
1130 gamagrass root systems collected from Test Phase plants. The scanner was set to professional
1131 mode, reflective, document, black and white mode, 600 dpi, with a threshold of 55. A clear
1132 plastic tray filled with clean water was placed on the scanning bed. Each root system was
1133 placed in the tray with water and the tangled roots were gently pulled apart using plastic
1134 tweezers until they were no longer overlapping. A small amount of fine fibrous roots that fell off
1135 during this process were pushed to the corner of the tray and not included in the root cluster
1136 scan. The scanned root images were then analyzed using Rhizovision Explorer software v.
1137 2.0.3% in “whole root” mode and converted to 600 dpi. The region of interest tool was used to
1138 outline the main root bundle before pressing play to collect feature measurements. Finally, after
1139 collection of root system architecture data, the roots were dried in an oven at 225°C for 12 hours
1140 and then weighed.

1141

1142 3.3 Root Laser Ablation Tomography (LAT) analysis

1143 We collected one crown root from each plant (3 cm long each, beginning 2 cm from the base of
1144 the plant) and stored them in 50% ethanol at 4°C. These samples were shipped to the
1145 University of Nottingham for LAT analysis. Briefly, root segments were dried with an automated
1146 critical point dryer (CPD, Leica EM CPD 300, Leica Microsystem). Then, samples were ablated
1147 by a laser beam (Avia 7000, 355 nm pulsed laser) to vaporize the root tissue at the camera focal
1148 plane ahead of an imaging stage and cross-sectional images were taken using a Canon T3i
1149 camera with a 5xmicro-lens (MP-E 65 mm) on the laser-illuminated surface. ImageJ software*®
1150 was used to measure root anatomical traits captured in the high-quality LAT images.

1151

1152 3.4 Leaf ionome and shoot biomass analyses

1153 The elemental profiles of the shoots were measured using Inductively Coupled Plasma Mass
1154 Spectrometry (ICP-MS). The shoot biomass from all uprooted plants was dried in an oven at
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1155 225°C for 12 h and then weighed. The dried biomass samples were cut into small pieces using
1156 a clean ceramic scalpel and placed in 5 mL Eppendorf tubes with 3 zirconium oxide beads.
1157 Shoots were pulverized using a Tissue Lyzer Il (Qiagen) using 2 cycles of 60 seconds at the
1158 frequency of 30 s™. Next, 5-10 mg of pulverized shoot samples were weighted on a Mettler
1159 five-decimal analytical scale, and 1-3 mL (depending on the sample dry weight) of concentrated
1160 trace metal grade nitric acid Primar Plus (Fisher Chemicals) was added to each tube. Prior to
1161 the digestion, 20 pg/L of Indium (In) was added to the nitric acid as an internal standard to
1162 assess putative errors in dilution or variations in sample introduction and plasma stability in the
1163 ICP-MS instrument. The samples were then digested in DigiPREP MS dry block heaters (SCP
1164 Science; QMX Laboratories) for 4 h at 115°C. After cooling down, the digested samples were
1165 diluted to 10-30 mL (depending on the volume of the nitric acid added) with 18.2 MQcm Milli-Q
1166 Direct water. The elemental analysis was performed using an ICP-MS, PerkinElImer NexION
1167 2000 equipped with Elemental Scientific Inc 4DXX FAST Dual Rinse autosampler, FAST valve
1168 and peristaltic pump. The instrument was fitted with a PFA-ST3 MicroFlow nebulizer, baffled
1169 cyclonic C3 high sensitivity glass spray chamber cooled to 2 °C with PC3X Peltier heated/cooled
1170 inlet system, 2.0 mm i.d. quartz injector torch and a set of nickel cones. Twenty-four elements
1171 were monitored including the following stable isotopes: "Li, ''B, Na, *Mg, *'P, *S, *K, “*Ca,
1172 *®Ti, %2Cr, %°Mn, °Fe, *°Co, ®Ni, ®*Cu, %Zn, "As, ¥Se, %Rb, %Sr, Mo, "Cd, **®Pb and "In.
1173 Helium was used as a collision gas in Kinetic Energy Discrimination mode (KED) at a flow rate
1174 of 4.5 mL/min while measuring Na, Mg, P, S, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se and Pb to
1175 exclude possible polyatomic interferences.

1176

1177 The remaining elements were measured in the standard mode. The instrument Syngistix™
1178 software for ICP-MS v.2.3 (Perkin Elmer) automatically corrected any isobaric interferences. The
1179 ICP-MS measurements were performed in peak hopping scan mode with dwell times ranging
1180 from 25 to 50 ms depending on the element, 20 sweeps per reading and three replicates. The
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1181 ICP-MS conditions were adjusted to an RF power of 1600 Watts and an auxiliary gas flow rate
1182 of 1.20 L/min. Torch alignment, nebuliser gas flow and quadrupole ion deflector (QID) voltages
1183 (in standard and KED mode) were optimized before analysis for highest intensities and lowest
1184 interferences (oxides and doubly charged ions levels lower than 2.5%) with NexION Setup
1185 Solution containing 1 ug/L of Be, Ce, Fe, In, Li, Mg, Pb and U in 1% nitric acid using a standard
1186 built-in software procedure. To correct for variation between and within ICP-MS analysis runs,
1187 liquid reference material was prepared using pooled digested samples and run after the
1188 instrument calibration and then after every nine samples in all ICP-MS sample sets. Equipment
1189 calibration was performed at the beginning of each analytical run using seven multi-element
1190 calibration standards (containing 2 ug/L In internal standard) prepared by diluting 1000 mg/L
1191 single-element standards solutions (Inorganic Ventures; Essex Scientific Laboratory Supplies
1192 Ltd) with 10% nitric acid. As a calibration blank, 10% nitric acid containing 2 pg/L In internal
1193 standard was used, and it was run throughout the analysis. Sample concentrations were
1194 calculated using the external calibration method within the instrument software. Further data
1195 processing, including the calculation of final element concentrations, was performed in Microsoft
1196 Excel.

1197

1198 3.5 Crown root transcriptomics

1199 3.5.1 RNA extraction and sequencing

1200 For RNA extractions and sequencing, flash-frozen crown roots were freeze-dried for 48 hours
1201 and finely ground with pellet pestles. The RNA extraction protocol was carried out according to
1202 the NucleoSpin RNA Plant kit (Macherey-Nagel, Duren, Germany).

1203

1204 For the 132 maize samples, remnant DNA was removed from purified RNA using the DNA-Free

1205 kit (Invitrogen, Carlsbad, CA, USA). RNA-seq libraries were prepared using the QuantSeq 3’
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1206 MRNA-Seq V2 kit with unique dual sequences and the unique molecular identifier (UMI) module
1207 (Lexogen, Vienna, Austria) following the manufacturer’s recommendations. Libraries were
1208 pooled at equimolar concentrations and then sequenced (2x150bp, but reverse reads were not
1209 used) on a NovaSeq S4 flow cell (lllumina, San Diego, CA, USA) along with a 25% PhiX
1210 spike-in. Maize RNA-seq library preparations and sequencing were performed by the RTSF
1211 Genomics Core at Michigan State University. For the 132 T. dactyloides samples, RNA-seq
1212 libraries were prepared using the NEBNext Ultra |l Directional Library Kit with the oligo-dT
1213 magnetic isolation module (New England Biolabs, Ipswich, MA, USA) and sequenced on the
1214 lllumina NovaSeq 6000 platform at the Genomic Sciences Laboratory at North Carolina State

1215 University to generate a minimum of 40M read pairs (2x150bp) per sample.

1216 3.5.2 Sequence processing

1217 For the maize sequence reads, UMIs were removed from all sequences and added to the read
1218 headers using UMI-tools®2. Next, cutadapt version 4.27° was used to remove the first four bases
1219 of each read, remove poly-A tails (if present), remove spurious poly-G runs using the
1220 --nextseq-trim=10 parameter, and remove adapter sequences. Reads that were <10 bp long or
1221 that aligned to maize rRNA gene sequences were removed; the remaining reads were aligned
1222 to the maize reference genome B73 RefGen_v5% using HISAT2 version 2.2.184. Aligned reads
1223 were converted to BAM format, sorted, and indexed using samtools version 1.9%'. We then used
1224 UMI-tools®? to de-duplicate reads that both shared a UMI and had identical mapping
1225 coordinates. Finally, we used the FeatureCounts function of the subread package version 2.0.5%°
1226 with the maize genome annotation version Zm00001eb.1 and parameters -O --fraction -M
1227 --primary -g ID -t gene to generate a table of transcript counts.

