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Abstract: We propose Hand-Eye Autonomous Delivery (HEAD), a framework
that learns navigation, locomotion, and reaching skills for humanoids, directly
from human motion and vision perception data. We take a modular approach
where the high-level planner commands the target position and orientation of the
hands and eyes of the humanoid, delivered by the low-level policy that controls the
whole-body movements. Specifically, the low-level whole-body controller learns
to track the three points (eyes, left hand, and right hand) from existing large-scale
human motion capture data while high-level policy learns from human data col-
lected by Aria glasses. Our modular approach decouples the ego-centric vision
perception from physical actions, promoting efficient learning and scalability to
novel scenes. We evaluate our method both in simulation and in the real-world,
demonstrating humanoid’s capabilities to navigate and reach in complex environ-
ments designed for humans. Our code and more results are available at Website
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1 Introduction

Figure 1: Given a user selected goal from the humanoid’s ego-
centric view, the humanoid is able to navigate in the 3D world
and reach the goal.

Any human manipulation task be-
gins with moving close to the tar-
get object so we can perceive it and
touch it. Consequently, a funda-
mental skill a humanoid must mas-
ter is the ability to deliver its end-
effectors and cameras to the place
they are needed in a 3D environ-
ments designed by and for humans.
One possible approach is to directly
combine existing navigation meth-
ods for mobile robots and reaching
methods for manipulators. How-
ever, this often leads to control
strategies that either spatially iso-
late upper-body manipulation from
lower-body locomotion, or a lack of coordination necessary for seamless transition between naviga-
tion and reaching behavior.
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We propose a hand-eye autonomous delivery (HEAD) system for humanoids, designed to fully uti-
lize their human-like morphology to achieve concurrent navigation, locomotion and reaching tasks
in a coordinated manner. While learning from human demonstrations is a promising avenue, training
all three skills end-to-end would require heterogeneous human data involving both egocentric vision
and full-body motion. Instead, we adopt a modular approach that decouples egocentric perception
from physical actions, enabling flexible training of whole body navigation, locomotion and reach-
ing using different sources of human data and different algorithms. This design also mitigates the
challenges of training a unified visuomotor policy. Our framework consists of a high-level policy
that predicts target positions and orientations for the humanoid’s eyes and hands, and a low-level
controller that executes the corresponding full-body motions.

Given a command to reach for and touch an object, indicated by a point in the initial RGB image
perceived by the humanoid, the high-level policy predicts head positions and orientations to guide
the humanoid toward the target while keeping it in view and navigating around obstacles. Once the
target is within arm’s reach, the high-level policy also controls the hands to make contact with the
object. Existing visual navigation methods [1, 2] often abstract the robot as a point mass, limiting
actions to 2D movements on the ground plane. While suitable for wheeled robots, such assumptions
are insufficient for humanoids, which must coordinate an articulated body to navigate complex 3D
spaces, simultaneously reaching for and avoiding objects at varying heights. To enable this 3D nav-
igation capability, our method leverages a mix of different datasets for different purposes—internet
large-scale human exploration datasets for generalization to new scenes, mid-scale demonstrations
in the target environment for mitigating domain shift due to perception, and a small amount of
robot-specific experience for mitigating domain shift due to embodiment gap.

The low-level whole-body controller is trained to track three key points—the eyes, left hand, and
right hand—using large-scale human motion capture data. We employ imitation-based reinforce-
ment learning (RL) for training, leveraging the diversity of large datasets to handle a wide range
of target configurations. Training such a whole-body policy with imitation-based RL presents three
major challenges. First, unlike full-body tracking, our targets are spatially sparse, guiding only three
points. Second, whole-body skills require the upper and lower body to perform different tasks si-
multaneously, necessitating a large number of demonstrations to cover the joint action space. Third,
obtaining accurate root position and velocity information in the real world is difficult, requiring a
more robust policy that functions without precise root data. We address the first challenge by for-
mulating a GAN-based RL framework that imitates the distribution of human demonstrations, rather
than relying on specific full-body trajectories as policy input. To tackle the second challenge, we
design two separate discriminators to reward the upper and lower body independently, promoting
composability and coordination between them. Finally, to address the third challenge, we train a
policy that does not depend on root position or velocity in world coordinates; instead, global infor-
mation is inferred from the navigation goal and estimated via the onboard camera.

