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Abstract: Teleoperating humanoid robots in a whole-body manner marks a fun-
damental step toward developing general-purpose robotic intelligence, with hu-
man motion providing an ideal interface for controlling all degrees of freedom.
Yet, most current humanoid teleoperation systems fall short of enabling coordi-
nated whole-body behavior, typically limiting themselves to isolated locomotion
or manipulation tasks. We present the Teleoperated Whole-Body Imitation Sys-
tem (TWIST), a system for humanoid teleoperation through whole-body motion
imitation. We first generate reference motion clips by retargeting human motion
capture data to the humanoid robot. We then develop a robust, adaptive, and re-
sponsive whole-body controller using a combination of reinforcement learning
and behavior cloning (RL+BC). Through systematic analysis, we demonstrate
how incorporating privileged future motion frames and real-world motion cap-
ture (MoCap) data improves tracking accuracy. TWIST enables real-world hu-
manoid robots to achieve unprecedented, versatile, and coordinated whole-body
motor skills—spanning whole-body manipulation, legged manipulation, locomo-
tion, and expressive movement—using a single unified neural network controller.
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1 Introduction

Humans naturally master versatile, coordinated whole-body skills essential for everyday tasks. For
example, when entering a room, a person with objects in both hands can use their foot to open the
door. When cleaning, they can bend down to reach under the bed and tidy up the hidden lower space.
In sports like soccer, humans can balance on one leg while using the other to kick a ball. Enabling
humanoid robots to perform such coordinated, whole-body actions is crucial for developing general-
purpose robots that can live and work alongside humans in household environments.

One promising way to empower humanoid robots with versatile whole-body dexterity is by imitating
human movements. However, due to the embodiment gap between humanoids and humans, simply
imitating offline human motion data is insufficient for humanoid visuomotor control; we must build
a whole-body teleoperation system to acquire humanoid observation-action data. Building a capable
whole-body teleoperation system, however, has long been a challenge [1, 2, 3,4, 5, 6, 7, 8, 9]. Classi-
cal methods [10, 1, 2, 3, 4, 5] use modular model-based controllers to separately handle teleoperation
and balance, limiting the system’s whole-body capabilities and robustness. Recent learning-based
controllers have shown great promise [6, 7, 8, 9], but the coordinated whole-body skills, e.g., crouch-
ing down to lift a box on the ground, remain limited, mainly due to the lack of accurate, real-time
whole-body tracking targets and robust controllers for tracking such diverse, real-time motions.

In this work, we propose the Teleoperated Whole-Body Imitation System (TWIST), a humanoid
teleoperation system that achieves versatile, coordinated whole-body skills by imitating whole-body
human motions in real time. A key requirement for such a system is a controller that autonomously
converts arbitrary, real-time human movements into balanced robot motions, while closely matching
the human’s behaviors. To this end, we formulate whole-body teleoperation as a real-time motion re-
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Figure 1: Our Teleoperated Whole-Body Imitation System (TWIST) presents versatile, coordinated, and
human-like whole-body skills on real-world humanoid robots. Our robot can perform whole-body manip-
ulation (e.g., lifting boxes from the ground), legged manipulation (e.g., kicking the football), locomotion (e.g.,
ducking under the obstacle and walking backwards), and expressive motions (e.g., Waltz dance).



targeting and tracking problem. We first derive tracking targets—humanoid joint positions and root
velocities—by retargeting arbitrary human motions captured by motion capture (MoCap) devices.
We then train a single policy with reinforcement learning (RL) in large-scale simulated environ-
ments, combined with human motion data. The resulting controller can robustly and accurately
track target robot joint positions and root velocities at each timestep while maintaining whole-body
balance. To address the practical challenges of real-time, whole-body motion tracking and teleoper-
ation, our training pipeline introduces several critical techniques, including:

* To ensure low latency of teleoperation, RL policies can only observe the reference motion for
one current time step, which results in more conservative and hesitant behaviors compared to
policies including future reference motions as observations. This hesitant behavior is aggravated
by the real-time teleoperation system because the human demonstrator tends to compensate their
own movements when experiencing the hesitant behaviors on the humanoid, leading to ineffective
teleoperation control. To alleviate this issue, we propose a two-stage teacher-student framework:
the teacher policy is trained with privileged access to future motion frames to learn smoother
behaviors, and subsequently guides the student policy, which tracks only a single frame.

