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Fig. 1. PDP performs well across a diverse range of physics-based application domains. Top: Motion tracking. PDP is capable of tracking difficult and highly
dynamic motions such as handstands and cartwheels. Middle: Text-to-motion. PDP is also capable of following user-provided text instructions. Bottom:
Robustness to perturbations. PDP learns robust recovery strategies from random perturbations.

Generating diverse and realistic human motion that can physically interact
with an environment remains a challenging research area in character ani-
mation. Meanwhile, diffusion-based methods, as proposed by the robotics
community, have demonstrated the ability to capture highly diverse and
multi-modal skills. However, naively training a diffusion policy often re-
sults in unstable motions for high-frequency, under-actuated control tasks
like bipedal locomotion due to rapidly accumulating compounding errors,
pushing the agent away from optimal training trajectories. The key idea
lies in using RL policies not just for providing optimal trajectories but for
providing corrective actions in sub-optimal states which gives the policy a
chance to correct for errors caused by environmental stimulus, model errors,
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or numerical errors in simulation. Our method, Physics-Based Character
Animation via Diffusion Policy (PDP), combines reinforcement learning (RL)
and behavior cloning (BC) to create a robust diffusion policy for physics-
based character animation. We demonstrate PDP on perturbation recovery,
universal motion tracking, and physics-based text-to-motion synthesis.
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simulation.
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1 Introduction

Developing a framework capable of generating diverse human move-
ments that can traverse and interact with the environment is a
crucial objective in character animation with broad applications in
robotics, exoskeletons, virtual/augmented reality, and video games.
Many of these applications demand not only a diverse range of hu-
man kinematic poses, but also the physical actions needed to achieve
them. Previous works have demonstrated that physics-based control
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tasks can be formulated as a Markov Decision Process and solved
through a Reinforcement Learning (RL) algorithm, or as a regression
problem and solved using supervised learning techniques such as
Behavior Cloning (BC). Despite the achievements observed in dy-
namic motor skills learning through both RL and BC methodologies,
they encounter difficulties in effectively capturing the diversity and
multi-model characteristics inherent in human motions.

To address this issue, recent works have explored various genera-
tive models. While Conditional Variational Autoencoders (C-VAEs)
and Generative Adversarial Networks (GANSs) have been used to
capture humanoid skills, VAE-based models suffer from sensitive
trade-off between diversity and robustness, while GAN-based meth-
ods often suffer from mode collapse without additional objectives
[Dou et al. 2023]. Although diffusion models have been used to gen-
erate varied kinematic human motion [Tevet et al. 2023; Tseng et al.
2022], their application in high-frequency control domains is rela-
tively unexplored. Recent work in robotics shows that BC combined
with diffusion models can effectively learn diverse and multi-modal
actions for real-world execution [Chi et al. 2023; Huang et al. 2024].
However, naively training a diffusion-based BC policy is ineffective
for physics-based character animation due to compounding errors
in high-frequency, under-actuated control tasks, exacerbating the
domain shift problem. This issue is especially prominent in bipedal
locomotion, where accumulated errors can quickly lead to falling.
Can we combine the strengths of RL and diffusion-based BC policy,
such that a physically simulated character can perform a diverse set
of tasks robustly against distribution shifts due to disturbances in
the environment, error in model prediction, or numerical errors in
simulation?

We introduce PDP, a novel method that learns a robust diffusion
policy for physics-based character animation, addressing the noted
challenges. PDP leverages diffusion policies [Song and Ermon 2020]
and large-scale motion datasets to learn diverse and multimodal
motor skills through supervised learning and diffusion models. To
overcome sensitivity to domain shifts, PDP uses expert RL policies
to gather physically valid sequences of observations and actions.
However, using RL for data collection alone does not resolve domain
shift sensitivity.

Our key insight is that RL policies provide not only optimal tra-
jectories but more importantly corrective actions from sub-optimal
states. We employ a sampling strategy from robotics literature [Xie
et al. 2020], collecting noisy-state clean-action paired trajectories
to train the diffusion policy. We find that the choice of pairing
noisy state with clean actions is a critical detail that contributes
to producing a robust policy, outperforming the standard clean-
state-clean-action trajectory collection and noisy-state-noisy-action
sampling strategies for domain randomization. Additionally, we can
now pool together data collected by small-task RL policies which
can be efficiently trained, and leave the learning of diverse tasks on
large-scale datasets to supervised learning.

