
Prosody in the Age of AI: Insights from Large Speech Models
Samuel S. Sohn (samuel.sohn@rutgers.edu), Sten Knutsen, Karin Stromswold

Department of Psychology & Center for Cognitive Science,
Rutgers University – New Brunswick

Abstract

Prosody affects how people produce and understand language,
yet studies of how it does so have been hindered by the lack of
efficient tools for analyzing prosodic stress. We fine-tune Ope-
nAI Whisper large-v2, a state-of-the-art speech recognition
model, to recognize phrasal, lexical, and contrastive stress us-
ing a small, carefully annotated dataset. Our results show that
Whisper can learn distinct, gender-specific stress patterns to
achieve near-human and super-human accuracy in stress clas-
sification and transfer its learning from one type of stress to
another, surpassing traditional machine learning models. Fur-
thermore, we explore how acoustic context influences its per-
formance and propose a novel black-box evaluation method
for characterizing the decision boundaries used by Whisper
for prosodic stress interpretation. These findings open new av-
enues for large-scale, automated prosody research with impli-
cations for linguistic theory and speech processing.
Keywords: prosody; speech recognition; stress perception;
black-box evaluation

Introduction
Prosody plays a crucial role in spoken language comprehen-
sion and production. It influences how listeners interpret
words, sentences, and the pragmatic import of utterances,
guiding syntactic disambiguation and affecting sentence pro-
cessing efficiency. For example, prosodic cues can bias in-
terpretations of syntactically ambiguous sentences and either
strengthen or weaken garden paths, where listeners initially
favor an incorrect interpretation before reanalyzing the sen-
tence structure (Beach, 1991; Snedeker & Trueswell, 2003;
Carlson, 2009). Beyond comprehension, prosody is also in-
tegral to speech production, as speakers unconsciously mod-
ulate their intonation, rhythm, and stress to convey different
meanings (Ferreira, 1993; Pierrehumbert, 1990).

Despite its importance, the study of prosody in both lan-
guage processing and production remains relatively underde-
veloped, largely due to the difficulty of analyzing prosodic
features efficiently. Traditional prosodic analysis relies on
trained human annotators who manually label stress patterns
in speech data (see (Knutsen & Stromswold, 2024)), which is
a time-consuming and resource-intensive process that lacks
scalability. This bottleneck limits large-scale investigations
into prosodic variation and its interaction with lexical, syn-
tactic, and discourse structures.

A scalable and automated approach to prosodic analysis
is therefore needed to advance our understanding of prosody
and how it interfaces with other aspects of language. In this

study, we explore the potential of OpenAI’s Whisper large-
v2 model (Radford et al., 2023), a state-of-the-art automatic
speech recognition (ASR) system, to recognize and analyze
prosodic stress. Although Whisper was not originally trained
for prosodic annotation, we demonstrate that fine-tuning it
with a small, carefully curated dataset of stress-annotated ut-
terances enables it to recognize different types of prosodic
stress (i.e., phrasal, lexical, and contrastive stress) and trans-
fer learned acoustic patterns between them. We further in-
vestigate the relationships between stress types based on how
they facilitate or impede such transfer and how, for individual
stress types, broader acoustic context can improve prosodic
annotation to a super-human level for both men and women.
Finally, we propose a novel black-box evaluation methodol-
ogy for identifying acoustic decision boundaries that distin-
guish stress patterns, shedding light on how prosodic stress
conveys meaning for men and women.

Preliminaries
At its core, Whisper leverages deep learning to analyze au-
dio waveforms, extract patterns aligned with human speech,
and decode these patterns into transcriptions (Radford et al.,
2023). It is based on a Transformer architecture (Vaswani,
2017) trained through large-scale weak supervision to gen-
eralize across diverse acoustic environments, speakers, and
linguistic contexts.