1228

1229 For the T. dactyloides sequence reads, we first used cutadapt to remove NEBNext adapter

1230 sequences, poly-A tails, spurious poly-G runs, and low-quality tails using the -q 20,20 parameter
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1231 and other default parameters. The cleaned reads were aligned to the T. dactyloides reference
1232 genome (Td-KS_B6_1-REFERENCE-PanAnd-2.0a®" using HISAT2. The alignments were
1233 name-sorted so that mate-pairs could be fixed using the fixmate function of samtools®’, and then
1234 re-sorted based on coordinates, de-duplicated, and converted to indexed BAM files using the
1235 same software. Finally, a table of transcript expression estimates was generated using the
1236 FeatureCounts function of the subread package with parameters -p -O --fraction -M --primary -g
1237 ID -t gene and the T dactyloides genome annotation version

1238 Td-KS_B6_1-REFERENCE-PanAnd-2.0a_Td00002ba.2.

1239 3.5.3 Statistical analyses

1240 Because the maize and T. dactyloides RNA-seq datasets were generated using different
1241 approaches (3’ tag sequencing vs. full-length sequencing, respectively) we analyzed them in
1242 parallel rather than comparing them directly. For each species, we used DESeq2*° to identify
1243 genes that were differentially expressed between plants inoculated with microbiomes from a
1244 low-precipitation climate (“dry legacy”) vs. those inoculated with microbiomes from a
1245 high-precipitation climate (‘wet legacy”). A single negative binomial model with default
1246 parameters was used to estimate log,-fold changes in gene expression due to inoculum legacy,
1247 while also controlling for the other experimental factors, using the model:

1248 Counts ~ Legacy + ConditioningPhaseWater + ConditioningPhaseHost + TestPhaseWater
1249

1250 Statistical support was obtained using the Wald test with Benjamini-Hochberg FDR correction.
1251 All available samples were included in each analysis; thus, these results should be interpreted
1252 as the gene expression response to microbiome precipitation legacy, averaged across all levels
1253 of the other experimental factors.

1254
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1255 In addition, we investigated whether plants’ gene expression responses to limited vs. ample
1256 water during the Test Phase were affected by inoculum precipitation legacy. To do so, we used
1257 DESeq?2 to fit a model with the formula:

1258 Counts ~TestPhaseWater*Legacy

1259

1260 Then, we extracted the estimated log,-fold changes due to acute drought (relative to
1261 well-watered conditions) for both dry-legacy-inoculated and wet-legacy-inoculated plants. We
1262 inferred a meaningful interaction between these variables when the 95% confidence intervals of
1263 the two drought-induced log,-fold changes did not overlap at all. These interacting genes are
1264 candidates for linking real-time plant drought response to the microbiome’s historical
1265 environmental conditions.

1266

1267 Finally, we conducted a mediation analysis to determine whether the T. dactyloides genes that
1268 were sensitive to inoculum legacy were implicated in phenotypic responses to subsequent acute
1269 drought. A gene was considered legacy-sensitive if its expression was significantly affected by
1270 the main effect of inoculum legacy, or if it was affected by the interaction between inoculum
1271 legacy and test phase drought treatment, as described above. We summarized expression
1272 patterns of this subset of genes (normalized as transcripts per million, calculated using the full
1273 set of expressed genes) using non-metric multidimensional scaling of the Bray-Curtis distances
1274 among all T. dactyloides plants, which resulted in two axes of variation: MDS1 and MDS2. Next,
1275 we used the mediation package in R® to compare the direct effects of test phase drought
1276 treatment on each focal plant trait (see section 3.7.1. Plant trait feature selection) to the indirect
1277 effects of the drought treatment mediated through MDS1 and MDS2. Each mediation analysis
1278 used the linear models:

1279 Trait value ~ MDS + Test phase drought treatment

1280 MDS ~ Test phase drought treatment
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1281 where MDS represents the “site score” of each individual plant on either MDS1 or MDS2.
1282 Separate models were fit to test the potential roles of MDS1 and MDS2 as mediator variables;
1283 however, a follow-up analysis using both MDS1 and MDS2 as simultaneous mediators,
1284 implemented in lavaan®, yielded equivalent conclusions.

1285

1286 3.5.4 Gene annotation

1287 We downloaded maize and eastern gamagrass genome assemblies and annotations from
1288 MaizeGDB®*®8, Functional information for maize genes was taken from the Zea mays genome
1289 annotation version Zm-B73-REFERENCE-NAM-5.0_Zm00001eb.1 and accessed using
1290 MaizeGDB’s MaizeMine tool®*®°. For Tripsacum dactyloides genes, we relied on DNA
1291 sequence homology with annotated maize genes to infer function. We used BEDtools® to
1292 extract gene coordinates and protein-coding sequences from the T. dactyloides reference
1293 genome Td-KS_B6_1-REFERENCE-PanAnd-2.0a%, and then used OrthoFinder®® to compare
1294 coding sequences from the two species. OrthoFinder identified 32,785 T. dactyloides genes
1295 (71.5% of the total) as homologs of maize genes, grouping them into 21,658 distinct
1296 orthogroups. All differential gene expression analyses, however, considered the entire set of
1297 expressed genes; those without maize orthologs, or with unannotated maize orthologs, were
1298 considered to be of unknown function.

1299

1300 3.6 16S rRNA amplicon sequencing

1301 3.6.1 DNA extractions and library preparation

1302 One crown root from each plant was cut off with a ceramic blade and placed in a 1.7 mL tube
1303 and flash frozen in liquid nitrogen for downstream amplicon library preparation. After collection,
1304 root sub-samples were kept on dry ice and ceramic tweezers were used to transfer the whole

1305 root to 1.1 mL cluster tubes (USA Scientific, Ocala, FL, USA). Tweezers were sterilized with
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1306 80% EtOH between samples. Roots were selected at random for placement in cluster tubes and
1307 were stored at -80°C until DNA extraction, at which time roots were freeze-dried for 48 hours in
1308 a FreeZone lyophilizer (Labconco, Kansas City, MO, USA). After freeze-drying, roots were flash
1309 frozen in liquid nitrogen. To break apart thick roots, sterile forceps and a dissecting needle were
1310 used before placing the rack of cluster tubes in an HT Lysing Homogenizer (OHAUS,
1311 Parsippany, NJ, USA) with two clean 5/32” steel balls in each tube. Samples were homogenized
1312 at 25 Hz for 1 min. Root material was then transferred to 2 mL bead-beating 96-well plates
1313 containing sterile 1 mm garnet beads with 850 pL of lysis buffer (1M Tris, pH = 8.0; 100 mM
1314 NaCl; 10 mM EDTA).

1315

1316 A positive (ZymoBiomics Microbial Community Standard) and negative control, (800 uL of lysis
1317 buffer) were included on each plate. Bead-beating plates were stored at -20°C until extraction.
1318 After thawing, 10 pL of 20% sodium dodecyl sulfate (SDS) was added to each well before
1319 homogenizing for a total of 20 min at 20 Hz. Plates were incubated in a water bath (55°C for 90
1320 min) and centrifuged (6 min at 4500 x g). 400 uL of the resulting supernatant was transferred to
1321 new 1 mL 96-well plates containing 120 uL of 5 M potassium acetate in each well and incubated
1322 overnight at -20°C. After thawing the plates, they were centrifuged (6 min at 4500 x g) and 400
1323 uL of the supernatant was transferred to a new 1 mL 96-well plate containing 600 pL of diluted
1324 SPRI-bead solution (protocol derived from®). These plates were mixed thoroughly for 5 min at
1325 1000 r.p.m. on an orbital plate shaker. Samples were allowed to incubate for 10 min so DNA
1326 could bind to beads, after which the plate was centrifuged (6 min at 4500 x g) and placed on a
1327 magnet rack for 10 min. The supernatant was removed, and the beads were washed twice with
1328 900 pL of 80% EtOH. After washing, the supernatant was decanted and the beads were
1329 air-dried. DNA was eluted in 75 L of pre-heated 1x TE (pH = 7.5; 37°C) and transferred to
1330 clean 0.45 mL plates and stored at -20°C.

