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Abstract

Use of machine learning to perform database op-
erations, such as indexing, cardinality estimation,
and sorting, is shown to provide substantial perfor-
mance benefits. However, when datasets change
and data distribution shifts, empirical results also
show performance degradation for learned mod-
els, possibly to worse than non-learned alterna-
tives. This, together with a lack of theoretical un-
derstanding of learned methods undermines their
practical applicability, since there are no guaran-
tees on how well the models will perform after
deployment. In this paper, we present the first
known theoretical characterization of the perfor-
mance of learned models in dynamic datasets,
for the aforementioned operations. Our results
show novel theoretical characteristics achievable
by learned models and provide bounds on the per-
formance of the models that characterize their
advantages over non-learned methods, showing
why and when learned models can outperform the
alternatives. Our analysis develops the distribu-
tion learnability framework and novel theoretical
tools which build the foundation for the analysis
of learned database operations in the future.

1. Introduction

Given a fixed dataset, learned database operations (machine
learning models learned to perform database operations such
as indexing, cardinality estimation and sorting) have been
shown to outperform non-learned methods, providing speed-
ups and space savings both empirically (Kraska et al., 2018;
Kipf et al., 2018; Kristo et al., 2020) and, for the case of in-
dexing, theoretically (Zeighami & Shahabi, 2023; Ferragina
et al., 2020). For dynamic datasets (e.g., when new points
can be inserted into the dataset), significant empirical ben-
efits are also often observed when using learned methods.
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However, an important caveat accompanying these results is
that, especially when data distribution changes, models’ per-
formance may deteriorate after new insertions (Ding et al.,
2020; Negi et al., 2023; Wang et al., 2021), possibly to worse
than non-learned methods (Wongkham et al., 2022). This,
combined with the lack of a theoretical understanding of the
behavior of the learned models as datasets change, poses
a critical hurdle to their deployment in practice. It is theo-
retically unclear why and when learned models outperform
non-learned methods, and, until this paper, no theoretical
work shows any advantage in using the learned methods
in dynamic datasets and under distribution shift. The goal
of this paper is to theoretically understand the capabilities
of learned models for database operations, show why and
when they outperform non-learned alternatives and provide
theoretical guarantees on their performance.

We specifically study learned solutions for three fundamen-
tal database operations: indexing, cardinality estimation and
sorting. Our main focus is the study of learned indexing
and cardinality estimation in the presence of insertions from
a possibly changing data distribution, while we also study
learned sorting (in static scenario) to show the broader ap-
plicability of our developed theoretical tools. In all cases,
a learned model, f̂(x; ω) is used to replace a specific data
operation, fD(x), that takes an input x and calculates a de-
sired answer from the dataset D. For cardinality estimation,
fD(x) returns the number of points in the database D that
match the query x, and for indexing fD(x) returns the true
location of x in a sorted array. The model f̂(x; ω) is trained
to approximate fD(x), and an accurate approximation leads
to efficiency gains when using the model (e.g., for learned
indexing, if f̂(x; ω) gives an accurate estimate of location
of x in a sorted array, a local search around the estimated
location efficiently finds the exact location). In the presence
of insertions, the ground-truth fD(x) changes as the dataset
changes (e.g., the cardinality of some queries increase as
new points are inserted). Thus, as more points are inserted
(not only due to distribution shift, but exacerbated by it),
the accuracy of f̂(x; ω) worsens. A common solution is to
periodically retrain f̂ to ensure consistent accuracy. This,
however, increases insertion cost when insertions trigger a
(computationally expensive) model retraining.
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Learned Operation Query Complexity Insertion Complexity Space Complexity

Indexing T X
n log log n+ log εn T X

n log log n+ log εn+ BX
n log2 log n n log n†

CE, d-dim, ϑ = !(
→
n) T X

n max{ ωn
ε , 1}BX

n SX
n

CE, 1-dim T X
ε2 + log n max{εϑ, 1}BX

ε2 + log n n
ε2S

X
ε2 +

n
ε2 log n

Sorting T X
n n log log n† SX→

n + n log n

Sorting, appx. known dist. T X
n SX

Table 1. Summary of results for data sampled from a distribution learnable class X (CE: cardinality estimation, †: for simplicity assuming
SX
n ,BX

n are at most linear in data size, see Theorem 4.1 and Theorem 4.5 for general cases).

Theoretically, the relationship between accuracy change and
new data insertion has not been well understood, leading to
a lack of meaningful theoretical guarantees for learned meth-
ods in the presence of insertions. The only existing guaran-
tees are by the PGM index (Ferragina & Vinciguerra, 2020),
which achieves a worst-case insertion time of O(log n) with
worst-case query time of O(log2 n). Although experimental
results show PGM often outperforms B-trees in practice
(Ferragina & Vinciguerra, 2020; Wongkham et al., 2022),
the theoretical guarantees are worse than those of a B-tree
(that supports both insertions and queries in O(log n)). Such
theoretical guarantees do not meaningfully characterize the
index’s performance in practice nor show why and when the
learned model performs better (or worse) than B-trees.

In this paper, we present the first known theoretical char-
acterization of the performance of learned models for in-
dexing and cardinality estimation in the presence of inser-
tions, painting a thorough picture of why and when they
outperform non-learned alternatives for these fundamental
database operations. Our analysis develops the notion of
distribution learnability, a characteristic of data distribu-
tions that helps quantify learned database operation’s perfor-
mance for data form such distributions. Using this notion,
our results are distribution dependent (as one expects bounds
on learned operations should be), without making unnec-
essary assumptions about data distribution. Our developed
theoretical framework builds a foundation for the analysis
of learned database operations in the future. To show its
broader applicability, we present a theoretical analysis of
learned sorting, showing its theoretical characteristics and
proving why and when it outperforms non-learned methods.

1.1. Summary of Results

Table 1 summarizes our results in the following setting.
Suppose n data points are sampled independently from
distributions ϖ1, ...,ϖn, and let the distribution class X =
{ϖ1, ...,ϖn}. The points are inserted one by one into a
dataset. Di denotes the dataset after i insertion. Our goal
is to efficiently answer cardinality estimation and indexing
queries on Di accurately for any i, i.e., as new points are
being inserted. We denote distribution shift by ε ↑ [0, 1]
(defined based on, and often equal, to total variation dis-
tance) where ε = 0 means no distribution shift. Table 1 also
contains results for sorting, where the goal is to sort the fixed

array Dn, and the reported results are the time and space
complexity of doing so. For sorting only, we assume the
samples are i.i.d. All results are expected complexities, with
the expectation over sampling of the data, and the insertion
complexity is amortized over n insertions. To obtain our
results, we develop a novel theoretical framework, dubbed
distribution learnability. We provide an informal discussion
of the framework before discussing the results.

Distribution Learnability. At a high level, distribution
learnability means we can model a data distribution well.
This notion allows us to state our results in the form “if
we can model a data distribution well, learned database
operations will perform well on data from that distribution”.
Then, if one indeed proves that “we can model the data dis-
tribution ϖ well”, our result immediately implies “learned
database operations will perform well on data coming from
ϖ”. Crucially, our Theorem 3.5 shows that purely function
approximation results (independent of the application of
learned databases) imply distribution learnability, enabling
us to utilize function approximation results to show the
benefits of learned database operations.

More concretely (but still informally), we say a distribution
class X is distribution learnable with parameters T X

n , SX
n ,

BX
n , if given a set of observations, Dn, from distributions in

X, there exists a learning algorithm that returns an accurate
model, f̂ , of the distributions in X, and that f̂ can be evalu-
ated in T X

n operations, and takes space at most SX
n to store.

Furthermore, the learning algorithm takes time n↓ BX
n to

learn f̂ , where BX
n is the amortized training time. The no-

tion is related to statistical estimation, but we also utilize it
to characterize time and space complexity of modeling.

Results in Table 1 are stated for data sampled from any distri-
bution learnable class X. For illustration, we summarize the
results for two specific distribution classes: (1) distributions,
Xϑ, with p.d.f bounded between 0 < ϱ1 and ϱ2 < ↔, and
(2) distributions, Xc, where the data distribution is known
and probability of events can be calculated efficiently (e.g.,
distribution is known to be uniform or piece-wise polyno-
mial). The first case formulates a realistic scenario for the
data distribution (experimentally shown by Zeighami &
Shahabi (2023)), while the second case presents a best case
scenario for the learned models, showing what is possible

2



Theoretical Analysis of Learned Database Operations under Distribution Shift through Distribution Learnability

in favorable circumstances. Lemma 3.6 shows Xϑ, (and
trivially) Xc are distribution learnable, deriving the corre-
sponding values for T X

n , SX
n and BX

n (See Table 2 for exact
values). Next, we discuss Table 1 for Xϑ and Xc, where we
substitute the values of T X

n , SX
n and BX

n from Lemma 3.6
for Xϑ and Xc, and discuss the resulting complexities.

Indexing. After substituting the complexities in the first row
of Table 1 we obtain that for Xϑ and Xc, query and insertion
complexities are O(log log n + log(εn)). To understand
this result, consider the simple scenario with ε = 0, where
inserted items are sampled form a fixed distribution, and
thus frequent model updates are not necessary. The result
shows that a learned model performs insertions and queries
in O(log log n), showing their superiority over non-learned
methods that perform queries and insertions in O(log n).
Nonetheless, when there is a distribution shift, model per-
formance worsens. In the worst-case and when ε = 1, we
see no advantage to using learned models over non-learned
methods. This is not surprising, since learned models use
current observations to make prediction about the future, and
if the future distribution is drastically different, one should
not be able to gain from using the current observations.

Cardinality Estimation. First, consider the second row
in Table. 1, showing performance of learned models for
cardinality estimation in high dimensions but when error is
at least

→
n. Substituting the complexities in this row, for Xc,

we obtain that learned models perform insertions and queries
in O(1) time and space in this setting. This is significant,
given that a non-learned method such as sampling (and more
broadly ϑ-approximations (Mustafa & Varadarajan, 2017)),
even in this accuracy regime, needs space exponential in
dimensionality (Wei & Yi, 2018). Nonetheless, modeling
in high dimensions is difficult, and consequently this result
requires the accuracy to be at least

→
n. Moreover, even

for ϑ ↗
→
n but for more general distribution class of Xϑ,

our results show that learned methods will also take space
exponential in dimensionality (which is broadly needed,
even for neural networks (Petersen & Voigtlaender, 2018),
without further assumptions). We also mention that

→
n

has a statistical significance (see Sec. 3 for discussion), and
appears in our analysis throughout. Second, we show that
in 1-dimension (the third row of Table 1), learned models
perform cardinality estimation queries effectively, where for
Xc, a learned model can perform queries and insertions in
O(log n) while taking space O( n

ε2 log n). This result also
shows that a learned approach outperforms the non-learned
(and worst-case optimal) method discussed in (Wei & Yi,
2018) that takes space O(nε log ϑn) to answer queries.

Sorting. Substituting complexities in the fourth row of
Table 1, we obtain O(n log log n) time complexity for Xϑ,
using a method that is a variation of Kristo et al. (2020) that
learns to sort through sampling. Our framework applies to

this method because its study needs to consider the gener-
alization of a model learned from samples (similar to how
models need to generalize to a new dataset after insertions).
Moreover, last row of Table 1 shows that, if we (approxi-
mately) know the data distribution, and the distribution can
be efficiently evaluated and stored, we can sort an array in
O(n) (T X is independent of data size), showing benefits of
using data distribution to perform database operations.

To conclude, our results in Table 1 are more general than the
two distribution classes discussed above. A major contribu-
tion of this paper is developing the distribution learnability
framework that allows us to orthogonally study the two prob-
lems of modeling a data distribution (the modeling problem),
and how learned models can be used to perform database
operations with theoretical guarantees (the model utilization
problem). Table 1 summarizes our contributions to the latter
problem, while our results connecting distribution learnabil-
ity to function approximation concepts (Theorem 3.5) is our
contribution to the former. The rest of this paper discusses
our developed framework and results in more detail, but for
the sake of space, formal discussion, proofs, and a detailed
discussion of the related work are differed to the appendix.

2. Preliminaries

2.1. Problem Setting

Setup. We study performing database operations on a possi-
bly changing d-dimensional dataset. We either consider the
setting when n data points are inserted one by one (dynamic
setting), or that we are given a fixed set of n data points
(static setting). We define Di as the dataset after i insertions,
and the final dataset, Dn, is often denoted as D. We study
indexing, cardinality estimation and sorting operations.

For indexing, the goal is to build an index to store and
find items in a 1-dimensional dataset. The index supports
insertions and queries. That is, after i insertions, for any
i, we can retrieve items from the dataset Di, where the
query is either an exact match query or a range query. For
cardinality estimation, the dataset is d-dimensional, and we
support insertions and axis-parallel queries. That is, after i
insertions, for any i, we would like to estimate the number of
items in the dataset Di that match a query q, where q defines
an axis-parallel hyper-rectangle. Finally, the goal of sorting
is to sort a fixed 1-dimensional array, D, of size n. Indexing
and sorting always return exact results (i.e., array has to be
fully sorted after the operation), while cardinality estimation
accepts an error of ϑ for the query answer estimates.