PDP is a versatile method applicable to various motion synthe-
sis tasks and agnostic to training datasets. We evaluate PDP on
locomotion control under large physical perturbations, universal
motion tracking, and physics-based text-to-motion synthesis, using
different motion capture datasets for each application. Our model
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captures the multi-modality of human push recovery behavior, out-
performing VAE-based methods and deterministic multi-layer per-
ceptron networks on the Bump’em dataset [Werling et al. 2023]. It
can also track 98.9% of all AMASS motions and [Mahmood et al.
2019] generate motion from textual descriptions [Guo et al. 2022].
Our contributions are as follows:

e We present a method of robust BC that scales to large motion
datasets without the need for complex training architectures
and can easily adapt to new skills.

o We analyze the effect of different sampling strategies for data
augmentation on model performance.

e We introduce physics-based models that support locomotion
control, motion tracking, and text-to-motion tasks.

2 Related Work
2.1 Physics-Based Character Animation

In physics-based character animation, the central challenge is de-
veloping systems that learn a diverse range of realistic motions.
Such motions manifest in motion tracking, motion generation, and
task-oriented applications that require consideration of physical
interactions.

Methods for learning individual or relatively similar motions,
such as walking, running, or jumping are well-established [Peng
et al. 2018, 2021]. However, these methods often do not suffice to
complete tasks that involve multiple skills. Other methods have
been successful in learning motion tracking policies capable of
multiple skills using model-free RL [Bergamin et al. 2019; Park et al.
2019] and model-based RL [Fussell et al. 2021]. However, scaling
to large diverse datasets is challenging. UniCon [Wang et al. 2020]
introduced a motion tracking controller that scales to large and
diverse motion datasets by using a novel constrained multi-objective
reward function. Other works propose a mixture of experts [Won
et al. 2020a], where different experts specialize in different skills.
PHC [Luo et al. 2023] proposes an iterative approach to learning a
large number of skills sequentially.

Another challenge in physics-based character animation is cap-
turing diversity in motion data for use in downstream tasks. Human
behaviors are multimodal, meaning a range of plausible behaviors
can be employed in the same situation. A common method of cap-
turing diversity in motions is to employ a Variational Autoencoder
(VAE) to learn a latent space of skills, then sampling from the VAE
prior to produce a wide range of motions [Merel et al. 2018; Won
et al. 2022; Yao et al. 2022, 2023; Zhu et al. 2023]. These latent mo-
tion representations can then be used for downstream tasks such as
motion generation [Luo et al. 2024] or object iterations [Merel et al.
2020]. Adversarial methods have also been proposed for capturing
motion diversity [Dou et al. 2023; Peng et al. 2022], which combine
a diversity reward and adversarial reward that encourage the policy
to mimic the motion distribution.

Robustness issues also arise in behavior cloning methods where
error accumulation can easily push the policy out of distribution.
One method for improving policy robustness is to continually roll
out the current policy, collecting on-policy data to train a student
in the next learning iteration, as in DAgger [Ross et al. 2011]. Alter-
natively, robustness can be achieved by injecting perturbations into



the state-action pairs in the training dataset, effectively expanding
the distribution of states seen during training, similar to DASS [Xie
et al. 2020].

2.2 Diffusion Models for Motion Synthesis and Robotics

Similar to VAEs, Diffusion models represent another category of
generative Al and have exhibited success in the domain of kinematic
motion synthesis, showcasing the capability of generating diverse
and intricate human motion patterns [Tevet et al. 2023; Tseng et al.
2023]. Recently, Diffusion Policy [Chi et al. 2023] has effectively ap-
plied diffusion models to robotic manipulation tasks, human-robot
collaborative endeavors [Ng et al. 2024], and tasks involving follow-
ing language instructions [Zhang et al. 2022]. These models have
primarily concentrated on high-level motion planning with a limited
action space, such as forecasting the end-effector trajectory. While
effective in low-frequency environments, the application of Diffu-
sion Policy to high-frequency scenarios where minor inaccuracies
in model predictions could result in failure, such as in physics-based
character animation, remains relatively unexplored. Concurrent
work, DiffuseLoco [Huang et al. 2024], is similar to PDP, employing
a diffusion model to distill an offline dataset of multimodal skills,
however they focus on simple locomotion gaits due to their policy
being deployed on a real robot.

3  Methods

Our method consists of three stages. First, we train a set of expert
policies, each specialized in a small task but together completing a
wide variety of motion tracking tasks in a physics simulator. Sec-
ond, we generate state-action trajectories from the trained policies
stochastically to build a dataset with noisy-state and clean-action
trajectories. Lastly, we train a diffusion model via Behavior Cloning
(BC) to obtain a single policy that can perform all tasks. Fig. 2 gives
an overview of our system.

