Journal of Machine Learning Research 25 (2024) 1-45 Submitted 2/24; Revised 11/24; Published 12/24

An Optimal Transport Approach for Computing Adversarial
Training Lower Bounds in Multiclass Classification

Nicolas Garcia Trillos GARCIATRILLO@QWISC.EDU
Department of Statistics
University of Wisconsin-Madison

1300 University Avenue, Madison, Wisconsin 53706, USA

Matt Jacobs MAJACO@UCSB.EDU
Department of Mathematics

UC Santa Barbara

552 University Rd, Isla Vista, CA 93117, USA

Jakwang Kim JAKWANG.KIM@MATH.UBC.CA
Department of Mathematics

University of British Columbia

198 Mathematics Road, Vancouver, British Columbia, V6T 172, Canada

Matthew Werenski MATTHEW.WERENSKIQTUFTS.EDU
Department of Computer Science

Tufts University

420 Joyce Cummings Center, 177 College Avenue, Medford, MA 02155, USA

Editor: Zaid Harchaoui

Abstract

Despite the success of deep learning-based algorithms, it is widely known that neural
networks may fail to be robust. A popular paradigm to enforce robustness is adversarial
training (AT), however, this introduces many computational and theoretical difficulties.
Recent works have developed a connection between AT in the multiclass classification set-
ting and multimarginal optimal transport (MOT), unlocking a new set of tools to study
this problem. In this paper, we leverage the MOT connection to propose computationally
tractable numerical algorithms for computing universal lower bounds on the optimal ad-
versarial risk and identifying optimal classifiers. We propose two main algorithms based
on linear programming (LP) and entropic regularization (Sinkhorn). Our key insight is
that one can harmlessly truncate the higher order interactions between classes, preventing
the combinatorial run times typically encountered in MOT problems. We validate these
results with experiments on MNIST and CIFAR-10, which demonstrate the tractability of
our approach.

Keywords:  Adversarial learning, Optimization, Linear programming, Sinkhorn algo-
rithm, Multiclass classification, Optimal transport, Multimarginal optimal transport, Wasser-
stein barycenter, Generalized barycenter problem

1. Introduction

While neural networks have achieved state-of-the-art accuracy in classification problems, it
is by now well known that networks trained with standard error risk minimization (ERM)
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can be exceedingly brittle (Goodfellow et al., 2014; Chen et al., 2017; Qin et al., 2019; Cai
et al., 2021). As a result, various works have suggested replacing ERM with alternative
training procedures that enforce robustness. In this paper, we focus on adversarial train-
ing (AT), which converts standard risk minimization into a min-max problem where the
learner is pitted against an adversary with the power to perturb the training data (see, e.g.,
Madry, Makelov, Schmidt, Tsipras, and Vladu (2017); Tramer, Kurakin, Papernot, Good-
fellow, Boneh, and McDaniel (2018); Sinha, Namkoong, and Duchi (2018)). This provides
a powerful defense against adversarial attacks at the cost of increased computation time
and worse performance on clean data (Tsipras et al., 2018). Hence, balancing robustness
against efficiency of computation and clean accuracy is central to the effective deployment
of adversarial training.

A key hyperparameter in AT is the adversarial budget e, which controls how far the
adversary is allowed to move each individual data point. As ¢ increases, an adversarially
trained network will become more robust but will lose accuracy, as the learner is forced
to be robust against stronger and stronger attacks. Due to the computational cost of
adversarial training (one must solve a min-max problem rather than a pure min problem),
hyperparameter tuning of the adversarial budget is very expensive. As a result, there is a
great practical need for theory and algorithms that can predict good choices of ¢ without
requiring massive computation.

A recent body of work has attempted to address this issue by providing bounds on the
gap between the optimal adversarial risk (with a given budget €) and the optimal standard
risk. Indeed, provided that these bounds are reasonably tight and efficiently computable,
they may provide a more efficient route for a practitioner to choose and tune €.

Thus far, the literature has largely focused on the theoretical side of characterizing
such bounds. A number of authors have provided bounds for specific types of classifiers and
neural network architectures by Weng, Zhang, Chen, Yi, Su, Gao, Hsieh, and Daniel (2018);
Yin, Kannan, and Bartlett (2019); Khim and Loh (2019), though it is unclear whether any
of these results continue to hold if the underlying model changes. On the other hand, a more
recent body of work has established lower bounds that are classifier agnostic (see Bhagoji,
Cullina, and Mittal (2019); Pydi and Jog (2021); Garcia Trillos and Murray (2022); Bungert
and Stinson (2022) for the binary classification case and Garcia Trillos, Jacobs, and Kim
(2023a); Dai, Ding, Bhagoji, Cullina, Zhao, Zheng, and Mittal (2023) for the multiclass
case). The classifier agnostic lower bounds are obtained by relaxing the training problem to
allow the learner to select any measurable probabilistic classifier (note that in the modern
era of neural networks with billions of parameters, this relaxation may be relatively tight).
As a result, the lower bounds are in fact universal and have no dependence on the learning
model. Nonetheless, despite this fertile body of work, the actual computation of these
bounds along with implementable algorithms has been left largely unexplored.

The main focus of this paper is to provide efficient algorithms for computing classifier
agnostic lower bounds on the optimal adversarial risk. To do so, we utilize an equivalence
discovered by Garcia Trillos, Jacobs, and Kim (2023a) between the relaxed adversarial
training problem and a multimarginal optimal transport (MOT) problem related to finding
barycenters using the oo-Wasserstein distance. Thanks to this connection, we can leverage
tools from computational optimal transport to develop efficient algorithms for solving the
equivalent MOT barycenter problem.
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In general, MOT problems (including the Wasserstein barycenter problem) are NP-Hard
(Altschuler and Boix-Adsera, 2022). However, we will show that when ¢ is not too large (the
relevant regime for AT) it is possible to efficiently solve the particular MOT problem related
to AT. The key insight is that for small values of ¢, the search space for the problem can be
significantly truncated, allowing for very efficient computations. Notably, this truncation
can only decrease the value of the problem, preserving the guarantee that computed values
are truly lower bounds on the optimal adversarial risk. Equally important is the fact that
this truncation is compatible with both linear programming and the Sinkhorn algorithm, two
of the most popular methods for solving MOT problems. Leveraging these two approaches,
we propose two very efficient algorithms for solving this problem. We then validate our
algorithms with experiments on MNIST and CIFAR-10 to demonstrate the tractability of
our approach.

The closest paper to this work is Dai, Ding, Bhagoji, Cullina, Zhao, Zheng, and Mit-
tal (2023), where independently to Garcia Trillos, Jacobs, and Kim (2023a), the authors
relate the multiclass relaxed adversarial learning problem to an equivalent combinatorial
optimization problem using the notion of a conflict hypergraph. Although the work Dai,
Ding, Bhagoji, Cullina, Zhao, Zheng, and Mittal (2023) also explores the idea of truncation,
the authors do not provide any tailored algorithms to solve the problem. In contrast, we
present two concrete algorithms and provide their computational complexity.

1.1 Our contributions

Our main contributions in this paper are the following.

e We introduce and analyze a new algorithm for approximating adversarial attacks
based on a stratified and multi-marginal form of Sinkhorn’s algorithm. In addition
we provide a publicly available implementation of our algorithm.!

e We give rigorous bounds on the computational complexities of our algorithms based
on the user chosen truncation rate. We show that a certain class of MOT problems
arising in adversarial training models can be solved very efficiently, despite the fact
that MOT problems are in general NP-Hard.

e We implement, discuss, and compare against an exact solver based on Linear Program-
ming as was done in Dai, Ding, Bhagoji, Cullina, Zhao, Zheng, and Mittal (2023).
We also implement fast constructions of multiclass variants of the Cech and Rips
complexes which may be of broader use, particularly for topological data analysis.

1.2 Outline

The rest of the paper is organized as follows. In section 2, we will formally introduce mathe-
matical backgrounds for the adversarial training problem and notation used throughout the
rest of the paper. In section 3, we will present our two main algorithms along with informal
explanations for their efficiency and run time. In section 3.4 we present our main theoretical
results on the analysis of our algorithm based on Sinkhorn iterations. Rigorous proofs of
our main theoretical results will be delayed until the appendix. In section 4, we provide and

1. Code can be found at https://github.com/MattWerenski/Adversarial-0T
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discuss empirical results obtained from running our proposed algorithms. We will finish off
the paper in section 5, with some conclusions and discussions of future directions. Finally,
all technical details and proofs will be discussed in appendix A.

2. Preliminaries

2.1 Basic concepts and notation

Let (X,d) = (RP,|| - ||) denote the feature space, and let Y := {1,..., K} be the set
of K classes for a given classification problem of interest. Let Sx = {A C Y : A #
0} and Sk (i) := {A € Sk: i € A}. Let Z := X x Y denote the set of feature-class
pairs. Let u € P(Z) be a Borel probability measure that represents the ground-truth data
distribution. For convenience, we will often describe the measure p in terms of its class
weights = (u1,...,uK), where each p; is a positive Borel measure (not necessarily a
probability measure) over X’ defined according to:

pi(E) = p(E x {i}),

for all Borel measurable £ C X. Notice that the measures p;’s are, up to normalization
factors, the conditional distributions of features given the specific labels, and } ;5 pi(X) =
Il = 1.