Data Distribution and Distribution Shift. We consider
the case that the i-th data point is sampled independently
from a distribution ϖi, and denote by D ↘ ϖ this sam-
pling procedure, where ϖ = {ϖ1, ...,ϖn}. We say D was
sampled from a distribution class X if ϖi ↑ X ≃i. We
use total variation to quantify distribution shift. We say D
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was sampled from a distribution ϖ with distribution shift
ε, when maxϖi,ϖj↑ϖ ⇐ϖi ⇒ ϖj⇐TV , where ⇐ϖi ⇒ ϖj⇐TV

denoted the total variation (TV) distance between ϖi and
ϖj . We also define total variation of a distribution set ϖ
as TV (ϖ) = supϖi,ϖj↑ϖ ⇐ϖi ⇒ ϖj⇐TV . TV is a number
between 0 and 1 with ε = 1 the maximum distribution shift
and ε = 0 the case with no distribution shift.

Problem Definition. We study the performance of learned
models when performing the above data operations. Assume
an algorithm takes at most TI(D) operations to perform n

insertions from a dataset D, at most TQ(D) to perform
any query and has S(D), space overhead (excluding the
space to store the data). We study amortized expected inser-
tion time defined as 1

nED↓ϖTI(D), expected query time,
ED↓ϖTQ(D), and storage space, ED↓ϖS(D).

2.2. Learned Database Operations

Operation Functions. Let fD(x) be an operation function,
defined as a function that takes an input x and outputs the
answer, calculated from the database D, for some desired
operation. In this paper, fD is either the cardinality function,
cD(x), that takes a query, x, as input and outputs the number
of points in D that match x, or the rank function, rD(x)
that takes a 1-dimensional query as input and returns the
number of elements in D smaller than x. The rank function
is used in sorting and indexing, because rD(x) is the index
of x if D was stored in a sorted array. We use the notation
fD ↑ {rD, cD} (or f ↑ {r, c}) to refer to both functions,
rD and cD (for instance, fD ↗ 0 is equivalent to the two
independent statements that rD ↗ 0 and cD ↗ 0).

We also define distribution operation function, fϖ, for an
operation f , defined as fϖ(x) = ED↓ϖ[fD(x)], if D is
sampled from a distribution ϖ. Note that distribution op-
eration function depend only on the data distribution (and
not observed dataset). For instance, 1

nrϖ is the c.d.f of data
distribution, ϖ if D is sampled i.i.d from ϖ, and similarly
1
ncϖ(x) is the probability that a sample from ϖ falls in an
axis-parallel rectangle defined by x. We call ED↓ϖ[cD(x)]
distribution cardinatliy function.

Learned Database Operations with Insertions. Learned
database operations learn a model f̂ that approximates fD
well, and use the learned model to obtain an estimate of
the operation output (for sorting and indexing, a refinement
step ensures exact result, through either local binary search
or lightweight sorting). However, as new data points are
inserted and the dataset changes, the ground truth answers to
operations change, thereby increasing the model error. Note
that model answers are scaled to current data size (i.e., if f̂
was trained on a dataset of size i, and tested on a dataset of
size j, we report j

i f̂ as answers), but this does not stop the
error from increasing. Thus, to guarantee the error is below
a threshold, one needs to update the models as the datasets

change, which is often done by periodically retraining the
models. Model retraining contributes to insertion cost in
the database. To keep the insertion cost low, one needs
to minimize retraining frequency. Meanwhile, infrequent
retraining increases error (and, for indexing, query time).
Finding a suitable balance between insertion time, accuracy
and query time is a subject in much of our theoretical study.

3. Analysis through Distribution Learnability

Our goal is to ensure that a model f̂ trained to perform
operations f , f ↑ {r, c}, has bounded error. We first discuss
a lower bound on the error of models in the presence of
insertions, which motivates our analysis framework.

Lower Bound on Model Generalization. Consider a
model f̂ , trained after the i-th insertion and using dataset
Di. Assume the model is not retrained after k further in-
sertions so that f̂ is used to answer queries for dataset Dj ,
j = i+ k. The following lemma shows a lower bound on
the expected maximum generalization error of the model to
dataset Dj , defined as supxED↓ϖ[| ji f̂(x)⇒ fDj (x)].

Theorem 3.1. Consider any model f̂ trained after the i-th
insertion and on dataset Di. For any integer j > i+ 2 and
after performing k = j ⇒ i new insertions we have

sup
x
EDj↓ϖ[|

j

i
f̂(x)⇒ fDj (x)|] ↗

→
k

4
,

when Dj is i.i.d from any continuous distribution ϖ.
Theorem 3.1 states that the expected error of a single fixed
model, no matter how good the model is when it is trained,
after k insertions, will increase to !(

→
k) on some input.

Consequently, to achieve an error at most ϑ, we have to
retrain the model at least every (4ϑ)2 insertions. For any
constant error ϑ, this implies n

(4ε)2 = O(n) model retraining
is needed when inserting n data points. Model retraining
for many practical choices costs O(n) (to go over the data
at least once), so that amortized insertion cost, i.e., insertion
cost per insertion, must be at least O(n). This is signifi-
cantly larger than non-learned methods, e.g., for indexing
B-trees support insertions in O(log n).

Nonetheless, the
→
k barrier (and consequently a heavy in-

sertion cost) can be avoided, as is often done in practice,
by partial retraining. A common example is arranging a
set of models in a tree structure and retraining parts of the
tree structure as new data is inserted. This avoids a full
retraining every O(ϑ2) insertions, but makes smaller neces-
sary adjustments throughout that are cheap to make. Thus,
Theorem 3.1 provides a theoretical justification for many
practical design choices in existing work (Ding et al., 2020;
Zeighami et al., 2023; Galakatos et al., 2019) that partition
the space and train multiple models, utilizing data structures
built around multiple models to perform operations. We
also note that such approaches often come with repartition-
ing and tree balancing as new data is inserted to adjust the
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created partitions after observing new points. Indeed such
repartitioning is also necessary in the presence of insertions.
Given that for a fixed set of partitions the number of points
per partition will grow linearly in data size, Theorem 3.1
can be used to show the error per partition will remain large
unless partitions are recreated and adjusted as new points
are observed.

The error in Theorem 3.1 is independent of total data size,
j, and only depends on k. This is because we make no
assumptions on model capacity, and consequently, when the
model is trained on the dataset, Di of size i, the training
error can be zero. Thus, error on Dj only depends on how
well the trained model on Di generalizes to Dj , which,
intuitively, only depends on the difference between Di and
Dj . Theorem 3.1 quantifies this difference in terms of k.

Analysis Framework Overview. In light of Theorem 3.1
and existing practical modeling choices that use a set of
models to perform an operation, analyzing database oper-
ations in the presence of insertion can be divided into two
components: (1) how well a model can learn a set of ob-
servations (the modeling problem), and (2) how a set of
models can be used to perform operations in the presence of
insertions (the model utilization problem). Our framework
allows studying the two separately, as discussed next.

3.1. The Modeling Problem

Our analysis is divided into studying the problem of mod-
eling and the problem of model utilization. We introduce
the notion of distribution learnability to abstract away the
modeling problem when studying the utilization problem.
Roughly speaking, if a distribution class is distribution
learnable, we can use observations from the class to model
their distribution operation functions well. In other words, if
a distribution class is distribution learnable, we have a solu-
tion to the modeling problem, and thus, we can focus on the
model utilization problem. Meanwhile, the modeling prob-
lem is reduced to showing distribution learnablity. In this
section, we define distribution learnability and discuss how
we can prove a distribution class is distribution learnable.

3.1.1. DEFINING DISTRIBUTION LEARNABILITY

A distribution class is distribution learnable if there exists an
algorithm that returns a good model of the data distribution
given an observed dataset. Formally,
Definition 3.2. A distribution class X, is said to be dis-
tribution learnable for an operation f , f ↑ {r, c}, with
parameters T X

n , SX
n and BX

n , if for any ϖ ⇑ X, there exists
an algorithm that takes a set of observations, D ↘ ϖ, of
size n as input and returns a model f̂ such that:

• (Accuracy) If D is sampled from ϖ, for some ϖ ⇑ X,
we have that

PD↓ϖ[⇐fϖ ⇒ f̂⇐↔ ↗ ϑ] ⇓ ⊋1e
↗⊋2( ω→

n
↗1)2

,

For any ϑ ↗
→
n and universal constants ⊋1,⊋2 > 0;

• (Inference Complexity) It takes T X
n number of opera-

tions to evaluate f̂ and space SX
n to store it; and

• (Training Complexity) Each call to the algorithm costs
BX
n amortized number of operations.

That a distribution class is distribution learnable for opera-
tion f means that observations from the distribution class
can be used to model the expected value of f to a desired
accuracy, and that distribution dependent parameters T X

n ,
SX
n and BX

n , characterize the computational complexity of
the modeling (amortized number of operations is total num-
ber of operations divided by n, so nBX

n is total number of
operations). We make two remarks regarding the definition.
Remark 3.3. The accuracy requirement for distribution
learnability is defined so that, with high probability, the
model error is at most O(

→
n). This is due to Theorem 3.1,

which shows the expected generalization error, after n inser-
tions, will be !(

→
n) as dataset changes because of inser-

tions and irrespective of modeling accuracy. Thus, having
modeling error lower than O(

→
n) will not improve the

generalization error, but will increase inference complexity
(larger models will be needed to improve accuracy). Mean-
while, due to the inherent !(

→
n) error, an extra modeling

error of
→
n only increases generalization error by a constant

factor, thus not changing any of our results asymptotically.

We also note that, given that Def. 3.2 allows modeling er-
rors to occur, using distribution learnability to return exact
results (i.e., for indexing and sorting) requires designing fall-
back strategies to ensure correctness even in the presence of
modeling error. This is done in our results in Sec. 4, where
model outputs are adjusted by some lightweight non-learned
method (e.g., exponential search for indexing and merge
sort for sorting) to ensure correctness. On the other hand,
for cardinality estimation, where the goal is to obtain fast
estimates and errors can be tolerated in practice, our results
in Sec. 4 use the modeling error formulation in Def. 3.2
to present methods that answers queries with guaranteed
bounds on error.
Remark 3.4. Distribution learnability for the distribution
class, X is defined so that we can characterize the compu-
tational complexity of modeling data from X. Such charac-
terization is important because different modeling choices
are beneficial for different distributions. For instance, a
linear model may be sufficient to model data from uniform
distribution but not for a Gaussian distribution. The defi-
nition allows us to distinguish between simple distribution
classes where we can create models that are fast to evaluate
(e.g., linear models for uniform distribution), from more
complex distribution classes that may need more complex
models with higher runtime and space complexity (e.g.,
neural networks for complex distributions). This is done
through parameters T X

n , SX
n and BX

n .
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Distribution class T X
n SX

n nBX
n

Xϑ 1 ϱ
→
n log n ϱ

→
n log n

Xl log l l log n n log n
Xc 1 1 1

Table 2. Asymptotic complexities of some distribution learnable
classes for rank function defined in Lemma 3.6

3.1.2. PROVING DISTRIBUTION LEARNABILITY

For a distribution class, X, to be distribution learnable for
an operation f , we need to be able to model distribution
operation functions in that class using some model class F .
Intuitively, F needs to have enough representation power
to model distributions in X, and we need to be able to ef-
fectively optimize over F to find the good representations
given an input (i.e., F is optimizable). The following the-
orem shows that if these two properties are true, then the
distribution class is indeed distribution learnable. For the
sake of space, we only state our results here informally (for-
mal statement is in Sec. C), as a formal statement requires
making enough representation power and opitimizability
concrete, which diverts from our main discussion.

Theorem 3.5 (Informal). Let X be a distribution class
whose operation functions belong to some function class G.
That is, fϖ ↑ G for all ϖ ↑ X, for an operation f . Assume
another function class, F , has enough representation power
to represent G, and is optimizable. Then, X is distribution
learnable for operation f .

Theorem 3.5 can be broadly used to translate function ap-
proximation results to distribution learnability. For instance,
Taylor’s theorem shows that infinitely differentiable func-
tions can be approximated by polynomials to arbitrary ac-
curacy (i.e., polynomials have enough representation power
to represent infinitely differentiable functions), and the ex-
change algorithm (Powell, 1981) shows that we can find
the best polynomial approximating a function (i.e., shows
optimizability for polynomials). These together with Theo-
rem 3.5 imply that distributions with infinitely differentiable
operation functions are distribution learnable. Nonetheless,
the time complexity of function approximation is important
when deciding what function class to choose for model-
ing purposes in database applications. For instance, the
exchange algorithm, although converges, can take too long
to find polynomials that model functions with a desired ac-
curacy (Powell, 1981). Our next result uses Theorem 3.5
to show distribution learnability using piecewise linear and
piecewise constant models that show better time/space com-
plexity. We first discuss learnability for rank operations.
Lemma 3.6. Let Xϑ be the set of distributions with p.d.f
bounded by ϱ, Xl the set of distributions with piecewise
linear c.d.f with at most l pieces and Xc a distribution the
c.d.f of which can be stored and evaluated in constant time.
Xϑ, Xl, Xc are distribution learnable for rank operation
with parameters shown in Table 2.