We evaluate each component of our system separately to better understand their contributions. For
the low-level policy, we assess its ability to accurately track diverse target points across a wide range
of motions. For the high-level navigation module, we find that using both human and robot data is
essential for achieving reliable performance, while large-scale human data significantly improves
generalization to novel environments. Finally, we integrate the full system and deploy it on a hu-
manoid (Unitree G1) in the real world, demonstrating robust navigation and reaching performance
in a human indoor space.

2 Related Works

Learning from Human Data. Following the growing popularity of humanoid robots, using human
data to train humanoids has started to attract attention. Internet-scale human videos provide abundant
training sources, making them suitable for pre-training implicit visual representation [3, 4, 5]. But
their embodiment and observation gap make them less efficient and less relevant to learn a specific
skill. Recent works show that high-quality task-relevant human data can benefit robot training, for
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both tabletop manipulation [6, 7, 8], and indoor navigation [2]. Recent works propose creative ways
to collect these data with various focuses. Portable devices, such as VR headsets [9], AR glasses
[10], or SLAM cameras [7], can capture multiple modalities of human data, including head and hand
poses, which can be easily transferred to the robot. While different tasks typically require different
forms of human data for effective learning, we advocate for modular system interfaced with 3-point
tracking for joint navigation, reaching, and locomotion.

Humanoid whole body control. Recent advances in humanoid hardware have made humanoids
more accessible for academic research. To enable a humanoid to achieve meaningful tasks, the
whole body controller (WBC) serves as a cornerstone in balancing the humanoid robot and coordi-
nating whole-body movement. Traditionally, optimal control-based whole controller[11, 12, 13] has
enabled a humanoid to walk, jump, and locomote through challenging terrain given a detailed kine-
matic trajectory to track. However, such high-quality kinematic trajectories are hard to obtain and
highly specific to particular robot kinematics. Recently, reinforcement learning (RL) based whole
body controller has shown impressive result to directly learn from human data[14, 15, 16, 17, 18].
Among them, most of WBCs are designed to track human joint positions[14, 15, 16, 17], which re-
quires human whole body pose as input. To utilize sparse input that are easier to capture from virtual
reality (VR) devices, [19, 20, 21] build their WBC to track human head and hand positions which
can be accurately obtained from off-the-shelf VR headsets. Alternatively, [22] use VR headset and
pedals to control upper-body and lower-body seperately. We use head and wrists tracking similar
to [20, 19] as our WBC interface as it allows directly transfer human data in the task space. Com-
pared to prior methods, our WBC also track head and wrists orientation which allow more versitile
manipulation skills such as twisting the wrists.

Navigation. Extensive research in visual navigation has largely treated the robot as a point mass
operating in a 2D plane. In long-term navigation, prior-work uses different exploration strategies
ranging from local method [23, 24], global method [25, 26, 27] to end-to-end learning of goal-
driven policies [28, 29, 30], planning over floor-plan waypoints or semantic landmarks to achieve
robust performance across large spaces. Short-term navigation similarly relies on this 2D abstrac-
tion but focuses on socially compliant and reactive behaviors—dynamic obstacle avoidance and
human–robot interaction [31, 32, 33, 33]. The closest work on humanoid platforms is NaVila [2],
which applies long-horizon 2D waypoint navigation to a bipedal robot but decouples perception
from locomotion and ignores full-body reaching. By comparison, our approach studies short-term
3D navigation directly through whole-body control, and to mitigate the embodiment gap between
human and humanoid.

3 Method

Given a selected point on the initial RGB image observed by the robot, our system, HEAD, enables
the humanoid to reach that point in the physical 3D world using its hand. HEAD is a modular system
composed of a high-level policy for navigation and reaching, and a low-level policy for whole-body
control (Figure 2). The core idea is that both navigation and reaching can be accomplished by
commanding the same low-level whole-body policy to track the 6D poses of the head and hands.