Pre-training
Whisper has been pre-trained on 680,000 hours of labeled au-
dio data, providing an extensive and diverse foundation for
robust speech recognition. This dataset comprises 64% En-
glish transcriptions, 17% transcriptions from 96 non-English
languages, and 18% X→English translations (Radford et al.,
2023). The scale and diversity of this corpus enable Whisper
to develop a highly flexible one-to-many mapping between
text and the vast range of acoustic variations in spoken lan-
guage. These variations include differences in speaker iden-
tity, accent, speech rate, background noise, and prosodic fea-
tures such as phrasal, lexical, and contrastive stress.

Despite Whisper’s broad pre-training, it is not explicitly
trained to recognize fine-grained prosodic phenomena. In-
stead, it learns to associate multiple prosodic variations with
the same textual representation, effectively collapsing dis-
tinctions that are critical for nuanced prosody analysis. To



accurately distinguish phrasal, lexical, and contrastive stress,
Whisper requires fine-tuning on a curated dataset where stress
distinctions are explicitly annotated and linked to unique tran-
scriptions. Such fine-tuning enables the model to differentiate
stress patterns based on acoustic cues such as pitch, duration,
and amplitude, rather than treating them as interchangeable
variations of the same speech signal.

Fine-tuning
The fine-tuning dataset is based on an experiment (Knutsen
& Stromswold, 2024) with 36 native English-speaking col-
lege students (18 men and 18 women) from the mid-Atlantic
U.S., who were tasked with producing prosodic stress to dis-
tinguish meaning using the web-based platform FindingFive
(FindingFive Team, 2019). No participants reported any is-
sues with vision, hearing, language abilities (spoken or writ-
ten), learning, or other neuropsychological conditions. For
phrasal stress, participants produced 16 adjective-noun and
compound word minimal pairs embedded in sentences (e.g.,
“The green house/greenhouse spoils the view”). For lexical
stress, they produced 16 words differing only in stress pattern
(e.g., “insult” vs. “insult”). For contrastive stress, they lis-
tened to 16 sentences in which either a color or animal did
not match a picture (e.g., “The red cow has the ball” with
an image of a black cow with a ball) and corrected the error
both lexically and prosodically (e.g., “The black cow has the
ball”).

To facilitate model training, transcriptions are capitalized
to reflect canonical English stress patterns. All minimal
pair transcriptions have been listed in Table 1. The mini-
mal pairs for phrasal stress are not capitalized because their
distinct meanings are already encoded in their orthographic
forms. Each instance of the Whisper model is fine-tuned for
5 epochs using default hyperparameters, and for a given tran-
scription dataset, model performance is averaged over 5 in-
stances using 5-fold cross-validation. This cross-validation
protocol partitions the participant data into 5 equal subsets
with balanced gender representation, iteratively training on
four subsets and testing on the held-out fifth (De Rooij &
Weeda, 2020). By ensuring that each data point is used
for both training and validation across different iterations,
cross-validation prevents data leakage and guarantees that the
model is not memorizing specific training examples. This
safeguards against overfitting and ensures that reported per-
formance reflects generalizable transcription accuracy rather
than an artifact of the training set.

Related Work
As a baseline for model comparison, we use the Knutsen
and Stromswold study (Knutsen & Stromswold, 2024), from
which the fine-tuning dataset was derived. They examined
gender differences in the acoustic realization of phrasal, lexi-
cal, and contrastive stress, addressing a gap in prior research
on prosodic variation between men and women. Acoustic
features (including pitch, amplitude, and duration) were ex-
tracted and analyzed using Bayesian ANOVAs, Random For-

Stress Minimal Pair Transcription

Phrasal The <green house / greenhouse> spoils the view.
Phrasal There’s a <dark room / darkroom> in this house.
Phrasal The <white board / whiteboard> needs cleaning.
Phrasal That <hot dog / hotdog> is under the table.
Phrasal A <black bird / blackbird> just flew past.
Phrasal His <wet suit / wetsuit> is on the floor.
Phrasal That <blue bell / bluebell> is pretty.
Phrasal The <bull’s eye / bullseye> is red.