Lemma 3.6 presents results for multiple distribution classes.
Xϑ formulates a realistic scenario (experimentally shown
by (Zeighami & Shahabi, 2023)). Xc shows the ideal sce-
nario for learned models, where the data distribution is easy
to model, and is included to show a best-case scenario for
our results when using learned models. Piece-wise linear
models have been used for the purpose of indexing (Fer-
ragina & Vinciguerra, 2020; Galakatos et al., 2019), and
Xl is included to study their theoretical properties for the
distribution class where they are well suited. Next, consider
distribution learnability for cardinality operation.
Lemma 3.7. Let Xϑ be the set of distributions for which
the distribution cardinatliy function has gradient bounded
by ϱ, and let Xc be a countable set of c distributions for
which distribution cardinatliy function can be stored and
evaluated in constant time. Xϑ and Xc are distribution
learnable for cardinality estimation where the same param-
eters as Table 2 hold for Xc. For Xϑ, we have BX

n and SX
n

as O(
→
2d(ϱ

→
n)2d log n), while T X

n = O(1).

As before, we have included Xc to show a best-case scenario
for learned models. Nonetheless, cardinality estimation is
a problem in high dimensions where modeling is difficult.
The exponential behavior in Lemma 3.7 for Xϑ is required
for different modeling choices, including neural networks
(Petersen & Voigtlaender, 2018; Yarotsky, 2018). To reduce
complexity, stricter assumptions on data distribution are
often justified. For example, attributes may be correlated
and only fall in a small part of the space. A common as-
sumption using neural networks is that data is supported
on a low dimensional manifold (Pope et al., 2021), which
together with results showing that neural networks can ap-
proximate data on low dimensional manifolds well (Chen
et al., 2019), yields that neural networks can avoid space
complexity exponential in dimensionality. This is an ac-
tive area of research orthogonal to our work, and our results
show how learned database operations can benefit from such
approximation theoretic results as they become available.

3.2. The Model Utilization Problem

Our results in Sec. 4 thoroughly discuss how learned models
can perform different database operations for distribution
learnable classes. Here, we provide a brief overview of the
general methodology and state required definitions.

Typical methods used in practice to perform database opera-
tions partition the domain and model different parts of the
domain separately. Each partition can be denoted by a set
R of the space it covers. The model in each partition can be
seen as a model of the conditional distribution of the data,
where the original data distribution is conditioned on the set
R. As such, to effectively model the data in a partition, we
need to be able to model the conditional distribution for the
partition. This means not only the original data distribution,
but also the conditional data distributions need to be distri-
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bution learnable. We formalize our notion of conditional
distribution to be able to formalize this statement.

Let R be a set s.t. R ⇔ 2D (i.e., R is a set of subsets of
the data domain). Then, for any R ↑ R with PX↓ϖ(X ↑
R) > 0, we define ϖ|R as the data distribution with c.d.f
Fϖ|R(x) = PX↓ϖ(X ⇓ x|X ↑ R). In this paper, unless
otherwise stated, R is the set of axis-parallel rectangles,
where R = (rmin, rmax) with rmin, rmax ↑ [0, 1]d define
two corners of the hyper rectangle. We define the normal-
ized conditional distribution, ¯ϖ|R, as the distribution with
c.d.f F ¯ϖ|R(x) = Fϖ|R((rmax ⇒ rmin)x+ rmin). The nor-
malization scales the domain of the conditional distribution
back to [0, 1]d, and helps standardize our modeling dis-
cussion. We define the closure of a distribution class X,
denoted by X̄, as the set { ¯ϖ|R, ≃ϖ ↑ X, R ↑ R}. That is, X̄
contains not only X but all the other distributions obtained
by distributions ϖ ↑ X conditioned under sets R ↑ R. Of-
ten, we need the distribution class X̄, and not only X, to be
distribution learnable. X̄ and X can be (but not necessarily
are) the same set. An example is the uniform distribution,
where conditioning the distribution over any interval yields
another uniform distribution over the interval.

4. Results

4.1. Indexing Dynamic Data

We show the following result for dynamic indexing.
Theorem 4.1. Suppose D ↘ ϖ for ϖ ⇑ X for some dis-
tribution class X with TV (ϖ) ⇓ ε, and that X̄ is distri-
bution learnable. There exists a learned index into which
the n data points of D can be inserted in O(T X

n log log n+
log ε

→
n+BX

n log2 log n) expected amortized time, that can
be queried in O(T X

n log log n+log ε
→
n) expected time and

takes space O(n log n+
∑log logn

i=0 n
1↭2↭iSX

n2↭i ).

The term T X
n log log n is due to making log log n calls to

the distribution model, and BX
n roughly refers to the need to

rebuild a model every n insertions. For example, without
distribution shift (i.e., ε = 0), one can answer queries and
perform insertions with O(log log n) model calls, while
every n insertions incurs extra BX

n cost for model rebuilding.

Distribution shift increases both insertion and query time by
O(log ε

→
n). In the worst case, having ε = 1, we recover

the traditional O(log n) insertion and query time. That is,
our results show no gain from modeling when distribution
shift is too severe. This is as expected. If data distribution
changes too much, one cannot use the current knowledge
of data distribution to locate future elements. By systemati-
cally handling the distribution shift, we show that a learned
method can provide robustness in such scenarios.

The data structure that achieves the bound is a tree structure
with a distribution model used in each node to find the
node’s child to traverse given a query or insertion. The
structure can be thought of as a special case of Alex (Ding

et al., 2020), with specific tree height, fanount and split
mechanism to ensure the desired gaurantees. All elements
are stored at leaf nodes, and the traversal to the leaf nodes
is similar to B-trees but using learned models to choose the
child. Using Lemma 3.6 we can specialize Theorem 4.1 for
specific distribution classes.
Corollary 4.2. Let Xϑ1,ϑ2 be the class of distributions with
bounded p.d.f. That is, for all ϖ ↑ Xϑ1,ϑ2 and denoting by
gϖ the p.d.f of ϖ, we have 0 < ϱ1 ⇓ gϖ(x) ⇓ ϱ2 < ↔, ≃x.
Suppose D ↘ ϖ for ϖ ⇑ X for some distribution class
X ⇑ Xϑ1,ϑ2 with TV (ϖ) ⇓ ε. There exists a learned index
that supports insertions in O(log log n+log ε

→
n) expected

amortized time, queries in O(log log n+log ε
→
n) expected

time and takes space O(ϑ1

ϑ2
n log n).

Corollary 4.2 shows a learned index that performs insertions
and answers queries in O(log log n+ log(εn)), while non-
learned methods take O(log n). Thus, when distribution
shift is not severe, a learned method can outperform non-
learned methods, while large distribution shift (ε = 1) leads
to same bounds as non-learned methods. Corollary 4.1
strictly generalizes results in (Zeighami & Shahabi, 2023)
to the setting with insertions and data distribution change.

We note that one can consider the data structure used in the
proof of Theorem 4.1 (and consequently Corollary 4.2) as
a method for switching between learned and non-learned
indexes when the distribution shift grows. Recall that proof
of Theorem 4.1 uses a tree of learned models as an index.
When there is no distribution shift, this tree is traversed only
using learned models. However, when the distribution shift
is large, the tree structure needs to be adjusted frequently
(i.e., nodes are split frequently), and these adjustments are
stored in a non-learned data structure. Thus, when the distri-
bution shift is large, the tree traversal becomes more reliant
on non-learned data structures.

4.2. Cardinality Estimation

For cardinality estimation, designing learned models that
answer queries with arbitrary accuracy is more challenging
due to the high dimensionality of the problem. The curse
of dimensionality is a well-understood phenomenon for
non-learned methods, leading to approaches that take space
exponential in dimensionality (Cormode et al., 2012; Wei &
Yi, 2018). We first show that this is not the case when using
learned models if an error of !(

→
n) is tolerable.

Theorem 4.3. Suppose D ↘ ϖ for ϖ ⇑ X for a distri-
bution learnable class X with TV (ϖ) ⇓ ε. There exists
a learned cardinality estimator that answers queries with
expected error ϑ for ϑ = !(

→
n) supports insertions in

O(max{ ω
→
n

ε , 1}BX
n ), queries in O(T X

n ) and takes space
O(SX

n ).

Theorem 4.3 states that we can use a distribution model
to answer queries for any expected error !(

→
n). Conse-

quently, when we can effectively model a data distribu-
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tion, we can answer queries to accuracy at least
→
n with-

out having an exponential space blowup. Comparing this
with random sampling, and more broadly ϑ-approximations,
that need at least

→
n logd↗1(

→
n) data samples to answer

queries with accuracy
→
n (Wei & Yi, 2018; Matoušek &

Nikolov, 2015), we show a clear advantage to learned mod-
els over such non-learned methods in this accuracy regime.
Theorem 4.3 uses a single distribution model that is periodi-
cally retrained with insertion. The frequency of retraining
depends on distribution shift. If ε ⇓ 1→

n
, the error caused

by distribution shift is on a similar scale as error due to ran-
domness. Thus, the distribution shift does not significantly
affect insertion time. On the other hand, in the worst case
when ε = 1, we need to retrain the model every 1

ε insertions,
which can be significant depending on retraining cost.

Error of !(
→
n) is not necessarily too large. Indeed, ex-

pected query answer for a fixed query with probability p

is n↓ p, so error, relative to the expected query answer is
O(

→
n

np ) = O( 1→
n
) and goes to zero as data size increases.

Nonetheless, one may wish to answer queries more accu-
rately. Below, we discuss how to achieve this in one dimen-
sion. Appendix D.6.3, presents Lemma D.1 that shows how
ideas in one dimension can be extended to high dimensions,
but nevertheless, only achieves space complexity exponen-
tial in dimensionality, similar to non-learned methods.

Arbitrary Accuracy in One Dimension. In one dimension,
we show the following is possible using learned models.
Theorem 4.4. Suppose D ↘ ϖ for ϖ ⇑ X for a distribution
class X with TV (ϖ̄) ⇓ ε, and that X is distribution learn-
able. There exists a learned cardinality estimator that an-
swers queries with expected error ϑ for any ϑ > 0 supports
insertions in O(max{deltaϑ, ϑ2}BX

ε2) + log n), queries in
O(log n+ T X

ε2 ) and takes space O( n
ε2S

X
ε2 +

n
ε2 log n).

Theorem 4.4 shows that we can effectively answer queries
to any accuracy in one dimension using learned models.
Importantly, the result shows that if the data distribution can
be modeled space-efficiently (e.g., whenever SX

ε2 ⇓ log n),
then a learned approach outperforms non-learned (and worst-
case optimal) method discussed in (Wei & Yi, 2018) that
takes space O(nε log n) to answer queries with accuracy ϑ.
The learned model that achieves the bound in Theorem 4.4
uses a combination of materialized answers and model es-
timates to answer queries. Given that a model can be at
best accurate to

→
n if the dataset contains n points, the

algorithm divides up the data domain into n
ε2 intervals, each

containing ϑ
2 points, so that a model for each interval will

have accuracy ϑ. Meanwhile, the algorithm materializes
query answers that span multiple intervals so that errors do
not accumulate when answering such queries. The mate-
rialization is done through a B-tree like structure, where
each node stores the exact number of points inserted into
it. Because, in our construction, we build several models

each for a subset of the space, it is not enough that the total
variation between the distributions is bounded, but also that
the total variation after conditioning is bounded (ϖ̄ is the
closure of ϖ under conditioning defined in Sec. 3.2).

4.3. Sorting

Sorting involves only a fixed array, while the operations
we discussed so far consider a dataset that changes due
to insertions. Our discussion here shows that the distribu-
tion learnability framework can be beneficial for analyzing
learned database operations beyond insertions.

To see why our framework applies to learned sorting, first
recall the existing learned sorting algorithm of Kristo et al.
(2020), which sorts an array by first sampling a subset of the
array, learning a model to predict the correct location using
the sample (the sample is sorted by an existing algorithm for
the purpose of training), and then using the learned model
to predict the item locations in the original array. Here,
similar to the case of learned operations with insertions, the
problem isn’t (only) how well we can learn a model, but
also how well a model learned from a sample of the array
will generalize to the complete array. Thus, we need to both
study a modeling problem and a model utilization problem,
and we can do so using distribution learnability. Finally,
since a function that sorts an array is the rank function, our
discussion on distribution learnability for the rank operation
already covers the modeling problem.

Before stating our results, we also note that one can sort a
fixed array by iteratively inserting its element into a learned
index. Thus, Theorem 4.1 has already provided a method for
sorting an array using machine learning. Our result below
presents another learned method for sorting an array. This is
analogous to how both B-trees and merge sort can be used to
sort a fixed array. The result below can be seen as a means
of extending merge sort with machine learning.

Theorem 4.5. Suppose an array consists of n points sam-
pled i.i.d. from a distribution learnable class X. There
exists a learned sorting method that sorts the array in
O(T X→

nn log log n+
→
nBX→

n+
∑log logn

i=0 n
1↭ 1

2 (
4
5 )

iBX

n
1
2
( 4
5
)i
)

and space O(SX→
n + n log n)

We note that
→
nBX→

n+
∑log logn

i=0 n
1↭ 1

2 (
4
5 )

iBX

n
1
2
( 4
5
)i
) is O(n)

if model training takes linear in data size, so that the runtime
is O(T X→

nn log log n). This is independent of training time,
BX
n , because, due to sampling, training is done on much

smaller arrays than the original data. Thus, Theorem 4.5 pro-
vides a time complexity for sorting similar to Theorem 4.1,
both showing that for efficient modeling choices, one can
sort an array in O(n log log n) model calls.