3.1 Expert Policy Training

We aim to obtain a control policy zppp : O X T — A to control
a humanoid character, where O is the set of observations that de-
scribes the state of the character, 7 is the set of tasks, and A is the
set of actions used to control the humanoid character. Such control
policies can be trained via reinforcement learning. However, when
the set 7 is large, it may be challenging to train a single policy
to master all tasks, while it is relatively easy to train policies that
specialize in a subset of tasks. We can divide the task set 7~ into
subset {71, 72, . .., Tx }, where |; 7i = 7, and train a expert policy
mg; for each 7. The strategy for dividing the task is not critical,
as long as it results in a set of policies that can generate desired
state-action trajectories.

3.2 Stochastic Data Collection

In the second stage, we utilize the expert policies to generate a
dataset for BC. For each task 7;, we create a dataset D; by rolling
out policy 7g; and collecting trajectories. Specifically, we sample
a motion task 7 € 7;, and run the policy to generate a sequence
{o0,ap,01,a1,...,0N,an}, where a; = q: (0, T) + € is a noisy ver-
sion of optimal action proposed by the expert policy. The tuples
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Fig. 2. PDP Overview. Top: First, we train expert RL policies 7r7; on tasks 7;.
We use 77; to create a dataset of noisy-state clean-actions. We then use BC to
train a diffusion model. Bottom: Our model is a transformer encoder-decoder
architecture. Block-B is used for text-conditioned applications, while other
applications use Block A. Note that these applications are trained separately
on their own distilled dataset.

(04,7, m7;(0¢, 7)) which correspond to the observation, task/goal
information, and action are added to the dataset D'T,-~ We repeat
the data collection process until a maximum number of data points
are collected, and use D = |J Dyg; as the dataset for BC. Note that
the optimal action, not the noisy action ay, is stored in Z)r]; and can
be thought of as a corrective action from a noisy observation. This
important detail, inspired by the DASS strategy proposed by [Xie
et al. 2020], results in a training set that consists of sequences of
noisy-state and clean-action pairs. This allows the collected data
to cover a wider range of observation space compared to naively
collecting clean optimal state-action trajectories, effectively creating
a "noise band" around the clean trajectories. Our method extends
DASS by further widening the noise band. Specifically, we generate
short recovery episodes by initializing the character with a random
root position and orientation offset from its original motion and
allow it to recover to the original motion over several timesteps.
This approach applies the noise band not only to the joints but also
to the character’s overall pose, helping to mitigate drift over time.
Another potential option for sampling is to collect noisy-state
and noisy-action pairs, a common domain randomization practice in
robotics to battle the sim-to-real gap. We found this randomization
strategy produces less robust policies for character animation.

3.3 Behavior Cloning with Diffusion Policy

We parameterize our policy as a diffusion model. Here we give an
overview of the diffusion model and our choice of architecture.
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3.3.1 Diffusion model. We employ Diffusion Policy [Chi et al. 2023],
which models the action distribution conditioned on the observa-
tions as a denoising process using a Denoising Diffusion Probabilis-
tic Model (DDPM) [Ho et al. 2020]. Given a dataset of sequences
D collected using the method described previously, the denoising
process is learned by a noise-prediction network eg(AltC, Oy, 11, k),
where A’; is an action sequence sampled from D with added Gauss-
ian noise and k is the diffusion step. The diffusion model is con-
ditioned on Oy, the corresponding observation sequence. 7 is the
necessary task or goal information, and 6 is the set of learned model
parameters. As in Diffusion Policy, A]; is a length T sequence of
actions beginning at timestep t and Oy is a length T sequences of ob-
servations ending at timestep t. Sampling is then achieved through a
denoising process known as Stochastic Langevin Dynamics [Welling
and Teh 2011] starting from pure random noise.

AR = (AR — yep(AR, 04,11, k) + N(0,6°1)), (1)

where «,y and o are hyper-parameters of the denoising process.
The noise-prediction model is learned in a self-supervised manner
using the mean squared error objective

L = MSE(eF, eg(AY + €F, 04, 71, K)), )

where €k is the noise applied at to the action sequence at diffusion
step k and A? is the clean action sequence.

3.3.2  Model Architecture. Figure 2 depicts our model architecture.
We adopt a similar architecture to the time-series diffusion trans-
former proposed by Diffusion Policy [Chi et al. 2023], with slight
modifications depending on the application. For locomotion control
and motion tracking, task information is included in the observa-
tion. For text-to-motion, the conditioning for the action sequence is
computed as follows: a raw text prompt is encoded using the CLIP
ViT-B/32 model [Radford et al. 2021] , then passed through an MLP
text encoder. The observation Ot is also fed through an MLP encoder.
The diffusion step k is embedded into the same space and added to
the text embedding. This result is fed through a Feature-wise Linear
Modulation (FiLM) layer [Perez et al. 2017], which applies a learned
element-wise scale and shift transformation to the embedding of
Ot. Finally, the diffusion step embedding is concatenated with the
FiLM layer result to produce our condition, serving as the input to
the transformer encoder. This conditioning method is represented
in Block B of Figure 2. The transformer decoder then takes an em-
bedding of the noisy action sequence A’f along with the encoder
result and predicts the noise applied to the action k. For motion
tracking tasks, we condition our transformer encoder using Block
A of Figure 2, which is similar to Block B but without the CLIP text.