3.1 Whole-body Controller

Given the target hand-eye positions and orientations provided by the high-level policy, the low-level,
whole-body controller controls the humanoid through PD servos. To let the humanoid behave in a
human-like manner while tracking arbitrary targets, we train the control policy through a GAN-like
method [34] to perform motion imitation from unstructured motion data under the framework RL,
combined with goal-directed control for target position and orientation tracking. Unlike two-stage
distillation methods [35, 19], our method trains the low-level control policy in an end-to-end way
for real-world deployment.

Curating Human Motion Dataset. We find that the quality of motion retargeting significantly
impacts policy performance. We curated a 5-hour dataset by retargeting human motion capture data
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Figure 2: System overview: HEAD consists of a high-level policy with two modules, navigation
and reaching, and a low-level policy that coordinates the whole-body motion. The high-level policy
provides hand-eye tracking targets at a lower frequency while the whole-body controller tracks the
hand-eye targets at a higher frequency. The learning-based navigation module learns from a mixed
training dataset to map RGB ego-vision perception to camera target trajectories. The model-based
reaching module generates hand-eye target poses. The low-level whole-body controller is trained
using imitation-based RL on a set of human motion capture data.
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Figure 3: Navigation Training Data (left): we augment images (undistortion and homography
transform) collected from Aria Glasses to make them resemble robot views. Navigation Module
Overview (right): given an image and a goal as 2D point during inference, we extract DINO fea-
tures, append the goal coordinate, and feed them to a transformer decoder to predict the future eye
(camera) trajectory. The low-level whole-body controller executes the prediction and obtains a new
observation. The goal is then tracked in the new image using an off-the-shelf point tracker.

to the G1 robot, from the AMASS [36] and OMOMO [37] datasets. The retargeting is achieved
using keypoint matching similar to [17]. The collected motions ensemble representative behaviors
across both manipulation and locomotion domains. Dataset will be open source upon acceptance.

Deployable Observation Space. To support real-world deployment, the observation space must
be restricted to information accessible from the robot’s onboard sensors. Our observation vector
consists of robot link poses plink in the robot’s local coordinate frame in two consecutive time steps
and joint velocity q̇ locally. It does not include any future information or rely on any privileged
data in the world coordinate frame, such as root position and linear velocity, which are difficult to
obtain outside of simulation. We found that removing the dependency on privileged information
outperforms any alternative approaches that depend on reconstructed or predicted substitues.

Motion Imitation. We decouple the full-body motion into upper and lower body groups, and em-
ploy two discriminators simultaneously to perform imitation learning. By doing so, the policy can
learn the combination of the poses from upper and lower body parts, instead of being limited by
fixed full-body poses provided in the motion dataset. The GAN-like approach of RL allows the
policy to imitate motions from arbitrary segments in the motion dataset without needing to generate
or obtain a full trajectory of imitation beforehand, while fulfilling the tracking task.

Sparse Target Tracking. To avoid introducing target information defined in the global space, we
represent the tracking target, as the input to the policy network, through relative transformations:
g = [ptar

eye ⊖ peye;p
tar
l-hand ⊖ pl-hand;p

tar
r-hand ⊖ pr-hand] where ⊖ denotes the relative transformation

operator, and “tar” refers to the target pose. To perform tracking, during training, we define the
goal-directed reward based on g after the action is executed at each timestep.
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Sim-to-real Considerations. Along with the task reward of target tracking, we additionally define
a regularization term to aid sim-to-real transfer. To further improve robustness, we apply extensive
domain randomization over dynamics parameters and sensor noise during training.

We employ the multi-objective learning framework from [38] to perform policy training, while op-
timizing the two imitation objectives using rewards provided by the discriminators and the goal-
directed objective through the manually defined reward function at the same time. We refer to the
supplementary materials for the implementation details.