The algorithm that achieves the bound in Theorem 4.5 is
similar to Kristo et al. (2020), which first samples a subset
of the original array, uses it to build a distribution model,
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and uses the model to sort the original array. Due to model-
ing errors, the resulting attempt using the model will only
be a partially sorted array. Unlike Kristo et al. (2020) that
uses insertion sort to fully sort the partially sorted array, we
use a merge sort like approach to recursively sort the array.
This is because, to reduce the asymptotic complexity below
O(n log n), the sample needs to be of size o(n). However,
the generalization error of a model trained on a sample of
size o(n) would be too large to allow insertion sort to be
effective. Partitioning the partially sorted array and recur-
sively sorting each portion allows us to sort the array while
performing O(T X→

nn log log n) operations.

Finally, the lower bound of Theorem 3.1 does not apply to
sorting, and a natural question is if it is possible to do better
than O(n log log n). The following result shows that under
stronger assumptions on data distribution, this is possible.
Theorem 4.6. Suppose an array consists of n points sam-
pled i.i.d. from a distribution ϖ, and assume we have a
model r̂ s.t., ⇐r̂ ⇒ rϖ⇐↔ ⇓ ϑ0, that can be evaluated in T ϖ

and takes space Sϖ. There exists an algorithm that sorts the
array in O(T ϖ

n log ϑ0) taking space O(Sϖ + n).

The theorem shows if we know the data distribution very
accurately, then we can sort the data very efficiently. T ϖ

can be O(1), e.g., if the data c.d.f was a polynomial, so
that we can sort an array in O(n). This is because the data
distribution provides a good indicator of the location of the
item in the sorted array. The algorithm that achieves this
can be seen as a special case of merge sort, where instead
of dividing the array into 2, we divide the array, using r̂, to
up to n groups, and recursively sort each.

The difference between Theorems 4.6 and 4.5 is how accu-
rate of a model of data distribution we have access to. Theo-
rem 4.5 effectively assumes that data distribution can only
be modeled to accuracy O(

→
n), which is too large to allow

fixing model errors in sorting with a single pass over the
array. On the other hand, Theorem 4.6 assumes the model
is correct to within a constant accuracy. As a result, a single
iteration over the partially sorted array fixes any potential
inversions and yields the O(n) complexity. Nonetheless,
knowing the data distribution to a constant accuracy can be
impractical, because it requires further knowledge about the
data distribution beyond merely observing its samples.

5. Conclusion and Future Work

We have presented a thorough theoretical analysis of learned
indexing and cardinality estimation in the presence of inser-
tions from a possibly changing data distribution. Our results
characterize learned models’ performance, and show when
and why they can outperform their non-learned counterparts.
We have developed the distribution learnability analysis
framework that provides a systematic tool for analyzing
learned database operations. Our results enhance our un-
derstanding of learned database operations and provide the

much-needed theoretical guarantees on their performance
for robust practical deployment.

We believe our theoretical tools will pave the way for a
broader theoretical understanding of various learned meth-
ods. Nonetheless, there are several aspects that require
further research to allow for a broader applicability of our
results to real-world databases. First, we have established
distribution learnability for distributions with bounded p.d.f
and piecewise-linear c.d.f, but demonstrating distribution
learnability for a broader range of real-world data distribu-
tions is needed to cover a more comprehensive set of real-
world data distributions. There are two aspects that require
further research. There is a need to identify and formally
characterize the distribution classes from which real-world
datasets originate. This task is challenging, especially for
high-dimensional data. For instance, in the case of images,
it is commonly believed that they lie on a low-dimensional
manifold. It is essential to validate if such assumptions also
hold true for real-world tabular datasets. Moreover, we need
to establish distribution learnability for such distribution
classes using appropriate modeling choices. The best mod-
eling choice may vary depending on the distribution class,
necessitating further research to determine the most effec-
tive modeling choices for specific distribution classes. Other
future work includes incorporating deletions and updates,
where we believe statistical tools developed here can be uti-
lized, but formalizing the notion of data distribution in the
presence of deletions/updates, and the relationship between
insertions and deletions/updates require further research. Fi-
nally, considering query distribution, and analyzing other
database operations are other future directions.
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A. Related Work

A large and growing body of work has focused on using
machine learning to speed up database operations, among
them, learned indexing (Galakatos et al., 2019; Kraska et al.,
2018; Ferragina & Vinciguerra, 2020; Ding et al., 2020),
learned cardinality estimation (Kipf et al., 2018; Wu &
Cong, 2021; Hu et al., 2022; Yang et al., 2019; 2020; Lu
et al., 2021; Negi et al., 2021) and learned sorting (Kristo
et al., 2020). Most existing work focus on improving mod-
eling choices, with various modeling choices such as neural
networks (Zeighami et al., 2023; Kipf et al., 2018; Kraska
et al., 2018), piece-wise linear approximation (Ferragina &
Vinciguerra, 2020), sum-product networks (Hilprecht et al.,
2019) and density estimators (Ma & Triantafillou, 2019).
Existing results show significant empirical benefits in static
datasets, while performance often deteriorates in dynamic
datasets and in the presence of distribution shift (Wang et al.,
2021; Wongkham et al., 2022). Our theoretical results help
explain such observations and provide a theoretical frame-
work for analysis of the operations under different modeling
choices.
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On the theory side, no existing study meaningfully char-
acterizes performance of learned models in the dynamic
setting or studies learned sorting. In the static setting,
(Zeighami & Shahabi, 2023; Ferragina et al., 2020) study
query time of learned indexing. Ferragina et al. (2020)
shows learned models can provide constant factor improve-
ments under an assumption on the distribution of the gap
between observations, and Zeighami & Shahabi (2023)
shows a learned model can answer queries in O(log log n)
query time if the p.d.f of data distribution is non-zero and
bounded. Our results strictly generalize the latter to the dy-
namic setting, in the presence of insertions from a possibly
changing distribution, and also show that more generally,
O(T X

n log log n + log εn) query time is possible for any
distribution learnable class X. Moreover, Zeighami et al.
(2023) presents a special case of our Theoerem 4.3 for car-
dinality estimation on static datasets for distributions where
the operation distribution function is Lipschitz continuous.
Our result strictly generalizes Zeighami et al. (2023) to the
dynamic setting with distribution change and any distribu-
tion learnable class X. Orthogonal to our work, Zeighami
& Shahabi (2024) study lower bounds on the model size
needed to perform various database operations with a de-
sired accuracy and (Hu et al., 2022; Agarwala et al., 2021)
study the number of training samples needed to achieve a
desired accuracy for different database operations.

Finally, we draw a broader connection between our work,
learned indexing and interpolation search. A large body of
early work focused on interpolation search Peterson (1957);
Perl et al. (1978); Perl & Reingold (1977); Yao & Yao
(1976); Mehlhorn & Tsakalidis (1993), proposed by (Pe-
terson, 1957) which uses linear interpolation to estimate
the location of a query in an array. It has been shown that
this search algorithm achieves O(log log n) query time on
uniformly distributed arrays (Yao & Yao, 1976; Perl & Rein-
gold, 1977), with extensions to cover smooth distribution
classes and dynamic data in (Andersson & Mattsson, 1993;
Mehlhorn & Tsakalidis, 1993). Indeed, interpolation search
can be seen as an early example of a model-based search,
where linear models are used to estimate item locations. Us-
ing the terminology introduced in this paper and given that
uniform distribution is distribution learnable using linear
models (c.d.f of the uniform distribution is a linear function),
the O(log log n) query time can be seen as a special case
of our results. Overall, interpolation search can be seen as
a special case of learned indexing, where learned indexing
allows for more complex data-driven modeling choices that
can be useful for a broader class of data distributions.

B. Formalized Setup and Operations

We are interested in performing database operations on a
possibly changing dataset. We assume data records are d-

dimensional points in the range [0, 1] (otherwise, the data
domain can be scaled and shifted to this range). We either
consider the setting when n data points are inserted one by
one into the dataset, or that we are given a fixed set of n
data points. We refer to the former as the dynamic setting
and the latter as the static setting. We define Di as the
dataset Di ↑ [0, 1]i↘d, i.e., a dataset consisting of i records
inserted so far and in d dimensions with each attribute in the
range [0, 1], where i and d are integers greater than or equal
to 1. Dn is the dataset after the last insertion, and is often
denoted as D. Di:j denotes the dataset of points inserted
after the i-th insertion until the j-th (i.e., Dj \ Di). We
use Di to refer to the i-th record of a dataset (which is a d-
dimensional vector) and Di,j to refer to the j-th element of
Di. If d = 1 (i.e., D is 1-dimensional), then Di is the i-th
element of D (and is not a vector). We study the following
database operations.

Indexing. The goal is to use an index to store and find items
in a 1-dimensional dataset. The index supports insertions
and queries. n items are inserted into the index one by one.
After inserting k items, for any 1 ⇓ k ⇓ n, we would like to
retrieve items from the dataset based on a query q ↑ [0, 1].
The query is either an exact match query or a range query.
An exact match query returns the point in the database that
exactly matches the query q (or NULL if there is none) while
a range query [q, q≃] returns all the elements in the dataset
that fall in the range [q, q≃], for q, q≃ ↑ [0, 1].

Cardinality Estimation. Used often for query optimiza-
tion, the goal is to find how many records in the dataset
match a range query, where the query specifies lower and
upper bound conditions on the values of each attribute.
Specifically, the query predicate q = (c1, ..., cd, r1, ..., rd),
specifics the condition that the i-th attribute is in the interval
[ci, ci + ri], for ci, ri ↑ [0, 1]. Data records can be inserted
into the data set one by one. After the insertion of k-th item,
for any 1 ⇓ k ⇓ n, we would like to obtain an estimate
of the cardinality of query q. We expect that the answers
are within error ϑ of the true answers. That is, if c(q) is
the true cardinality of q and ĉ(q) is an estimate, we expect
|c(q) ⇒ ĉ(q)| ⇓ ϑ. This guarantee has to hold throughout,
and as new elements are inserted in the dataset.

Sorting. The goal is to sort a fixed array of size n. That is,
we are given a one-dimensional array, D, and the goal is to
return an array, D≃, which has the same elements as D but
ordered so that D≃

i ⇓ D
≃
i+1. Unlike indexing and cardinality

estimation, sorting assumes a fixed given array that needs to
be sorted. Although indexing can often be used to sort an
array (e.g., inserting elements one by one into a binary tree
sorts a fixed array), we study the problem of sorting more
broadly and explore other learned solutions to the problem
beyond indexing (e.g., analogous to how merge sort can also
be used to sort an array).
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C. Distribution Learnability Through

Function Approximation

We first formalize representation power and optimizablity,
and then present a formal statement for Theorem 3.5.

Representation Power. Consider using a function class F to
approximate another function class G (e.g., neural networks
to approximate real-valued functions). Consider some hy-
perparameter, ς, that controls the representation power and
inference complexity in F , and denote by Fϱ is the subset
of F with hyperparameter ς. For instance, ς can be the
number of learnable parameters of a neural network, the
maximum degree of a polynomial, or the number of pieces
in a piecewise approximation. In all such cases, larger ς im-
plies better representation power but also higher inference
time and/or space complexity. Assume we have access to a
representation complexity function φF⇐G(ϑ), that given a
maximum error ϑ returns the smallest value of ς such that
for any g ↑ G there exists an f ↑ Fϱ with ⇐f ⇒ g⇐↔. The
function φF⇐G(ϑ) determines the required model complex-
ity of F , in terms of ς, to represent all elements of G with
error at most ϑ. For instance, such a function for neural
networks approximating real-valued functions will show the
minimum number of neural network parameters needed to
approximate all real-valued functions to error at most ϑ with
a neural network. We say that a function class, F has the
representation power to model G if there exists a representa-
tion complexity function φF⇐G(ϑ) for all ϑ > 0. Finally, let
↼F⇐G(ϑ) and ↽F⇐G(ϑ) respectively be the maximum time
and space complexity of performing a model forward pass
for functions in Fϱ for ς = φF⇐G(ϑ).

Optimizability. We say a function class F is optimizable
with an algorithm A if given any function h and a hyperpa-
rameter value ς, A(h,ς) returns an approximately optimal
representation of h in Fς. Formally, for ĥ = A(h,ς) and if
h
⇒ = argminĥ↑Fε

⇐h⇒ĥ⇐, ⇐h⇒⇒h⇐↔ ↗ ⊋⇐ĥ⇒h⇐↔ for a
constant ⊋ ⇓ 1. Let ⇀(ς) be the maximum time complexity
of A.

We note that although optimizability as defined broadly
above is sufficient to show distribution learnability, it is
not necessary. Here, we discuss two qualifications to the
definition that make proving optimizability simpler, specifi-
cally for database operations. First, it is only necessary to
have optimizability for h ↑ fD for all possible D and for
a desired operation function f (since we will only use A
to model operation functions). This can simplify the opti-
mizability requirement depending on the operation function
considered. For example, when showing opimizability for
rank operations, we only need an A that returns approxi-
mately optimal estimates for input functions that are non-
decreasing (since all rank functions are non-decreasing).
Second, when A is used on h = fDn , we can allow ad-

ditive error of O( 1→
n
). That is, we only need to show

1
⊋ ⇐h

⇒ ⇒ h⇐↔ + ⊋↑
→
n
↗ ⇐ĥ ⇒ h⇐↔ for ⊋≃ ↗ 0 and ⊋ ⇓ 1

universal constants.