4  Experiments

We demonstrate the generality and effectiveness of PDP by applying
it to three distinctive applications using three different datasets: loco-
motion control under large physical perturbations using addbiome-
chanics dataset [Werling et al. 2023], universal motion tracking
using AMASS [Mahmood et al. 2019], and physics-based text-to-
motion synthesis using the KIT subset of AMASS and HumanML3D
[Guo et al. 2022] for text labels. Experimental details for each appli-
cation are described in this section, with results, comparisons, and
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ablation studies presented in the next section. Note that although
each application uses the same model architecture in Figure 2 (ex-
cept for Block A and B), they are trained separately with different
distilled datasets.

4.1 Perturbation Recovery

The goal of the perturbation recovery task is to train a single diffu-
sion policy that is capable of capturing the wide range of human
responses to perturbations. Being able to model and simulate this
behavior is important for studying human robustness [Jensen et al.
2023] and for designing better exo-skeleton or prosthetic systems
[Hodossy and Farina 2023].

4.1.1 Dataset. We use the Bump’em dataset, a subset of the Ad-
dbiomechanics dataset [Werling et al. 2023], which consists of recov-
ery motions of human participants being physically pushed while
walking on a treadmill. Participants are perturbed in the same stance
with varying forces and directions applied to the hip through a par-
allel tethered robot [Tan et al. 2020]. The recorded motions demon-
strate that participants exhibit a diverse set of recovery strategies
even under the same perturbation and initial stance, which makes
this dataset particularly well suited for studying how well a model
can capture the multi-modality of human behaviour.

For this task, trials from one participant were used. Perturbations
were collected as the subject walked forward on a treadmill at a
fixed speed, impacted at left toe-off stance in four directions (front,
left, right, back) with magnitudes of 7.5% and 15% body weight,
resulting in 16 total motions; two were dropped due to poor motion
quality.

4.1.2  Experimental Details. We use a 25-joint skeletal model from
Addbiomechanics [Werling et al. 2023], optimized for the specific
participant’s inertia and joint lengths. The environment is simulated
with Mujoco and consists of the simulated treadmill and the skeletal
model. In this environment, the observation space is defined in
the world frame. The RL agent’s observation consists of the bodies
center of mass positions x? € R3B and linear velocities P € R3B,
as well as the bodies rotation x” € R3*3*B During RL training, the
agent receives the same perturbation experienced by the human
during the trial and optimizes tracking the human response through
the collected reference motion following [Peng et al. 2018].

After training expert RL policies for each motion, we collect new
observations for PDP, by including a binary signal p that indicates if
the human is being perturbed, without detailing the force magnitude
or direction. This signal is helpful for the diffusion policy to differen-
tiate between normal walking and perturbation recovery; otherwise,
the policy would react to non-existent perturbations. This addition
is justified, as humans can discern disturbances directly. Further-
more, this inclusion provides no predictive advantage, similar to
providing foot contact information. The full perturbation recovery
observation can then be defined as a tuple (x?,x",xP, %", p). 15
motions were sampled using the various noisy/clean state action
strategies, and used to train PDP. Each model was trained on a single
RTX 2080 Ti GPU for approximately 1.5 hours.
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Table 1. Performance with different sampling strategies. The Tracking task was trained on the KIT subset of the AMASS train set and evaluated on the AMASS
test set. The Perturbation task was trained on the Bump’em dataset. *Indicates our method.

Sampling Strategy | Tracking Task | Perturbation Task
State Action | Success (%) T Egmpipe |  Empjpe 4  Evell  Eacc | | SuccessID(%)T FPC|
Clean Clean 68.8 57.1 33.1 8.77 5.55 3.36 -
Noisy Noisy 64.5 61.7 41.4 16.3 17.6 59.5 7.94

Noisy* Clean” 93.5 49.9 31.6 8.25 5.55 100.0 2.77

4.2 Universal Motion Tracking

The goal of the universal motion tracking task is to train a single
diffusion policy capable of controlling the character to track any
given reference motion under physics simulation.