* Offline human motion datasets are usually high-quality and smooth, while the real-time human
motions and the real-time retargeting are not that stable and smooth, causing a distribution shift
for online teleoperation. Therefore, we collect a small-scale MoCap human dataset (150 clips)
using the online MoCap and retargeting settings, combined with 15K offline motion clips as the
training set for training the RL controller. Surprisingly, despite only a small set of online motions
we use, the controller performs significantly better and more stably on unseen test motions and in
real-world teleoperation.

* During offline retargeting of human motions, we can ensure high-quality motion data through
many iterations of optimization. However, for online retargeting during teleoperation, fast in-
ference is critical, often at the expense of smoothness. We find that jointly optimizing 3D joint
positions and orientations helps mitigate this offline-to-online gap, compared to optimizing ori-
entations alone [11].

* As the learning objective of the controller is simply motion tracking, tasks requiring force exer-
tion (e.g., lifting a box) rather than reaching target positions represent out-of-distribution scenar-
ios, causing the controller to produce jittery behaviors occasionally. To enable the controller to
learn to apply force, we propose to train controllers with large end-effector perturbations, which
significantly improves robustness in tasks requiring contact and force.

With all these critical components integrated, TWIST achieves remarkable whole-body teleoperation
capabilities on real-world humanoid robots. As shown in Figure 1, TWIST enables the Unitree
G1—a medium-sized humanoid robot with 29 degrees of freedom (DoF)—to perform a wide range
of diverse, human-like skills. All teleoperation tasks are accomplished using a single neural network
controller. We will release the code.

2 Related Works

Learning-Based Whole-Body Control for Humanoid Robots. In recent years, learning-based
methods, particularly sim-to-real reinforcement learning, have made notable progress in developing
whole-body controllers for humanoid robots, enabling a wide range of skills such as walking [12,
13, 14, 15, 16], jumping [17, 7], parkour [18], dancing [19, 20], hopping [21], and fall recovery [22,
23, 24]. However, most of these works focus on developing controllers for a single specific task,
limiting the generality of their methods. In contrast, our work aims to train a controller capable of
performing a diverse set of real-world tasks with real-time human teleoperation.

Teleoperation Systems for Humanoid Robots. Teleoperation is key to enabling humanoid robots
to interact with complex real-world environments and perform manipulation tasks. Prior works
have explored teleoperation modalities such as sparse VR keypoints [25, 26, 27, 8], exoskele-
tons [28, 29, 30], motion capture suits [2, 31, 5, 10], and camera-based pose estimation [7, 32].
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Figure 2: The Teleoperated Whole-Body Imitation System (TWIST) consists of 3 stages: 1) curating a
humanoid motion dataset by retargeting Internet human data and our MoCap data, 2) training a single whole-
body controller in simulation, 3) teleoperating real-world humanoid robots with MoCap devices.

However, most systems show limited coordinated whole-body skills, making them insufficient for
general household tasks. For example, Mobile-TV [27] and HOMIE [28] decouple upper- and lower-
body control, guiding movement with external commands like joysticks or foot pedals, but limiting
whole-body tasks like kicking or obstacle traversal. More closely related to our work, Human-
Plus [7] and OmniH20 [8] attempt full-body teleoperation by training low-level controllers to track
human motions. HumanPlus relies on camera-based pose estimation [33], which struggles with root
position accuracy, affecting locomotion fidelity. OmniH20O uses VR keypoints that only captures
upper-body movements, still lacking full whole-body control. In contrast, we introduce a whole-
body teleoperation system capable of performing coordinated skills, leveraging motion capture for
high-quality human data input and a robust training pipeline.