3.2 Navigation Module

Given a low-level whole-body controller capable of tracking three points, our navigation module
guides the robot to a designated goal specified as a 2D point in the initial RGB image observed by
the robot. During inference, the navigation model takes the current RGB image from the navigation
camera along with the tracked 2D goal—provided by a point tracker [39]—and predicts the future
eye trajectory in both position and orientation (Fig. 3 right). Specifically, we extract DINO features
of the input image It and add positional embedding to the goal gt. We pass them to a transformer
decoder to output a future camera trajectory Ct:t+T as transformations relative to the previous frame.

Collecting Human Data. We propose an automatic method to use Aria Glasses for collecting
goal-conditioned human training data as tuples of images, future camera trajectories, and 2D goals
(It, Ct:t+T , gt). The glasses provide accurate camera poses, static point clouds and gaze estimation
for all captured data. We approximate the current goal by finding the closest point in the static point
cloud along the future gaze vector and projecting it onto the image plane via current camera pose.

Domain Shift. However, a navigation model trained on a limited set of human data struggles with
two potential domain shifts that need to be addressed. First, to improve generalization to unseen
scenes, we incorporate the large-scale egocentric dataset Aria Digital Twin (ADT) [40], which con-
tains 400-minute of various indoor activities such as cleaning and cooking. Thanks to our automatic
data curation pipeline, we can easily convert any Aria Glasses data into goal-conditioned navigation
training data. Second, due to the embodiement gap between the robot and an average human adult,
there is a significant disparity in visual perception. To align the Aria Glasses’ wide fisheye view with
the robot’s narrower camera, we apply undistortion and homography transforms to produce virtual
views of robot from human data (Fig. 3 left). (See appendix for details.) Beyond visual discrepan-
cies, humans and robots also operate at different speeds. Empirically, we find that the robot moves
approximately 7× slower than humans, so we subsample robot videos accordingly during training.

We also collect a small amount of robot data by commanding it to navigate while recording its head
poses with the mocap system. We co-train the navigation module with both human and robot data.

3.3 Reaching Module

Figure 4: Robot is away from the goal at t0,
goal is only visible in navigation camera. At
transition time t1, the goal is visible by the
reach camera and close enough to the robot.

While the navigation module drives the robot toward
the target object at room scale, the reaching mod-
ule handles the final approach to touch the object.
We use a second downward-facing RGB-D camera
with a narrower, zoomed-in FoV for reaching. The
high-level policy switches from navigation to reach-
ing while the low-level policy continues running to
ensure a smooth transition.

Navigation-Reaching Transition. The navigation
policy hands control to the reaching module when
the target object enters the downward-looking RGB-
D camera’s view and is within reaching range. The
goal is transferred to the RGB-D frame via corre-
spondence matching [41].
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Figure 5: Hardware setup and test environments.

Reaching the Target. The reaching module approx-
imates the goal as a 3D hand position and computes
the target hand orientation and head 6D pose for the
low-level policy. Since the tracked goal only specifies the hand position, we solve Inverse Kine-
matics (IK) using Mink [42] to infer missing head poses and hand orientations. To ensure a smooth
high-level transition and keep the robot posture looking natural, we initialize the IK optimization
from the current robot state and add an objective term to encourage small change in the center of
mass position and pelvis orientation.

4 Experiment

We first specify our hardware setup (4.1). We evaluate our overall hand-eye delivery system with
novel objects in different environments(Sec. 4.2). Then, we analyze individual modules – the design
choice of the whole-body controller (Sec. 4.3), and contribution of each data ingredient to train the
navigation module (Sec. 4.4).

4.1 Hardware Setup

We build our proposed system around a Unitree G1 humanoid robot as shown in Fig.5. For naviga-
tion, we use a wide-angle USB webcam with 90◦ HFOV and 67.5◦ VFOV; for the reaching module,
we use G1 built-in realsense D435 RGB-D camera. During deployment, all modules are running on
a PC equipped with an RTX4090 GPU and an i9-14900K CPU, and the robot is controlled via an
Ethernet connection.