4.2.1 Dataset. We use the AMASS dataset, and use the same
train/test splits as PHC [Luo et al. 2023], where the sub-datasets:
Transitions Mocap and SSM synced are used for testing and the
rest are placed in the training set. Since our method is agnostic to
the RL policies themselves, we utilize pre-trained motion tracking
controller PHC [Luo et al. 2023] to track most of the motions and
train individual policies for challenging motions where PHC fails
[Peng et al. 2018]. With PHC and a few specialized small policies, our
training set covers most motions in AMASS [Mahmood et al. 2019]
and KIT [Plappert et al. 2016]. Following the same practice in PHC,
we exclude motions that are infeasible in our physics simulators,
such as leaning on tables.

4.2.2  Experimental Details. We use the humanoid model from [Luo
et al. 2023], which follows the SMPL kinematic structure with J = 23
spherical joints. The reference motion includes the linear position

xP € R¥ and 6d rotation x”_, € R% of each joint. The linear
ref ref

and angular velocities are found by finite difference xf ef € R,
x; of € R3/ respectively. The full motion tracking observation can
then be defined as a tuple (Ax?, Ax", AxP, Ax", xfef, x:ef), where

AxP = xf of = xP and the other A terms are similarly defined. All
quantities are measured in the character frame, where the origin
is placed at the root of the character, the x-axis aligns with the
character’s facing direction, and the z-axis points upward.

We train PDP with a history of 4 observations and 1 action pre-
diction horizon. For ablation experiments using KIT, we train on 4
NVIDIA A100 GPUs for approximately 24 hours. For experiments

using AMASS, we train on 8 NVIDIA V100 GPUs for about 70 hours.

4.3 Text-to-Motion

In the physics-based text-to-motion application, the goal is to train
a diffusion policy to generate motions conditioned on a natural
language text prompt.

4.3.1 Dataset. For training data, we use KIT dataset and the text
annotations from HumanML3D [Guo et al. 2022]. The task vector
is generated by passing the text annotation through the CLIP em-
bedding [Radford et al. 2021]. We use the same pre-trained tracking
controller, PHC, to obtain the observations and actions for training.

4.3.2  Experimental Details. The observation space used to train
PDP with the text-to-motion task is different from the tracking task.
We use the joint position x? € R/ and linear velocities x? € R¥/, as
well as the joint rotation x” € R®/ and rotational velocities x” € R%/.
All quantities are measured in the character frame as defined in the
motion tracking task. We use a history of 4 observations and 12
action prediction horizon. We train on 4 NVIDIA A100 GPUs for
approximately 32 hours.

5 Results

The experiments are designed to answer the following questions.

(1) Does the proposed sampling strategy, noisy-state-clean-action,
outperform alternatives sampling strategies?

(2) For the application of perturbation recovery during locomotion,
can PDP achieve both robust and diverse control policy?

(3) For universal motion tracking, how does PDP compare to the
state-of-the-art RL policy and how important is it to use a gen-
erative model for this task?

(4) Can we train a physics-based text-to-motion policy using PDP?

5.1 Sampling Strategy

We examine the impact of sampling strategies on the tracking and
perturbation tasks. For the tracking task, training was conducted
using the KIT dataset, with evaluations performed on the test set
employed in the AMASS-Test split. Table 1 records the quantitative
results of different sampling strategies.

The clean-state clean-action approach has the lowest perfor-
mance, with a success rate of 3.36% for perturbation and 68.8%
for tracking. In comparison, the noisy-state noisy-action strategy
significantly improved the perturbation task to 66.9%, but the track-
ing performance dropped to 64.5%. A possible explanation for the
drop in performance in the tracking task but increased performance
in the perturbation task is the scale of datasets. The clean-state
clean-action strategy restricted the perturbation dataset to just 14
unique trajectories, limiting its diversity. In contrast, the tracking
task included 3,626 examples, making it less dependent on additional
data from noisy sampling. Thus, random sampling strategies were
likely more beneficial for the perturbation task as they introduced
necessary variability lacking in the original dataset.

Noisy-state clean-action strategy outperforms other strategies,
achieving a perfect success rate of 100% in the perturbation task and
93.5% success rate in the tracking task, see Table 1. These results un-
derscore the importance of selecting the right sampling strategy. By
visiting out-of-distribution states and collecting the optimal action,
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Table 2. Motion tracking results on AMASS train and test datasets.