The typical goal of (deterministic) multiclass classification is to find a Borel measur-
able map f : X — ) within a certain class (a.k.a. hypothesis class) which minimizes
E[¢(f(X),Y)], where (X,Y) ~ pu, and £ : Y x Y — R is a loss function. Due to the non-
convexity of the space of multiclass deterministic classifiers, often one needs to relax the
space and instead consider probabilistic multiclass classifiers f : X — Ay where

Ay = {(ui)iey :0 < u; < 1,2'&1 = 1}
i€y

is the probability simplex over the label space ). In what follows, we denote the set of all
such Borel maps by F := {f : X - Ay : f is Borel measurable}. Given f € F and z € X
we use f;(x) to denote it’s ith component at the point z. The value of f;(x) should be
interpreted as the estimated probability that = is in the ith class under the classification
rule f. This extension to probabilistic classifiers is typically unavoidable, especially for
adversarial problems in multiclass classification Garcia Trillos, Jacobs, and Kim (2023a,
2024). The objective in this setting is given by

nf B(f, 1) = Byl (X), V)] (1)
(1) represents the standard (agnostic) multiclass Bayes learning problem. Through this
paper, the loss function £ : Ay x Y — R is set to be #(u,i) := 1 — u; for (u,i) € Ay x Y,
which is usually referred to as the 0-1 loss. Under the 0-1 loss function the risk R(f, 1) can
be rewritten as

R(F0 =Y [ (1= fie) duo)
ey’

and is well known that its solution is the so called Bayes classifier, which admits an explicit
form in terms of the distribution u.
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2.2 Adversarial training

One popular approach used in adversarial training is distributionally robust optimization
(DRO). Here the training model is based on a distribution-perturbing adversary which can
be formulated through the min-max optimization problem

RERO := inf ~Sup {R(fv ﬁ) - C(//Jv ﬁ)} : (2)
feF iep(2)

Here, the adversary has the power to select a new data distribution g, but they must pay a
cost to transform y into 1 given by C' : P(Z2) xP(Z) — [0, 00|, which measures how different
1 is from p. This forces the learner to select a classifier f that is robust to perturbations
of the ground truth data p within a certain distance determined by the properties of the
chosen cost C.

In this work, we consider the family of costs C.,e > 0 which are transportation costs
from p to g given by

Couwmi= int [ o a)dn(n.a),

ey 7 €T (s, 07)

where 11; is defined analogously to p;, II(u;, f1;) is the set of probability measures over X' x X
whose first and second marginals are p; and pu; respectively, and ¢ is given by

er(a.7) = {0 da, &) <e (3)

+o0o otherwise

for some distance d on X and some adversarial budget €. We will slightly abuse notation
and write C:(u;, fi;) to mean the transport cost between p; and f; with cost co. If TI(p;, ;)
is empty, which is the case when ||u;|| # |||, then we take Cg(pi, i1;) = oo.

An equivalent perspective is that g is a feasible attack for the adversary only if for
all i € Y it holds that Woo(u;, 1;) < €, where Wy, denotes the co-OT distance between
measures. In other words, the adversary is only allowed to move each individual data point
in the distribution by a distance € in the feature space X. This shows how the choice of
budget ¢ is related to the strength of the adversary. As € increases, the adversary can make
stronger and stronger attacks.

Since the min in problem 2 is over all possible measurable probabilistic classifiers, the
value of problem (2) provides a universal lower bound for learning problems over any family
of (Borel measurable) classifiers (e.g., neural networks, kernel machines, etc ) with the
same type of robustness enforcing mechanism (i.e., same adversarial cost). For this reason,
computing (2) is of relevance, and in particular an estimated value for (2) can be used as
benchmark when training structured classifiers in practical settings, as has been discussed
in the introduction.

2.3 An equivalent MOT problem

In Garcia Trillos, Jacobs, and Kim (2023a), the authors showed that the DRO training
problem (2) is equivalent to an MOT problem related to solving a generalized version of
the Wasserstein barycenter problem. In what follows we provide some discussion on this
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Figure 1: (Left) A simple six class dataset with 50 points in each class. Filled regions are
colored according to the class of the nearest point. (Right) The optimal adver-
sarial attack applied to the dataset on the left. The shared colors from the left
figure represent the singleton classes fi(1y, ..., fiys} and the blended colors repre-
sent the various fig for |A| > 2. Points are colored according to the combination
of classes they are associated with. Filled regions are colored according to the
combination of the nearest point.

equivalence. Given u = (u1,..., 1K), the generalized barycenter problem associated to the
cost ¢ in (3) is

min_ {)\(X)—FZC’Q(m,ﬁi) : A > for alliey}, (4)

A}ﬁlv“'nuK icy

where by A > 11; we mean that the positive measure A dominates the measure p;. That is,
for any non-negative measurable function g, it holds that [, g(z)dA\(z) > [, g(x)dfi(x).
For any feasible collection A, fi1, ..., i it is possible to perform the following decompo-
sition
A= "X, M=mavVieAd [i= Y [avVi=1,.K, (5)
A€eSy A€SKk (i)

where A4 is a measure which accounts for the jointly overlapping mass of the pi; with i € A:
see Figure 1 for the pictorial explanation. The indices A’s of the decomposition represent
the interactions between different classes. To decrease A\(X), which can be interpreted as
the classification power by the learner if the adversary were to choose the distributions jfi;,
the adversary would attempt to make the overlap between different classes be as large as
possible, i.e., aim to make fi; = f;. Under the additional transportation cost constraints, the
optimal strategy for the adversary is to decompose the i;’s according to fi; 4 = fij 4 = Aa for
alli,j € A. From the decomposition of ji; one can also decompose j; into ju; = > 4 S (i) Mi A
in such a way that Ce(u;, it;) = ZAGSK(i) Ce(pi A, 1i,4). Using the decomposition (5) and
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the identity for the cost one can convert (4) into the equivalent problem

min Z (/\A(X)—i—zca(/\A,,ui,A)) ) (6)

Adopi 4)EF
A )l | S5 icA

where I is the feasible set

Fi= ¢ (Aa,pia) - Z HiA =i Vi€e)y
AESK(i)

One can rigorously prove that an optimal A4 is a barycenter for the set of measures,
{mia =i € A}. Asin classical (Wasserstein) barycenter problems (Ekeland, 2005; Agueh and
Carlier, 2011b,a), (6) has an equivalent stratified MOT formulation: letting X4 := [Licad
and 24 := (z;:1 € A) € X4,

min 3 /X (Ut eaa(aa) dra(ea)

{WA}AESK AcSk

s.t. Z Piyma=p; Vi€,
AeSK(3)

(7)

where P; is the projection map (z4) — x; onto the i-th component for i € A, and for each
A € Sk, cy is defined as

ceA(za) := inf c-(2', x;) (8)
x'eX 4
€A
with the convention that c;; = 0 for all : € Y. It is proved in Garcia Trillos, Jacobs, and
Kim (2023a) that

(2)=1-(4)=1-(6)=1— (7).

This paper is devoted to developing and understanding algorithms to solve (2), or equiva-
lently to solve (6) and (7), respectively.
The dual formulation of (7), studied in Garcia Trillos, Jacobs, and Kim (2023a), takes
the form
swp 3" [ i)t
91,9k €CH(X) i€[K] X
s.t. Zgz(xl) <1+coa(xa) foral zy € X4 A€ Sk,
€A

9)

where Cp(X) is the set of bounded continuous functions. The primal problem can be thought
of as a problem solved by the adversary, whereas the dual can be associated to the learner.
While this can be seen more directly for the adversary, some discussion is needed to explain
this interpretation for the learner.

Suppose (g7, ..., 9} ) is a solution of (9). Defining f* = (f{,..., fi) as

o/ €spt(iss)

fi(x) = max{ sup  {g;(2') — ce(z,2')} ,O} , (10)
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it is possible to show that f* is indeed an optimal robust classifier of (2) provided that f*
is Borel measurable: see Garcia Trillos et al. (2023a, Corollary 33) and Garcia Trillos et al.
(2023b, Corollary 4.7 and Remark 4.9). Borel measurability is guaranteed, for example,
if we assume the measures p; to be supported on finitely many points (i.e., the setting of
interest in this work). For more general measures p;, however, existence of (optimal) Borel
measurable robust classifiers is a delicate issue that is carefully studied in Garcia Trillos
et al. (2024, Theorem 2.5 and Proposition 4.1).

3. Algorithms

The main contribution of this paper is to suggest two numerical schemes for solving (2)
when the measure p is an empirical measure associated to a finite data set. From now on,
we assume that each u; is a measure supported over a finite set

X =spt(p;) C X, |X| =n;=0(n) foralliec).

Also, we use X4 :=[[,., X and 34 == (2; : i € A) € X* as before. We say that a tuple
of points z 4 is a feasible interaction if ¢. 4(x4) < oo, which corresponds to there existing
a x’ as in (8) with finite cost. The points (z; : i € A) are then capable of interacting in an
adversarial attack by assigning 74 [{z 4}] positive mass, which is equivalent to assigning A4
positive mass at 2, the location of the interaction. If x4 is not a feasible interaction, then
any adversarial attack which assigns 74 [{x 4}] positive mass will immediately have infinite
cost. The key ideas that make these methods feasible even when K is big is to truncate
interactions and leverage the fact that the set of feasible interactions is small when the
adversarial budget ¢ is small, that is to say that when |A| is large and ¢ is small, there are
typically very few feasible interactions z4. The truncation of (6) to interactions of level
L < K is given by

min > (AA(XHZCE(AA,M,A)) : (11)

Aaosis 4)EF,
( Al ,A)e L AESK icA

where
Fy = {()\A,/Ll‘,A) e F: |A| < L}.

In words, we set pj 4 = 0 (hence, Ay = 0) for all A such that |A] > L. Similarly, the
truncation of (7) to interactions of level L is given by

min Y / (14 cea(za))dra(za)
{WA}A651L< AcsL J x4
g (12)
s.t. Z Piyma = p; for all i € Y,

AesE ()

where SE := {A € Sk : |A] < L} and SL(i) := {4 € Sk(i):|A| < L}. In words, we set
w4 = 0 for all A such that |A| > L.
The truncations of these problems satisfy the following approximation guarantees.
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Optimal Truncations Compared to Upper Bounds

0.75
—— Order 3
0.70 1 —-== UB Order 3
0.65 4 Order 2
5 UB Order 2
=
= 0.60 * FullLP
Q
',J:g 0.55 4
L 0.50
o
(]
= 0.45 1
g
0.40 1
0.35 4

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
Setting of €

Figure 2: Plots of the value of (12) and the upper bound provided by Proposition 1 for a
range of settings of € and K = 2,3 as well as the untruncated values. These are
derived from synthetic data using 20 samples from six classes.