We conduct our experiment in two rooms: a lab (training room) and a kitchen (deploy room). Robot-
specific training data is only collected in the lab room. This is to emulate a deployment scenario
where no hardware is available to record robot ground truth training data. In each room, we arrange
several pieces of furniture (e.g., shelves, chairs, tables, stools) to create diverse layouts. All test
layouts and objects are unseen.

4.2 Whole Body Reaching with Different Scenes

We evaluate our method across three different layouts in each room. For each layout, robot will
be ask to reach 4 objects placed at different locations and of different heights, as shown in Fig. 5.c.
Detailed experiment result is shown in Tab 1. Overall, our method achieves 71 % success rate across
different environments. Success rate in lab room is 25% greater than in the kitchen, which has nar-
rower corridors and more reflective surfaces, which pose challenges to the goal tracker, navigation
transformer and transition module. For failure cases, motion blur from robot movement may cause
the tracker to lose track of the object or track the wrong object, which may confuse the navigation

6



module. Also, humans tend to move faster and take a more aggressive path when collecting data,
which may not be feasible for robots and result in a collision.

Room Scene Success rate Number of misses Number of collision

Lab room
Scene 1 3/4 1/4 0/4
Scene 2 3/4 1/4 0/4
Scene 3 4/4 0/4 0/4

Kitchen
Scene 1 2/4 1/4 1/4
Scene 2 2/4 1/4 1/4
Scene 3 3/4 0/4 1/4

Table 1: Number of successes and different kinds of failures across different evaluations

4.3 Performance of Whole Body controller

Setup. We train our whole-body controller in Isaac Gym and report its performance in two simula-
tions: Isaac Gym [43] and MuJoCo [44]. As the policy was trained in Isaac Gym, the performance
reported on the left side of Table 2 highlights the impacts of the design choice in the training proce-
dure. Furthermore, on the right side of Table 2, the simulation-to-simulation evaluation in MuJoCo
further quantifies the robustness of each policy when the simulated contact model is closer to the
real world [45].

Single-stage RL Training Recipe. We observed that guiding reinforcement learning (RL) explo-
ration with generative adversarial networks (GANs) greatly improves sample efficiency. Compared
to a single discriminator that jointly criticizes whole-body motion, we find that disentangling upper-
body and lower-body motion via separate reward from two discriminators helps. It is probably
because separate discriminators prevent the policy from entangling irrelevant motions during train-
ing and achieve a lower tracking error. For instance, in most walking clips, people naturally swing
their arms, while dual-arm manipulation typically occurs from a squatting posture. A policy trained
with a single full-body discriminator tends to memorize the arm-swing pattern and then fails to han-
dle a carried box while walking. In contrast, our setup decouples arm manipulation from balance
control, enabling the whole-body controller to produce more diverse motions under 3-point tracking.
In unseen tasks, our policy consistently outperforms the single whole-body discriminator variant.

4.4 Performance of Navigation Module

Setup. We use Aria Glasses to collect 200 human clips (H-Lab/H-Kit) per room. For robot data (R),
we use mocap system to collect 38 clips of robot trajecotries in the lab and 20 in the kitchen. Each
clip lasts around 4 seconds (human) or 30 seconds (robot). Of the lab robot data, 24 clips are used for
training and 14 for testing; all kitchen robot clips are used for testing. This is to mimick a deployment
scenario where no device is available to record robot ground truth training data. Human goals are

Design Choice
Isaac Gym - Unseen Motions MuJoCo - Sim2Sim Transfer

Pos Error
[m] ↓

Quat Error
[rad] ↓

Failure
[%] ↓

Pos Error
[m] ↓

Quat Error
[rad] ↓

Failure
[%] ↓

Ours 0.075 0.120 0 0.153 0.326 3
Single discriminator 0.149 0.169 0 0.525 1.015 13
No discriminator 0.540 1.138 97 1.127 2.044 99

Table 2: Tracking accuracy is reported as positional error (m) and orientation error (rad). A timestep
is counted as a failure when the head height deviates from the target by ≥ 0.4 m. Each configuration
was trained for 50 k epochs, evaluated on 1-minute unseen motion clips, and repeated five times.
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approximated via eye gaze (Sec.3.2), while robot goals are manually annotated and tracked. We also
include the out-of-distribution ADT dataset (O)[40], with 400 minutes of Aria Glasses footage of
users doing tasks like cleaning and cooking.