AMASS-Train* AMASS-Test*

Method ‘ Success (%) T Eg-mpjpe l Empjpe | Eveal Eaccl ‘ Success (%) 1 Eg—mpjpe l Empjpe | Evel Eaccl
MLP 98.8 37.3 26.5 4.6 3.0 97.8 47.3 30.9 8.0 5.9
PHC 98.9 37.5 26.9 4.9 3.3 96.4 47.4 30.9 9.1 6.8

PDP (Ours) 98.9 36.8 26.2 4.7 33 97.1 46.2 30.2 8.0 5.7

this approach generates higher quality demonstrations, leading to
better generalization and robustness.

5.2 Perturbation Recovery

We compare the performance of PDP to two other baselines, a C-VAE
and an MLP. The selection of these approaches was based on their
reliance on supervised learning principles. The C-VAE introduces an
alternative generative model framework, whereas the MLP serves
as a deterministic alternative. The C-VAE uses a similar setup as
[Won et al. 2022] where state and next state are fed into an encoder
to produce a latent code. A decoder takes a randomly sampled latent
vector alongside the current state to produce the current action. Both
the C-VAE and MLP follow the same architecture as PDP with minor
algorithm-dependent adjustments such as excluding the diffusion
timestep embedding.

5.2.1 Robustness. Robustness is measured by the successful comple-
tion of an episode, defined as the agent not falling within 6 seconds
of the perturbation, a period that allows for several gait cycles to
complete post-perturbation. Perturbations are categorized into In-
Distribution (ID), which are the same as those in the training data,
and Out-of-Distribution (OOD) perturbations, which determines the
policy’s capacity to effectively handle unforeseen perturbations by
adjusting aspects such as timing, intensity, and direction of impact.
We sample OOD perturbations as follows: We choose a random per-
turbation to cover all gait phases by randomly choosing an impact
timing within [0, 2] seconds (equivalent to 2.5 gait cycles overlap),
a random force magnitude between 7.5% and 15% of body weight
which represents the extrema of the forces used in the Bump’em
dataset, and a random force direction that is parallel to the ground.

Table 3 shows the ID and OOD performance of each baseline.
All three models can handle ID perturbations, achieving a success
rate of 100%. However, when faced with OOD perturbations, C-VAE
and PDP methods exhibit notably higher performance, with C-VAE
achieving a success rate of 91.3% and PDP achieving a success rate
of 96.3%. Handling OOD impacts is challenging because the model
may not have seen them before, especially the impact timing, as all
training examples occur at the left toe-off. The OOD distribution
performance results could be attributed to the multi-modal nature of
the dataset, where using an MLP would result in policies that return
the average of the response recorded in the dataset, causing the
policy to fail, while C-VAE and PDP can synthesize a more tailored
response from the multimodal distribution.

Two important hyper-parameters in our method are the choice
of noise level for creating the stochastic dataset and the action pre-
diction horizon. Note that the action prediction horizon refers to
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the number of actions being predicted during training. For infer-
ence, all policies re-plan after every step of the simulation. Table 4
shows the performance across different choices of noise level and
horizon. Importantly, we see that 0 noise (equivalent to clean-state
clean-action) performs extremely poorly with an ID success rate of
just 3.36%. Adding noise increases robustness significantly before
eventually slightly harming performance. For the action prediction
horizon, we note that lower horizons yield better performance, with
horizon 1 achieving the best ID and OOD success rates of 100.0% and
96.3%, respectively. Larger horizons see a dramatic drop in perfor-
mance. We speculate that this is because actions closer to the current
timestep are more important for stability, but our loss function does
not weight this importance.

5.2.2  Foot Placement Correctness. Foot placement holds significant
importance in understanding perturbation response and balance
[Perry and Srinivasan 2017; Rebula et al. 2013]. A reliable model
should ideally mirror the human response or closely approximate it
while also accounting for multi-modality. Figure 4a illustrates both
the actual foot placements of the participant and the distribution
of foot placements obtained through a noisy sampling procedure.
When examining foot placement correctness for impacts within the
distribution, a lower variance in foot placement should be antici-
pated. This is gauged by assessing the variance in the L2 distance
between each foot placement and the nearest ground truth data
point. We design a metric based on this called foot placement cor-
rectness (FPC) to answer how spread apart the foot positions are
from the policy compared to the closest ground truth position:

1 N
= 3 0 et Vo= s ] 0
where (x;, y;) refers to the foot contact position from a single policy
rollout and (X}, §;) refers to the ground truth foot contact positions.

PDP achieves a much lower FPC score, 2.79 compared to the
top performing C-VAE model f = .001, 4.97 as shown in Table 3,
signifying its proficiency in generating action state sequences that
closely align with human responses. This is also demonstrated in
Figure 4 where it is clear that PDP aligns more closely to the ground
truth foot contact positions than the C-VAE.