Proposition 1 Let {\} be the optimal measures in (6). For 1 < L < K we have

K
w-©<>(F-1) X

Let {m} be the optimal measures in (7). For 1 < L < K we have

K
120 <Y 7 S Il

k>L " |Al=k

The proofs of both facts, presented in Appendix A.1, are given by constructing measures
{AL i ]A| < L} and {7 : |A| < L} from the optimal measures {\*} and {7}, respectively,
which are feasible for (11) and (12) and obtain the bounds above.

An important takeaway from Proposition 1 is that if the optimal measures do not heavily
utilize interactions beyond the truncation level L, i.e., the measures A\ ad 7% have small
mass when |A| > L, then one can faithfully recreate the attack without leveraging these
interactions at all. Empirically, we observe that this is often the case: see experiments in
section 4. We also illustrate these bounds on synthetic data in Figure 2 where the upper
bounds are (7) plus the right hand side in Proposition 1. We observe that these bounds in
this example are close to the actual values of (12). Importantly, notice that our truncation
procedure does not reduce the total number of classes K, indeed, all classes {1,..., K}
continue to influence adversarial attacks.
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3.1 Feasible labeled interactions

In addition to truncation, the other key step in our method is to reduce the computational
complexity by restricting the search space to feasible interactions only. Note that this does
not change the problem whatsoever, as the adversary cannot combine points that do not lie
in a common ¢ ball (or more generally points whose joint transport cost is infinite) whenever
¢ is small. We make this concept rigorous in the following definition.

Definition 2 A set of points {(z;,y;)}¥_, C spt(u) is a valid interaction with 1 < k < K
if the labels y; are all distinct and

k
inf ch (2, z;) . (13)
=1

r'eX

The set of all valid interactions will be denoted by Jx and the set of all valid interactions
of size at most L will be denoted by Jr,.

Note that this definition allows valid interaction sets to be of size 1 to K and in fact every
singleton set is a valid interaction by choosing 2’ = ;.

To leverage the computational gains of our approach, we must compute the feasible
ordered interactions. Here we present an iterative method for computing these interactions,
starting from singleton interactions (namely, all points of each class) and then building up
to interactions of order L < K where L is the user-chosen truncation level. To facilitate
the description of our iterative method it will be useful to introduce for each A € Sk the
feasible sets

|A] |A]

Fy o= {{(zs,y)} 2 inf cha: ;) < 00, U{yz} A}.

zeX

Note that F'4 is the set of all feasible interactions with labels corresponding to the set A.
Now we are ready to present Algorithm 1 for computing feasible interactions.

Algorithm 1 Construct Jp,
Input: X : data set, € : adversarial budget, L: truncation level
For each i € Y, set Fy;y = {(4,1), ..., (1,m4) }.
for k=2,...,L do
for A, A’ € SE with |A| =|A'|=k—1,|JANA|=k—2and Fa, Fy # @ do
for Each C € Fy,C" € Fy with |CNC'| =k —2 do
Check if there exists a point z within € of every point in C'U C".
If so, add C U C’ to the set Fa 4.
end for
end for
end for
Output: Jg, := UAESIL{ Fy.

The main difficulty in implementing Algorithm 1 is to ensure that the checks for |[A N
A'l = k-2 and |CNC’'| = k—2 are efficient and are not done by enumerating all possibilities.

10
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With a proper implementation, the most time consuming step is checking when a point x is
within € of every point in CUC". This is often a non-trivial geometric problem. For example
in R™ with the Fuclidean distance it requires checking if as many as L spheres in R"™ of
radius € have a mutual intersection. One geometry where this calculation is particularly
simple is when using the £,, norm, where the problem is reduced to finding the intersection
of axis-aligned rectangles.

In general the speed of Algorithm 1 is O(L|Jr|m(L)) where m(L) is the computational
complexity required to check the existence of a point z for groups of size at most L (this
is typically polynomial in L and the dimension of the space d). The overall complexity is
essentially at worst the same as trying every possible group of L or fewer points, which is
what may be required if € is large enough that a majority of all the groups of size L are
feasible. However, in practice, there are often far fewer higher-order interactions, which
leads to a much faster algorithm.

3.2 Linear Programming Approach

The first method for solving problem (7) or its truncated version (12) that we discuss in
this paper is based on linear programming (LP). The key object in the LP approach is the
interaction matriz denoted by J € {0, 1}¥**#)*Jk  The rows of this matrix are indexed by
points z = (z,y) € spt(u) while the columns are indexed by the valid interactions ¢ € Jk.
For z € spt(u) and ¢ € Jk the corresponding entry in J is given by

Tz = {1 zZEL

0 otherwise.

We will also need to define a marginal vector m € [0, 1]?*) with m[z] = u[{z}]. With
these definitions, we can formulate a linear program which solves (6):

min Z wi]

weloa?s G5 (14)

s.t. Jw = m.

In an analogous way to the above, one can truncate the problem with the truncation level
L, and obtain the truncated LP

wG[O,l]JL LGJL (15)

Proposition 3 The optimization problems (7) and (14) are equivalent. The optimization
problems (12) and (15) are equivalent. As a result the truncated LP obtains the same
approximation as in Proposition 1.

Proof We will show how to convert between the two problems. We will only do this for
the untruncated versions as the truncated versions are done in an identical fashion.

11
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First let {m4} be feasible and have finite cost for (7). To each point (z1,...,zx) €
spt(ma) we can assign a set ¢« = {(z;,7) | i« € A}. Clearly the labels in ¢ are unique. In
addition, since we assume that the {m4} achieve a finite cost we must have ca(z1,...,zx) =
infarex Y e (@', ;) < oo which shows that ¢ is a valid interaction. Set

wl] =74 [{(2],..,2%) | 2 =a;Vie A}]. (16)

The projection sum constraint ensures that Jw = m.
Now consider a feasible w. For a valid interaction ¢ = {(z;,y;)} let A = {y;}. Fori ¢ A
let x; be an arbitrary point in the support of u;. Now set

mA [{(x1,...,xK)}] = w[t]. (17)
The summation constraint in the LP ensures that the 74 are feasible. |

The gain in (14) is that the optimization occurs over a space of dimension | Jx| (which we
expect to be small when e is small), while the dimension of the problem in (7) is (25 —1)n®
when spt(u); = O(n) for every i (since there are 25 — 1 sets A € Sk and each 74 is of
size n™). In the worst case setting, it may be that |Jx| = (25 — 1)n, which happens
for example when Ufil spt(u;) C B(0,¢), a closed ball with radius e. However, in typical
settings, one should expect |Jx| to be much smaller.

Truncating (14) down to (15) allows the problem to be solved even more quickly since
we eliminate interactions of order larger than L. Note that in the worst case |Jr| has size
at most (2% — 1)n”, but again we expect this to be much smaller when ¢ is not too large.

Once one has obtained an optimizer w* of (14) one can easily compute an optimal
adversarial attack o = (11, ..., ix) and a corresponding optimal generalized barycenter .
Let w* be an optimizer for (14). An optimal generalized barycenter can be recovered via

A= Z w*(C)éb(c)
CeJk

where b(C) returns any point x such that {x}l : (i,1;) € C} C B(z,¢), furthermore, an
optimal adversarial attack {f1,..., ik} can be recovered via

ZEEDDRD DR LG

AeSk (Z) CeFy

The total mass of the measures is correctly preserved because of the constraint Jw =
(41, ..., px]’. From the preceding equations, it is clear that A\ dominates fi; for each i € ).
In addition, it is also easy to recover the transformation u; — ;. The above analysis implies
that (4) = (14), hence, the optimal adversarial risk is obtained by

1-(14)=1- > w*(C).
CeJk

Given an optimizer wj to the level L truncated problem, one can analogously compute
all of the corresponding truncated quantities (barycenter, adversarial attacks, and risk) by
replacing w*, Jx, Sk (i) by wj , Jr, S (i) respectively in the above formulas.
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3.2.1 COMPLEXITY CONSIDERATIONS OF LP APPROACH

In general, the optimization problem involves a vector w whose length is determined by
|J1| as well as a sparse matrix I with at most L|J7| non-zero entries (although this is quite
pessimistic) for some choice of truncation level L < K. It is therefore essential to control
|JL|. A straightforward calculation can show that

ElJl= ) [H n,

AeSk,|A|I<L LieA

P {{X;}ica C B(x,¢) for some z}

where X; ~ pu; are independent random variables. It is therefore crucial that the classes
are in some sense well-separated as this will control the probability of the formation of
an e-interaction. It may be worthwhile to analyze cases where one can cleanly bound the
probability on the right hand side. For example, if X; ~ N(m;, ¥;), then one may reasonably
expect to bound the probability by a function of the values of {(m;, ¥;)}.

3.3 Entropic Regularization Approach

The second approach that we consider in this paper is based on Sinkhorn iterations, which
here are adapted to be able to solve the entropy-regularized truncated version of problem,
(12). Sinkhorn iterations were originally proposed in Sinkhorn (1964); Sinkhorn and Knopp
(1967), and in the past decade have been extensively studied in Cuturi (2013); Cuturi and
Doucet (2014); Benamou, Carlier, Cuturi, Nenna, and Peyré (2015); Altschuler, Niles-Weed,
and Rigollet (2017); Lin, Ho, Cuturi, and Jordan (2022) in a variety of settings under the
optimal transport contexts. These extensive algorithmic and theoretical developments have
been key factors in the increased use of optimal transport in modern machine learning by
practitioners.

Let L < K be the fixed level of truncation in problem (12) and recall the notation
SE ={A € Sk :|A| < L} and SE(i) = {4 € Sk : i € A}. Throughout the discussion in
this section, we will consider a general family of cost tensors {c4}4 that are non-negative
(and that may possibly take the value oo) and satisfy cg;; = 0 for all i € Y. The main
example to keep in mind is the collection of cost tensors defined as in (8), since these are
the cost tensors that are connected to the adversarial training problem.