Arch Lab Room Kitchen (Deploy Room)

Training Data SR Error Training Data SR Error

shared H-Lab 0.14 0.704 – – –
shared R-Lab 0.71 0.427 zero-shot 0.35 0.827
shared R-Lab + O 0.79 0.399 zero-shot 0.35 0.726
shared R-Lab + H-Lab 0.79 0.374 + H-Kit 0.45 0.664
2-branch R-Lab + H-Lab + O 0.79 0.356 + H-Kit 0.20 0.812
shared R-Lab + H-Lab + O (Ours) 0.86 0.380 + H-Kit 0.60 0.608

Table 3: Navigation Evaluation: we report success rate (SR) and mean position error (Error) in
open-loop prediction.

Metrics: We report open-loop prediction performance in both the lab room and the kitchen. For each
test video, we predict a 10-step trajectory at every time step and compute the mean error against the
ground-truth trajectory after rolling out these prediction. A prediction is considered successful if the
final error is within 0.6 meters, which corresponds roughly to the humanoid’s effective manipulation
range.

Recipe of Combining Human and Robot Data for Navigation. As reported in Table 3 Lab Room
column, training with in-domain human data (H-Lab) only leads to poor success rates comparing
to training with in-domain robot data (R-Lab), likely because the embodiment differences between
humans and robots are not learned. The model that trains with in-domain robot data (R-Lab) together
with human data, either from out-of-distribution (O) or from in-domain human data (H-Lab), further
increases the performance. Human data in the same environment (H-Lab) helps moderately more
than out-of-distribution data (O). By combining all existing data, we achieve the best performance.

Deploying into New Scenes. As reported in Table 3 Kitchen column, while training with only
robot data shows reasonable performance in the lab room, it fails to generalize to the new (deploy)
room. Collecting additional in-domain human data (+H-Kit) alone helps the robot to better in the
new scenes. Note that although incorporating ADT (O) does not significantly improve performance
within the lab room, it substantially boosts success rates in the deploy room, where no robot training
data is available. This highlights the importance of leveraging diverse, unlabeled human data to
enhance cross-scene generalization.

Shared Decoder Branch Improves Navigation Generalization. In contrast to common practice
in manipulation tasks[6, 35], we find that sharing a single decoding branch for human and robot
data improves scene generalization in navigation tasks. We hypothesize that this is because the
embodiment differences between humans and robots in short-term navigation are smaller than those
in manipulation, making a shared representation more effective.

5 Conclusion

We presented HEAD, an autonomous hand-eye delivery system for humanoid navigation and reach-
ing. Our method achieves a 71% success rate in reaching different objects placed in two different
environments with obstacles. A future extension could be building a general grasp framework that
can grasp different objects placed at various locations. Learning more fine-grained whole body navi-
gation that can be aware and avoid collision with varying parts of the body will also be an interesting
direction for a humanoid robot to be useful in real-life environments.
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6 Limitations

Although our method can work in environments with obstacles, it only collects human head poses
and uses it as a robot control interface without considering other parts of the body. For reaching the
heavily occluded target, human will utilize their whole body coordination to avoid collision, such as
going sideways when facing a narrow gap or stepping over lower obstacles. Using our method will
cause the robot to take a more conservative approach when facing a complex environment without
fully utilizing its agility. Moreover, using head and wrist poses as a humanoid control interface has
its intrinsic ambiguity for controlling lower body and may cause the humanoid robot to hesitate. For
example, when the three-point is moving forward, it is hard for a humanoid to know whether the
high-level intention is to bend forward or walk forward. More information that could be estimated
from egocentric devices such as foot pose may help to reduce hesitation when taking actions.
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Figure S1: Systemic overview of the training scheme of our whole-body controller. We employ a
multi-objective learning framework plus a GAN-like architecture for imitation learning. Our scheme
allows imitating arm poses (orange) and those of the rest body parts (green) from different sources
of reference motions simultaneously, and uses a goal-directed reward to fulfill the sparse tracking
task for the head and hand poses.