C-VAE also struggles to capture multi-modality effectively. This
is exemplified in the right impact, where the C-VAE prioritizes mod-
eling one mode while PDP is able to generate both modes. Figure
3 shows two responses by the diffusion policy for the rightwards
impact. Figure 4 also displays the initial foot contact positions in
response to the perturbation from both models. Balancing the re-
construction loss and the KL loss in C-VAE results in a significant



Table 3. Baseline comparisons on the Bump-em Dataset. ID stands for in-
distribution, OOD stands for out-of-distribution, and FPC stands for foot
placement correctness.

Method ‘ Beta Value | SuccessID (%) T Success OOD (%) T FPC |

0.0001 98.1 91.0 5.09
0.001 100.0 91.3 4.97
C-VAE 0.01 100.0 71.0 4.26
0.1 99.8 61.3 5.27
1.0 99.8 59.0 5.28

MLP - 100.0 81.0 -
PDP ‘ - ‘ 100.0 96.3 2.79

Table 4. Noise Level and Horizon Ablation for Bump’em Perturbation Task.
FPC is measured on the left foot contact positions.

Noise Level Horizon | Success ID (%) T Success OOD (%) T FPC |

0.0 6 3.36 0.0 -

0.08 6 97.9 75.0 2.26
0.12 6 100.0 90.0 2.77
0.16 6 90.5 83.0 2.98
0.12 1 100.0 96.3 2.79
0.12 6 100.0 90.0 2.77
0.12 9 65.0 19.7 3.40
0.12 12 6.5 3.6 -

trade-off in capturing the multi-modality and the variance in foot
contact. Allowing the model to exhibit more variance enables better
mode capture. Conversely, reducing the significance of the latent
code leads to the model collapsing to a specific response with re-
duced variance. The comparison between Figure 4b and 4c may seem
counter-intuitive in that increasing the f term decreases variability.
Nevertheless, this issue of posterior collapse is linked to C-VAE and
is further discussed in the Discussion section.

5.3 Motion Tracking

We demonstrate that PDP is capable of reliably tracking a significant
portion of the motion in AMASS. Our method achieves a 96.4%
success rate on the AMASS* test dataset, where failure is defined as
in PHC [Luo et al. 2023]: an episode is considered a failure if at any
point during evaluation the joints are, on average, more than 0.5
meters from the reference motion. In addition to the success rate,
we also adopt metrics used by [Luo et al. 2023], specifically mean
per-joint position error (Empjpe) and global mean per-joint position
error (Eg-mpjpe ), Which assess the model’s accuracy in matching the
reference motion in local and global frames. We also measure the
error in velocity (Ey.) and acceleration (Eacc) between the simulated
character and the motion capture data. As shown in Table 2, PDP
matches or outperforms PHC in all metrics.

Given the same architecture, we also compare with a regression
model using MLP without diffusion, and find that MLP outperforms
both PDP and PHC. This result is not entirely surprising because
the benefit of generative models for the motion tracking application
is not obvious in this task, as the action for tracking a particular
reference pose from a particular state is not multi-modal but could
be used as a motion prior.

PDP: Physics-Based Character Animation via Diffusion Policy « 7

5.4 Text-to-Motion

Figure 1 (middle) shows our results in the text-to-motion domain.
We demonstrate that PDP is capable of following diverse text com-
mands in natural language, such as jumping and kicking commands.
Evaluating a model that employs auto-regressive inference during
simulation with a limited history for composite actions presents
significant challenges. Specifically, a prompt such as "walk then
jump" cannot be effectively executed because the agent lacks the
necessary memory of the initial action. To address this, we evaluate
the model using a set of 42 action text prompts from the dataset, such
as "a person dances" and "a person walks forward." Each prompt
is considered successful if the model performs the specified action
without falling.

Diffusion models excel in handling multi-modal distributions,
which may not significantly benefit the motion tracking task. How-
ever, in the text-to-motion application, where capturing multi-
modality is crucial, diffusion models (PDP) significantly outper-
forms MLP achieving a success rate of 57.1% compared to 11.9%,
respectively.

6 Discussion

Robust Locomotion Policies. Given the recent robotics commu-
nity’s interest in developing robust humanoid locomotion policies,
our findings are particularly relevant. [Kaymak et al. 2023; Li et al.
2021; Singh et al. 2023]. While a single optimal strategy might suffice
for a specific impact or perturbation, our results indicate that an
MLP, which cannot capture different modes, lacks robustness to
out-of-distribution (OOD) perturbations. In contrast, our diffusion
model effectively stores a variety of strategies, providing it with a
broader base of information to draw from when an OOD impact
occurs. This capability could enhance locomotion policies’ ability
to handle diverse and unpredictable real-world perturbations.