The L-level truncated entropic regularization problem associated to (12) (adapted in
the obvious way to arbitrary cost tensors) is defined as

min Z Z (14 ca(za)) ma(za) —nH(ma)

TA L
{74} est

AeSk x4
(18)
s.t. Z Piyma=p; forallie),
Aesk ()
where H(my) := =3, (logma(za) —1)ma(za). In general, a Sinkhorn-based algorithm

for finding solutions to a regularized transport problem over couplings aims at solving the
corresponding dual problem by a coordinatewise greedy update. In this case, as discussed in
Appendix A.2, the dual problem associated to (18) (here written as a minimization problem
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for convenience) takes the form:

min G"({g:})

gi [IShY
(19)
zzexp( (z 1+ catea) )) Sy,
AeSL XA i€EA i€y X;

For a given value of the dual variables {g;}icy we define an induced family of couplings
{WA(g)}AeSIL( according to

Ta(g)(z4) == exp ( (Zgz (z:) — (1 +cA(xA))>> , VrzaeXd VAeSE. (20

€A

In general, these couplings do not satisfy the constraints in (18), but if g = ¢* is a solution

o (19), then {7%} Aest 1s optimal for problem (18). Moreover, it can be shown that a
collection of couplings of the form (20) that in addition satisfy the constraints in (18) is in
fact the global solution of (18).

Remark 4 We want to highlight two new challenges in our setting in relation to other set-
tings that have been studied in the literature of optimal transport, including standard MOTs.
The first obstacle is that we must consider the set of coupling tensors of different orders
simultaneously, rather than a single coupling tensor. The second obstacle is to account for
the imbalance of marginal distributions. Unlike typical MOT problems, each marginal p;
has a distinct mass. We address these issues using and erpanding on the methods from
previous works such as Altschuler, Niles-Weed, and Rigollet (2017); Lin, Ho, Cuturi, and
Jordan (2022). Further details regarding the convergence analysis will be provided in section

3.4 and in appendices A.3, A.4 and A.5.

Remark 5 It is well known that the dual variables to standard MOT problems (i.e. Kan-
torovich potentials) satisfy a useful invariance. For standard problems, given dual variables
(915---,9K), the value of the MOT dual problem at (g1, ...,g9K) will remain unchanged if
one adds a constant vector with mean zero (hi,...,hx) (i.e. Zf; hi =0) to (g1,...,9K)
(see Vialard (2019); Di Marino and Gerolin (2020); Carlier (2022)). However, our dual
problem does not have this property. This creates an additional layer of difficulty that we
will need to overcome, as this invariance is often leveraged in Sinkhorn-type algorithms.

Remark 6 If cy(x4) = 400, then it is clear that the term x4 in the sum over X4 does
not contribute to the value of (19). Therefore, the sum over X4 can be reduced to the
sum over Fyu, which is computed by Algorithm 1. As in the LP approach, this reduction
can significantly reduce the computational complexity of the problem when the adversarial
budget is small.

To solve the entropic regularization problem (19) and as a consequence also solve (18), we

introduce Algorithm 2 below. Note in light of the last remark, when computing P;,ma(g"),
one needs only to sum over x4 € Fj.

14
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Algorithm 2 Truncated Multi-Sinkhorn (without rounding)

Input: X : data set, {ca}4 : cost tensors, u = (p1,...,ux) : empirical distribution, e
: adversarial budget, n : entropic parameter, L : truncation level, §’: parameter for
stopping criterion.

Initialization. t = 0 and ¢g; = 0 € R™ for each i € ).
while E; > ¢’ do
Step 1. Choose the greedy coordinate I (with arbitrary tie breaking) by

I := argmax D, | | Z Piymalg")
lsisk AeSL (i)

Step 2. Compute ¢'t! = (g’f’l, . ,g?l) by
gt = {gf +nlog p; — nlog (ZAGS}{(Z') Pi#WA(gt)) , ifi=1
1

[ otherwise .

Step 3. Set new t to be ¢t + 1.
end while

Output: {wA(gt)}AGS}L{.

The stopping criterion we use for Algorithm 2 is F; < §' for some prespecified 6’ > 0,
where F; is

Ei=Yllui— 3 Pigmald)ll. (21)

i€y AeSL (i)

i.e., B is the addition of the discrepancies in marginal constraints at iteration t.

Following the analysis presented in section A.3, one can deduce that the sequence of
iterates produced by Algorithm 2 induces a collection of couplings {74 (gt)}AGSIL( (via (20))
that converge toward the unique solution of (18) as ¢ — oo . However, when Algorithm
2 is stopped at a finite iteration T, it is not guaranteed that the current {ma(g7)} 4¢ st 18
feasible for the original problem (19). In order to obtain feasibility at every iteration, it is
important to introduce a rounding scheme. The scheme we use here is an adaptation of one
proposed by Altschuler, Niles-Weed, and Rigollet (2017) and later extended by Lin, Ho,
Cuturi, and Jordan (2022) in multimarginal setting. However, our rounding scheme needs
to take into account the fact that multiple couplings appear in each individual marginal
constraint.

The truncated entropic regularization algorithm (with rounding) is the following.
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Algorithm 3 Rounding
Input: {7714}1463%< : couplings, u = (u1,. .., pK) : empirical distribution.

Initialization. ﬂff) =y forall A e S[L(.
fori=1,...,K do
Compute z; := min {]lni, i/ ZAele((i) Pi#wg_l)} eRY .
for z; € X; do
Set for all A and all x4 containing z; in its coordinate i:

i—1 o
V(wa) = {Zi(xi)ﬂﬁx Nza), ificA

™ i
A TI'X 1)(xA), otherwise.
end for
end for
Compute err; := p; — ZAeSIL((i) 731-#7@(4]{) for each i € Y
Compute

K .
T ) , otherwise.

N {ﬂ'gg) +err;, if A= {i}

Output: {%A}AGS}L{ .

Algorithm 4 Entropic regularization with rounding,

. . o 6/2 o 6/2
Input. Fix ¢ >0 and L S K. Set n= m and (5/ = 2LmaerSL |1+CA1(;A<OO .
K

Step 1. For each ¢ € ), set

& o[ il |
P (1= — ) 11,
He < 4K) Mt YRem, ™

Let o/ == (p, ..., ty)-

Step 2. Compute {74 : A € SE} by Algorithm 2 with {ca}a, n, ¢/ and §'/2.

Step 3. Obtain {74 : A € SL} by Algorithm 3 with {74 : A € S} and /.
Output: {74}

As we will discuss in Section 3.4, Algorithm 4 returns a §-approximate solution to the
unregularized truncated problem (12).

Remark 7 Here, C* = max;cy > appearing in the choice of entropic parameter n is a
constant independent of all other parameters, n, K, L and §.

Step 1 of Algorithm 4 is necessary unless each p; is dense on X;. Algorithm 2 suffers
when updating potentials if there is some p; with a very small mass. This weakness is not
specific to this setup but a commonly observed phenomenon in variants of Sinkhorn-type
algorithms.

The choice of 1 is adapted for the theoretical analysis which considers the worst case.
In practice, however, a larger choices of n works well. Sinkhorn folklore suggests that 0.05
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is a good choice for n in most applications. See Section 4.3 for further discussion of how to
choose 1 along with empirical results.

If one is interested in the lower bound of the adversarial risk only, it is fine to skip Step
3, or Algorithm 3. Skipping Step 8 has almost no effect on computing the risk. However,
the main cost of the algorithm is Step 2, Algorithm 2, and the computational cost of Step
3 is minor comparing to that of Step 2.

Remark 8 At the end of subsection 2.3 we discussed how to obtain a Borel measurable
optimal robust classifier from optimal dual potentials of the dual formulation of the strat-
ified MOT problem (9). On the other hand, the objective function of the truncated Multi-
Sinkhorn, (19), is the entropic version of (9). By solving (19) we can thus produce ap-
prozimations of the optimal dual potentials for (9) that are parametrized by the entropic
parameter 1. In this sense, Algorithm 2 produces approximations not only for adversarial
attacks but also for robust classifiers after plugging its outputs in (20) and (10).

A classifier obtained in this manner, however, is limited in the sense that it is only
defined at most up to the closure of the e-expansion of the supports of the u;’s. In practice,
these measures are typically empirical measures built from finite data sampled from some
population distribution, and it is thus a priori unclear whether these classifiers can provide
reliable outputs for all inputs in the e-vicinity of the support of the population distribution.
It would thus be important to study the sample complexity analysis of robust classifiers built
in this fashion and to carefully investigate the dependence of the error on the parameter 7.
We leave this for future work.

3.4 Theoretical Results of Entropic Regularization Approach

In this Section, we state our main theoretical results, where we summarize our analysis
of the approach for solving (12) that is based on the entropic regularization presented in
section 3.3. Our first main result describes the number of iterations required to achieve the
stoppin criteria for Algorithm 2.

Theorem 9 Let {g'}1en be generated by Algorithm 2. For a sufficiently small fized &', the
number of iterations T to achieve the stopping criterion Er < §' satisfies

L(g0 14K2R
T§2+{ 97lg) W+ i (22)
mingey|| |1 no
where
R:=L—nlog min p;(y)+nLlog(KC*n). (23)

jeyvyer

Remark 10 Recall that ¢° = 0. The initial value of the objective function is bounded above

" Ghg”) < >0 D exp (-2) < C*exp (L log(Kn) — 717> :

Aeskt xA
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Taking n = O <m) as we will do in Algorithm 4, we see that G*(g°) = O(1). Hence,

% = O(1). Moreover, if we assume that p;(z;) ~ % for all x; and all i, the

last term in (22) is O(log?(n)). As a consequence, Algorithm 2 exhibits almost linear
convergence.

Remark 11 Notice that the number of iterations in Theorem 9 does not depend on the
specific cost tensors ca. Only the non-negativity of the cost tensors and the assumption
criyy =0 for alli € Y play a role in the estimated number of iterations.