Theorem C.1. Assume a function class, F , is optimizable
with an algorithm A, and that F has enough representation
power to represent G. Let X be a distribution class with
fϖ ↑ G for all ϖ ↑ X. Then, X is distribution learnable
with T X

n = ↼F⇐G(
1→
n
), SX

n = ↽F⇐G(
1→
n
), and BX

n =

⇀(φF⇐G(
1→
n
)).

D. Proofs

The high-level idea behind most of our theoretical results
is to use the relationship between query answers and distri-
bution properties. Overall, many statistical tools have been
developed that relate the properties of an observed dataset to
the data distribution (e.g., studying the relationship between
sample mean and distribution mean). In statistics, such tools
have been used to describe the population using observed
samples. Our proofs often use such tools to do the opposite,
that is, use the properties of the data distribution to de-
scribe observed samples. Indeed, that is the intuition behind
learned database operations, that if the data distribution can
be efficiently modeled, then it can be used to answer queries
about the observed samples (i.e., the database) efficiently.
Our proposed distribution learnability framework allows us
to state this more formally. It allows us to assume that we
can indeed model the data distribution efficiently. Then, the
analysis can focus on utilizing statistical tools to character-
ize the relationship between the observed sample and the
data distribution. Having access to an accurate model of the
data distribution, we use existing statistical tools to analyze
its error. However, a main challenge in the case of learned
database operations is to balance accuracy and efficiency.
Thus, our theoretical study includes designing data struc-
tures and algorithms that can utilize modeling capacities
while performing operations as efficiently as possible.

D.1. Proof of Theorem 3.1

We would like to bound ED↓ϖ[⇐f̂ ⇒ fDj⇐]. Note that both
f̂ and fDj are random variable (since f̂ depends on fDi).
First, consider

fDj (q) =
1

j

∑

k↑[j]

IDk↑q =
i

j
fDi(q) +

j ⇒ i

j
fDi:j (q),

So that the error is

ED↓ϖ[⇐f̂ ⇒ i

j
fDi(q) +

j ⇒ i

j
fDi:j (q)⇐]

= EDi↓ϖ[EDi:j↓ϖ[⇐f̂ ⇒ i

j
fDi(q)⇒ j ⇒ i

j
fDi:j (q)⇐|Di]].

Now consider EDi:j↓ϖ[⇐f̂ ⇒ i
j fDi(q)⇒ j↗i

j fDi:j (q)⇐|Di].
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Given Di, f̂ ⇒ i
j fDi(q) is a fixed quantity. Furthermore,

recall that argmincE[|X ⇒ c|] = Med(X) for any random
variable X , where Med(X) is a median of X (Wasan, 1970).
Therefore, for any query,

EDi:j↓ϖ[⇐f̂ ⇒ i

j
fDi(q)⇒ j ⇒ i

j
fDi:j (q)⇐|Di]

↗ j ⇒ i

j
EDi:j↓ϖ[Med(fDi:j (q))⇒ fDi:j (q)].

Observe that fDi:j (q) ↘ Binomial(j ⇒ i,Pp↓ϖ(Ip↑q))
and consider any query such that (j ⇒ i)Pp↓ϖ(Ip↑q) is an
integer, which exists as long as the c.d.f of the distribu-
tion is continuous. For such queries, we have Med(X) =
(j ⇒ i)Pp↓ϖ(Ip↑q) since mean and median of binomial dis-
tributions where (j ⇒ i)Pp↓ϖ(Ip↑q) is an integer are equal
(Janson, 2021). Let pq = Pp↓ϖ(Ip↑q). Using the bound
on the binomial mean absolute deviation in Berend & Kon-
torovich (2013), we have, when j⇒ i ↗ 2 and for any query
s.t. 1

(j↗i) ⇓ pq ⇓ 1⇒ 1
j↗i ,

√
(j ⇒ i)pq(1⇒ pq)→

2
⇓ EDi:j↓ϖ[|(j ⇒ i)pq ⇒ fDi:j (q)|].

Moreover, setting pq =
⇑ j↓i

2 ⇓
j↗i , we have

√
(j ⇒ i)pq(1⇒ pq)→

2
↗

→
j ⇒ i

4
.

D.2. Proof of Theorem 3.5 (formally Theorem C.1)

First, we use the algorithm A (due to optimizability)
to construct the algorithm in definition 3.2 as f̂ =
1
nA(fD,φF⇐G(

1→
n
)) for f ↑ {r, c} given an input dataset,

D, of size n. Let ς = φF⇐G(
1
ε ).

Note that since F has enough representation power to repre-
sent G, and since by assumption {ϖ ↑ X, fϖ} ⇑ G, we have
that, for any ϖ there exists f̂ϖ ↑ Fϱ s.t. ⇐f̂ϖ ⇒ fϖ⇐↔ ⇓ 1→

n
.

Furthermore, since we approximately optimally find f̂ , we
have |f̂(x)⇒ 1

nfD(x)| ⇓ 1
⊋ |f̂ϖ(x)⇒

1
nfD(x)|+ ⊋↑

→
n

. Now,

to analyze accuracy of f̂ , observe that, for any input x we
have

|f̂(x)⇒ 1

n
fD(x)| ⇓ 1

⊋ |f̂ϖ(x)⇒
1

n
fD(x)|+ ⊋≃

→
n

⇓ 1

⊋ |f̂ϖ(x)⇒ fϖ(x)|+

1

⊋ |fϖ(x)⇒
1

n
fD(x)|+ ⊋≃

→
n

⇓ 1

⊋
→
n
+

1

⊋ |fϖ(x)⇒
1

n
fD(x)|+ ⊋≃

→
n
.

We also have

|f̂(x)⇒ fϖ(x)| ⇓ |f̂(x)⇒ 1

n
fD(x)|+ |fϖ(x)⇒

1

n
fD(x)|,

So that ,

n|f̂(x)⇒ fϖ(x)| ⇓
→
n

⊋ +
2

⊋ |nfϖ(x)⇒ fD(x)|+
→
n⊋≃

.

By Hoeffeding’s inequality, we have

P(|nfϖ(x)⇒ fD(x)| ↗ ϑ
≃) ⇓ e

↗2( ω↑→
n
)2
, (1)

So that

P(n|fϖ(x)⇒ f̂(x)| ↗ 2

⊋ ϑ
≃ +

→
n(

1

⊋ + ⊋≃)) ⇓ e
↗2( ω↑→

n
)2
,

(2)

And therefore, for some universal constant ⊋2 and ϑ =
!(

→
n),

P(n|fϖ(x)⇒ f̂(x)| ↗ ϑ) ⇓ e
↗⊋2( ω→

n
↗1)2

. (3)

D.3. Proof of Lemma 3.6

For each distribution class, we show optimizability and rep-
resentation power of some function class F that can be used
to model the distribution class, which combined with Theo-
rem C.1 shows the desired result for both Lemmas 3.6 and
3.7. Then, for each class, we discuss modeling complexities.

Distribution learnability for Xϑ. Let F be the class of
piecewise constant functions with uniformly spaced pieces
and let G be the class of real-valued differentiable functions
[0, 1]d ↖ R with gradient bounded by ϱ. Consider the num-
ber of pieces to use for approximation as a hyperparameter.

Optimizability. Given the number of pieces, the function
that creates the minimum infinity norm is to place a con-
stant at the mid-point of maximum and minimum values
in each interval. That is, for an interval I ⇑ [0, 1]d, the
constant approximating g over with the lowest infinity norm
I is 1

2 (minx↑I g(x) + maxx↑I f(x))). Note that this func-
tion has error at most maxx↑I g(x) ⇒ 1

2 (minx↑I g(x) +
maxx↑I f(x))) = 1

2 (maxx↑I f(x) ⇒ minx↑I g(x)). For
efficiency purposes, instead of the optimal solution, we
let the constant for the piece responsible for I be g(p) for
some p ↑ I . Note that for all x ↑ I |g(p) ⇒ g(x)| ⇓
|maxx↑I g(x) ⇒ minx↑I g(x)|, so that this construction
gives us a 1

2 -approximation of the optimal solution.

Representation Power. Define φF⇐G(ϑ) =
→
dϑ
ε . We show

that for any g ↑ G and any ϑ > 0, there is a function
f̂ ↑ Fφ(ε) s.t. ⇐f̂ ⇒ g⇐↔ ⇓ ϑ. This function is the optimal
solution as constructed above. To see why the error is at
most ϑ, consider a partition over I with j-th dimension
[pj,i, pj,i+1], where pj,i+1 ⇒ pj,i =

ε
ϑ , and let x1 and x2 be

the two points in I that, respectively, achieve the minimum
and maximum of g in I . For any point in x ↑ I , our function
approximator answer f̂(x) = 1

2 (g(x1) + g(x2)). We have
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that

|f̂(x)⇒ g(x)| = |1
2
(g(x1) + g(x2))⇒ g(x)|

⇓ max{g(x2)⇒ g(x), g(x)⇒ g(x1)}
⇓ ⇐g≃(x)⇐2⇐x2 ⇒ x⇐2
⇓ ϱ(

→
d

ϑ→
dϱ

) = ϑ.

Model Complexity. The inference time, T X
n , is constant inde-

pendent of the number of pieces used. The space complexity
is the number of pieces multiplied by the space to store each
constant. Given that g consists of integers between 0 to n,
SX
n can be stored in O(

→
d(ϱ

→
n)d log n). Finally, for rank

operation, the algorithm that outputs the function optimizer
makes ϱ

→
n calls to g, so that building the function approxi-

mator can be done in O(ϱ
→
n log n), assuming the data is

sorted (so that each call to g takes O(log n)). For cardinality
estimation there are O(

→
d(ϱ

→
n)d log n) calls to the cardi-

nality function, where each call in the worst case takes O(n)
(this can optimized by building high dimensional indexes).
Thus, in this case, BX

n = O(
→
d(ϱ

→
n)d log n)

Distribution learnability for Xl. Let F and G be the class
of piecewise linear functions with at most l pieces (not nec-
essarily uniformly spaced pieces). Trivially, F has enough
representation power to represent G, thus, it remains to show
optimizability and model complexity.

Optimizability. The PLA algorithm, P(ϑ) by (O’Rourke,
1981), used in PGM index (Ferragina & Vinciguerra, 2020),
is able to find the piecewise linear solution with the smallest
number of pieces given an error ϑ. Here, we want to achieve
the opposite, i.e., given a number of pieces find piecewise
linear approximation with smallest error. Note that ϑ is in
the range 0 to 1, and we can do a binary search on the val-
ues of ϑ, for each calling P(ϑ) until we find the smallest ϑ
where |P(ϑ)| ⇓ l. Note that since suboptimality of O( 1→

n
)

in ϑ is allowed, wee can discretize [0, 1] to
→
n groups, and

only do binary search over this discrete set, which takes
O(log(

→
n)) calls to P(ϑ), and each call takes O(n) oper-

ations (Ferragina & Vinciguerra, 2020) on a sorted array,
so that F is optimizable to with the algorithm running in
O(n log n)

Model Complexity. The learning time nBX
n = O(n log n)

is discussed above. The algorithm always returns l pieces
which can be evaluated in T X

n = O(log l) time. Note the
each linear piece can be adjusted to cover an interval starting
and ending at points in the dataset (so the interval can be
stored as pointers to corresponding dataset item). Moreover,
the beginning and end of each line can be adjusted to be
an integer (since the rank function only returns integers),
similar to (Ferragina & Vinciguerra, 2020), so that the lines
can be stored in SX

n = O(l log n).

Algorithm 1 Dynamic Learned Index Query
Require: New element to be inserted in tree rooted at N
Ensure: Balanced data structure

1: procedure QUERY(q, N )
2: if N is a leaf node then

3: return BINARYSEARCH(N.content)
4: î ↙ N.f̂(p)
5: i ↙ EXPSEARCH(p, î, N.content)
6: j ↙ BINARYSEARCH(p,N.children[i])
7: return QUERY(q, N.children[i][j])

Algorithm 2 Dynamic Learned Index Insertions
Require: New element, p to be inserted in tree rooted at N
Ensure: Index with p inserted

1: procedure INSERT(p, N )
2: N.counter++
3: if N.children is NULL then

4: INSERTCONTENT(p, N.content)
5: return

6: î ↙ N.f̂(p)
7: i ↙ EXPSEARCH(p, î, N.content)
8: j ↙ BINARYSEARCH(p,N.children[i])
9: INSERT(p, N.children[i][j])

10: if N.counter = N.max points then

11: A ↙ the sorted array in the index rooted at N
12: if N has no parent then

13: return REBUILD(A)

14: P ↙ parent of N
15: ip ↙ index of N in P.children
16: Remove N from P.children[ip]
17: N1 ↙ REBUILD(A[: N.max points/2])
18: N2 ↙ REBUILD(A[N.max points/2 :])
19: Insert N1 and N2 in P.children[ip]

Distribution Learnability for Xc. Trivially, the class F
containing the distribution operation function has enough
approximation power for Xc and is optimizable with
SX
n , T X

n ,BX
n all O(1).