1331
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1332 16S-v4 rRNA gene amplification was performed using paired 515f/806r primers®. PCR
1333 reactions contained DreamTaq Master Mix (Thermo Fisher Scientific, Waltham, MA, USA), 10
1334 mg/uL bovine serum albumin (BSA), 100 uM peptide nucleic acid (PNA), and PCR-grade water.
1335 BSA was used to enhance PCR amplification while PNA was used to suppress primer binding
1336 and subsequent amplification of mitochondrial and chloroplast 16S regions®”. The PCR included
1337 an initial denaturation step at 95°C for 2 min, followed by 27 cycles of an additional denaturation
1338 at 95°C for 20 s, PNA annealing at 78°C for 5 s, primer annealing at 52°C for 20 s, and
1339 extension at 72°C for 50 s. This was followed by a final extension step for 10 min at 72°C. PCR
1340 products were purified by incubating at 37°C for 20 min and then 15 min at 80°C after mixing
1341 with 0.78 pL of PCR-grade water, 0.02 uL of 10 U/uL exonuclease | (Applied Biosystems), and
1342 0.2 pL of 1U/uL shrimp alkaline phosphatase (Applied Biosystems) per 10 uL PCR product. Two
1343 WL of the purified amplicons were used as template DNA in an indexing PCR to attach barcoded
1344 P5 and P7 lllumina adaptors. The 10 pL reaction included 5 uM each of P5 and P7 adaptors, 1x
1345 DreamTaq Master Mix (Thermo Fisher Scientific), 10 mg/mL BSA, 100 uM PNA, and PCR-grade
1346 water. An initial denaturation step was performed at 95°C for 2 min. For 8 cycles, an additional
1347 denaturation was carried out at 95°C for 20 s, PNA annealing at 78°C for 5 s, primer annealing
1348 at 52°C for 20 s, and extension at 72°C for 50 s. A final extension step was performed at 72°C
1349 for 10 min. PCR products were verified via 2% agarose gel electrophoresis and then pooled by
1350 96-well plate using the “Just-a-Plate” PCR cleanup and normalization kit (Charm Biotech, St.
1351 Louis, MO, USA). Pools were size selected and combined in equimolar concentrations before
1352 being sequenced on an lllumina SP flow cell on the NovaSeq 6000 platform (2x250bp reads).

1353

1354 3.6.2 Amplicon data processing

1355 We removed primer sequences from raw 16S-v4 lllumina reads using cutadapt™, requiring at

1356 least 5 nucleotides of overlap. Additional quality control and processing was performed with the
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1357 DADA2 software®®. Forward reads were discarded if they had more than 6 expected errors,
1358 otherwise they were truncated at 200 nucleotides; for reverse reads the parameters were 7
1359 expected errors and 170 nucleotides. Error rates were estimated separately for forward and
1360 reverse reads based on a sample of 1x108 bases, then used to denoise and dereplicate reads
1361 using the standard DADAZ2 functions. Chimeric sequences were detected and removed using
1362 the “consensus” procedure in DADA2. Each individual sample was processed in parallel, after
1363 which all of the resulting amplicon sequence variant (ASV) tables were merged. Finally,
1364 taxonomy of each ASV was assigned by comparison to the RDP database®.

1365

1366 3.6.3 Root bacterial community diversity analysis

1367 All statistical analyses were performed using R (v4.4.0). Unfortunately, some samples were lost
1368 due to a 96-well plate being dropped during the sample DNA extraction and due to filtering of
1369 samples based on sequence quality. Ultimately, 156 gamagrass root microbiome and 276 maize
1370 root microbiome samples were included in these analyses. The cleaned and prepared
1371 microbiome data, as phyloseq objects, were loaded into R®. The phyloseq object sample data
1372 table was replaced with an updated metadata file. The “mock” samples were removed from the
1373 dataset and the data was subset by the test phase host, maize and gamagrass using
1374 phyloseq::subset_samples (v1.48.0). Maize and gamagrass root bacterial microbiome Shannon
1375 Diversity was fit to a mixed-effects model using the Ime4 (v1.1-35.4) package'® and Imer()
1376 function, using the following model:

1377 expShannon~TestWater+Legacy + (1|DNAplate)

1378

1379 A type Il ANOVA was performed using stats::anova()'' to test for significance, followed by
1380 pairwise comparisons and significance tests using emmeans (v1.10.2) package'®” with false

1381 discovery rate adjustments. Data visualizations were generated using ggplot2 (v3.5.1)%, the
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1382 error bars represent standard error and the points are estimated marginal means. All plots were
1383 saved in PDF format. Composite figures were created in Adobe lllustrator.

1384

1385 Bacterial community beta diversity was accessed with a Constrained Analysis of Principal
1386 Coordinates, using phyloseq::ordinate, method="CAP”, and distance="Euclidean” with the

1387 following formula:

1388 ~TestWater+Legacy+Condition(DNAplate)+Condition(CondHost)+
1389 Condition(CondWater)
1390

1391 An  ANOVA-like permutation test was used to test for model significance using the
1392 vegan::anova.cca() function®®. The anova.cca by=term option was used to determine the
1393 significance of the TestWater and Legacy variables separately. CAP1 and CAP2 axes were
1394 plotted using ggplot2, including 95% confidence interval ellipse (stat_ellipse()). To evaluate
1395 treatment group beta-dispersion, Euclidean distances were calculated for the centered-log ratio
1396 transformed counts using phyloseq::distance(). Both “Legacy” and “TestWater” terms were
1397 tested for Dbeta-dispersion differences using the Euclidean distances matrix and
1398 vegan::betadisper() and vegan::permutest() to test for significance®®. Distances were then
1399 extracted from the results output and fit to a linear model. Estimated marginal means were
1400 calculated and plotted using the same methods as above. The error bars represent standard
1401 errors.

1402

1403 Then, an ASV differential abundance analysis was performed on gamagrass- and
1404 maize-associated ASVs separately. Centered-log ratio transformed counts of ASVs were each
1405 fit to a linear model using an iterative for-loop. Each ASV was subset using
1406 phyloseq:subset _taxa and the phyloseq::psmelt() function was used to reformat the phyloseq
1407 object into a data frame. Then the ASV abundance was fit to the following model:
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1408 Abundance ~ Legacy*TestWater

1409

1410 Then, stats::anova() was used to test for significance, followed by an FDR p-value adjustment
1411 using stats::p.adjust(). ASVs with significant (0.05) adjusted p-values for the Legacy*TestWater
1412 interaction terms were extracted and z-scores of the center-log ration transformed counts were
1413 plotted in a heatmap using pheatmap::pheatmap()'® with clustering_method="complete”.

1414

1415 3.7 Plant trait data analyses

1416 3.7.1 Plant trait feature selection

1417 All plant data was loaded into RStudio. The intrinsic water use efficiency (i\WUE) was calculated
1418 using the ratio of photosynthetic rate (A) and stomatal conductance (gs) or A/gs ((umol m=
1419 s71)/(mol m™ s™)). Data was subset by Test Phase host treatment groups (gamagrass and
1420 maize). For the feature selection, the “mock” treatment was removed. The 67 features that were
1421 selected for testing were subset into a data frame. Three sample rows were removed from the
1422 dataset because they had missing data. The drought susceptibility index (S-index) was
1423 calculated for each of these features using the following formula:

1424 S=Traitgougn/Mean(Traitsonor)

1425

1426 Then, for each host, a random forest model was used to select the top 10 most important
1427 features from the 67 total s-index measurements using randomForest()'*, with “Legacy” as the
1428 predictor. Correlations (stats::cor()) were estimated for the top ten traits and if any two of the top
1429 10 traits were highly correlated (r = 0.7), the trait that ranked lower in the random forest model
1430 was removed. Non-correlative top features from the test water treatment groups (drought vs.
1431 watered control) were combined for each test phase host (maize and gamagrass). Vegan:rda()

1432 was used to perform a redundancy analysis on the top features using the following formula:
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1433 Top_features~ Legacy + Condition(CondGroup), scale=TRUE

1434

1435 3.7.2 Feature analyses

1436 An  ANOVA-like permutation test was used to test for model significance using the
1437 vegan::anova.cca() function. A biplot was created using ggplot2 plotting RDA1 and PC1 axes,
1438 as well as the species scores (represented by arrows), and stat_ellipse was used to plot 95%
1439 confidence intervals of the site scores.

1440

1441 Finally, s-indices for each of the top features and iWUE were fit to mixed-effects models, when
1442 possible, or a fixed-effects model if overfitting of the mixed effects model occurred. Each feature
1443 or trait was visually assessed for outliers, which were removed. Removing the outliers did not
1444 impact the interpretation of any of the results. Formulas used for the mixed effects or linear

1445 model, respectively, include:

1446 Imer(s-index ~ Legacy + (1|CondGroup))
1447 Im(s-index ~ Legacy + CondGroup)
1448

1449 The fit of the model was accessed and if needed, the s-index was transformed using sqrt(),
1450 exp(), or log() to improve the fit. ANOVA was used to assess significance and estimated

1451 marginal means were calculated and plotted as described above.