To prove Theorem 9, we adapt to our setting the analysis for standard MOT problems
presented in Altschuler, Niles-Weed, and Rigollet (2017); Lin, Ho, Cuturi, and Jordan
(2022). In our setting, the marginal distributions need not have the same total mass and
each marginal constraint depends on multiple couplings of different orders simultaneously.
In addition, the dual potentials in our setting lack an invariance property that is present
in the standard setting, which facilitates the analysis in that case (see Remark 5). As a
result, we require a more careful analysis for the decrement of energy at each step of the
algorithm. The proof of Theorem 9 is presented at the end of appendix A.3, after proving
a series of preliminary estimates.

In order to analyze Algorithm 4, we need the following estimates on the output of the
rounding scheme.

Theorem 12 Let {m4: A € SE} be a set of couplings and = (u1, ..., uk) be a sequence
of finite positive vectors. Then Algorithm 3 returns a set of couplings {74 : A € SIL<} which
satisfies: for alli €Y

Z PipTa = i,
Aesk (i)

as well as the error bound

DolFa—malli SLY I D Pigma—pillu.

AeSk €Y AeSE(i)

Finally, we can combine Theorems 9 and 12 to prove that Algorithm 4 outputs a 6-
approximate solution for (12), the truncated version of (7).

Theorem 13 Algorithm 4 returns a d-approximate optimal solution for (12). Moreover, if
minjey yex, 1j(y) = Qn~') and C* := maxiey % = O(1), Algorithm 4 requires

o (L2K2 max gegr (14 calle,y<oo)|TL] log(C*Kn)>
(52

operations to produce its output.

Remark 14 Theorem 13 precisely quantifies the benefit of truncation in Algorithm 2: while
all K classes still play a role in the formation of an adversarial attack, by truncating the
number of interactions between classes, in the worst case |J| scales like O(n') as opposed
to the worst case of scaling of | Jx| which scales like O(n®).
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4. Empirical results

4.1 Numerical experiments for MNIST and CIFAR-10

In this section, we present experimental results obtained from applying our algorithms to
datasets drawn from MNIST and CIFAR-10. For both data sets, there are 10 classes, and
each class contains 100 points. Two different underlying ground metrics, ¢? and />, are
used. Due to dimensional scaling effects, the adversary requires a larger budget when the
ground metric is 2. Note that MNIST images are 28 x 28 pixel grayscale images, while
CIFAR-10 images are 32 x 32 pixels with 3 color channels.

Figure 3 shows the adversarial risks computed by the LP and Sinkhorn approaches using
truncations of orders 2 and 3, along with their associated time complexities. Even though
we restrict the interactions to order 2 or 3, the plots show that the adversarial risk does not
change much when going from order 2 to order 3 interactions when the budget is not too
large. This indicates that the truncated problem indeed provides meaningful lower bounds
for the true problem when the adversarial budget is reasonable. Indeed, the curves for
truncations of orders 2 and 3 are nearly identical for adversarial risk values below .3. Let
us emphasize that the adversarial risks obtained by the LP and Sinkhorn approaches do
not coincide, and in fact, the former is always larger than the latter as Sinkhorn gives a
lower bound for the true optimal adversarial risk. Here, we do not scale down the entropic
parameter 7 in terms of the number of points. One can reduce this gap by decreasing 7, but
this may cause numerical issues, which is a common phenomenon in computational optimal
transport methods based on entropic regularization.

We should emphasize that the size of the adversarial budget has an enormous impact
on the computational complexities of both algorithms. Indeed, both algorithms need the
interaction matrix J;, constructed in Algorithm 1 to be relatively sparse to run efficiently.
For small values of € we expect Jr, to be very sparse; however, as € increases, it will become
more dense slowing down both algorithms.

For the datasets that we consider, the worst-case complexities of the LP and Sinkhorn
without truncation are O(100%°) and O(100'?), respectively. With truncation up to order
3, the worst-case complexities become O(100%) and O(100%), respectively. Note that these
numbers are not usually achieved with adversarial budgets of small or moderate size (i.e.
budgets that are relevant for adversarial training). Note, however, that the worst-case
complexity of the LP approach can still be problematic even with truncation. In practice,
this does happen in our experiments once € becomes sufficiently large, in this case, we
terminate the computation once it exceeds a certain wall-clock time. For Sinkhorn, since its
worst-case complexity is almost linear with respect to n, the computation remains feasible
even for budgets where the LP approach is infeasible (at least when 7 is not too small).
This is one significant advantage of the Sinkhorn approach. However, one should still keep
in mind that Sinkhorn will only return the exact value of the adversarial risk when the
entropic regularization parameter is sent to zero (i.e. the regime where the algorithm gets
slower and slower). Nonetheless, in our experiments, with an appropriate choice of the
entropic parameter 7, the Sinkhorn solution is quite close to the exact solution provided by
the LP, while offering a much shorter computation time.

In Figure 4, we run experiments on a smaller subset of the data where there are 4 classes
with 50 points (for both MNIST and CIFAR-10). This allows us to compare our computed
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value of the adversarial risk from the order 2 and 3 truncated problems to the computed
value for the untruncated problem. Readers can observe from those plots that truncations
of orders 2 and 3 barely underestimate or even match the full order 4 risk, especially when
the adversarial budget isn’t too large. This is thanks to the fact that there are almost no
valid interactions of higher order for reasonable values of €. Indeed in almost all of the plots,
the order 2 truncated value matches the untruncated value when the adversarial risk is in
the range of 0% to 30%. Once ¢ is large enough that the risk grows beyond .3 we do start
to see some discrepancy between the values of the truncated problem and the untruncated
problem (especially when the ground metric is £*°). However, this regime is not so relevant
as an adversarial risk of 20% is already extremely large and suggests that one should be
training with a smaller budget.

From the experiments, we see that the truncation method works well in terms of both
accurately approximating the adversarial risk and reducing the computational complexity.
This is surprisingly nice because computing or even approximating the adversarial risk with
many classes is hard in general: one must deal with a tensor of large order, requiring im-
mense computational power. As long as classes are separated well, the truncation method
will significantly reduce the order of tensors appearing in optimization (enhancing the ef-
ficiency of computing), while barely changing the optimal value of the problem, i.e. one
should expect a very tight relaxation.

4.2 Fluctuation of interactions: Gaussian mixture, Iris and Glass data sets

In this section we further investigate in three settings the number of available higher-order
interactions as well as how much mass the optimal multicoupling in (7) uses for each order.
The three settings we consider are the following.

Synthetic We make a simple two-dimensional synthetic dataset which consists of six
classes. For each class 30 samples are generated from 2-d Gaussian distribution with a mean
¢ € {(-2,2),(2,2),(6,2),(-2,-2),(2,—-2),(6,—2)}, and the identity covariance matrix.
This gives a total of 180 samples.

Iris This is the Iris dataset by Fisher (1988) which is four dimensional (measurements
of sepal length, sepal width, petal length, and petal width) and has three classifications
(setosa, versicolor, and virginica). One must classify the type of iris from the four given
measurements. There are 50 samples for each type of iris and a total of 150 samples.

Glass This is the Glass dataset by German (1987) which is a ten dimensional (refractive
index and percent composition of 9 atoms) and has six classifications (types of glass). There
are 214 total samples non-uniformly distributed across the six classifications.

In Figure 5 we solve (7) and plot the amount of mass used in the optimal multicoupling,
weighted by the number of interactions (we omit orders with negligible contributions).
The order L line corresponds to L - 37, 4 _ [[mal|. This places the curves for higher-order
interactions on the same scale and represents how much total mass of the marginals is
accounted for by each order of interaction.

Interestingly the use of lower-order interactions (high-order interactions respectively)
does not monotonically decrease (increase). A simple example where this happens can be
furnished using six points and three classes and is illustrated in Figure 6. In this example
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Figure 3: Lower bound of adversarial risk of and runtimes of the entropic regularization and
LP for MNIST and CIFAR-10. The left plots and the right ones are equipped
with £2 norm and ¢ norm, respectively. For LP with truncation up to 3, due to
the huge complexity we stop the computing earlier.

if each point has unit weight the optimal perturbation for small budget has a mass of 4 (1
central point and 3 exterior points) and for a higher budge the optimal perturbation has a
mass of 3 (3 midpoints) while using fewer order 3 interactions.

In Figure 7 we also show the number of feasible interactions that must be considered of
each order as the budget varies. For the Glass dataset, though there are six classes, given this
range of budgets, the highest order of interactions is 4; of course, one will see higher order
interactions as the adversarial budget increases. For small budgets € there are typically
only interactions of lower order. However there are sharp thresholds where the number
of higher order interactions rapidly increases. After these thresholds the computational

complexity of the optimization problems rapidly increases due to an explosion in the number
of optimization variables.
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Figure 4: The optimal adversarial risks for MNIST and CIFAR-10 with 4 classes.
. / .
4.3 Setting n and ¢’ In Practice

In Theorem 13 we obtain bounds which achieve approximation ratios based on a parameter
5. As one can see in Algorithm 4 however, this requires setting  and ¢’ as functions of 4.
This can be problematic in practice because taking 1 too small (for example below 0.01)
leads to numerical instability, which is indeed a common issue for entropic regularization
based methods (Feydy et al., 2019; Pooladian et al., 2022; Kassraie et al., 2024), and setting
0’ too small may cause prohibitively many iterations in Algorithm 2. Instead, we often set
7 to be sufficiently small, typically close to n = 0.01 and ¢’ = 0.001. We observe empirically
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Figure 5: Contribution by interactions of each order to the optimal multicoupling as the
budget € varies in three different settings.

that these lead to high-quality solutions. This is illustrated on a synthetic example in Figure
8.

To create this figure we used six classes in two dimensions with data drawn according
to N(ui, I/2) where p; € {(-2,2),(2,2),(6,2),(—2,—2),(2,—2),(6,—2)} and 100 samples
from each class. The maximum allowed interaction size was three. The parameter ¢’ in
Algorithm 2 was fixed at 0.001. At least in this setting, a choice of moderate n = 0.1
achieves close to the exact adversarial risk (when only considering interactions up to size
three).