3 Method

We frame the problem of whole-body humanoid teleoperation as a real-time motion tracking task [7,
8, 32, 4, 34, 35], where a whole-body controller receives real-time retargeted human motions and
outputs target joint positions to make the humanoid mimic the human. This setup raises two key
questions: first, how to obtain reliable real-time reference motions, and second, how to build a
robust controller that can accurately track them.

TWIST answers these questions through two innovations. First, we collect accurate real-time whole-
body motion from a motion capture (MoCap) device; second, we develop a robust, unified neural
network controller capable of tracking diverse real-time motions through a teacher-student frame-
work, trained with large-scale simulation and human motions. The resulting system, the Teleoper-
ated Whole-Body Imitation System (TWIST), is shown in Figure 2. In the following sections, we
first describe how to curate human motion data for training the controller (Section 3.1). We then
explain how to train a unified controller using this dataset (Section 3.2). Finally, we show how to
deploy the controller for real-world teleoperation of the humanoid robot (Section 3.3).

3.1 Curating Humanoid Motion Datasets

To train a controller that presents human-like movements and accurately tracks human motions,
we first curate a training dataset to serve as the fuel [34]. The majority of our data comes from
publicly available MoCap datasets—AMASS [36] and OMOMO [37]—which together include over



Table 1: Reward terms and their weights. The left table lists tracking Table 2: Domain randomiza-

rewards, while the middle table lists penalty terms. tion parameters.
Tracking Reward Terms  Weights Penalty Terms Weights Domain Rand Params  Range
KeyBody Position Tracking 2.0 Feet Contact Penalty -5e-4 Base Mass (kg) [~3,3]
. o s . . Friction [0.1,2.0]

Joint Position Tracking 0.6 Feet Slipping Penalty -0.1
Joint Velocity Tracki 02 Joint Velocities Penal le-4 Motor Strength [0.8,1.2]

oint Velocity racking . omt elocities Penalty  -le- Gravity Change (m/s%)  [—0.1,0.1]
Root Pose Tracking 0.6 Action Rate Penalty -0.01 Push Robot Base (m/s)  [0.1,0.1]
Root Velocity Tracking 1.0 Feet Air Time 5.0 Push End-Effector (N) [0, 20]

15,000 clips (around 42 hours), with unfeasible motions such as climbing stairs being filtered out.
Additionally, we collect a small in-house dataset using our own MoCap system, consisting of 150
clips (around 0.5 hours). This in-house data better reflects the conditions of real-world teleoperation,
such as noise and imperfect calibration. Notably, we do not design these motions to match the
teleoperation task—they are collected randomly.

Due to the embodiment gap between humanoids and humans, tracking raw human motions directly
is non-trivial. Instead, we retarget them into the humanoid format to more easily compute tracking
errors. For large-scale public datasets, we apply an offline retargeter similar to PHC [35], which
optimizes key body positions. We additionally optimize temporal smoothness. While offline re-
targeting yields higher-quality motion, it involves iterative optimization, making it impractical for
real-time teleoperation.

To simulate the real-time teleoperation setting, we use an online retargeter [11] on our small in-house
dataset, which efficiently adjusts body orientation and foot placement using an Inverse Kinematics
(IK) method [38]. Although this approach is significantly faster and suited for real-time use, it typ-
ically results in less smooth motion, potentially impacting teleoperation performance. We mitigate
this quality gap by enhancing the optimization objective of the online retargeter to jointly optimize
3D joint positions and orientations. This improvement reduces the discrepancy between offline and
online motion quality, as shown in Figure 7 (left).

3.2 Training A Whole-Body Controller in Simulation

After curating a humanoid motion dataset, we aim to train a unified whole-body controller capa-
ble of tracking arbitrary retargeted humanoid motions through large-scale simulation [39]. Naive
approaches [7] typically use single-stage reinforcement learning (RL) to train a deployable track-
ing policy that tracks only the current motion frame. However, this often leads to artifacts such as
foot sliding and fails to produce smooth control suitable for teleoperation, largely due to the lack
of access to full motion sequences. In contrast, our system adopts a two-stage approach: first, a
privileged expert (teacher) policy is trained via RL with access to future reference motions. Then, a
deployable student policy is jointly optimized using RL and behavior cloning (BC), relying only on
proprioception and a single reference frame at each time step.