1452 Data availability

1453 The 16S rRNA gene amplicon sequencing data, shotgun metagenomic data, and
1454 metatranscriptome data associated with this study have been deposited in the NCBI Sequence

1455 Read Archive under the BioProject IDs PRINA1267293, PRINA1267715, PRINA1268489, and
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1456 PRINA1186942. The raw RNA-seq data from gamagrass and maize have been deposited in the

1457 Gene Expression Omnibus under accessions GSE282586 and GSE282587, respectively.

1458 Code availability

1459 We deposited all scripts and additional data structures required to reproduce the results of this
1460 study in a Zenodo repository (http://doi.org/10.5281/zenodo.13821006). Source data are

1461 provided in the Zenodo repository and with this paper.
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1720 Fig. 1. Bacterial markers of precipitation after statistically controlling for other soil
1721 properties. a. Map of Kansas, USA, showing the collection locations of the soils used in this
1722 work. b. Precipitation (mm/year) at each collection site from 1981 to 2021. Large points
1723 represent the mean. Statistical difference between soils was determined via ANOVA followed by

1724 Tukey post-hoc test (p<0.05). c. Principal coordinate analysis of the soil microbiota across the
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1725 precipitation gradient. The bar on the left denotes the percentage of the overall variance
1726 explained by the independent variables. d. Pearson correlation coefficients between each
1727 bacterial taxon (NCBI taxID) and mean annual precipitation. e. Relative abundances of bacterial
1728 taxa identified in soils exposed to low or high precipitation levels after statistically controlling for
1729 soil porosity and mineral nutrient content. Coloured points represent the mean standardized
1730 relative abundance for each bacterial taxa. The line connecting both points is the difference
1731 between low and high precipitation soils. A black line indicates statistical significance (q < 0.05).

1732
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1734 Fig. 2. Precipitation legacy effects on the soil microbiota are resilient to short-term

1735 perturbations. a. Box plots showing phenotype distributions of Tripsacum dactyloides plants
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1736 grown during the conditioning phase, in which they experienced five months of drought (+D) or
1737 well-watered (+W) conditions and were grown in soils with either low-precipitation legacies
1738 (“DL”, brown) or high-precipitation legacies (“‘PL”, blue) (for additional phenotypes, see
1739 Extended Data Fig. 4b,d). PL and DL indicate the baseline soils prior to the initiation of
1740 conditioning phase treatments. Box edges represent the first and third quartiles; whiskers
1741 indicate the range of data points that fall within 1.5 times the interquartile range of the first and
1742 third quartiles; the center lines indicate the medians. b. Left: Constrained ordination of soil
1743 metagenome taxonomic composition after the conditioning phase treatments. Right: enrichment
1744 patterns of precipitation biomarker taxa in response to the different treatments, relative to the
1745 pre-conditioning baseline. Rectangles outlined in black indicate bacterial markers that were
1746 significantly enriched (red) or depleted (blue) (@ < 0.1). ¢. Constrained ordination of soil
1747 metatranscriptome content after the conditioning phase treatments. d. Principal coordinates
1748 analysis of standardized pairwise genetic distances calculated from SNPs in the genomes of the
1749 precipitation biomarker taxa. For panels b-d, note that even after five months of experimental
1750 perturbation, there is a clear separation of the samples on the first axis based on the
1751 precipitation legacy.

1752
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1754 Fig. 3. Root bacterial microbiome composition is more stable in T. dactyloides (eastern

1755 gamagrass) than Z. mays (maize) plants exposed to varying inocula and water

1756 treatments. For panels a,c,d,f the points are estimated marginal means (EMMs); error bars

1757 represent standard errors; letters indicate statistical contrasts (ANOVA with Tukey's post hoc

1758 test p<0.05). a. Shannon diversity (e*Shannon index) was not impacted by precipitation legacy

1759 or test phase water treatment. b. Ordination constrained by test phase water treatment and

1760 inoculum precipitation legacy (ANOVA.CCA, full model F,3=1.74, R?*=0.022, p=0.01) indicates

1761 that test phase water treatment (ANOVA.CCA by term, F,43,=2.58, p=0.003), but not legacy

1762 (ANOVA.CCA by term, F,3,=0.89, p=0.55) significantly impacted the T. dactyloides root
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1763 bacterial microbiome composition. Ellipses represent the 95% confidence intervals. ¢. Drought
1764 treatment did not impact the within-group variation (B-dispersion) of the T. dactyloides root
1765 microbiome. d. Zea mays (maize) root microbiome Shannon diversity was significantly impacted
1766 by test phase water treatment, but not the precipitation legacy of the inoculum. e. Ordination
1767 constrained by test phase water treatment and inoculum precipitation legacy (ANOVA.CCA,
1768 F,,5:=6.156, R?=0.041, p=0.001) indicates that legacy (ANOVA.CCA by term, F,,5s=4.2538,
1769 p=0.001) and test phase water treatment (ANOVA.CCA by term, F,.:=8.058, p=0.001)
1770 significantly impacted the Z. mays root bacterial microbiome composition. Ellipses represent the
1771 95% confidence intervals. f. Acute drought treatment increased Z. mays root microbiome
1772 within-group variation.
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1793 Fig. 4. The precipitation legacy of the microbial inoculum mediates transcriptional and
1794 physiological responses of T. dactyloides (eastern gamagrass) to acute drought. a.

1795 Fifteen genes were differentially expressed between plants inoculated with

1796 low-precipitation-legacy microbiota vs. high-precipitation-legacy microbiota. b. In total, 183 T.
1797 dactyloides genes responded to drought in a manner that was dependent on the drought legacy

1798 of the soil microbiota (the inoculum legacy*drought treatment interaction; Supplementary Table
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1799 10). Only genes with a drought response of >4-fold and with annotated maize ortholog(s) are

1800 shown for illustration purposes. Each pair of points represents one gene; the position of each
1801 point illustrates how the gene’s transcription level responded to drought treatment in plants
1802 inoculated with low-precipitation-legacy (brown) or high-precipitation-legacy microbiota
1803 (turquoise). Genes sets correspond to patterns of how inoculum legacy altered their drought
1804 responses. ¢. The model used for mediation analysis to test whether the expression of the 198
1805 legacy-sensitive genes (a-b) contributed to the overall effect of acute drought on plant
1806 phenotype. d. Mediation analysis confirmed that the expression of legacy-sensitive genes
1807 (summarized in two dimensions, MDS1 and MDS2) is involved in drought-induced decreases in
1808 intrinsic water-use efficiency (iWUE, units: ymol/mol) and transpiration (E, units: mol m? s™).
1809 Yellow bars indicate the “direct” effect of the drought treatment on trait values, i.e., the portion of
1810 the trait response that is independent of the transcription levels of microbiota legacy-sensitive
1811 genes. Blue bars show the portion of the trait response that is mediated by microbiota
1812 legacy-sensitive genes. Error bars: 95% confidence intervals. e. Low-precipitation-legacy
1813 microbiota (brown) stabilized iIWUE and E during acute drought. The s-index describes trait
1814 values scaled by the mean value of well-watered control plants, such that an s-index of 1
1815 indicates that droughted plants were phenotypically identical to non-droughted plants. Points are

1816 EMMSs and error bars indicate 95% confidence intervals.
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1817 Extended Data Figures
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1818

1819 Extended Data Fig. 1. Precipitation level and mineral nutrient content in Kansas soils
1820 correlate with soil microbiota composition. a. Alpha diversity (estimated using the Shannon
1821 diversity index) did not differ across soil samples. Soils are ordered according to the gradient of
1822 precipitation (Fig 1a). b. Phylogram showing the relative abundance profiles of the main
1823 bacterial phyla across soils exposed to different precipitation levels. ¢. Principal component
1824 analysis showing the ionomic profiles of the six focal soils (N=6 per soil). The bar on the left
1825 denotes the percentage of the variance explained by the predictor variables. d. Heatmap
1826 showing the standardized concentration (z-score) of each mineral nutrient (rows) in the
1827 collection of soil exposed to different precipitation levels. The values were clustered according to
1828 the ion concentration and the region was ordered according to the precipitation gradient (low to
1829 high). e. Bar graph showing the Pearson correlation coefficient between each mineral nutrient
1830 abundance and the level of precipitation across the collection of soils used. Coloured bars
1831 indicate statistically significant correlations (q < 0.05). f. Pairwise correlation analysis between
1832 soil mineral nutrient dissimilarities and soil microbiome composition dissimilarities in soils
1833 representing a gradient of precipitation (N=6 per soil). Each point represents one pair of soil
1834 samples. Panel shows the Mantel test r statistic and its p-value.