5. Conclusion and future works

In this paper, we propose two algorithms that demonstrate impressive performance in syn-
thetic data sets by utilizing MOT formulations of the adversarial training problem. The
key idea powering our algorithms is that we can reduce the problem to a very sparse search
space provided that the adversarial budget is not too large and the data is well-separated.
Furthermore, by disallowing interactions of a certain size, we can cut down the search space
even further, while barely affecting the optimal value of the problem. We validate these
results through several experiments on popular machine-learning datasets.
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B

Figure 6: Configuration of six points with colors representing class. the central triangle has
edge length 1 and the distance between corresponding points in the triangles is
2.0207. (Left) When ¢ € (0.5774,1.0104) the optimal merging is achieved by
placing the three interior points together. (Right) When ¢ € (1.0104,1.0729)
the optimal merging is achieved by pairing the interior triangle with the exterior
triangle.

While our empirical results demonstrate that the training problem is indeed sparse for
reasonably sized € and that one can safely truncate higher-order interactions without affect-
ing accuracy, it would be highly desirable to back up these results theoretically. A natural
question is how to quantify the separation and impact of truncation on error. In particu-
lar, what is the ideal truncation level to reduce computational expenses while maintaining
acceptable error levels? It would be highly beneficial to identify a sufficient criterion based
on fundamental statistical measurements like mean, variance, and covariance to advise on
the optimum truncation level. A Gaussian mixture model would be a promising starting
point to address this inquiry.

Let us also emphasize that there is still significant room for improving the performances
of both the linear programming entropic regularization approaches. Neither of our algo-
rithms exploit specialized data structures nor parallelization. We anticipate that a more
sophisticated handling of the sparsity structure of the problem could reduce the computa-
tion time by orders of magnitude. While the linear program should be fairly straightforward
to parallelize, it may be quite nontrivial to parallelize the Sinkhorn version. To the best of
our knowledge, it is unclear how to run Sinkhorn-type algorithms for MOT in parallel once
there are three or more marginals (see Peyré et al. (2019) however for parallelization in the
binary setting). Developing an appropriately parallelized version of our algorithms would
be a very interesting line of future inquiry.

Appendix A. Appendix
A.1 Proof of Proposition 1

Proof Let (X}, u; 4) be the optimal measures in (6). Let M=y, ,uiLA = pj 4 for every
A with |[A] < L and let A} = O,M{jA = 0 for every A with |A| > L. The approach (made
precise below) is for each A with |A| > L to distribute the mass in the sets A% and u! ,
uniformly over the subsets of size L of A. ’
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Number of Feasible Interactions by Order (Synthetic) Number of Feasible Interactions by Order (Iris)

124

101

[ 2.
| //
2
24
04
0.5 1.0 15 2.0

. 25 0.0 0.5 1.0 15 2.0
Setting of € Setting of €

oOU A WN R

(log) Number of Feasible Interactions
(log) Number of Feasible Interactions

Number of Feasible Interactions by Order (Glass)

14

124

1
2
3
10 4
5

44
24
04
0.2 0.4

Figure 7: Number of interactions (plus one, in log scale) of each order which are feasible as
the budget varies in the three different settings.
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Now carrying out the details, for every A with |A| = L let

L _ |BI (1B ™'\, _ |Bl—1\7",
Xi= ) L<L o= ) L—1) B

ACB ACB

and for every i € A set

1Bl -1\
MiL,A: Z (L—l /‘;‘,B'
BeSk
ACB
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Impact of n on Adversarial Risk
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Figure 8: Impact on the adversarial risk as n varies from 0.1 to 1.0 in steps of 0.1 on
synthetic data with ¢’ = 0.001.

Clearly the (A%, u{j 4) do not place any mass on sets A of size exceeding L. In addition

Z :U/ZA_ Z :U’ZA+ Z :U’zA

AeSk (i) A€eSK () AGSK
jAl<L |Al=
!B|—1
- Y e ¥ (0
AESK () AGSK(z) BeSk
jAl<L A= ACB
|B‘_1 *
- Y e 5 ()
AeSKk(3) BeSk (i) ACB
|A|<L |B|I>L |Al=L
AeSk (i)
S owiat Y mip=p
AESK(’L) BESK(’L)
|A|<L |BI>L

where we have used in order the definition of ,uz-L 4> & change in the order of summation, that
the inner summand is constant with A and is counted prec1sely (' - 1) times, and that Mz A

is feasible so it must sum to p;. This shows that the “i, 4 terms also satisfy the summation
constraint and are therefore feasible for (11).

Next we will check that CE()\A,/%A) = 0 for every A. Let FZA be the couplings of
o 1 4 which achieve

0= Ce(Ny, il a) = / co(, ')t o
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For every A with |A| < L we can use the coupling 7r; 4 to couple ,uf 4 and )‘,Ifl since these
equal p17 4 and A} respectively. For |A| > L we can use m; 4 = 0 since ,u£ h= )\ﬁ =0. All
that remains is to handle |A| =

In this case note that 772‘7 4 has first marginal i 4 and second marginal A%. From this it

follows that if we define
L |B‘ -1 - *
T A= E -1 Ti.B

BeSk
ACB

then 7'('2-[” ', will have marginals uﬁ 4 and /\ﬁ. We can also check that the cost is zero via

/ L / LB‘_'l ! / * / LB|_'1 -
ce(w, 2’ )dm; g (z,2") = E 11 ce(x,z)dn] g(x,2') = E L -1 0.
BeSk BeSk
ACB ACB

This shows that m A is a coupling of y; 4 and A4 with zero cost. Finally we can compare
the objective costs of (A}, 7} 4) with (A&, m IA) as follows

> (AL )+ C- )\AaMzA)> (AA )+ Ce )\AaMzA)>

AeSk €A €A
= > M@ - ) @)

AeSk AeSk

|A]=L AI>L

-1
-2 [ ST wa |- X waw

AeSkg \ BeSk A€eSK
|A|=L \ ACB |A>L
4 : :
- () u@=X (1) Tl
A€Sk k>L | A=k
[A|>L

In the jump to the second line we have used that the C; terms are all zero, that /\114 =}
for |A| < L and that A = 0 for |A| > L. The third line uses the definition of A\%. The final
line is a term counting argument. This completes the first part of the proof.

The second part of the proof uses an analogous treatment which we only sketch. Let
(7%) be the optimal multicouplings in (7) and define (7%) by taking 7§ = 7% for |A| < L,
7l =0 for |A| > L and

Bl (1B\™ Bl -1\~
mi=2 () =2 (o) Pami
BeSk BeSk
ACB ACB

where P7}; is the projection of 7} onto its marginals corresponding to the set A. The
remainder of the proof follows essentially the same structure once we observes c. 4 < c. p
for all A C B which is helpful for showing that Wﬁ has finite cost. |
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A.2 Dual of (18)
The Lagrangian for problem (18) is

L{ma}aest:{9i}iey)

= > > (Itcalwa)ma(@a) —nH(ma) =YY gilw) | > Pigmales) — piles) |,

AeSk x4 ey X; AeSE ()

where {g; € R™ },cy is the collection of dual variables (one for each marginal constraint).
The corresponding dual objective is defined as:

9({gitiey) = T?in L({ma},{g:})- (24)

TAS aesk

Notice that for every fixed {g;} (24) is a strictly convex optimization problem and thus its
first order optimality conditions are sufficient to guarantee optimality. In turn, a straight-
forward computation shows that these first order optimality conditions read:

0= 0r,(z4) ({77,4} {9:}) = 1+ca(za)+nlogma(x,) z:gZ (24), VacAEXA, VAESI%.

€A

As a result, rearranging the above, we conclude that the unique solution of (24) is given by
{WA(Q)}AESIL{, the set of couplings of the form (20).

Since
Zzgi(xz Z Piyma(z;) Z Z Zgz z)Ta(TA)

i€y X; AeSL (i) i€Y AeSEk (i) XA

- ZZ(Z%%)MM)

AeSE x4 \i€ed

it follows that the dual of (18) is the maximization problem
s XY st -1 3 Yo (1 (St 0 eaea) |
ey (5% AesSk xA icA

The above is equivalent to the minimization problem (19).

A.3 Analysis of Algorithm 2

Our goal in this section is to prove Theorem 9. In preparation for its proof, we state and
prove a series of auxiliary results. We start recalling the definition of the Kullback—Leibler
divergence between measures with possibly different total masses.

Definition 15 Given two finite positive measures p and v (not necessarily with the same
total mass) sharing a common finite support Z, their KL divergence is defined as

Dir(pllv) = (v( )+ ulz)

z2EZ z€EZ
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Notice that when p and v are probability measures, the above definition coincides with the
usual one. Also, like for the usual KL-divergence, Dy (u||lv) is non-negative and is equal
to 0 if and only if p = v.

The next lemma is a variant of Altschuler, Niles-Weed, and Rigollet (2017, Lemma 6)
adapted to the setting where p and v are allowed to have different total masses.

Lemma 16 Let p and v be finite positive measures over a finite set Z such that up < v. If

Dgr(pllv) < |l then ,

HMHl

Drr(pllv) = [l = vl7. (25)

Proof Let [z, 7 be normalized probability vectors obtained from p and v, respectively. One
can write

Dy (pllv) = vl = [l + > n(z) log/;g;
2€Z

=l ol [l — Ll — Vs R s+ s D Gl)
il (A~ 1= tog {24+ Dyl )

[l ® lulh

Note that HZHi -1 —log H:Hi and Dkr,(1z|]|7) are both non-negative. In particular, if

D (ullv) < ||ull1, then

P g Il

[l [l la
With the aid of some basic calculus and algebra one can show that for those s € (0,00)
satisfying s — 1 —log(s) < 1 one has the lower bound s — 1 —log(s) > (s —1)2/5. Therefore,

vih
Py g Il (G = *

[elhy B lall, = 5

An application of Pinsker’s inequality for probability measures yields

1 2 —
(Gl =V, Iz~ 7IR
5 2

Dxur(pllv) > [|ullx

Finally, by the triangle inequality and Young’s inequality,

e = wlF = [lullFllm ~ H1

2
< 2 ( T+l um)
2
— 2 (\ ‘+HM—V|11)
2 2
< 7”” 1 ( V||1 _1) + 7H/~LH1H— 7”%
5 \llulh 2
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This completes the proof. |

In what follows we use (-, -) to denote the inner product of any two vectors in the same
Euclidean space. In particular, if Z is a finite set, A : Z — R, and v is a measure over Z,
then (h,v) := > - h(z)v(z). We provide a lower bound on the decrement of the energy
G* along the iterates in Algorithm 2.