Privileged Teacher Policy. The teacher policy 7, takes a sequence of future reference motion
frames (spanning 2 seconds) as part of the input, enabling the teacher to anticipate and plan for
upcoming tracking goals, further leading to smooth locomotion gaits. Besides, we choose to track
joint positions and root velocities expressed in the robot’s local frame rather than the world frame,
to 1) alleviate the accumulated tracking error and imperfect retargeting [20, 9]; 2) ensure better
consistency with the real-world teleoperation setup. The teacher policy is optimized by PPO [40, 41],
with a reward structure r, that emphasizes accurate tracking while penalizing artifacts such as jitter
and foot slippage (see Table 4): Ta = Ttrack + Tpenalty-

Deployable Student Policy. Since privileged information (e.g., future motion frames) is unavail-
able during deployment, the expert policy 7, must be distilled into a deployable student policy gy
using only proprioceptive inputs and immediate reference motion targets. The observational gap
created by the differing input modalities poses a challenge that standard imitation methods (e.g.,
DAgger [42]) cannot fully address. Therefore, we adopt a hybrid RL and BC approach [15], opti-
mizing the student policy with the following loss:

L(ﬂ'stu) = LRL(Wstu) + ADKL(TFStu ” ﬂ'tea)7 (D
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is trained in IsaacGym [39] and evaluated in MuJoCo [44]. The roughly measured by the video, around
tracking goals are sampled from training data. 0.9 seconds.

where Ly denotes the PPO loss using the same reward r, as the teacher, Dy, denotes KL diver-
gence for encouraging imitation of the expert, and the weight A is gradually reduced during training.
Our results demonstrate that this RL+BC strategy significantly outperforms pure BC and pure RL,
resulting in smoother motions and better generalization.

3.3 Real-World Humanoid Teleoperation

After obtaining the whole-body controller 7y, though our two-stage training pipeline, our policy
can be zero-shot deployed to the real robot, due to the careful tuning of domain randomization (see
Table 2). To achieve precise real-time motion tracking in the real world, we establish an online
streaming and retargeting pipeline, which captures high-quality human motions at 120Hz using
OptiTrack [43] and retargets into humanoid motions at 50Hz using the retargeting approach detailed
in Section 3.1. The high-quality tracking goals in the real world ensure that our robot can perform
diverse tasks across manipulation and locomotion in a unified manner. Our policy 7, then takes the
retargeted motions as input and outputs joint position commands at SOHz on an Nvidia RTX 4090
GPU, sending to the robot’s PD controller running at 1000Hz.

4 Experiments

In this section, we demonstrate the teleoperation capabilities of the Teleoperated Whole-Body Imita-
tion System (TWIST) on Unitree G1 [45], and analyze key factors affecting TWIST’s performance.
We also show that TWIST can transfer to other humanoid robots such as Booster T1 [46]. Addition-
ally, we analyze TWIST’s reachability, teleoperation delay, and failure cases.

4.1 Main Results on Whole-Body Humanoid Teleoperation

We showcase the teleoperation capabilities of TWIST on Unitree G1, a 29 DoF 1.3m humanoid
robot. As shown in Figure 1 and the supplementary videos, our robot can be teleoperated to perform
diverse human-like whole-body skills, including: whole-body manipulation, such as uprighting a
fallen trash can, crouching to lift a box from the ground, and carrying a ’Minions” toy from a table to
a human; legged manipulation, such as kicking a door shut/open while carrying objects with hands,
delivering a powerful kick to a soccer ball, and transporting the box with its feet; locomotion, such
as executing sidesteps and backward walking, and crouching to navigate under obstacles; expressive
motion, such as boxing and performing Waltz dance steps with a human partner.