78


https://doi.org/10.1101/2024.08.26.609769
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.26.609769; this version posted June 23, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1835

a of b 25 =052 C os3
E 520 p-value = 0.00167 b 3
s %15 £.9
a c @0 =3
3, 810 Eso
S 25 o g E '
o o SE -
® %] S 065! r=0.099
6 p-value = 0.0732

S
NN ® ™

0
0 10 20 30 40 50 400 600 800 1000 f
issimilarity soil porosity

Soil porosity (%) Precipitation (mm/year)

protein catabolic process
macromelecule catabolic process
glycosyl compound biosynthetic process
thylation

met
amimﬂ Fc'd acfjvation
L I‘Ecﬂcaillﬂh

~ R
purine nucleoside metabelic process

repair

tRNA wobble base n on
. base-ex

fatty ahcrd,glosymh IC process

polysaccharide catag iC Emcess

guanosine-containing cempound metabolic process

§Iucﬂn metabolic process

SO0 BN 00— PO DA LRI N = ODIINS DITI—2h) =i rHimgen ey m?‘v!\?sm i '?gsgﬁ
OB~ B O &w—\-doogmcogcnww-&wwmpﬂéxwmw-& DT glycosyl mmfound metabolic process
i ORRES R R N s macromolecule methylation
SRORD NRBO~IGW RS — DNA metapojic process
ouDDbD & SRS =] 3 absolete cellular macromelecule catabolic pro?es_s
PN © =3 roteolysis

nucleoside mmnphnsphﬂi?\ins nthelic process

1 \ metabolic process

I nucleobase-containing small molecule Il:hnosgnmehc rocess
> DNA damage response

urine=containing com

und b
ﬁmnucleoslde rr\:%noph%%phate metabolic S
tRNA processing

lipid Y
ofganophosphate

nucleosidg muxo hgmale metabol

ibi

purine-containing compound metabolic process
) anfibiotic metabol
regulation of small molecule metabolic process
cellular response to extracellular stimulus
esponse to toxic substance

- deph%so?hvrylallvn

monoc?rlroxyllc acid catabolic process

cellular response to nuirient levels

_localization
response. t? abiotic stimulus
cell commupication

e
Q‘J‘

DITOQOWTAPTZDOOO! farelenlpy] o, B T N<ME DAVDODWDZZT response to chemical
=5 =5 C ] S5 = S5ES = S =% ﬁ’“
2300382208880 08 Soia g L 2. & Dy Foa0 CEERSC RS TYE regulation of metabolic process
aad En.cuwgn.:n c aaag o 8— = Sogflad oo =T woc organic substance transpor
XX33%Y g.:s.-gsn R 8= ga ,9.‘53033 ®SOoFTu0TFoEa nse fo nutrient levels
SImGII=250355 ESTIOITEe QI @ 8 S85S0cn BT 2520 response fo extracellular stimulus
NNENNSENENE YRR I s g 35338= 58850880253 transmembrane transpoy
colFE538005E8E B5008c5280,0555 2 £53205 3825395 2=05 omeostatic process
g-u-wzu-u-a.ﬁu-g.n-"’nm S ToT2E%R3585%8 S T 0GQ8npn PEYEFEIFS3S tty acid catal \cgraoess
EEPBEEYREREXE 8cccqcw3ScacEos & Gcho D =‘-x333=§ o ﬁe\lulaa(e e metabolic process
33p®33 o -3&3%5(5‘ QEEISQE 33883 @, w3 ‘Vc—g g—'ﬁmego 5 cellular al eh*emem ic process
wol swcso303D onNgT 5 2300=n 5 555 22 gafasueszo3d ipid catabolic process
Bl COFS=_BI33 =11 T EET N . 2 2535535 ] tal jon transport
Sap BT Spzuln23 2785 =g 25585 B 0wl 83 gecarcy 53 moncatomic ion homeostasis
oBL = 29370365 8 W25 % Sw=ggh 2 fog om wo 0y monaatomic cation transport
0Oy ™ 8 @ SHng o SR =] % 5 = monoatomic jon transj
ok O g @ arXsco T 0Sh e organic anion fransport
= Sa¥a =] o b

22 3 wg ©Za37 Z 22 - 2 Q monozalomic anion transport
&3 == Q z 8 = @ 17 t'g « 0 5 10
a@ 5 5 3 @ 2 96" —iog10 (padi
3 @ PG log10 (padij)
& % >

o

=l

=

°

@

)

b=l

@

Panels a/b

@ R Oknz

Y
o
3
2
@

@
'o' 2000
Q
CWR . SVR . CWR 2 = = 1000
WEL ( ) HAY . WEL s
@
HAY 2 0
KNZ S -1000
SVR £
TRI o -2000

Panels d/e/f

Standardized Relative
abundance

-2 -1 0 1 2

<]
A

oesoejeokwoidang
N

ot
Apeig
A
wojaueld
0|
105
14

aeaoeuabijes)y
[PAc0poyy

A00)
aBa0eUajoBqojALIa|
SEa0E|[OXEIOL

aeaoebeydo

2B e0ELIBJ0B!
aeasesnodolfiyde)g

BEBORIDJIOB(OASOY

@
oy
=
3=
]
3
@
5
o

aeaoginydQ

seaneIBRqOYIURY

(0]
@
3
3
]
5
o
]
@
@

aeaoeIqoz!
SEBORIAIEAI0S

aeale9;
ses0E|jeINS|SEd

aeaoesajoeqIueul
2ea0e

b
=,
3
]
3
o
=
@
a
o]
)
(]

28308100714
aeaoesdsouyse]
aesoeibueliodsoydang
aeaoesdoipiesoN
2es0e10dsSOUOWOULBY |
aeaoeUaeqIneIg
2e80E||I0BqIUSE]
aeaoeIaIRqOIqNY
aBaoeBIpIEOOUOPNasd
9EBIELIBIIEOIOIN
2B80B10dSOUOWOIOIN
SEaDEPIOIPIE3ON