Proposition 17 Let {g'}ien be generated by Algorithm 2 and let T be the collection of
iterates t for which the following holds:

Dislull Y. Pigmalg) < Il ¥ie . (26)
Aesk (i)

Then the following holds for any iterate t:
E
0o -9 = () e 27)

and

G (g") — G (g") > minpsll, it ¢ T (28)

Proof Consider an iterate ¢t and let I be the greedy coordinate at ¢ + 1 in Step 1 of
Algorithm 2. Step 2 of Algorithm 2 produces

g™t =gt +nlogur —nlog > Pramalg). (29)
AeSL(I)
It is straightforward to see that
gL(gt) . gL(gtJrl)
gt gt
= > | D Prgmalan) = Yo Prymalg™an) | = (8 = ur)
x1€X \AeSL(I) AeSL(I) K n
= > | D Prumalg)) @) —pilar) | + (logur —log Y Prymalg'), pr)
z1€XT \AeSL(I) AeSL(I)
= Dxw(uill Y Prumald"))
Aesk(n)
>DKL N”LH Z PZ#WA , Vi e ).
Aesk(i

At this stage we split the analysis into two cases. First, if we assume that ¢ ¢ T, then there
is an ¢ € Y for which Dgr, (| ZAeSf,((i) Pigmalgh)) > |lpill1. In particular, this implies
(28). On the other hand, if t € T, we can use the above chain of inequalities to obtain

gL( ) gL t+1 ZDKL MZH Z P’L#ﬂ-A

ZGLV AeSE (i
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and apply (25), (26), and the fact that ||p;]|1 <1 for all i € Y to deduce
1 1
GH(g") — GH(¢"*) = ;Z 7 ki = > Piymald))li
i€y AeSL (i)

Applying Jensen’s inequality, we deduce

1
gL(gt) _ gL(gt—‘rl) >

1 1 (BN
=7 Zg”#i— Z Pigmalg))l “7\K /)

= AeSE (i)

Next, we find an upper bound for the energy gap between g* as generated by Algorithm
2 and an optimal g*.

Proposition 18 Let {g'}ien be generated by Algorithm 2 and let g* be a minimizer for
(19). Then, for allt > 1,

R
G*g") = G"(g") < T B
where we recall By was defined in (21) and where R was defined in (23).

In order to prove Proposition 18 we first prove some auxiliary estimates.

Lemma 19 Let g* be a minimizer for (19). Then, for alli € ),
—(L-1)+ nlog  min #j(y) —nLlog(KC™n) < min g;(z;) < max g;(z;) <1.  (30)

Proof The first order optimality conditions for g* imply that, for each ¢ € ) and x; € Aj,

Z | Pipmalg™)(xi) = pi(x;) > jé}grelxj 15 (y)- (31)
AESI%(z)

Expanding the left-hand side of the above inequality we get

Z ,Pz#ﬂ'A xz)

AesE (i

— exp <717 (97 (@) = (1 + cqay (wi)))>

+ exp <71]91*($z)> Z Z exp Z g;(zj) — (L+ca(za))

AA{I}eSE (1) m o\ iy eX AN ]EA

> exp <717 (97 (i) — 1)>

(32)
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since the double summation in the second line is always non-negative and cgy(z;) = 0.
Hence,

exp (a1 ) - 1)) < Ang Pymale)(es) = ).

Taking logarithms, it follows

1, 1
Hgi (z5) — " < log pi(x;) < 0.

Thus,

max g; (vi) < 1.

To get a lower bound for g, we can take logarithms in (31) and use the fact that c4 > 0 to
deduce

*(x; 1 N 1
) > tog min, ) —log 3 Y e |2 X g )+ o

eV yeX,
n IESY AESL (i) TA\ (3} T jeavtny

In turn, since we already know that max,; g; (x;) <1 for all j € Y, we can further obtain

g; (xl) L * \L 1 * (L B 1)
> lo min —log(K*(C*n)"” exp(L =lo min Llog(KC*n)— .
n = gge)}yeé‘( i (y)—log (K™ ( )~ exp(L/n))+ - g]eny/Y i (y)— g( ) "

The desired lower bound now follows.

Lemma 20 Let {g'}ien be generated by Algorithm 2. Then, for allt > 1 and all i € Y,

—(L—1)+mnlog mln uj( ) —nLlog(KC*n) < min gf(z;) < max gi(z;) <1. (33)
JEVYEX, T €X; TEX;

Proof Since g) = 0 for all i € Y, (33) holds trivially in the case t = 0. Assume that (33)
holds for all s <t — 1. Let I be the greedy coordinate chosen in Step 1 of Algorithm 2 at
t — 1. For all ¢ # I, the induction hypothesis implies (33). On the other hand, thanks to
(29), which guarantees that the marginal constraint is satisfied by class I, it follows

2. Prymalg)lan = prlar) 2 jeg}@ifelxj 15 (y)-
AeSL(I)

Taking logarithms and using the fact that c4 > 0 we obtain

1
I 5 log min wiw)-log 3 T e |t 3 gl | +

i€V yEX;
K 7= AeSE(I) Ta\{1y T jeain

We can then use the induction hypothesis maxg; gj-_l(xj) < 1 for all j to get the desired
lower bound.
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For the upper bound, we notice that

pr(zr) > Z Prumaly’)(xr)

AeSE(D)

— exp (}7 (dh(er) — (1 + cmm))))

+ 30 e | Y ahlen) — (14 calow)

A#{i} wa jeA
1
> exp (2 (afan) - 1))
from where we can deduce that gr(zy) <1 for all x;. [ ]

We are ready to prove Proposition 18.
Proof [Proof of Proposition 18] Recall that G¥ is convex and differentiable. We thus have

K

G"(g") = G"(g") < (9" — 9", V4G (9") =D (g} — 9, 04,G"(¢"))-

=1

For notational convenience, in the remainder of this proof we use

I“’it = Z Pi#WA(gt).

AeSL(i)

Since 9,,G%(g') = % (Pit — ,uz-) (as can be seen from a direct computation), we obtain

(gt — g7, P! — 1)

where we have used (30) and (33) to bound ||g; — ¢!/~ by R.

Lemma 21 Suppose that {a;} is a decreasing sequence of positive numbers (finite or infi-
nite) satisfying:
ay — Ag41 > max{Bé’Q, Aa?}a Vt,

for positive constants A, B,d'. Then for all T we have

1 h
T < i 24+ — . 4
<, i ( tant Bm) (34)
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Proof Let t' < T. From the fact that a; — a;41 > B for all ¢ we have

T-1 T-1
Qg > ay —ar = Z((Lt - at+1) > Z _B(Sl2 > B5/2(T - t/)

t=t’ t=t’

On the other hand, from a; — a;11 > Aa% we get

t'—1 t'— t'—1
1 <y — Ay — Gy41 /
7>7_7_§ E >AE > At —1
at/_at/ aq < at> ( )7

ata a
=1 —1 tUt+1 t+1

at4+1

using the fact that, by the assumptions, a; is a decreasing sequence.
Combining the above inequalities we get
1 ay

Aay T B2

T-1=(T-t)+({-1)<

In particular,

. 1 (027%
T-1< .
= (Aat/ * 35’2>
To be able to obtain (34) we need to modify the above argument slightly. We will show

that for any h > ar we have
1 h
T-2<
= Ah + B2
First, consider h € [ay 41, ay] for some ¢’ < T. We modify the sequence {a;} by adding

the extra value h in the sequence. Precisely, let

a iftSt/
a; =1 h ift:t/—l-l
ai—1 ift >¢ +1.

Notice that
h=Gy1 > @pi1—ar = @y y1—arro+ayro—ar > yra—ar = api1—ar > B (T—(t'+1))

where the second inequality follows from the fact that, by construction, ayy1 — Gyyo > 0.

Likewise, we have

1 1 1
i > - - =

h a1~ apy

> At —1).
From the above it follows that

1 h
— — — / /_
T-2= (T~ +D)+t —1< 0+ o5

It remains to consider the case h > a;. In this case

hZalzal—aTzB(5’2(T—1)
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from where it follows that

h 1 h
-2<T—-1< < —
Foz2s1 1—36’2—Ah+35’2

in this case as well.
[ |

With Propositions 17 and 18 and the above lemma in hand, we are ready to prove
Theorem 9.

Proof [Proof of Theorem 9]

Let A! := G¥(g") — G¥(g*). Notice that, thanks to Proposition 17, the sequence A;
is decreasing in t. Let us denote by T the iteration at which the stopping criterion for
Algorithm 2 is met. Notice that T is indeed finite, as can be easily verified from Proposition
17.