Lexical <DIFfer / deFER>
Lexical <DIScard / disCARD>
Lexical <DIScount / disCOUNT>
Lexical <INcrease / inCREASE>
Lexical <INdent / inDENT>
Lexical <INsert / inSERT>
Lexical <INsight / inCITE>
Lexical <INsult / inSULT>

Contra. The <BLACK cow / black COW> has the ball.
Contra. The <BLACK sheep / black SHEEP> has the ball.
Contra. The <BLUE cow / blue COW> has the ball.
Contra. The <BLUE sheep / blue SHEEP> has the ball.
Contra. The <RED cow / red COW> has the ball.
Contra. The <RED sheep / red SHEEP> has the ball.
Contra. The <WHITE cow / white COW> has the ball.
Contra. The <WHITE sheep / white SHEEP> has the ball.

Table 1: A list of minimal pairs by stress type.

est Classification (RFC), and Bayesian mixed-effects regres-
sion to determine their relative importance in signaling stress.
Their results indicate that while both men and women employ
pitch (measured by fundamental frequency F0), amplitude,
and duration to mark stress, their reliance on these features
differs systematically.

Stress Patterns

Knutsen and Stromswold found that phrasal stress was pre-
dominantly marked through durational differences, where
adjective-noun morphemes were often longer and had more
pause between them. Subtle gender-based distinctions also
emerged according to RFC results: pitch had a slightly higher
importance score than amplitude for men, and amplitude had
a higher importance score than pitch for woman by a simi-
lar margin. This finding enriches prior work from Plag (Plag,
2006), which found that F0 differences in compound words
were more pronounced for women than men.

For lexical stress, Knutsen and Stromswold’s RFC results
and regression analyses revealed that women use amplitude,
duration, and pitch, with amplitude being most important,
whereas men primarily rely on amplitude and duration. This
aligns with the data from Koffi and Mertz (Koffi & Mertz,
2018), which after re-analysis by Knutsen and Stromswold
showed that amplitude and duration play crucial roles for both



Acoustic
Context

Phrasal Stress (SD) Lexical Stress (SD) Contrastive Stress (SD)

All Men Women All Men Women All Men Women

None 90.1% (3.2) 93.0% (2.4) 89.8% (4.9) 87.1% (4.6) 88.0% (6.2) 86.1% (6.3) 89.9% (3.1) 90.8% (5.0) 88.2% (4.3)
Front 91.3% (1.9) 92.4% (2.8) 90.7% (3.5) N/A N/A N/A 90.6% (2.8) 92.5% (3.1) 88.6% (4.8)
Back 92.0% (2.6) 92.0% (4.0) 92.4% (3.4) N/A N/A N/A 93.1% (2.5) 95.1% (4.4) 92.2% (3.9)
Full 92.6% (2.2) 92.6% (3.3) 93.0% (1.8) N/A N/A N/A 92.8% (2.3) 95.1% (4.0) 91.1% (3.6)

Coders 91.9% (1.6) 92.9% (1.1) 90.8% (1.3) 88.8% (1.6) 89.3% (1.5) 88.3% (1.5) 91.6% (1.5) 92.1% (1.2) 91.1% (1.6)
RFC 86.4% (0.2) 90.3% (0.3) 84.3% (0.5) 83.9% (0.3) 84.8% (0.4) 80.8% (0.5) 83.7% (0.3) 85.5% (0.4) 82.4% (0.5)

Table 2: Accuracy of Whisper models trained on phrasal, lexical, and contrastive stress using different types of acoustic context.

genders, but pitch is more relevant for women than for men.
For contrastive stress, Knutsen and Stromswold found that

both men and women relied on all three acoustic features,
utilizing pitch, amplitude, and duration. The RFC analysis
showed that the features had similar importance for both gen-
ders. However, the regression analysis showed that women
used pitch to signal contrastive stress, while men did not.