D.4. Proofs for Learned Indexing

D.4.1. INDEX OPERATIONS

The index supports two operations, QUERY and INSERT,
which are presented in Algs. 1 and 2. Recall that A is an
algorithm defined in Definition 3.2 and exists due to distri-
bution learnability of X. The index builds a tree structure
similar to (Ding et al., 2020), with each node containing
a model, and a set of children. An overview of the tree
architecture is shown in Fig. 1. Each node can be seen to
cover a subarray of the original indexed array. If the size of
the covered subarray is k elements, then the node will have→
k children, where the subarray of size k is equally divided

between the children (so each child covers
→
k elements).
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Algorithm 3 Procedure for for Rebuilding Root
Require: A sorted array, A
Ensure: A learned index rooted at a new node N

1: procedure REBUILD(A)
2: N ↙ new node
3: k ↙ |A|
4: N.counter ↙ k

5: if k ⇓ ⊋ then

6: N.content ↙ A

7: return N

8: N.max points ↙ 2k
9: N.f̂ = A(A)

10: N.content ↙ A[::
→
k]

11: for i in
→
k do

12: Nc ↙ REBUILD(A[ik : (i+ 1)k])
13: N.children.append(Nc)

14: return N

Figure 1. Structure of the learned dynamic index

The root node covers the entire n elements of the array, and
therefore has

→
n children. As can be seen, the number

of children of the nodes decreases as we go down the tree.
A node won’t have any children if its covered subarray is
smaller than some constant c. Moreover, shown as black
elements in the figure, each parent node stores the mini-
mum value of the subarray covered by each of its children
in an array called the node’s content. Thus, the node’s
content can be used to traverse the tree. When a node’s
model predicts which child the node should travel, the node
first checks with its content to make sure it is the correct
node. This is done by doing an exponential search on the
node’s content.

During insertions, each node keeps a counter of the number
of points inserted through it. If a node is at level i, then at
most k2

↓i

elements are allowed in the node for i > 0, where
k is the size of the dataset at the time of construction of the
current root node (root node’s are periodically rebuilt). If the
number of insertions reaches k2

↓i

, the node splits. When
a node splits the subarray it covers is split into two, and an
entirely new subtree is built for each half of the subarray,
rebuilding all models. To avoid splits affecting parent nodes,
as Fig. 2 shows, the newly created node is appended to the
list of children (we’ll discuss how exactly this is done later).

Figure 2. Insertion Causing a split in index

Finally, the root is rebuilt every time its size doubles.

To support the splitting discussed above, the children are
arranged in a two dimensional array N.children. We
refer to children pointed to in N.children[i] as children
in the i-th child slot. Each child slot contains a sorted list of
at least one, but a variable number, of children, where the
list is kept sorted using binary trees. To find which node to
traverse, we first find the correct node slot with the help of
the learned model, and then use the binary tree in the node
slot to find the correct child. Leaf nodes have content
storing the data. The index keeps a counter at each node,
and periodically rebuilds the tree rooted at a node. Thus, the
two operations are performed as follows.

Query. Performing queries on an index with root node N is
similar to performing queries with a B-tree, where nodes are
recursively traversed until reaching a leaf node. The only
difference is how we decide which child to search. This
is done by, for each non-leaf node, first asking a model to
estimate which child to search. Then, the model estimate is
corrected by performing a local exponential search. Since a
child might have been split, the search then uses the binary
tree at the correct node slot to find the correct child.

Insertions. Insertions first traverses the tree similar to the
queries, with the extra addition that a counter in each node
is incremented if a new element is inserted in that node. If
the counter of a node passes the maximum size of the node,
the node is split into two, and the parent meta data for the
corresponding node slot is updated. The only exception is
the root node, which does not split, but triggers a full rebuild
of the entire tree.

D.4.2. QUERY TIME

Queries are performed by recursively searching each node,
where a single node per level is queried. Consider the num-
ber of operations performed at the i-th level. Each level per-
forms a model inference, exponential search on the node’s
content and a binary search on the node’s extension. We
consider each separately.

Model Inference. A model at the i-th level is built on at
most n

1
2i elements. Thus, the inference time is O(T X

n2↭i ).

Exponential Search. The time complexity of the expo-
nential search step depends on the accuracy of the model
estimate. We show that, on expectation, the time complexity
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is constant.

Note that neither the content of each node, nor its model
gets modified by insertions, unless a node is rebuilt. Thus,
we only need to show the statement for right after the node
construction. Assume the node is constructed for some array
A with |A| = k for some integer k.

Assume the i-th element of A is a sample originally obtained
from the distribution ϖi, let R = [l, u] define the range the
elements A have fallen into passed to the algorithm. The
elements of A are independent samples from conditional
distributions ϖ1 | R, ...,ϖk | R, respectively. Let ϖR =
{ϖ1 | R, ...,ϖk | R}.

Applying the extension of the DKW bound to independent
but non-identical random variables (Shorack & Wellner,
1986, Chapter 25.1) we have that

P(⇐krϖR ⇒ rA⇐↔ ↗
√

k

2
ϑ) ⇓ 2e↗ε2+1

. (4)

Furthermore, for r̂, the model of rϖR = 1
k

∑k
i=1 rϖi|R,

obtained from A and by the accuracy requirement of distri-
bution learnability, we have for any ϑ ↗ →⊋2(

1→
k
⇒ 1)

P(⇐krϖR ⇒ r̂⇐↔ ↗
→
k(

ϑ
→⊋2

+ 1)) ⇓ ⊋1e
↗ε2

. (5)

By union bound on Ineq. 4 and 5, and the triangle inequality,
for any ϑ ↗

→
k, we have

P(⇐r̂ ⇒ rA⇐↔ ↗ ϑ) ⇓ ⊋≃
1e

↗⊋↑
2(

ω→
k
↗1)2

, (6)

where ⊋≃
1 = 2e+ ⊋1 and ⊋≃

2 = 2⊋2

(
→
2+

→⊋2)2
.

Now let N(q) be the number of operations by performed
by exponential search for a query q. Recall that the content
of the node is Ac = A[::

→
k] and that we use r̂Ac =

∝ 1→
k
r̂(q)′ as the start location to start searching for q in Ac

with exponential search. We have the true location of q in
Ac is rAc(q) = ∝ 1→

k
rA(q)′. Observe that, for any q

⇐rA ⇒ r̂⇐↔ > (r̂Ac(q)⇒ rAc(q)|⇒ 2)
→
k, (7)

and that it is easy to see that for exponential search we have

|r̂Ac(q)⇒ rAc(q)| ↗ 2
N(q)

2 ↗1
, (8)

Combining which we get, for any query q,

⇐rA ⇒ r̂⇐↔ > (2
N(q)

2 ↗1 ⇒ 2)
→
k.

So that, for any i, N(q) ↗ i implies that ⇐rA ⇒ r̂⇐↔ >

(|2 i
2↗1 ⇒ 2)

→
k Thus, we have

EA↓ϖ[N(q)] =
2 log k∑

i=1

PA↓ϖ(N(q) ↗ i)

⇓
2 log k∑

i=1

PA↓ϖ(⇐rA ⇒ r̂⇐↔ > (|2 i
2↗1 ⇒ 2)

→
k)

⇓ 5 + ⊋≃
1

2 log k∑

i=6

e
↗⊋↑

2(2
i
2
↓1↗3)2 = O(1)

Thus, the expected time searching performing exponential
search is O(1).

Searching Node’s Extension. Next, we study the expected
time for searching the additional list added to the nodes. Let
L be the size of the list. Note that the lists are created for
all the nodes except the root. Moreover, a non-root node at
level i has capacity cn

1
2i , it will split every cn

1
2i insertions

into the parent, with each split adding an element to the
parent’s extension list. Furthermore, the node gets rebuilt
after every k = n

1
2i↓1 insertions into its parent. Thus, if kN

elements out of n
1

2i↓1 get inserted into a node slot N , the
number of splits for that slot will be ∞ kN

cn
1
2i
∈.

Assume the k new insertions into the parent, Np of N

since the last rebuild of the parent were from r.v.s with
distribution ϖ1, ...,ϖk. Given that they fall in Np, their
conditional distribution is ϖ1 | R, ...,ϖk | R for R defin-
ing an interval for which the node NP was built. Let
ϖ
≃
R = {ϖ1 | R, ...,ϖk | R}. Furthermore, let ϖR be the

original distribution the model of in the parent node was
created based on. Let A≃ be the set of k insertions and let
A be the set of points based on which the parent of N was
built. The number of insertions out of the k new insertions
into the j-th node slot is rA↑(Nj) ⇒ rA↑(Nj↗1). To study
this quantity, recall that the j-th slot was created so that

rA(Nj)⇒ rA(Nj↗1) = n
1
2i . (9)

Thus, we first relate rA and r
≃
A.

The elements of A and A
≃ are independent so that apply-

ing the extension of the DKW bound to independent but
non-identical random variables (Shorack & Wellner, 1986,
Chapter 25.1) for both A and A

≃ we have

P(⇐krϖ↑
R
⇒ rA↑⇐↔ ↗

√
k

2
ϑ) ⇓ 2e↗ε2+1

, (10)

P(⇐krϖR ⇒ rA⇐↔ ↗
√

k

2
ϑ) ⇓ 2e↗ε2+1

. (11)

Moreover, assume TV(ϖi | R,ϖj | R)⇓ ε for all i, j, we
have that ⇐rϖ ⇒ rϖ↑⇐↔ ⇓ ε. Combining this with Ineq. 10
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and 11 and using the triangle inequality, we have

P(⇐rA↑ ⇒ rA⇐↔ ↗
→
2kϑ+ εk) ⇓ 4e↗ε2+1

. (12)

Finally, combining Ineq. 12 with Eq. 9, and recalling that
k = n

2↓i+1

implies that

P(rA↑(Nj)⇒ rA↑(Nj↗1) ↗ n
2↓i

(1 + 2
→
2ϑ) + 2εn2↓i+1

)

⇓ 4e↗ε2+1
.

And therefore

P(∞rA
↑(Nj)⇒ rA↑(Nj↗1)

n2↓i ∈ ↗ 2
→
2ϑ+ 2εn2↓i

) ⇓ 4e↗ε2+1
,

Where ∞ rA↑ (Nj)↗rA↑ (Nj↓1)

n2↓i ∈ is the number of splits of the
j-th node slot. Let Sj denote this random variable. We have

E[Sj ] =
k∑

i=0

P(Sj ↗ i)

⇓ 2εn2↓i

+
k↗2ωn2↓i

∑

i=0

P(Sj ↗ i+ 2εn2↓i

)

⇓ 2εn2↓i

+
k↗2ωn2↓i

∑

i=0

4e↗
i2

8 +1 = O(εn2↓i

)

Finally, we are interested in E[log(Sj)] ⇓ log(E[Sj ]) =

O(log(n
1
2i ε)).

Total Query Time. Thus, the expected time to search
a node at the i-th level to find its children is O(T X

n2↭i +

log(n↗2i
ε)). Thus, the total time to search the tree is

O(
∑log logn

i=1 T X
n2↭i + log(n↗2i

εi)). We can bound this as
O(T X

n log log n+ log(nε̄)), where ε̄ = min{ε, εlog logn
c }.

D.4.3. INSERTION TIME

Note that insertion time is equal to query time plus the total
cost of rebuilds. Next, we calculate the cost of rebuilds.

Let T (N) be the amortized cost of inserting N elements
into a tree that currently has N elements and was just rebuilt
at its root, so that NT (N) will be the total insertion cost
for the N elements. Note that the amortized cost of all n
insertions starting from a tree with one 1 element is at most
1
n

∑logn
i=0

n
2iT (

n
2i ) ⇓ T (n)

∑ 1
2i = O(T (n)).

Thus, we only need to study T (n). Note that when inserting
n elements into a tree that currently has n elements and was
just rebuilt at its root, the height of the tree remains constant
throughout insertions. Furthermore, at the i-th level, i ↗ 0,
there will be at most n

n2↓i rebuilds and each rebuild costs

log logn∑

j=i

2n2↓i

n2↓j BX
2n2↭j .

Thus, we have the amortized cost of all rebuilds is

1

n

log logn∑

i=0

n

n2↓i

log logn∑

j=i

2n2↓i

n2↓j BX
2n2↭j =

O(
log logn∑

i=0

(i+ 1)
BX
2n2↭i

n2↓i ).

Thus, the total cost of insertions is O(T X
n log log n +

log(ε̄n) + BX
n
n log2 log n)).

D.4.4. SPACE OVERHEAD

After n insertions, we will have log log n levels. Right after
the root was rebuilt, level i has at most n

n2↓i models. If
n further insertions are performed, each level will have at
most n

n2↓i new models. Thus, the total size of the models
at level i is at most 2 n

n2↓i SX
n2↭i , and thus the total size of

all models is O(n
∑log logn

i=0

SX

n2↭i
n2↓i ). Furthermore, the total

number of nodes in the tree is O(n), and for each node we
store a pointer to it and its lower and upper bounds, as well
as a counter, which can be done in O(log n). Thus, the total

space consumption is O(n(log n+
∑log logn

i=0

SX

n2↭i
n2↓i )).

D.5. Proof of Corollary 4.2

Observe that for any distribution in X, we have that ¯ϖ|R
for any interval R has p.d.f at most ϑ2

ϑ1
. According to

Lemma 3.6, distributions with p.d.f at most ϑ2

ϑ1
are dis-

tribution learnable. Substituting the complexities proves
Corollary.