Table S1: Hyperparameters
Parameter Value

policy network learning rate 5× 10−6

critic network learning rate 1× 10−4

discriminator learning rate 1× 10−5

reward discount factor (γ) 0.95
GAE discount factor (λ) 0.95
surrogate clip range (ϵ) 0.2
gradient penalty coefficient (λGP ) 10
number of PPO workers (simulation instances) 1024
PPO replay buffer size 1024× 8
PPO batch size 256
PPO optimization epochs 5
discriminator replay buffer size 1024× 8× 2
discriminator batch size 512

A Whole Body Controller

Figure S1 shows the overview of the systemic architecture of the whole body controller. We use
IsaacGym [43] as the physics engine for policy training. The policy runs at 30Hz and controls the
humanoid through a PD servo.

Instead of directly imitating full-body motions, based on the motion decoupling scheme from pre-
vious literature [38], we split the full-body motions into arm and torso groups, and employ two
discriminators at the same time to evaluate the imitation performance for partial motions. Besides
the current state of the humanoid, the control policy takes only the tracking target for the head and
two hands as the goal input. Without needing the whole trajectory of full-body tracking, the dis-
criminators evaluate the imitation performance of partial motions and allow the arm motions to be
combined with the torso and lower-body motions from different motion clips in a free way.

Given an additional goal-directed reward for target tracking plus regularizations for sim-to-real con-
sideration, we leverage the multi-objective learning framework [38] to balance the learning of mul-
tiple imitation and goal-directed objectives. The final optimization objective for policy training can
be written as

maxEt

[∑
κ
wkĀt,k log π(at|ot)

]
(S1)
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where Āt,k is the standardized advantage that is estimated according to the achieved reward of each
objective k, wk is an associated weight, and ot is the observation including the humanoid’s state st
and the goal state gt. We choose wimit,i = 0.2 for each of the two imitation objectives and wg = 0.6
for the goal-directed objective.

We use PPO [46] as the backbone reinforcement learning algorithm and take the Adam opti-
mizer [47] to perform network optimization for policy training. The hyperparameters used for policy
training are listed in Table S1 and the network structures are shown in Figure S2. We manually pick
1363 clips of locomotion and loc-manipulation motions from AMASS [36] and OMOMO [37]. The
whole data set of motions is around 5 hours long.

A.1 Observation Space
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(b) Value Network
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Figure S2: Network structures. We use ⊕ denoting the
add operator and ⊖ denoting the average operator. For
multi-objective learning, we employ a value network with
3-dimensional output for the two imitation objectives and
one goal-directed objective.

The G1 humanoid has 33 links and
27 controllable joints, where the wrist
and neck joints are fixed and the waist
part only has 1 degree of freedom
around the yaw axis. We take two
historical frames as the input and pro-
cess the state vector via a GRU [48].
This leads to a state space of st ∈
R33×7×2 including the position and
orientation (in quaternion) of each
link in the local frame of the hu-
manoid’s root link, and an action
space of at ∈ R27.

For control purposes, we take the root
angular velocity and joint velocity lo-
cally as the control state ct ∈ R30.
We ignore the linear velocity of the
root link, since the linear velocity is
hard to access from the humanoid when deployed in the real world.

The goal state vector g ∈ R3×3×7 includes the target positions and orientations (in quaternion) of
the three links (left hand, right hand and head) in the next three frames.

The final observation space ot is composed of the three components st, ct, and gt.

A.2 Reward Terms

Instead of using a single discriminator for each motion group, we take the GAN-like architecture
from ICCGAN [34], and employ an ensemble of 32 discriminators for each motion group. The
imitation-related reward of the discriminator ensemble Di is computed via

rimit,i
t (̄sit, s̄

i
t+1) =

1

N

N∑
n=1

CLIP
(
Di

n(̄s
i
t, s̄

i
t+1),−1, 1

)
, (S2)

where the subscript i indicates different imitation objectives (upper or lower body groups), s̄it is the
partially observable character state for the imitation objective i, and the discriminator ensembles N
discriminators each which is trained using hinge loss [49] with gradient penalty [50]. We choose
N = 32 in our implementation.