Beade)s
BE80EPEUOWEWOD

2B80E|GO.O|UIOY
2Ba0RPRUOWIBWLLSE
2BS0BPEUOLL

aea0e)20
SBa0RIGO.IILOINUIBA

1836
1837
1838
1839 Extended Data Fig. 2. Precipitation, but not soil porosity, explains microbiota
1840 composition across the Kansas soil collection. a. Percent soil porosity changes with depth
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1841 in soils exposed to the precipitation gradient. b. Pearson correlation analysis between soil
1842 porosity (averaged across depths) and mean annual precipitation. ¢. Pairwise correlation
1843 analysis between soil microbiota dissimilarities and soil porosity dissimilarities. The panel shows
1844 the Mantel r statistic and its p-value. d-f. Heatmaps showing changes in the relative
1845 abundances of bacterial taxa (NCBI TaxIDs, d), species (e), and family (f) relative to the WEL
1846 soil, from the highest-precipitation site. In all cases, the values have been clustered according to
1847 taxonomic categories and soils. g. Numerous biological processes were enriched (red) or
1848 depleted (blue) in soils from low-precipitation sites (TRI, SVR, and HAY) relative to
1849 high-precipitation sites (WEL, CWR, and KNZ) (g<0.05). Gene enrichment analysis was
1850 conducted using a generalized linear model, followed by Gene Ontology (GO) classification.
1851 Enrichment scores were calculated using square root-transformed delta rank values of the GO
1852 categories.
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1854 Extended Data Fig. 3. Precipitation legacy shapes the genetic differentiation of bacterial
1855 lineages within taxa. To assess genetic differences between bacterial lineages along the
1856 precipitation gradient, we selected 33 bacterial species (15 of the bacterial biomarkers of
1857 precipitation, plus 18 additional abundant and prevalent taxa) that exhibited high genome
1858 coverage in our metagenomic dataset as proxies for the broader bacterial communities.
1859 Reference genomes for each species were retrieved from the NCBI Genome database, and
1860 filtered shotgun metagenomic reads were mapped to these genomes to identify high-quality
1861 biallelic single nucleotide polymorphisms (SNPs). Genetic distances between the bacterial
1862 lineages were calculated based on the identified SNPs and PCoA plots were generated and
1863 coloured by a. soil collection sites and b. mean annual precipitation. The variance explained by
1864 each axis is indicated. ¢. The Manhattan plot illustrates significant SNPs associated with
1865 precipitation, derived from the genetic-environment association (GEA) analysis. The GEA was
1866 conducted using a general linear model, with precipitation at each sampling location as the
1867 environmental variable. Significant associations were identified using the permutation method.
1868 The x-axis of the plot represents the SNP positions along the genomes of the selected bacterial
1869 species, while the y-axis displays the -log,, p-values from the association model. The horizontal
1870 line indicates the statistical significance threshold, as determined by the permutation test. SNPs
1871 above this threshold, highlighted in red, were significantly associated with the precipitation
1872 gradient. Bacterial taxa with fewer than 1,000 high-quality biallelic SNPs after filtering, and with
1873 no significant SNPs detected from the GEA analysis, are not shown in the plot.
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1876 Extended Data Fig. 4. Precipitation legacy effects in the soil microbiota are resilient to
1877 short-term water- and host-related perturbations. a. Schematic representation of the
1878 experimental design used to evaluate the resilience of precipitation legacy effects to
1879 perturbations and their functional importance to plant drought response. Six soils spanning the
1880 Kansas precipitation gradient (“legacy phase”), were either left unplanted or planted with
1881 seedlings of the native grass species Tripsacum dactyloides (eastern gamagrass), and
1882 subjected to either drought conditions or regular watering in a factorial design (“conditioning
1883 phase”). To evaluate how soil precipitation legacy affects plants, and to disentangle the role of
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1884 the microbiota from possible effects of co-varying abiotic soil properties, we then used the
1885 experimentally-conditioned microbial communities to inoculate a new generation of T.
1886 dactyloides and Z. mays plants. These “test phase” plants were divided between water-limited
1887 conditions and well-watered control conditions. b. Alpha diversity of bacterial communities was
1888 not affected by the different conditioning treatments (drought or well-watered, with or without
1889 host). ¢. Phylograms show that the different conditioning treatments (drought or well-watered,
1890 with or without host) did not impact the relative abundance profiles of main bacterial phyla. d.
1891 Constrained ordination of metagenome taxonomic composition in response to conditioning
1892 phase treatments. Statistics are from permutational MANOVA. The bar on the left describes the
1893 percentage of the variance explained by the experimental variables.
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1895 Extended Data Fig. 5. Precipitation legacy effects shape the transcriptionally-active soil
1896 microbiota even after five months of experimental perturbation. a. Constrained ordination
1897 of metatranscriptome content in response to conditioning phase treatments: (left) baseline soils
1898 and soils after exposure to well-watered or drought treatment, and (right) host or no-host
1899 treatment. The bar on the left describes the percentage of the variance explained by the
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1900 experimental variables. b. Phylogram showing the main bacterial phyla that were
1901 transcriptionally active across soils with different precipitation legacies after five months of
1902 drought or well-watered conditions, compared to the baseline for each legacy group (PL and
1903 DL). ¢. Heatmap showing enrichment or depletion of transcriptionally active bacterial families
1904 relative to the baseline high-precipitation-legacy (PL) soil. DL indicates the baseline
1905 (pre-conditioning) low-precipitation-legacy soil; +W and +D indicate five months of well-watered
1906 or drought conditions, respectively. Heatmap was coloured based on log, fold changes derived
1907 from a generalised linear model contrasting the abundance of each family in a given treatment
1908 against the high-precipitation-legacy baseline soil. Tiles outlined in black denote statistically
1909 significant enrichment (red) or depletion (blue) (q < 0.05) with a |log, fold change| > 2.
1910 Heatmaps were clustered based on taxonomic classification (tree on the left).
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1912 Extended Data Fig. 6. Transcriptional responses of soil microbiomes to short-term water
1913 perturbations are shaped by precipitation legacy. a. Heatmap showing the enrichment of
1914 transcriptionally active bacterial phyla in soils with low-precipitation (DL) or high-precipitation
1915 (PL) legacies, exposed to either drought (+D) or well-watered (+W) treatments, relative to the
1916 high-precipitation-legacy baseline (PL). DL indicates the baseline (pre-conditioning)
1917 low-precipitation-legacy soil. Colours represent log, fold changes derived from a generalized
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1918 linear model comparing each treatment to the high-precipitation-legacy baseline (PL). Tiles
1919 outlined in black indicate statistically significant enrichment (red) or depletion (blue) (q < 0.05;
1920 |log, fold change| > 2). Taxa were hierarchically clustered based on taxonomic classification
1921 (dendrogram on the left). b. Heatmap depicting enriched or depleted biological processes
1922 identified through metatranscriptomic analysis. Soils with high-precipitation legacies (PL) or
1923 low-precipitation legacies (DL) were subjected to five-month-long drought or well-watered
1924 treatments and then compared to the high-precipitation-legacy baseline. Gene enrichment
1925 analysis was conducted using a generalized linear model followed by Gene Ontology (GO)
1926 classification. Significantly enriched or depleted GO categories (adjusted p < 0.05) are coloured
1927 according to enrichment scores, calculated from square root-transformed delta rank values (red:
1928 enrichment; green: depletion). Clustering was performed based on soil treatments and GO
1929 terms.
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1933 Extended Data Fig. 7. Precipitation legacy of microbial inoculum impacts gamagrass
1934 phenotypic drought response. a. A constrained redundancy analysis of the top non-collinear
1935 traits found that legacy explains 5.0% of the phenotypic response to acute drought in eastern
1936 gamagrass (Tripsacum dactyloides). Turquoise points represent plants that were inoculated with
1937 high-precipitation-legacy microbiota and brown points represent plants that were inoculated with
1938 low-precipitation-legacy microbiota. The ellipses indicate 95% confidence intervals. b-j.
1939 Assessment of individual traits indicates that microbiota with a low-precipitation legacy improved
1940 gamagrass performance under drought. Points are estimated marginal means and error bars
1941 represent the standard error, and significant p-values (<0.05) are bolded.
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1945 Extended Data Fig. 8. Expression patterns of Tripsacum dactyloides genes in relation to
1946 microbiome legacy and NMDS axes that mediate drought responses. a. Histograms
1947 showing the distributions of gene loadings onto both axes of an ordination based on non-metric
1948 multidimensional scaling of RNA-seq data (see Fig. 4). The top 5% of genes with the strongest
1949 positive and negative loadings onto each axis are in red. b. Breakdown of the number of genes
1950 with positive/negative loadings onto each axis. c. Lists of genes comprising the 5% tails of the
1951 distributions in panel (a). Detailed information about the expression responses of these genes is
1952 available in Supplementary Table S10. ‘Gene_set’ refers to the patterns of response to
1953 microbiome legacy presented in Fig. 4a-b.
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1955 Extended Data Fig. 9. Precipitation legacy of microbial inocula alters the transcriptional
1956 response to drought in the maize crown root. a. 23 genes were up-regulated in plants
1957 inoculated with soil microbiota from a low-precipitation region, relative to plants inoculated with
1958 microbiota from a high-precipitation region. b. The sets of genes that responded to the main
1959 effects of inoculum legacy and test phase drought treatment had little overlap with each other or
1960 with the set of genes that were sensitive to the interaction between the two. c. In total, 109
1961 maize genes responded to drought in a manner that was dependent on the drought legacy of
1962 the soil microbiota (the inoculum legacy * drought treatment interaction term), regardless of the
1963 inoculum’s treatment during the conditioning phase. For illustration purposes, only annotated
1964 genes with |log,FoldChange| > 1 in at least one microbial context are shown here; the full list is
1965 available in Supplementary Table S10. Each pair of points shows one gene; the position of each
1966 point illustrates how the gene’s expression changed in response to drought stress during the
1967 Test Phase, depending on whether the plant had been inoculated with microbiota derived from a
1968 low-precipitation (brown) or dry-precipitation (turquoise) environment. Genes are grouped into
1969 sets according to the pattern of how inoculum legacy altered their drought responses. Note: the
1970 names of these gene sets are not meant to correspond to the names of the T. dactyloides gene
1971 sets shown in Fig. 4b; in each species, Gene set | contains the most genes, Gene set |l
1972 contains the next most, and so on.
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1980 Extended Data Fig. 10. Precipitation legacy of the microbiota had only weak impacts on
1981 the phenotypic drought response of maize, compared to that of eastern gamagrass. For
1982 comparison, the effects of microbiota precipitation legacy on eastern gamagrass drought
1983 responses are shown in Fig. 4 and Extended Data Fig. 7. a. A constrained redundancy analysis
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1987 precipitation legacy. The ellipses indicate 95% confidence intervals. b-j. Assessment of
1988 individual traits indicates that microbiota with a low-precipitation legacy did not significantly
1989 improve maize performance under drought, but did impact several mineral nutrient
1990 concentrations. Points are estimated marginal means and error bars represent the standard
1991 error, and significant p-values (< 0.05) are bolded.
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Supplementary Fig. 1. Precipitation legacy effects in the soil microbiota are resilient to
short-term water- and host-related perturbations. a. Box plots showing how soil group (high-
precipitation or low-precipitation legacy) and treatment (droughted or well-watered) affect
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phenotypic distributions of the Tripsacum dactyloides plants grown during the conditioning phase.
ANOVA was used to partition variance among groups and estimated marginal means were
compared using Tukey's post hoc test. b. Effects of soil group (high-precipitation or low-
precipitation legacy) and treatment (droughted or well-watered) on phenotypic traits of Tripsacum
dactyloides plants grown during the conditioning phase. The heatmap on the left depicts key plant
phenotype features, coloured based on mean normalised values. The Pearson correlation
coefficients (r) between these features are presented in the centre heatmap, with significant
correlations (p < 0.05) highlighted by black squares. The bar plot on the right indicates the
coefficient of variation of the feature values. The heatmaps are clustered based on Pearson
correlation coefficient values.