D.6. Proofs for Cardinality Estimation

D.6.1. HIGH DIMENSIONS (THEOREM 4.3)

Construction. By distribution learnablility we have an
algorithm A that builds a model that we use for estimation.
To prove the lemma, we use A and periodically rebuild
models to answer queries. Specifically, A is called every
k insertions, where if ε ↗ 2⊋→

n
, k = ↼↗⊋

2⊋ω

→
n, and when

ε ⇓ 2⊋→
n

, k = n↓min{( ↼↗⊋
⊋(1+2⊋) )

2
, 1}. That is, if currently

there are n points inserted, and we insert n≃ new points,
for n≃

< k, the algorithm will answer queries as (n+ n
≃)ĉ.

However, when n
≃ = k, the algorithm rebuilds the model

and starts answering queries using the new model.

Query Time and Space Consumption. We use a single
model with no additional data structure, so query time is
O(T X

n ) and space complexity is O(SX
n ).

Insertion Complexity. To analyze the cost of insertions,
first consider, T (n), the total number of operations when
we insert n new elements in a data structure that already
has n elements. Consider the two cases where ε ↗ 2⊋→

n
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and ε ⇓ 2⊋→
2

. In the first case, we have the we rebuild the
model every ↼↗⊋

2⊋ω

→
n insertions, so that there are at most

n
ϑ↓⊋
2⊋ϖ

→
n

= 2⊋ω
↼↗⊋

→
n rebuilds. If ε ↗ 2⊋→

2
, we rebuild the

model every ϱn times, so that the total number of rebuilds
is 1

ϑ . Ensuring that ⇁ ↗ ⊋ + 1, we have that 1
ϑ ⇓ ⊋2(2⊋ +

1)2. In either case, each rebuild costs O(BX
2n) and besides

rebuilds insertions takes constant time. Thus, if ε ↗ 2⊋→
n

,
T (n) = O(n+ ω

↼

→
nBX

2n) and if ε ⇓ 2⊋→
2

we have T (n) =

O(n+ BX
2n).

Next, to analyze the total runtime of starting from
0 elements and inserting n new elements, we have
that the amortized insertion is 1

n

∑logn
i=1 T ( n

2i ). Now
if ε ↗ 2⊋→

n
, this is O( 1n

∑logn
i=1

n
2i + ω

↼

√
n
2iB

X
2n
2i
) =

O( 1n
∑logn

i=1
ω

↼
→
n2i

BX
2n
2i
) = O(n+ ω

↼

→
nBX

2n). Furthermore,

if ε ⇓ 2⊋→
n

, this is O(n+BX
2n). Thus, the amortized insertion

cost is O(max{ ω
↼
→
n
,
1
n}B

X
n )

Accuracy. We show that if ε ↗ 2⊋→
n

, rebuilding the model
every ↼↗⊋

2⊋ω

→
n, and when ε ⇓ 2⊋→

n
rebuilding the model

every ϱn for ϱ = min{( ↼↗⊋
⊋(1+2⊋) )

2
, 1} insertions is suffi-

cient to answer queries with error at most ⇁
→
n, whenever

⇁ ↗ ⊋ + 1.

Assume a model was built using dataset Di, i.e., after i
insertions. We study the error in answering after k new
insertions, so that the goal is to answer queries on Dj ,
j = i+ k. Let ϖ and ϖ

≃ be the distributions so that Di ↘ ϖ

and Di:j ↘ ϖ
≃.

Consider a model, ĉ that was built on Di using A, so we
have

P(i⇐ĉ⇒ cϖ⇐↔ ↗
→
i(

ϑ
→⊋2

+ 1)) ⇓ ⊋1e
↗ε2 (13)

We are interested

⇐jĉ⇒ cDj⇐ = ⇐iĉ+ kĉ⇒ cDi ⇒ cDi:j⇐
⇓ ⇐iĉ⇒ cDi⇐+ ⇐kĉ⇒ cDi:j⇐. (14)

For the first term, by Hoeffding’s inequality we have

P(|icϖ(q)⇒ cDi(q)| ↗
→
iϑ) ⇓ e

↗2ε2
, (15)

Which combined with Ineq. 13 gives

P
(
|iĉ(q)⇒ cDi(q)| ↗

→
i((1 +

1
→⊋2

)ϑ+ 1)
)

(16)

⇓ (1 + ⊋1)e
↗2ε2

.

For the second term, again by Hoeffding’s inequality we
have

P(|kcϖ(q)⇒ cDi:j (q)| ↗
→
kϑ) ⇓ e

↗2ε2
, (17)

We also have that ⇐ϖ ⇒ ϖ
≃⇐ ⇓ ε, which combined with

Ineq. 17 gives

P(|kcϖ(q)⇒ cDi:j (q)| ↗
→
kϑ+ kε) ⇓ e

↗2ε2
,

And therefore, using Ineq. 13, we have

P
(
|kĉ(q)⇒ cDi:j(q)| ↗

→
kϑ+

k→
i
(

ϑ
→⊋2

+ 1) + kε

)

⇓ (⊋1 + 1)e↗2ε2
. (18)

Combining Ineq. 14, 16 and 18, we have

P
(
|jĉ(q)⇒ cDj(q)| ↗ (

→
i+

→
i

⊋2
+

→
k +

k→
i⊋2

)ϑ+

k→
i⊋2

+
→
i+ kε

)

⇓ 2(⊋1 + 1)e↗2ε2

As such, we have E[
|jĉ(q)↗cDj(q)|↗( k→

i⊋2
+
→
i+kω)

→
i+

→
i

⊋2
+
→
k+ k→

i⊋2

] ⇓

⊋3, for some universal constant ⊋3 so that, E[|jĉ(q) ⇒
cDj(q)|] ⇓ k→

i⊋2
+
→
i+kε+⊋3

→
i+ ⊋3

→
i

⊋2
+⊋3

→
k+ ⊋3k→

i⊋2
.

Assuming k ⇓ i, we have

E[|jĉ(q)⇒ cDj(q)|] ⇓ ⊋(
→
i+

→
k + kε),

For some universal constant ⊋.

Now if ε ↗ 2⊋→
i

we let k = ↼↗⊋
2⊋ω

→
i and otherwise set k = ϱi

for ϱ = min{( ↼↗⊋
⊋(1+2⊋) )

2
, 1}.

First, consider the case where ε ↗ 1→
j
. Consider the error

ϑ = ⇁
→
j ↗ ⇁

→
i, so it suffices to show that the error is at

most ⇁
→
i. Let k = ↼↗⊋

2⊋ω

→
i. Substituting this in, we want

to show
√

⊋(↼↗⊋)
2ω

→
i⇒ ↼↗⊋

2

→
i ⇓ 0. Indeed, for ε ↗ 2⊋→

i
,

we have ⊋(↼↗⊋)
2ω

→
i ⇓ (↼↗⊋)

4 i, so that
√

⊋(⇁⇒ ⊋)
2ε

→
i⇒ ⇁⇒ ⊋

2

→
i ⇓ 1

2

√
(⇁⇒ ⊋)i⇒ ⇁⇒ ⊋

2

→
i

=
1

2

√
(⇁⇒ ⊋)i(1⇒

√
⇁⇒ ⊋)

⇓0

Which proves E[|jĉ(q) ⇒ cDj(q)|] ⇓ ⇁
→
j whenever ε ↗

2⊋→
i

and ⇁⇒ ⊋ ↗ 1.

If ε ⇓ 2⊋→
i
, we set k = ϱi for ϱ = min{( ↼↗⊋

⊋(1+2⊋) )
2
, 1}. We

have

⊋(
→
i+

√
ϱi+ ϱiε) ⇓ ⊋

→
i(1 +

→
ϱ+ 2

→
ϱ⊋)

So that we need to ensure 1 +
→
ϱ(1 + 2⊋) ⇓ ↼

⊋ . Observe
that →ϱ ⇓ ↼↗⊋

⊋(1+2⊋) implies the above, so that setting ϱ as
above proves the result in this case.
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D.6.2. ONE DIMENSION (THEOREM 4.4)

Construction. We build a B-tree like data structure. How-
ever, in addition to the content of each node, each node also
keeps a counter of the number of elements inserted into the
node. After each insertion, if a leaf node has more than k

elements, the node is split into two, for k = ε2

4(⊋+1)2 . Thus,
leaf nodes cover between k

2 to k elements, while the rest of
the tree has its own fanout B. Leaf nodes do not store the
elements associated with them, but build models to answer
queries. To answer a query, the tree is traversed similar to
typical range query answering with a B-tree. However, if a
node is fully covered in a range, then the number of inser-
tions in the node is used to answer queries. Otherwise, the
node is recursively searched until reaching a leaf node. We
will have at most 2 leaf nodes reached that will be partially
covered by the query range. Finally, the model of each node
are constructed by using the construction in Theorem 4.3
with ⇁ = ⊋ + 1.

Query Time and Space Consumption. Each query will
take O(log n+2T X

k ) where log n is due to the tree traversal
and 2T X

k for the two model inferences needed. Moreover,
the total space consumption is O(nkS

X
k + n

k log n)

Insertion Complexity. Each leaf node will start with
k
2 elements and will be split whenever it reaches k

elements. Insertion of the k
2 elements in a node

cost O(k + max{ε
→
k, 1}BX

k ). Given n insertions,
we have 2n

k insertions of k
2 elements in the nodes,

so that the amortized cost of rebuilds is O( 1n
n
k (k +

max{ε
→
k, 1}BX

k )) = O(max{ ω→
k
,
1
k}B

X
k )). Furthermore,

traversing the tree nodes costs O(log n) per insertion, so that
amortized insertion cost is O(max{ ω→

k
,
1
k}B

X
k ) + log n) =

O(max{ ω
ε ,

1
ε2 }B

X
ε2) + log n).

Accuracy. Setting ⇁ = ⊋ + 1 in Theorem 4.3 and having
k ⇓ ε2

4(1+⊋)2 ensures that the expected error of the each
model is at most ⇁

→
k = ε

2 . Since each query is answered
by making two model calls, the total expected error for
answering queries is at most ϑ as required.

D.6.3. HIGH DIMENSION WITH ANY ACCURACY

Here we also discuss how we can use models to answer
queries to arbitrary accuracy in high dimensions. We note
that, as we see here, building data structures to answer
queries is high dimension is difficult. We discuss this result
only in the static setting.

Lemma D.1. There exists a learned model that can an-
swer cardinality estimation query with error up to ϑ with
query time O(T X

( ω
2d )

2 + ( 4d
2

ε2 )d”iki) and space complexity

O( 4d
2n
ε2 SX

( ω
2d )

2 +( 4d
2n
ε2 )d), where ki is the cardinality of the

query in the i-th dimension.

Algorithm 4 Cardinality Estimation with Grid
Require: Query q, dimension to refine, i, set of models,

M , and set of partition points S
Ensure: Estimate to cardinatliy of q

1: procedure QUERY(q, i, S, M )
2: if i = 0 then

3: return use grid to answer q
4: il ↙ index of q[i][0] in S[i]
5: iu ↙ index of q[i][1] in S[i]
6: if iu = il then

7: return M [i][il](q)

8: qu ↙ q
9: qu[i][0] ↙ S[iu]

10: ql ↙ q
11: ql[i][1] ↙ S[il + 1]
12: if iu = il + 1 then

13: return M [i][il](ql) +M [i][iu](qu)

14: q[i][0] ↙ S[il + 1]
15: q[i][1] ↙ S[iu]
16: return QUERY(q, i ⇒ 1, S, M )+M [i][il](ql) +

M [i][iu](qu)

Cardinality of a query in the i-th dimension is the number of
points the would query we only consider the i-th dimension.

Construction. Assume we would like to obtain accuracy ϑ.
We build a grid and materialize the exact result in each cell.
Then, for queries, where part of a query partially overlaps a
cell, we also build models to answer queries. Thus, a query
is decomposed into parts that fully contain cell and parts
that don’t which are answered by models.

Split the i-th dimension into k = 4d2n
ε2 partitions, with each

partition containing ( ε
2d )

2 points. Let S[i] = {si1, ..., sik}
be the partition points in the i-th dimension, that is, for
all j we have for P [i, j] = {p ↑ D, s

i
j ⇓ pi < s

i
j+1},

|P [i, j]| = ( ε
2d )

2. Using theorem 4.3 to build a model for
each set of points in P , we have that the expected error of
each is O( ε

2d ). The models are stored in M , with M [i][j]
denoting the model corresponding to j-th partition in the
i-th dimension. Now, to answer a query, we first decompose
it into 2d + 1 queries. 2d of the queries are answered by
models, which reduce the original query to one that matches
all facets of the grid cells. Then, the grid cells are used to
answer the final query, and the answer is combined with the
model estimates to find final query answer estimate.

This is presented in Alg. 4. The decomposition of the query
is done by recursively moving the upper and lower facets of
the query hyperretangle in the d-th dimensions to aligh with
the grid cell. Thus, in the d-th dimensions, if the closest grid
partition points, respectively larger and smaller than q[d][0]
and q[d][1] (the lower and upper bound of the query in d-th
dimension) are si and sj , we decompose the query into three
queries: q1, q2 and q3, all the same as q but q1[d][1] = si,
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Algorithm 5 Learned Sorting
Require: An array A of length n to be sorted
Ensure: The sorted array

1: procedure SORT(A)
2: if n ⇓ ⊋ then

3: return MERGESORT(A)
4: S ↙ random sample of A of size

→
n

5: S ↙ MERGESORT(S)
6: k ↙ n

1
8

7: f̂ ↙ A(S)
8: B ↙ array of size k

9: Bmin, Bmax ↙ arrays tracking min/max B[i] ≃i
10: for i in n do

11: B[∞kf̂(A[i])
n ∈].append(A[i])

12: Update Bmin, Bmax for bucket ∞kf̂(A[i])
n ∈

13: for i in k ⇒ 2 do

14: if Bmax[i] > Bmin[i+ (2⊋ + 1)] then

15: return MERGESORT(A)

16: for i in k do

17: if |B[i]| ↗ (2⊋ + 1)n
4
5 then

18: return MERGESORT(A)
19: else

20: B[i] ↙ SORT(B[i])

21: return MERGE(B) , Alg. 6

q2[d][0] = sj and q3[d][0] = si, q3[d][1] = sj . Then,
learned models are used to answer q1 and q2, while q3 is
further recursively decomposed along its d⇒1-th dimension
(and after full decomposition is answered using the grid).
Note that q1 and q2 can now be answered using models,
because by grid construction, they fall in a part of the space
with at most ( ε

2d )
2 points.