Benchmarks
Machine learning analyses using RFC models revealed that
men’s speech was classified with greater accuracy than
women’s, suggesting that men’s use of acoustic features is
more consistent and less variable. This finding is particularly
noticeable in lexical stress, where the RFC model correctly
classified 84.8% of men’s utterances and 80.8% of women’s
utterances. A similar trend was found for phrasal and con-
trastive stress, where women’s more variable use of pitch
may have contributed to the lower classification accuracy.
Bayesian regression analyses further confirmed that pitch was
a significant predictor of stress accuracy for women but not
for men, reinforcing the notion that women employ a more
complex, multi-dimensional approach to stress marking.

In addition to the RFC baseline, this study presented a
human benchmark, i.e., the gold standard. This benchmark
used three trained native English-speaking research assistants
(coders), who were blind to the target utterance, to mark the
perceived stress in each trial. Coders used Praat to mark mor-
pheme (for phrasal and contrastive stress) or syllable (for lex-
ical stress) boundaries. They also marked whether phrasal
stress trials contained an adjective-Noun or compound word,
whether the first or second syllable was stressed in lexical
stress trials, and whether the color or animal was stressed in
contrastive stress trials.

Extent of Acoustic Context
The RFC baseline is limited in that the sentence-embedded
minimal pairs for phrasal and contrastive stress do not lever-
age acoustic features outside the minimal pair, which is the
region of interest (ROI) bracketed in Table 1. This was likely
done for methodological simplicity, since the embedding sen-
tences vary not only in length but also lexically depending on
how participants produced them. For instance, both “No, now
the black COW has it” and “The black COW has it” were re-
sponses for a contrastive stress trial. Unlike the RFC model,

Whisper automatically processes variable-length audio using
its Transformer architecture, which can handle different in-
put lengths while keeping track of word order. This makes
the analysis of acoustic context more practicable than with an
RFC model.

For lexical stress trials, only the ROIs were uttered by
participants (e.g., “<INsult>”), because in the lexical stress
trials, the words were said in isolation, we could not ana-
lyze the role of context.. To determine the extent to which
acoustic information outside of the ROI includes information
about what element is stressed, for phrasal and contrastive
stress, we compared Whisper’s performance when given only
the ROIs (e.g., “<greenhouse>”, “<BLACK cow>”), the
ROIs and preceding context (i.e., front context: e.g., “the
<greenhouse>”, “No, the <BLACK cow>”), the ROIs and
following context (i.e., back context: e.g., “<greenhouse>
spoils the view”, “<BLACK cow> has the ball”) and the full
sentence.

Table 2 shows that for phrasal and contrastive stress, hav-
ing more acoustic context tends to improve Whisper’s perfor-
mance. Namely, the front acoustic context is much shorter
than the back acoustic context, and this difference is re-
flected proportionally by the improved accuracy over hav-
ing no acoustic context. For contrastive stress, this effect
is much more pronounced (2.5 percentage points) than for
phrasal stress (0.7 percentage points). An exception to this
trend is the phrasal stress produced by men, which results
in the highest Whisper accuracy when there is no acoustic
context. While Whisper is unable to beat the average ac-
curacy of human coders (i.e., the gold standard) for lexical
stress without acoustic context, it is able to surpass the gold
standard for phrasal and contrastive stress from both men and
women. Furthermore, across all gender-stress combinations,
Whisper’s performance exceeds RFC models by an average
of 6.6 percentage points. The most improvement is observed
for contrastive stress, where the average improvement over
men and women is ∼9.7 percentage points.