The goal-directed reward mainly measures tracking errors and also consists of three terms to stabilize
the motions for sim-to-real consideration:

rgt = rtracking + 0.8rin-air + 0.5rsliding + 0.005renergy. (S3)

For simplicity, here we omit the subscript t for each of the reward terms.
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Table S2: Domain Randomization Settings
Parameters Value
Base Mass (kg) [−3, 3]
Body Link Friction Coefficient [0.5, 1.25]
Scale on PD Servo Gain (Kp) [0.7, 1.3]
Scale on PD Servo Damping (Kd) [0.7, 1.3]
Action Delay Ratio (ρdelay) 0.5

rtracking is the reward measuring the tracking error:

rtracking = 0.5 exp

(
− 5

|I|
∑
i∈I

|εpos,i|

)
+ 0.5 exp

(
− 2

|I|
∑
i∈I

|εorient,i|

)
(S4)

where I = {left hand, right hand, head} is the set of links under tracking, εpos,i is the position error
between the current position of the link i and its target position measured in Euclidean distance, and
εorient,i is the orientation error measured by the angle between the orientation of the link i and the
target.

rin-air = min{0, tin-air − 0.5} encourages the policy to keep the foot in the air for at least 0.5s during
stepping. It is computed for the swing foot when it contacts the ground, and tin-air is the hanging
time of that foot before the contact.

rsliding = −
∑

f cf ||vf ||2 penalizes the linear velocity of the foot link f if it contacts the ground,
where cf = 1 or 0 indicating the contact state of the foot f .

renergy = −
∑

j

(
0.1|τjvj |+ 0.005τ2j

)
penalizes the energy cost for each joint j, where τj is the

torque applied on joint j and vj is the joint’s rotation velocity.

A.3 Domain Randomization

Parameters for domain randomization are listed in Table S2.

When testing the sim2real transfer, we found adding simulated delay during training time essential to
prevent the robot from jittering. Compared to using a random delay across all environments, which is
challenging to train, we found using a constant 1-step delay on a fixed portion ρdelay of environments
improves training speed, and can prevent the robot from jittering caused by the uncertainty delay
during policy execution in the real world. We choose ρdelay = 0.5, which means that the action
delay is applied on half of the training environments.

B Image Augmentation of Navigation Data

We augment human data collected by Aria Glasses to resemble the robot’s view. First, we address
image discrepancies caused by differences in capture devices. Aria Glasses use an RGB fisheye
camera with a 110◦ horizontal and vertical field-of-view (HFOV, VFOV), while the robot camera
has a 90◦ HFOV and 67.5◦ VFOV. We undistort the fisheye images to obtain Iu, which approxi-
mates a pinhole camera view with intrinsics Ku. Second, we address discrepancies in camera pose
(extrinsics) due to morphological differences. Humans tend to tilt their heads—e.g., looking down-
ward when reaching for an object—whereas the robot’s navigation camera, fixed at the top of the
head, always looks forward. As a result, the same object may appear in different regions of the
image despite similar camera positions. To align viewing angles, we apply a homography to the
undistorted image Iu to match the pitch angle. Given the robot camera’s intrinsics Kr and Aria’s
effective intrinsics Ku, we apply H = KrRpitchR

T
[θ]K

−1
u , where R[θ] is the pitch component of the

current human camera pose and Rpitch is the desired robot pitch.
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C Usage of motion capture system

Although our whole-body controller and navigation model don’t rely on world coordinates, in our
real-world experiment, we found it hard to keep the robot standing at the exact location without
drifting. Therefore, we attach mocap markers only to the robot’s head and transform the camera
trajectory into the world frame; we found that having closed-loop tracking in the world frame can
significantly improve the accuracy of robot reaching.
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