29
30

31
32
33
34

a E & b Bradyrhizobium 1D858422 Luteitalea ID1855912 Pseudomonas 1D287 Rubrobacter 1D2653851
SEE 400 a 2500 ‘ a ab
B 8 4 &
F B 750 - 750 :
B s pete
E 5 4 ol € 500 o
BB 5 ged ©1f ¢
S 500 dd e
E~8o ldcok ac
=l=l=l= I a & 250
S25i 4 s 8 g @
= 250 £ ool AL
B ik fee  19444%
g QD T TT T TT rTrTrTrTrrrruTrTd
E 50— Tean SaR38  EISRIR58338
= 535 o Streptomyces ID Bacillus ID1400 Bradyrhizobium ID1325107
=25
i | .
“Eg J 200 o a
==5 350 & pab | 43
S I
= 300 - a a a R [ [3{
-+ =5 b a [ 8¢ ¢ e Ca .
== 8 250 g qe 1004 ° &
EEE IR Hie ¢
=5 c : Pl e €| 8 . £ e
= EZE C 2004} 4 & g ele ¢ . e c 50 -
e ° pgtllt 22828680
DE% g T T T rrTrTrTrrrTrTrTrTd TTTrTTT
E —“EE 2 fagagaalal LRI 88 LR s8838 LRy
E _BH5
& E,:.E = < Bradyrhizobium ID1355477 Bradyrhizobium ID1437360 Bradyrhizobium 1D722472 Candidatus Koribacter ID658062
Ho [
:%E > 3004 @
B2 ""“' 500 -
=== -—
E= 2 1000 400 -
F BEE 14 200 4
B=H
SRS 300 - .
EES 2 ¢ ¢ 1004 | b !
= =8 500 - - & T
== . b ¢ 3 200 § § o E
=== §g8 & £ :
B TE5 g O80T 100 S € L
L E%g T T T T T T T T T T T T T T T T T T T T T T T
£ F=5 IERIR58838 IRRIR58838 TeRIRs8838 RRIRs8838
Epie= Edaphobacter ID2703788 Flavisolibacter ID661481 Klebsiella ID573 Salmonella ID28901
=E= 2000 -
S i 800 o
s © 3
E 120 4 c 600 4 1500
LS 2
=] a a . ay B a «
= b 80 400 - c & 0009, § °
g5 bpofb e 4[5 aaaa ¢ ‘
=E5 Pbet g a168e ¢ a cag g
B =55 = 181/8] & [8 £ 518 500 A ! £ €] g 8
S 20 4 EgElg T 40 e 2001 4 2l ?EE”
E =2 €% Tlele Ecele TP T EEE
=5 g ¢ E & . 0 b ¥ ° R
B= B T T T T T T T T TT T T T T T T T T T T T T 7T
DDE TANMOTOL NS W0 N M T W0 TANOTOL N wn
== [N iy Y a e Wa e Wa [afaNalal ocadoadnaonoag
=) —
H =
e Panel a Panel b
P log2FoldChange E precipitation legacy
= S . .
o drought legacy
= -2 0 2
L 8 PL+W vs PL: precipitation legacy + water cond. vs precipitation legacy P1: precipitation legacy
=] PL+D vs PL: precipitation legacy + water cond. vs precipitation legacy P2: precipitation legacy + water cond. without host
=5 DL vs PL: drought legacy vs precipitation legacy P3: precipitation legacy + drought cond. without host
% %ﬁ DL+W vs PL: drought legacy + water cond. vs precipitation legacy P4: precipitation legacy + water cond. with host
=] Zg; DL+D vs PL: drought legacy + drought cond. vs precipitation legacy P5: precipitation legacy + drought cond. with host
== D1: drought legacy
= :EE Phylum D2: drought legacy + water cond. without host
le == @ Acidobacteriota @ Chlamydiota @ Elusimicrobiota Nitrospirota D3: drought legacy + drought cond. without host
(= E%% @ Actinomycetota Chlorobiota @ Fibrobacterota @ Planctomycetota D4: drought legacy + water cond. with host
f = =53 Aquificota Chloroflexota @ Fusobacteriota ® Pseudomonadota D5: drought legacy + drought cond. with host
== Armatimonadota Coprothermobacterota @ Gemmatimonadota Spirochaetota
A o Bacillota Cyanobacteriota @ Ignavibacteriota @® Thermotogota
Yevee @ Bacteroidota Deferribacterota Kiritimatiellota Verrucomicrobiota
HEEEE] Calditrichota ® Deinococcota Mycoplasmatota
Za 3o

Supplementary Fig. 2. Limited influence of drought and watering treatments on soil
microbiota with established precipitation legacies. a. The heatmap displays the enrichment
of bacterial families across soils with high-precipitation (PL) and low-precipitation (DL) legacies,
exposed to either drought (+D) or well-watered (+W) treatments, in comparison to the high-
precipitation soil baseline (PL). DL indicates the baseline (pre-conditioning) low-precipitation-
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legacy soil. Colours in the heatmap represent log. fold changes, calculated using a generalized
linear model that contrasts the abundance of each bacterial family in the respective treatments
with that of the high-precipitation soil baseline (PL). Tiles outlined in black denote statistically
significant enrichment (red) or depletion (blue) (q < 0.05) with a |logz fold change| > 2. The
heatmap was clustered based on taxonomic classification (represented by the dendrogram on
the left). b. Boxplots showing the relative abundance of bacterial markers of water legacy across
soils with low-precipitation legacy (D1-5) or high-precipitation legacy (P1-5) either before (P1, D1)
or after (P2-5, D2-5) exposure to conditioning phase treatments (drought or well-watered, with or
without host). ANOVA was performed to detect significant differences among the groups, with
Tukey's post hoc test used to compare the estimated marginal means. Notice that in most cases
the conditioning treatments did not affect the relative abundance of bacterial markers compared
to the baseline soils.
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Supplementary Fig. 3. Genetic variation among bacterial lineages driven by long-term
precipitation legacy remains stable despite acute drought/water perturbations and host
presence/absence during the five-month-long conditioning phase. Filtered shotgun metagenomic
reads were aligned to the reference genomes of 33 selected taxa, including 15 identified bacterial
markers plus 18 additional abundant and prevalent taxa. Genetic distances between these
bacterial lineages were calculated based on identified single nucleotide polymorphisms (SNPs).
Principal Coordinate Analysis (PCoA) plots were generated and coloured to depict a. acute
drought and well-watered treatments, and b. host and no-host treatments during the conditioning
phase. Phi values, derived from Analysis of Molecular Variance (AMOVA), indicate the genetic
variance between groups, while the p-value reflects the significance of the AMOVA results based
on permutation testing. Fixation index (Fsr) values were used to measure the degree of genetic
differentiation between groups. The variance explained by each axis is displayed on the PCoA
plots. ¢. A Manhattan plot illustrated significant SNPs linked to the high-precipitation and low-
precipitation soil legacies, derived from the genetic-environment association (GEA) analysis. This
analysis was conducted using a general linear model and significant associations were identified
using the permutation method. In the Manhattan plot, the x-axis represents the SNP positions
along the genomes of the selected bacterial species, while the y-axis displays the -log1 p-values
from the association model. A horizontal line represents the statistical significance threshold,
determined by the permutation test. SNPs exceeding this threshold (highlighted in red) were
significantly associated with soil legacy effects. Bacterial taxa with fewer than 1,000 high-quality
biallelic SNPs after filtering, or with no significant SNPs detected from the GEA analysis, are
excluded from the plot.
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Supplementary Fig. 4. Precipitation legacies shape soil microbial functional potential and
remain stable under short-term water perturbations. a. The heatmap illustrates enriched or
depleted Gene Ontology (GO) categories in soils with high-precipitation legacies (PL) or low-
precipitation legacies (DL), subjected to drought (+D) or well-watered (+W) treatments, in
comparison to soils with the high-precipitation soil baseline (PL). DL indicates the baseline (pre-
conditioning) low-precipitation-legacy soil. Gene enrichment analysis was conducted using a
generalized linear model, followed by GO classification. Significantly enriched and depleted GO
categories were identified using an adjusted p-value threshold of q < 0.05. Colours (red for
enrichment, green for depletion) represent enrichment scores, calculated based on square root-
transformed delta rank values of the GO categories. The heatmap is clustered by soil treatments
and GO terms.
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Supplementary Fig. 5. Test phase gamagrass and maize drought treatments effectively
reduce plant growth. Test phase drought treatment significantly reduced shoot height (cm) in
(a) gamagrass and (b) maize. Large points represent estimated marginal means, while small
points show individual plant heights.
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Supplementary Fig. 6. Dominance of bacterial sequences in soil metagenomes.
Metagenomic profiles were dominated by bacterial sequences, which accounted for the vast
maijority of reads in both (a) the original soils sampled across a precipitation gradient and (b) the
soils from the conditioning experiment. In contrast, archaeal, eukaryotic, and viral sequences
constituted only minor fractions of the total reads.
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101  Supplementary Fig. 7. Plant trait feature selection. a-b.