C-VAE Posterior Collapse in Perturbation Recovery Task. Tuning
the Beta value in C-VAE models presents significant challenges,
primarily due to the posterior collapse problem. Increasing the j
value forces the latent distribution to align more closely with a
normal distribution and can cause the model to disregard the latent
vector and rely solely on the observation, effectively reducing the
model to function like an MLP. We find that diffusion models cover
the distribution of initial foot contact positions more effectively
while requiring less tuning, making this model a preferred choice.

PDP and MLP Tracking Task. Previous literature has shown the
difficulty of producing a single and reliable motion tracker [Luo
et al. 2023; Won et al. 2020b]. Our method can train a model directly
through supervised learning and exceed the performance of more
complex hierarchical RL policies. Furthermore, This capability facil-
itates the creation of a pre-trained tracking controller that can be
swiftly adapted to new datasets. This feature is notably distinct from
conventional RL-based methods [Luo et al. 2023; Won et al. 2020a,b]
which necessitates finetuning low-level controllers or training com-
pletely new ones. Additionally, as hierarchical systems accumulate
new low-level controllers, the composer faces increasing complexity,
often necessitating a complete system retrain to reduce the number
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of low-level controllers. In contrast, our method only requires stan-
dard finetuning procedures to integrate a new dataset after training
the local experts, enabling more efficient scalability with additional
motion datasets.

Text2Motion Challenges. Our system’s capability extends to the
text-to-motion task, demonstrating smooth transitions between
text prompts despite a limited range of transitions.We hypothesize
this effectiveness is partly due to the noisy sampling approach.
By creating a band around each clean trajectory, we inadvertently
increase the likelihood of intersecting with the state of another
motion, facilitating more transitions.

However, our empirical observations indicate that text-to-motion
does not perform at the same level as kinematic motion generation
models. This discrepancy can likely be attributed to several factors.
First, the model must balance performing the motion and maintain-
ing equilibrium. When losing balance, it compensates with small
corrective steps, disrupting the original motion. Secondly, while
combining two distinct motions can be close in kinematic space,
like superimposing root rotation onto a jump to create a jump-and-
turn motion, achieving these motions may be significantly different
in skill space. That is, the agent faces a challenge in determining
how to manipulate the feet to rotate the root while simultaneously
executing the jump.

Limitations. Despite its advantages, our approach has notable
limitations. The primary constraint is the speed of the denoising
process. Compared to the inference time of the MLP baseline, the
diffusion model takes K times longer, where K is the number of
denoising steps. This can make it challenging for applications that
require high frequency control. Recent methods can reduce the
number of inference steps required [Huang et al. 2024; Yin et al.
2023].

Another limitation lies in the trade-off inherent in diffusion-based
policies when predicting over longer horizons. Although capturing
multi-modality necessitates considering future actions, focusing on
predicting multiple actions and weighting them equally can dilute
the importance of the immediate action, thereby reducing robust-
ness. This tension between long-horizon prediction for diversity
and the accuracy of immediate actions is a crucial challenge. Future
work could explore adaptive weighting schemes during training
that balance effective long-horizon prediction with the precision of
immediate actions.

7 Conclusion and Future Work

We present a novel framework for physics-based character control
that leverages the capability of diffusion models to capture diverse
behaviors. Our proposed sampling strategy, noisy-state-clean-action,
significantly outperforms alternative sampling strategies. For the
perturbation recovery task, our method effectively captures the dis-
tribution of human responses and demonstrates robustness to both
in-distribution and out-of-distribution perturbations. In universal
motion tracking, our method surpasses the state-of-the-art perfor-
mance, including our baseline using a non standard non-generative
model. Additionally, we showcase our methods ability to synthesize
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motion conditioned on text. Future work could look into speed-
ing up the inference by using methods like [Gu and Dao 2023; Yin
et al. 2023], or leveraging the large pre-trained motion tracker for
downstream RL tasks.
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Fig. 3. PDP rollouts for a 15% body weight perturbation where the white pelvis and arrows indicate where the force is applied and the direction, respectively.
Each row demonstrates a unique mode of recovery from the same perturbation.

(a) Ground truth distribution (b) VAE $ 0.01 (c) VAE $0.001 (d) PDP horizon 1 (e) PDP horizon 6

Fig. 4. Global left foot contact positions after 15% body weight perturbation in meters. +Y and +X align with the character’s forward and right directions,
respectively. The different colored arrows represent the directions that the force is applied on the person. The shaded areas represent foot contacts in the
training distribution with noise level 0.12. The black X’s represent the ground truth foot contacts of the human participant. All policies were trained on the
stochastic dataset with noise level 0.12.
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