Accuracy. Grid cells are exact, and, as discussed above
each model is built on a dataset of size at most ( ε

2d )
2, so

that it will have expected error O( ε
2d ). Thus, combining the

error of the 2d queries, the total model error is ϑ as desired.

Query Time and Space Complexity. There are 2d model
calls, each model call costing T X

( ω
2d )

2 . Furthermore, if the
i-th dimension of the query covers ki points, then total
of at most 4d2ki

ε2 partitions in the i-th dimension inter-
sect the query, so that the total number of cells traversed
will be ( 4d

2

ε2 )d”iki. Thus, total query time is O(T X
( ω
2d )

2 +

( 4d
2

ε2 )d”iki). Furthermore, the total cost of storing the mod-
els is 4d2n

ε2 SX
( ω
2d )

2 , and the cost of the grid is ( 4d
2n
ε2 )d. Thus,

total space complexity is O( 4d
2n
ε2 SX

( ω
2d )

2 + ( 4d
2n
ε2 )d).

Algorithm 6 Merge Step
Require: An array of sorted buckets
Ensure: Buckets merged into a sorted array

1: procedure MERGE(B)
2: As ↙ empty array of size n

3: As[: len(B[1])] ↙ B[1]
4: j ↙ len(B[1])
5: for b ↙ 2 to k do , Merges As[: j] with B[b]
6: j ↙ j + len(B[b]) , Iterator for As

7: i ↙ len(B[b]) , Iterator for B[b]
8: while i > 0 do

9: if B[b][i] > As[j] then

10: As[j + i] ↙ B[b][i]
11: i--
12: else

13: As[j + i] ↙ As[j]
14: j--
15: j ↙ j + len(B[b])

16: return As

D.7. Sorting

D.7.1. USING LEARNED MODEL (THEOREM 4.5)

Algorithm. The algorithm is presented in Alg. 5. A sample
of the array is first created and a model is built using the
sample. Then, using the model, the array is split into n

1
8

buckets, where we theoretically show, using such a number
of buckets, based on the accuracy of the model and with
high probability, merging the buckets can be done by in
linear time (because there will be limited overlap between
the buckets) and each bucket will not be too big. Indeed,
we first make sure the two properties mentioned before hold
(otherwise the algorithm quits and reverts to merge sort),
and then proceed to merge the buckets.

Correctness. If all the created buckets are sorted, the merge
step simply merges them and thus returns a sorted array
correctly. At the base case, merge sort is used, so the buckets
will be sorted correctly. Thus, using the invariant above, the
algorithm is correct.

Time Complexity. Consider sorting an array A ↘ ϖ of size
n. We take a subset S, of size

→
n from A without checking

the elements to preserve the i.i.d assumption. We sort them
and use the algorithm A to obtain a model r̂. We have that

P(⇐r̂ ⇒ rϖ⇐↔ ↗
→
nϑ1) ⇓ ⊋1e

↗⊋2(ε1n
↓ 1

4 ↗1)2. (19)

Note that

⇐r̂ ⇒ rA⇐↔ ⇓ ⇐r̂ ⇒ rϖ⇐↔ + ⇐rϖ ⇒ rA⇐,
And, by DWK,

P(⇐rA ⇒ rϖ⇐↔ ↗ ϑ3) ⇓ 2e↗2(
ω3→
n
)2
.

Set ϑ1 = n
1
4 (
√

log logn
⊋2

+ 1) and ϑ3 =
√

n log logn
2 , we
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have

P(⇐r̂ ⇒ rϖ⇐↔ ↗
→
nϑ1 or ⇐rA ⇒ rϖ⇐ ↗ ϑ3)

⇓ ⊋1e
↗ log logn + 2e↗ log logn

=
⊋1 + 2

log n

Thus,

P(⇐r̂ ⇒ rA⇐ ↗
→
nϑ1 + ϑ3) ⇓

⊋1 + 2

log n

and thus, whenever log log n ↗ 2 and for ⊋ = 1→
2
+ 1→⊋2

P(⇐r̂ ⇒ rA⇐↔ ↗ ⊋n 3
4

√
log log n) ⇓ ⊋1 + 2

log n
.

To simplify, observe that n3/4
→
log log n ⇓ n

4/5 for n ↗ e

so that

P(⇐r̂ ⇒ rA⇐↔ ↗ ⊋n 4
5 ) ⇓ ⊋1 + 2

log n
.

Recall that we use k buckets and consider the i-th bucket.
The elements, x, assigned to it must have i

k ⇓ 1
n r̂(x) <

i+1
k . Combining this with the above, we have that whenever

⇐r̂ ⇒ rA⇐↔ ⇓ ⊋n 4
5 holds, for the elements x in the i-

th bucket, we must have 1
n r̂(x) ↗ i

k ⇒ ⊋n↗ 1
5 and that

rA(x) ⇓ i+1
k + ⊋n↗ 1

5 . Therefore, we must have rA(x) ↑
[ ink ⇒ ⊋n 4

5 ,
(i+1)n

k + ⊋n 4
5 ]. There are at most n

k + 2⊋n 4
5

elements in this set. Setting k = n
1
5 , we have that whenever

⇐r̂ ⇒ rA⇐↔ ⇓ ⊋n 4
5 holds, all buckets will have at most

(2⊋ + 1)n
4
5 elements. Thus, the probability that a bucket

will have more than (2⊋ + 1)n
4
5 elements is at most ⊋1+2

logn .

Furthermore, the largest element in the i-th bucket or be-
fore will have rA(x) < (i + 1 + ⊋)n 4

5 and the smallest
element in the i + 2⊋ + 1-th bucket or after will have
rA(x) ↗ (i+ 1 + ⊋)n 4

5 , so that the content of buckets up
to i are less than the content of the buckets from i+ 2⊋ + 1
onwards. Thus, whenever ⇐r̂ ⇒ rA⇐↔ ⇓ ⊋n 4

5 holds, if
all the buckets are sorted, then the algorithm takes at most∑k

i=1

∑2⊋+1
j=0 |Bi↗j | number of operations to merge the

sorted array, which is O(n), where |Bi| is the number of
elements in the i-th bucket.

Finally, let Tn be the expected number of operations it takes
to sort an array with n elements i.i.d sampled from some a
distribution learnable class. Recall that we do merge sort
if ⇐r̂ ⇒ rA⇐↔ ⇓ ⊋n 4

5 does not hold, and recursively sort
the array if it does. Thus, whenever we recursively sort an
array, the array will have at most (2⊋+1)n

4
5 i.i.d elements,

distributed from a conditional distribution of the original

Algorithm 7 Sorting Using Distribution Model
Require: An unsorted array A of size n

Ensure: A sorted array
1: procedure SORT(A)
2: if n ⇓ 10 then

3: return MERGESORT(A)

4: A
≃ ↙ new array, A≃[i] initialized as linked list, ≃i

5: for i ↙ 1 to n do

6: i
≃ ↙ ∝r̂(A[i])′

7: A
≃[i≃].append(A[i])

8: return MERGE(B) , Alg. 6

distribution. Thus, we have

T (n) ⇓ O(BX→
n + T X→

nn) + P(merge sort)n log n+

P(recursively sort)n
1
5T ((2⊋ + 1)n

4
5 )

⇓ O(BX→
n + T X→

nn) +
⊋ + 2

log n
n log n+

n
1
5T ((2⊋ + 1)n

4
5 )

= O(T X→
nn log log n+

→
nBX→

n +
log logn∑

i=0

n
1↭ 1

2 (
4
5 )

i

BX

n
1
2
( 4
5
)i ).

Space Comlexity. First, observe that we only create one
model at a time, so the maximum size used for modeling is
SX→

n+
→
n log n. Moreover, the depth of recursion is at most

O(log log n), and the overhead of storing B is dominated
by the first of recursion, whose overhead is O(n

1
8 log n +

O(n log n)), giving overall space overhead of O(SX→
n +

n log n)

D.7.2. USING DATA DISTRIBUTION (THEOREM 4.6)

Alg. 7 shows how to sort an array given an approximate
model of the data distribution [̂r]. The algorithm is very
similar to Alg. 7, but uses n buckets and merges each bucket
using merge sort (and thus no recursive sorting of the buck-
ets).

Correctness. The algorithm creates buckets, sorts them
independently. The sort is done by merge sort so it is correct,
and thus merging the sorted buckets creates a sorted array.

Running time Let T (A) be the number of operations
the algorithm performs on an array A, and let T (n) =
EA↓ϖn [T (A)] be the expected run time of the algorithm on
an input of size n.

First, assume we use ∞nrϖ(x)∈ to map an element x to a
location in the array S. After the mapping, we study the
expected time to sort the elements in S[i : j] where j = i+k

and k > 0. Note that the probability that an element is
mapped to location [i : j], i.e., Px↓ϖ(

i
n ⇓ rϖ(x) <

j
n ), is
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k
n . Let Ni:j = |S[i : j]| be the number of elements mapped
to S[i : j]. We have that

PA↓ϖn(Ni:j = z) = C(n, z)(
k

n
)z(1⇒ z

n
)n↗z

.

Thus, we have

EA↓ϖn [Ni:j log(Ni:j)] =
n∑

z=1

PA↓ϖn(Ni:j = z)[z log(z)]

=
n∑

z=1

C(n, z)(
k

n
)z(1⇒ k

n
)n↗z

z log z

=
4ek∑

i=1

C(n, i)(
k

n
)i(1⇒ k

n
)n↗i

i log i

+
n∑

i=4ek

C(n, i)(
k

n
)i(1⇒ k

n
)n↗i

i log i

For the first part of the summation, we have
4ek∑

i=1

C(n, i)(
k

n
)i(1⇒ k

n
)n↗i

i log i

⇓ log(4ek)
4ek∑

i=1

C(n, i)(
k

n
)i(1⇒ k

n
)n↗i

i

⇓ k log(4ek).

For the second part, we have
n∑

i=4ek

C(n, i)(
k

n
)i(1⇒ k

n
)n↗i

i log i

⇓
n∑

i=4ek

1→
i
(
en

i
)i(

k

n
)i(1⇒ k

n
)n↗i

i log i

=
n∑

i=4ek

(
ekn

i(n⇒ k)
)i(1⇒ k

n
)n
→
i log i

⇓
n∑

i=4ek

(
2ek

i
)i(1⇒ k

n
)n
→
i log i

⇓
n∑

i=4ek

(
1

2
)ii

⇓ 2.

So that

EA↓ϖn [Ni:j log(Ni:j)] ⇓ (j ⇒ i) log(4e(j ⇒ i)) + 2.

Now recall that we use ∞r̂∈ with error ⇐r̂ ⇒ nrϖ⇐↔ ⇓ ϑ

to map the elements to an array S
≃. Thus, if, for any x,

∞nrϖ(x)∈ = j, r̂ ↑ {j ⇒ ∞ϑ∈, ..., j + ∝ϑ′}. Let N̄i:j be the
number of elements mapped to positions [i : j] using r̂.
Note that N̄i:j ⇓ Ni↗ε:j+ε. Thus, dividing S

≃ into groups
of ϑ and sorting each separately, we have that the total cost

of sorting the groups is
n
ω∑

j=0

EA↓ϖn [N̄jε:(j+1)ε log(N̄jε:(j+1)ε)]

⇓
n
ω∑

j=0

EA↓ϖn [N(j↗1)ε:(j+2)ε log(N(j↗1)ε:(j+2)ε)]

⇓ O(ϑ log ϑ)

Finally, note that rϖ is a non-decreasing function. Therefore,
if x ⇓ y, we have ∞nrϖ(x)∈ ⇓ ∞nrϖ(y)∈. Given that
⇐r̂ ⇒ nrϖ⇐↔ ⇓ ϑ, we have that if x ⇓ y, r̂(y) ↗ r̂(x)⇒ 2ϑ.
Consequently, if x is mapped to the i-th group by r̂, all
elements in the j-th group with j < i ⇒ 2 are less than x.
This means, to merge the sorted groups, we start with the
first group and iteratively merge the next group with the
merged array so far. Performing each merge from the end of
the two sorted arrays (as done in merging using learned data
distribution), each merge will cost at most 3ϑ, so the total
cost of merging all the n

ε sorted groups is O(nε ϑ) = O(n).
Putting everything together,r when each model call costs
T X
n , we have that expected time complexity of the algorithm

is O(nT X
n + n log ϑ). Moverover the space overhead of

the algorithm is O(n log n+ SX
n ) where the log n factor is

to keep a pointer to the elements of the array (instead of
copying them).
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