To demonstrate that TWIST functions as a general framework for diverse embodiments, we further
evaluate it on Booster T1 [46]. Figure 3 displays the sim-to-sim evaluation results. The controller
successfully tracks diverse motions, including arm swinging with coordinated whole-body joints,
deeply crouching down, and walking.
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Figure 5: (left) Tracking errors of different controllers, measured on our MoCap test data. (right) Controller
behaviors. Our RL+BC controller produces smooth and robust behaviors.
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Figure 6: (left) Rollout curves in the real world when the robot holds a box. (right) Rollout curves in MuJuCo
from different controllers when tracking MoCap data.

4.2 Ablation Experiments

To further evaluate the impact of different components of TWIST on its effectiveness in teleopera-
tion, we collect another small-scale MoCap motion dataset (50 clips) for evaluation, all of which are
not used in training. The following experimental results are evaluated on this test dataset.

Key Finding 1: RL+BC >> RL >> BC (DAgger). Unlike HumanPlus [7], which uses single-
stage RL, and OmniH2O [8], which employs DAgger, we find that our combined pipeline, RL+BC,
achieves superior tracking accuracy (Figure 5 (left)) and motion smoothness (Figure 5 (right)). Pure
RL approaches frequently exhibit feet sliding artifacts due to their inability to anticipate future mo-
tion goals. Meanwhile, DAgger can not stably and robustly track unseen motions occasionally, due
to the lack of task reward guidance like RL. In summary, while RL demonstrates better generaliza-
tion than BC [47], the combination of both approaches yields significant performance improvements.

Key Finding 2: In-House MoCap Data Matters. We find that adding even a small set of in-house
MoCap sequences—retargeted online to mimic real teleoperation—substantially reduces tracking
errors on unseen motions (Figure 5 (left) and Figure 6 (right)). This gain arises from two factors: (1)
our in-house captures are inherently noisier and less stable, suffering from calibration drift and oc-
clusions; and (2) our online retargeter yields less-smooth reference motions compared to the offline
version. Exposing the controller to these real-world imperfections bridges the gap between clean
public datasets and the variability encountered during teleoperation, improving generalization.

Key Finding 3: Learning to Apply Force. We find that training policies without end-effector per-
turbations leads to drift and instability during stationary poses (Figure 6 (left)). Incorporating per-
turbations during training significantly improves stability, especially crucial for contact-rich tasks.

Key Finding 4: Better Online Retargeter, Better Tracking. As detailed in Section 3.1, improving
our online retargeter by simultaneously optimizing 3D positions and orientations yields smoother
humanoid reference motions. Figure 7 (left) shows that such smoother motions benefit controllers
trained both with and without MoCap data to reduce overall tracking errors.
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4.3 System Analyses

Tracking Error Distribution Across Body Parts. We are curious about how the controller’s per-
formance varies in tracking different body parts. As depicted in Figure 7 (right), we observe: (1) the
end-effectors—hands and feet—exhibit the largest tracking errors, consistent with their positions at
the extremities of the humanoid’s kinematic tree; and (2) lower-body parts, such as feet and knees,
generally incur higher tracking errors compared to upper-body parts like elbows and hands, confirm-
ing our intuition that tracking the lower body is inherently more challenging due to more complex
contact dynamics.

Teleoperation Delay. The total teleoperation delay of our system is approximately 0.9 seconds,
as measured in Figure 4. The major overhead arises from generating tracking goals (0.7 seconds),
while policy inference remains efficient (0.2 seconds). Reducing this latency further will be a key
focus in future improvements.

Reachability. By utilizing whole-body DoFs, our teleoperation system significantly enhances reach-
ability compared to prior work [32, 7, 8]. As illustrated in Figure 8 (a), the robot can nearly reach
its toes with its hands, demonstrating exceptional whole-body reachability.