Transfer Between Stress Types
In addition to handling varying acoustic contexts with ease,
Whisper is able to generalize its learnings across diverse
acoustic environments, speakers, and linguistic contexts.
Given its superior performance to RFC models (Table 2), it



Training
Stress

Testing Stress

Phrasal (SD) Lexical (SD) Contra. (SD)

Control 70.7% (4.2) 39.5% (3.6) 49.7% (2.6)

Phrasal 90.2% (2.6)† 48.7% (6.0) 42.0% (6.3)∗

Lexical 74.6% (3.0) 86.6% (1.2)† 77.5% (6.8)†

Contra. 59.2% (1.6)† 71.9% (4.9)† 88.7% (4.5)†

All 90.2% (2.5)† 86.6% (2.3)† 88.7% (4.1)†

Coders 91.9% (1.6) 88.8% (1.6) 91.6% (1.5)
RFCs 86.4% (0.2) 83.9% (0.3) 83.7% (0.3)

Table 3: Accuracy of control stress, all-stress, coders and
RFCs, and residuals for single-stress. † p < .01 ∗p < .05

follows that Whisper is learning more valuable features that
also generalize as evidenced by cross validation. However,
this generalization is within stress type. We hypothesize that
Whisper’s pre-training has implicitly learned relationships
between the acoustic patterns of stress types that can be un-
covered through fine-tuning.

To this end, we first fine-tune a Control model using all
types of stress from a single random control participant. This
equips Whisper with the minimum knowledge needed to learn
the unique lexicons in our fine-tuning dataset (i.e., the cap-
italization of stressed syllables). For consistency between
stress types, we only use the ROIs (Table 1). The Con-
trol model’s accuracy for phrasal stress is significantly higher
than for lexical and contrastive stress (Table 3), because the
prosodic difference between adjective-noun vs. compound
word is implicitly included in Whisper’s pre-training lexicon
(e.g., “green house” vs. “greenhouse”). The control par-
ticipant’s data then becomes part of the fine-tuning data for
3 single-stress models and an all-stress model. For phrasal
stress, Whisper is fine-tuned on the superset of control data
and phrasal stress data, producing the Phrasal model that is
then tested on all types of stress in the testing subset (Table 3,
row 2). This is repeated for each fold in the cross-validation,
and the entire process is repeated for lexical stress, contrastive
stress, and the combination of all three (Table 3, rows 3-5).

Table 3 shows that the 2×2 matrix of lexical and
contrastive results for single-stress models and the
phrasal→phrasal result have a statistically significant
improvement in accuracy over the Control model. Phrasal
and contrastive stress models learn partially conflicting
acoustic patterns in isolation, worsening their transfer accu-
racy significantly (-11.4% and -7.7%), but in the all-stress
model, new non-conflicting patterns are learned. When
fine-tuning on all stress types, we achieve near-human ac-
curacy compared to the coders and higher average accuracy
compared to the RFC models across phrasal, lexical, and
contrastive stress reported in (Knutsen & Stromswold, 2024).

Figure 1: Heatmaps of Whisper’s compound-word accuracy
showing that as pitch shift diverges or pause duration in-
creases, accuracy decreases because compound words are be-
ing recognized as two separate words. Hotter colors indicate
higher accuracy.

Characterizing Decision Boundaries
Unlike RFC models, which provide interpretable feature im-
portance scores, Whisper’s learned features are more chal-
lenging to extract. To this end, we propose a black-box eval-
uation methodology, which we demonstrate on phrasal stress,
but which can be applied to any stress type and any model.
For each stress type, the minimal pairs can be separated into
two categories based on their canonical stress patterns (Ta-
ble 1). We select one of these categories as the starting dis-
tribution and we systematically perturb the acoustic features
of every recording in only that category such that they pro-
gressively capture some of the other target category’s acoustic



Figure 2: Heatmaps of Whisper’s compound-word accuracy,
which decreases either as the first amplitude decreases and the
second amplitude increases or as pause duration increases.

feature distribution. The perturbations create a surface in the
feature space over which we can observe continuous changes
in Whisper’s compound-word accuracy. If the accuracy de-
creases along an axis of the surface, this indicates that the
decision boundary between the starting and target categories
is sensitive to the corresponding perturbation. As this is a
computationally costly procedure, we have limited the data
to recordings from 10 men and 10 women, which decreased
the overall accuracy for women.