Let tq,t2,t3,... be the iterations in 7, where we recall 7 was defined in Proposition
17, and let t5 be the largest element in 7 that is strictly smaller than 7. If such element
does not exist, it follows that all iterations before stopping are not in 7, but in that case
we would have

G"(9")

mingey|| il

since the decrement of energy at each of these iterations is at least min;cy||uil|1. If t5 does
exist, by a similar reasoning as before there must also be a first next iteration tsyq in T
(although larger than or equal to T'). Now, for any r < s we have

L[N\ [nat\?
Al — Attt > Alr AL S Z 0 (2 )y = :
= “ 7 \K KR (35)

Indeed, the first inequality follows from the fact that A; is decreasing in ¢, and the second
inequality follows from the fact that

2 N\ 2
wo s L(BY L1 (0
“7\K) 7\ KR)’
thanks to Propositions 17 and 18. We can thus apply Lemma 21 to the sequence A, ..., Als+1
and deduce that

T-1<

K2R’ K\2
s+1< min 2+7 2R +T7h | — .
hos.t. h>Ats+1 n*h o’

Er < %(5’ . Therefore, taking

From the definition of t,, we deduce that A; ,, < Ap <

h:= %5’ we obtain

3=l

14K*R

U
Finally, the number of iterations not in 7 before the stopping criterion is met satisfies
G"(4°)

miniey il

s+1<2+

T—(s+1)<
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since, again, the decrement of energy at each of these iterations is at least min;eyl|uill1-
The desired estimate on T' now follows from the previous two inequalities. |

A.4 Analysis of Round Scheme (Algorithm 3)

Proof [Proof of Theorem 12| Notice that the ﬂfj)’s are non-negative for all ¢. In addition,
from the definitions of the z;’s (in particular also the fact that they are less than or equal

to one) and the FX)7S we get
err; 1= fi; — Z 732-#7@(4[() > 0.
AesE ()

Hence, the T4’s are non-negative. Furthermore, the collection {74 : A € Sk} satisfies the
marginal constraints, since for each i € ) we have

~ K
D Pufa= Y Pigmy +omi= .
AeSL (i) AeSL (i)
In what follows, we obtain an upper bound on the ¢! distance between the m4’s and the

T4’s. Letting ﬂff) = 74, the difference between the mass of m4’s and 7r(AK)’s can be written

using a telescoping sum as follows:

K
> (mall = 1m5) = > > (V1 = 1711 -

AeSEL =1 AeSL

Since 7r1(41) =74 when 1 € A, a direct computation yields

3" (lmall = 171)

AeSL
pa (1)
= Z ZWA(xA)—Z<1/\ > Z ma(za)
ACSE(1) o - > aest (1) Prygma(z) et
1
= X s e | 2 Pumal) @) g vo ) 3 malea)
Aesk(1) o1 SASSK() TH# Al AeSEk(1) Ta\{1}
1
= s e | X Pl —me) o vo) 3T 3T matea)
o S ASSE (1) TIFTATH AeSEk(1) AeSL (1) Ta\(1}
:Z Z 771#%,4(351)—#1(371) V0
@1 AeSL(1)
1
=5 | > Pugma—mlh 41l Y Prgmalli — lmll
AeS{ (1) AeSE(1)
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In addition, since z;(xz;) < 1 for all i € Y and all z;, it follows that for all i € ),

,PZ#WI(LXK) S ce S Pi#ﬂ'g)) == PZ'#WA.

Hence, similarly as above,

> (IS = 1=) = >0 (5 X n#ml (1) = ps(ws) p VO

AeSk T4 AeSE(i
SZ Z PZ#WA xz Mz(l‘z) VO
T AesSk (i
1
=5 | > Pigma—mlli+ 1Y Pigmalli — llpalh
AeSE () Aesk ()
(36)
As a result,
K
> (Ilrall = 117571h)
AeSk
) (37)
§§Z Y Pigma—mllh+1l D Pigmalli — [luilla
ey AesSk () AeSE ()

On the other hand, from (36) we also get

> (ISl =17 Q1) <0 YD Pagra — il (38)

AeSkL AesSE (i)
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Recalling the definition of 74’s and using the facts that p; > 3 ,c S (i) 'PZ‘#TF;K) for all
1€ )Y and my > 7T1(4K) for all A € SL, it follows that

> R4 —malh

AeSkL
—~ K K
< N Fa -7+ >0 17 = walh
AeSkL Aesk
~ K K
=M 7w —miy b+ Y 1757 = 7alh
i€y Aesk
K
= lerrill + 3 1749 —malh
i€y AeSE
K K
=Sl =11 Y Peer i)+ Y Mmall = 17511
(SN AeSL () Aesk
=Sl =11 Y Pz#mu w30 S Paymalli— 11 Y. Pien{Olh)
i€y AeSL (i €Y AeSL(i) AesE ()
Y
K
+ 37 (lmall = 1751
AeSkL

II

Let’s consider the I term first. Note that for each A € SIL<, w4 and WE4K) appear at most

|A] < L times in the sum and we also have 74 > 7r‘(AK). Thus, by (37) and (38) we obtain

S Y Pymalh =l S P

€Y AeSL(i) Aesk (i)
S PID M DRNCHES Ib SR DTl
1€ AeSk (i) wacx4 i€y AeSk (i )erXA
apIDIDIRICIEDID MDD
AeSL i€Az x4 AeSL i€Ap exa
<L Y (mall = 17570
AeSk
=(£=2) Y (Imalli = 117510) +2 > (Imall = 1751)
AeSE AeSE
L-1) I > Pz#ﬂA—qulJrZH > Pigmalls —llwill)-
€Y AeSk(i €Y AeSL(i)
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Applying (38) to II similarly, we deduce

ST Fa—mallh <D Ml =11 D Pigmally

AeSk i€y AeSL(i)
L-1> [ Y Pigma—pilli+ D I DY Pigmalli — [lmillh)
i€y AeSL(i) i€y AeSk(i)
+D 1Y Pgma—pill
i€y Aesk (i)
_LZH Z Pz#T"A Nz”l
€Y AeSL(i)
This completes the proof. |

A.5 Analysis of Algorithm 4

Proof [Proof of Theorem 13] Let {74 : A € S&} be an output of Step 2 of Algorithm 4.
Given that c(;, = 0 for each 7, we deduce that for every A € SE we have spt(74) C {ca < oo}
and in turn also spt(74) C {ca < co}. By Theorem 12,

> > (+cal@a) Fa(za) — Falza))

AGSL TAEXA

<L (1 + max ‘CA]ch<oo|> ZH Z PipTa — pill1-

=1 AeSL(i)

(39)

Let {7% : A € SE} be a set of optimal couplings for

min g E 1+ ca(xa))malza) s.t. E Pinma = forallie )y
{WAZAES T oA ( ) # Hi
AesSt X AesE (i

and {7’y : A € SE} be an output of Algorithm 3 with input {7% : A € St} and v :=
(v1,...,vK), where
> PisFa.
AesE (i)

Then, since ZAGS%(@ Piymy = p; for alli € ),

> - 7TAH1<LZHV1 il (40)

Aesk

Note that {74 : A € Sk} is a solution for (18) when p is replaced by v. Since {7/, : A € Sk}
is also feasible for this problem,

Z Z —I-CA wA (WA(Z’A)—WA xA Z 77H 7FA 77[{(7(14)

AeSk zacx4 AeSLt
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Recall the log sum inequality: for (a1, ...,an), (b1,...,b,) € RY,
n n n
a; (Z':l CLi)
a;log — > a; | log - ===, 41
3ot (S s (2 4
Using the fact that H(n’;) > 0 (since n’; <1 for all A) and applying (41) we obtain

Y H(7a) - H(r))

AeSkL

< ) H(7a)

AeSkL

— Z Z (1—logTa(za))Ta(zA)

AeSk zpex4

(ZAESL Zx exA %A(l’A)>

< D2 D Falwa)|—| > > Talwa)|log —

AESL zacxA AeSL zacxA (ZAES}L( DeacaA 1)
= D D Falwa) | = Do D Falza)|log| > > Falra)

AESIL(QCAGXA AGSIL(UEAEXA AESIL(OUAGXA
(T X ) ¥ T

AESIL< T EXA AGS}L< rQEXA
SEED I SENI S b o

AeSk zpex4 AeSEt xpex4

3L
<1+ o log(C*Kn),

where the second to last inequality follows from the fact that x — zlogx is bounded from
above by 1 and the last inequality is a consequence of

~ 3
S lFall <) il < v — pill + il < 2

AeSk i€y i€y

due to the stopping criterion Ey 1=,y |[vi — pill1 < 0" < 3. Hence,

> > (+ca®a)) (Falwa) — 7s(xa)) < n2Llog(C*Kn). (42)
AeSk zpex4
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Combining (40) and (42) leads to

> (1 +calza)) (Falwa) — wi(za))

AeSk x4
Z Z 14+ ca(za (WA(HTA) —TFA xA Z Z 1+ca(za)) (WA(HTA) —7TA(.’L'A))
AeSL x4 AesSL x4
K
< n2Llog(C*Kn) + L <1 + max \cAnCA<OOy> > i = pillr- (43)
=1

Lastly, combining (39) and (43) leads to

DD (I+ca(@a)) (Falza) - ma(za))
AeSk x4
(44)

K
< n2Llog(C*Kn) + 2L (1 + max |cA]lCA<OO|> S PigFa— pills-
AeSKk =1 AeSL(i)

Recall the choices of  and ¢":

R N 32
2L log(C*Kn)’ N 2Lnf1aXA€S}zé 11+ cale,cool

’[7 _=
Using the definition of p/ = (p], ..., px) and the fact that

!
Dollwi— Y Piymalh < 5,

i€y AeSL (i)
we obtain
Dollwi— Y Pigmalh <D lwi—pill+ i = D PigTallh <6
(ISR Aesk (i) i€y AesSE (i)

Applying the above inequality, and using our choices of  and ¢’ in (44), we obtain

> ) (A +cal@a) Falza) — mh(za)) < 6.

Aesk x4

Now, it remains to bound the computational complexity of Algorithm 4. Using (22) and
the definition of R we see that Algorithm 2 in Step 2 requires at most 7" iterations to stop,
where

14K?R
T<0(1 _—
<oW+— 5
L?K?max 4o or (14 cale, <o) log(C*Kn
g0(1)+0< acst( : <o0) log( >)'
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Since each iteration of Algorithm 2 requires at most O(J1,) operations, the total compu-

L2K? max 4 or, (I+caley <oo)|TL|log(C* Kn)
tational complexity of Step 2 of Algorithm 4 is O X .

52
Step 1 and Step 3 of Algorithm 4 require O(Kn) and O(Jr) operations, respectively.
Therefore, the conclusion follows. |
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