102 important in explaining legacy effects were ranked using a random forest model. The top ten traits

Gamagrass and c-d. maize traits

103 were tested for significant correlations (= 0.7).
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Supplementary Table Legends

Supplementary Table S1. List of soil collection sites. The soils used in this work were
collected from these regions. The table also shows the coordinates associated with these regions,
the state, and country.

Supplementary Table S2. Enriched KEGG reactions across the precipitation gradient (Low
vs. High precipitation) in Kansas. Positive enrichment scores (“Low_vs_high_precipitation”)
indicate that the KEGG reaction was relatively more abundant in soil metagenomes from low-
precipitation sites than in high-precipitation sites. Enrichment scores are the cumulative log2-fold
changes of all differentially abundant genes within the same functional KEGG category, as
determined using DESeq2.

Supplementary Table S3. Significant SNPs linked to precipitation gradient, derived from
the genetic-environment association (GEA) analysis. Results of GEA based on metagenomic
data from the original field-collected soils. This table specifies the genomic locations of SNPs, the
reference and alternative alleles, GenBank accession numbers, and annotations when available.
The ‘Effect’ column represents the estimated additive effect of the alternate allele (ALT) from the
association model on the binary trait (0 = drought, 1 = precipitation). A positive effect indicates
that the ALT allele is associated with an increased probability of precipitation conditions, while a
negative effect indicates that the ALT allele is associated with an increased probability of drought
conditions.

Supplementary Table S4. List of bacterial markers of soil water legacy identified in this
work using soils from Kansas. In addition to the bacterial taxa ID (taxID), the table also shows
taxonomical attributes (Family, Genus, label Family, and Label genus) of the bacterial markers
identified. The column "DirectionEnrichment" shows the direction of the marker enrichment: “High
to low” indicates that the marker taxon is enriched in the soils from high-precipitation sites relative
to soils from low-precipitation sites, and vice versa.

Supplementary Table S5. Significant SNPs linked to long-term water and drought legacies
even after five months of experimental perturbation. Results of GEA based on metagenomic
data from soils that had undergone five months of experimental perturbation (acute drought or
control conditions, with or without a host). This table specifies the genomic locations of SNPs, the
reference and alternative alleles, GenBank accession numbers, and annotations when available.
The ‘Effect’ column represents the estimated additive effect of the alternate allele (ALT) from the
association model on the binary trait (0 = drought, 1 = precipitation). A positive effect indicates
that the ALT allele is associated with an increased probability of precipitation conditions, while a
negative effect indicates that the ALT allele is associated with an increased probability of drought
conditions.

Supplementary Table S6. Enriched GO categories across the precipitation gradient after
drought and watering conditioning (metagenome). At the end of the conditioning phase, 270
GO categories were significantly enriched or depleted in at least one treatment group or in the
baseline low-precipitation-legacy soils, relative to the high-precipitation-legacy baseline soils.
Enrichments and depletions were much more common in the low-precipitation-legacy soil group,
regardless of whether the soils experienced the drought treatment (“+ drought cond.”) or the well-
watered treatment (“+ water cond.”) during the conditioning phase. “NA” indicates that the GO
category was neither enriched nor depleted.
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Supplementary Table S7. Overlapping enriched GO categories across the precipitation
gradient and conditioning treatments. By the end of the conditioning phase, most of the GO
categories that distinguished the original field-collected soils from low-precipitation vs. high-
precipitation sites (see Extended Data Fig. 2g) retained the same pattern of enrichment/depletion,
regardless of whether the soils had experienced the drought treatment (“+ drought cond.”) or the
well-watered treatment (“+ water cond.”) during the conditioning phase. “NA” indicates that the
GO category was neither enriched nor depleted.

Supplementary Table S8. Enriched GO categories across the precipitation gradient after
drought and watering conditioning (metatranscriptome). Metatranscriptomic analysis of pre-
conditioning (baseline) and post-conditioning (5 months of drought [“+ drought cond.”] or well-
watered conditions [“+ water cond.”]) soils revealed GO categories that were differentially
abundant relative to the high-precipitation-legacy baseline soils. “NA” indicates that the GO
category was neither enriched nor depleted.

Supplementary Table S9. Enriched KEGG reactions across the precipitation gradient after
drought and watering conditioning (metatranscriptome). Metatranscriptomic analysis of pre-
conditioning (baseline) and post-conditioning (5 months of drought [“+ drought cond.”] or well-
watered conditions [“+ water cond.”]) soils revealed KEGG reactions that were differentially
abundant relative to the high-precipitation-legacy baseline soils.

Supplementary Table S10. Differentially expressed genes in the roots of gamagrass and
maize inoculated with low-precipitation-legacy and high-precipitation-legacy microbiota
during the test phase. Tab one provides information for interpreting the column names and the
four other tabs. Tab two lists gamagrass genes that are significantly up or down-regulated based
on the main effects of microbial inoculum legacy. Tab three lists gamagrass genes that are
significantly up or down-regulated based on the interaction of test phase water treatment and
microbial inoculum legacy. Tab four lists maize genes that are significantly up or down-regulated
based on the main effects of microbial inoculum legacy. Tab five lists maize genes that are
significantly up or down-regulated based on the interaction of test phase water treatment and
microbial inoculum legacy.

Supplementary Table S11. Test phase plant phenotypic data and microbiome metadata.
Tab one provides information for interpreting the column names. Tab two provides the
measurements for all plants used in the plant phenotypic analyses, including both Gamagrass
and maize. Tab three provides the measurements for the plant samples used in the root bacterial
microbiome data analyses, with sequencing data that passed all qualify checks and filtering.

Supplementary Table S12. Differentially abundant test phase gamagrass and maize root
microbiome ASVs. Tab one provides information for interpreting the column names. Tab two
lists the gamagrass root microbiome ASVs, including their full taxonomic assignment, that were
differentially abundant based on inoculum precipitation legacy in the context of test phase water
treatment. Tab three lists the maize root microbiome ASVs, including their full taxonomic
assignment, that were differentially abundant based on inoculum precipitation legacy in the
context of test phase water treatment.
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Supplementary Note 1

We identified four sets of orthologous genes whose transcription patterns were sensitive to
microbiota legacy in both maize and T. dactyloides, but none showed congruent drought
responses. In maize, a peroxidase encoding gene, Zm00001eb076200, reversed its drought
response depending on inoculum, while its T. dactyloides ortholog, Td00002ba025285, was up-
regulated 4-fold by drought only when inoculated with wet-legacy microbiota. The maize gene
Zm00001eb077640, (L-allo-threonine aldolase) also showed a reversed drought response,
whereas its ortholog Td00002ba026366 was consistently up-regulated, especially in plants
inoculated with dry-legacy biota. The pathogenesis-related protein-like gene Zm00001eb150050,
which has been linked to both biotic and abiotic stress responses, was up-regulated 7-fold in
maize under drought, but only in plants inoculated with wet-legacy microbiota; however, its T.
dactyloides orthologs were down-regulated 8-fold in response to low-precipitation vs. high-
precipitation legacy inoculum, independent of watering. Finally, the tryptophan synthase encoding
gene Zm00001eb301540 was up-regulated 1.7-fold in maize inoculated with wet-legacy

microbiota, while; its ortholog Td00002ba012570 was down-regulated under the same conditions.
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