For phrasal stress, these two categories are the compound
words (starting) and the adjective-nouns (target), and we per-
form two sets of perturbations for pitch (P1) and amplitude
(P2) to the starting category. In order to ground these pertur-
bations, we first consider the distributions of pitch and am-

plitude shifts that participants produce for the first and sec-
ond constituent words of their minimal pairs as well as pause
duration shifts (Table 4). For a given constituent word, we
measure pitch shift as the semitone difference (equivalent to
frequency quotient) in average pitch from the starting cate-
gory to the target category, which is extracted from the ranges
of 80 to 450 Hz for women and from 30 to 400 Hz for men
(Knutsen & Stromswold, 2024). Amplitude shift is measured
as the target category’s mean amplitude divided by the start-
ing category’s mean amplitude, and pause duration shift is the
difference in pause duration between the categories. This pro-
cess results in 4 distributions from which we remove outliers
using the 1.5 IQR rule (5.9% removed) and select 5 repre-
sentative values (Table 4). According to these distributions,
P1 shifts the pitch of each constituent in the compound word
by -2, -1, 0, 1, and 2 semitones, and P2 changes each con-
stituent’s amplitude by the proportions of 0.5, 0.75, 1.0, 1.25,
and 1.5. Both P1 and P2 apply their respective shifts in con-
junction with 3 changes to the duration of pause at the mor-
pheme boundary of the compound word: 0.0, 0.05, and 0.1s,
which deliberately exaggerates the pause durations to deter-
mine the most robust morphological characteristics of the de-
cision boundaries.

Metric Word Percentile

10th 30th 50th 70th 90th

Pitch Shift
(semitone)

1 −1.46 −0.55 −0.11 0.37 1.13
2 −2.02 −0.63 0.08 0.92 2.15

Amp. Shift
(proportion)

1 0.58 0.75 0.91 1.15 1.62
2 0.53 0.77 0.99 1.33 1.77

Pause Shift (s) N/A 0.00 0.00 0.00 0.01 0.03

Table 4: A summary of pitch, amplitude, and pause duration
shifts from compound word to adjective-noun measured on
participant data for phrasal stress.

Figure 1 depicts the compound-word accuracies of Whis-
per trained on phrasal stress and tested on P1. For all
pause duration and gender combinations (except for record-
ings from women with a pause of 0.0s), we observe a strong
quadratic decision boundary. In the exception case, the scope
of semitones may be too small to observe a quadratic deci-
sion boundary, but a strong linear decision boundary is still
evident along the same axis. As the pitch shifts of the con-
stituent words diverge to either (-2, 2) or (2, -2), Whisper’s
accuracy decreases by as much as 21.5%, meaning that it
is starting to recognize compound words as adjective-nouns.
This quadratic decision boundary is consistent as pause du-
ration increases, but the accuracies decrease globally with
respect to pitch. For P2, Figure 2 shows a linear decision
boundary when the pause duration is greater than 0.0s, where
a decrease in the first word’s amplitude and an increase in the
second word’s amplitude decreases Whisper’s accuracy and
the inverse improves its accuracy. When pause duration is
0.0s, no strong linear decision boundary is evident for either



men or women.

Discussion
The successful application of Whisper to prosodic stress anal-
ysis enables large-scale studies of spoken language process-
ing and production that account for prosody’s role in commu-
nication.
Acoustic Context. An analysis of acoustic context re-
vealed that stress interpretation depends on broader sentential
prosody, not just local features. The superior performance
of models with full and back acoustic context and the asym-
metric contributions of front and back context, especially in
contrastive stress, provides evidence for anticipatory and ret-
rospective planning. A unique exception to this trend is the
phrasal stress produced by men, for which acoustic context
was not found to improve Whisper’s performance. Neverthe-
less, Whisper’s performance surpassed the gold standard of
human performance for both men and women on phrasal and
contrastive stress. Without acoustic context for lexical stress,
Whisper’s performance was near-human, but unable to ex-
ceed it. Relative to the RFC models, Whisper improved accu-
racy for women more than men for phrasal and lexical stress
and for both women and men by ∼9.7 percentage points for
contrastive stress. We conclude that Whisper is learning not
only superior features than RFC models in general, but also
better discriminatory features between men and women com-
pared to RFC models. This is beneficial toward gender equity
because it improves accuracy despite gender imbalances in
pre-training data. Whisper offers an efficient and accurate al-
ternative to the labor-intensive process of manual coding, en-
abling larger-scale prosodic studies that were previously un-
feasible.
Stress Transfer. Unlike the RFC models, which as yet have
only been applied to singular types of stress (Knutsen &
Stromswold, 2024), we have demonstrated that Whisper can
learn multiple types of stress in tandem. Furthermore, the
RFC models cannot be used for transcription outside of the
specific classification problem they were trained for, while
Whisper (in this work) is being applied to classification
through transcription, preserving its ASR capability. This
works to Whisper’s advantage when transferring acoustic pat-
terns learned from one type of stress to another, because
Whisper is relying on its extensive pre-training.