Failure Cases. Most failures arise from hardware unreliability. In particular, our robot’s motors
tend to overheat after 5-10 minutes of continuous operation, especially during tasks that require
crouching (Figure 8 (b)), which necessitates cooling periods between tests. Nevertheless, our policy
exhibits robust balance control even under extreme testing conditions.
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Figure 8: (a) Extreme reachability by TWIST. (b) Failures caused by motor overheating.
5 Conclusion

In this work, we introduce the Teleoperated Whole-Body Imitation System (TWIST), a system that
teleoperates real-world humanoid robots using whole-body human motion data captured from Mo-
Cap devices. We provide systematic analysis of our controller training pipeline and overall system
to identify critical factors for TWIST. Our system fully leverages the robot’s whole-body joints,
enabling the execution of versatile and coordinated whole-body skills previously unachieved in the
literature. The system demonstrates exceptional reachability compared to prior work, significantly
expanding the capabilities of humanoid robots. Our future work will include studying how to learn
visuomotor policies with combined TWIST-collected teleoperation data and egocentric human data.



6 Limitations

While TWIST demonstrates strong capabilities in teleoperating humanoid robots, there remain sev-
eral limitations and directions for future improvement:

Lack of Robotic Feedback. Currently, there is no robotic egocentric vision streamed back to the
human operator. As a result, when visual occlusion occurs, it becomes challenging to teleoperate
effectively. In addition, there is no tactile feedback to inform the operator when grasping actions
succeed, limiting the naturalness and reliability of manipulation.

Hardware Reliability. As discussed in Section 4.3, the current generation of humanoid hardware
cannot sustain long-term continuous operation. Future improvements in robot hardware are likely
to significantly enhance the overall system capability and robustness.

Dependence on MoCap Systems. Our method relies on a motion capture system, which is not
portable and difficult to democratize, despite showcasing the potential of using whole-body human
motion data. In the future, we plan to explore RGB-based pose estimation techniques to bridge the
gap and approximate the quality of MoCap data more accessibly.
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A Implementation Details

Policy Architecture. We adopt the same network structure for the student policy and the teacher
policy. The policies and the critics are all MLPs, with hidden dimensions [512, 512, 256, 128].

Goal Observations. The goal observation of the teacher policy consists of: 1) the root height, 2)
the root rotation, 3) the root velocity, 4) the root yaw angle’s angular velocity, 5) the joint positions,
6) the key body positions. We then stack 20 frames of future reference motions that span 2 seconds
as the goal observations of the teacher policy. The goal observation of the student policy differs in
two parts: 1) not using the key body positions to save time to compute forward kinematics, and 2)
not using the future reference motions but only using the single frame.

Proprio Observations. The proprioception of the teacher policy consists of: 1) the root angular
velocity, 2) the root rotation, 3) the joint positions, 4) the joint velocities, and 5) the last action. The
teacher only takes 1 frame of the proprioception, while the student policy takes 10 history frames
plus 1 current frame.

Policy Training. We use Adam optimizer with the learning rate le-4. We train the teacher policy
with 100k iterations and further train the student policy with 200k iterations.

Control Parameters. The control parameters used in simulation and the real world are given in
Table 3. For the lower bodies, we adopt large stiffnesses for obtaining large torque.

Table 3: Joint stiffness and damping coefficients for Unitree G1.

Joint Stiffness (N-m/rad) Damping (N-m-s/rad)
Hip Yaw 100 2
Hip Roll 100 2
Hip Pitch 100 2
Knee 150 4
Ankle 40 2
Waist 150 4
Shoulder 40 5
Elbow 40 5

Table 4: Reward terms expressions.

Tracking Reward Terms Weights
target keybody positions exXP(—|| Pkeybody — pLgeybOdy %)
target joint positions exp(—|lq — q®[|?)
target joint velocities exp(—||¢q — €||?)
target root pose exp(—||[r,p] — [r'&, p€]||* — |h — h&|?)
target root velocity exp(—||v — v&||?)
feet contact —(Fleer > 350)
feet slipping — | Vieet * 1[Freer > 1]
joint velocities =4l
joint acceleration -4l
action rate —lla; — a1 ||
feet air time min(tyir gme — 0.25,0)

Real-World Infrastructure. Our system integrates a joystick controller into the real-world setup
to allow seamless pausing and resuming of the teleoperation process. This feature is crucial for
long-horizon tasks, where the human operator may occasionally need to pause control and adjust
their own position.
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