The observed transfer effects between different types of
stress provide compelling evidence for shared acoustic pat-
terns in stress production. Particularly noteworthy is the
strong bidirectional transfer between lexical and contrastive
stress (+32.4% and +27.8%), suggesting similar acoustic pat-
terns between word-level and discourse-level prosodic phe-
nomena. These findings quantitatively support theoretical
frameworks proposing common acoustic patterns underlying
different forms of prosodic stress (Ladd, 2008). In contrast,
the weak transfer to and from phrasal stress is consistent with
RFC findings that indicate lexical and contrastive stress are
signaled by a combination of frequency, amplitude, and dura-

tion, whereas phrasal stress is signaled almost exclusively by
duration (Knutsen & Stromswold, 2024).
Decision Boundaries. In prior work, RFC models have
proven valuable for ranking acoustic feature importance,
which is challenging to achieve for a black-box model such
as Whisper. However, our proposed evaluation methodol-
ogy for identifying decision boundaries in acoustic feature
space bridges the gap in interpretability between Whisper
and RFC models. Namely, the systematic perturbation of
pitch, amplitude, and pause duration elicits changes in Whis-
per’s accuracy that we can analyze. Figure 1 shows that
when pitch perturbations P1 diverge, Whisper recognizes
compound words as adjective-nouns. When the first pitch de-
creases and the second pitch increases, the compound stress
pattern approaches the phrasal stress pattern attributed to
adjective-noun. On the other hand, when the first pitch in-
creases and the second pitch decreases, we posit that the ex-
aggeration of the compound stress pattern brings it closer to
contrastive stress (e.g., “GREEN house”). Meanwhile, the
amplitude perturbations P2 only share one side of this ef-
fect: decreasing the first amplitude and increasing the second
amplitude (in accordance with the canonical phrasal stress
pattern) causes Whisper to detect adjective-nouns (Figure 2).
Within the scope of amplitude changes being investigated, it
appears that increasing the first amplitude and decreasing the
second often reinforces the recognition of compound words
(i.e., increases Whisper’s accuracy) in spite of increases in
the pause between words. These findings reveal a complex in-
terplay between pitch, amplitude, and pause duration, which
offers prosodic annotation models a new way to analyze their
learned acoustic patterns beyond coarse feature importance
scores.

Conclusion
Whisper demonstrates near-human and super-human capa-
bilities for recognizing prosodic stress, harnessing variable-
length acoustic context, and transferring learned stress pat-
terns, greatly surpassing prior work in accuracy, accessibil-
ity, and robustness. The final gap between Whisper and prior
work was in interpretability, which we have addressed with
our black-box evaluation methodology. This method eluci-
dates the complex interplay of acoustic features, which im-
portance scores convey coarsely, and it makes no assumptions
about the model, meaning that all models can be evaluated in
a standardized. With proper fine-tuning using a very small,
carefully curated dataset, Whisper could become a promising
tool for cross-linguistic prosodic research, potentially illumi-
nating questions about cross-language and language-specific
patterns in stress. The fine-tuned Whisper model will be pub-
licly released upon acceptance.
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