USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

Secure Information Embedding in
Forensic 3D Fingerprinting

Canran Wang, Jinwen Wang, Mi Zhou, Vinh Pham, Senyue Hao, Chao Zhou,
Ning Zhang, and Netanel Raviv, Washington University in St. Louis

https://www.usenix.org/conference/usenixsecurity25/presentation/wang-canran

This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13-15, 2025 « Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

ARTIFACT
EVALUATED
yusenix

AVAILABLE

Secure Information Embedding in Forensic 3D Fingerprinting

Canran Wang*, Jinwen Wang*, Mi Zhou, Vinh Pham, Senyue Hao,
Chao Zhou, Ning Zhang, and Netanel Raviv
Washington University in St. Louis

Abstract

Printer fingerprinting techniques have long played a critical
role in forensic applications, including the tracking of counter-
feiters and the safeguarding of confidential information. The
rise of 3D printing technology introduces significant risks to
public safety, enabling individuals with internet access and
consumer-grade 3D printers to produce untraceable firearms,
counterfeit products, and more. This growing threat calls for a
better mechanism to track the production of 3D-printed parts.

Inspired by the success of fingerprinting on traditional 2D
printers, we introduce SIDE (Secure Information EmbeDding
and Extraction), a novel fingerprinting framework tailored
for 3D printing. SIDE addresses the adversarial challenges
of 3D print forensics by offering both secure information em-
bedding and extraction. First, through novel coding-theoretic
techniques, SIDE is both break-resilient and loss-tolerant,
enabling fingerprint recovery even if the adversary breaks
the print into fragments and conceals a portion of them. Sec-
ond, SIDE further leverages Trusted Execution Environments
(TEE) to secure the fingerprint embedding process.

1 Introduction

3D printing is revolutionizing the consumption and distribu-
tion of goods, but also introduces unprecedented security risks
that are absent in traditional 2D printing. With internet access
and commercial 3D printers, individuals can fabricate untrace-
able firearms (ghost guns [1], [2]) and other illicit items, with
little to no technical expertise. For example, one such weapon
was implicated in the recent killing of Brian Thompson, the
CEO of UnitedHealthcare [3], [4] (Fig. 1). To assist authori-
ties and law enforcement in addressing these threats, forensic
techniques offer a promising path forward.

Existing Fingerprinting Solutions: Fingerprinting is a
widely employed forensic technique that embeds uniquely

*These authors contributed equally to this work.

(b)

Figure 1: (a) Renderings of a Glock 19 frame design. (b)
Fingerprinting fails when the frame is broken, with portions
missing.

traceable data into printed documents, e.g. timestamps, ge-
olocations, and printer IDs. These embedded fingerprints can
subsequently be extracted to trace the perpetrator. In the realm
of 2D printer fingerprinting, existing approaches generally fall
into two broad categories: active and passive methods. Active
methods involve deliberately placing invisible markers (e.g.,
a grid of dots [5] or traits from modulated laser intensity [6]).
Passive methods, on the other hand, rely on inherent varia-
tions of individual printers, including imperfections or speed
fluctuation patterns in specific printer components [7]. Ex-
tending these concepts to 3D printing, current fingerprinting
efforts have explored a variety of techniques, e.g., embedding
tags on the object surface by varying layer thickness [8] or
printing speed [9], altering layer material [10], inserting cavi-
ties [11], embedding RFID tags [12] or QR codes [13], [14],
and inserting acoustic barcodes using surface bumps [15]. In
addition, some studies focus on intrinsic signatures unique to
3D printers, including characteristics of stepper motors [16]
and heat systems [17]. Despite the comprehensiveness of vec-
tors investigated in previous studies, there is little focus on
the resiliency of the fingerprint against an active adversary,
who may tamper with the embedding software or destroy the
fingerprint by breaking the printed tools.

Resilient 3D Fingerprinting Solution under Adversaries:
To protect the integrity of 3D printing in adversarial scenar-

USENIX Association

34th USENIX Security Symposium 1887

2. PN Bambu | manufacture 3
z: allLab ! >

£: ELEGCO:

o! ! b)

Z! CREALITY ! b ‘él
= : ! g

E 42 phrozen : /@ & :

o @ ANrcueic! Q Y ——————

ol ! j

Figure 2: Law Enforcement Agencies Fail Fingerprinting

ios, we proposed SIDE, a framework for Secure Information
EmbeDding and Extraction, designed to enhance the re-
siliency of the fingerprint. This necessitates cyber-physical
protection of the fingerprint in both the physical printed part
and the digital process that embeds the fingerprint. In this
work, SIDE tackles two key technical challenges.

Preventing Information Corruption: An adversary who is
fully aware of the embedding method can tamper with the
embedded fingerprint by breaking the object and hiding some
of the fragments, hindering the extraction of the embedded
information. Existing fingerprinting solutions [18], which em-
bed raw information into objects, cannot defend against such
adaptive adversaries due to their lack of resilience to missing
information. To address this challenge, we propose o.-break-
resilient codes (0.-BRC), a family of coding-theoretic tech-
niques designed for information extraction from 3D prints,
with o serves as a security parameter. These codes improve
robustness by allowing successful extraction of embedded
bits under fragmentation and partial loss, i.e., even when the
print is adversarially broken and some fragments are missing
up to the specified security threshold.

Preventing Fingerprint Embedding Tempering: An adversary
may also attempt to tamper with the processing that embeds
the fingerprint into the physical part. For example, if the fin-
gerprint is embedded by the slicing software, then an attacker
can attempt to remove the fingerprint by tampering with G-
code instructions. As a result, to maximize resiliency against
digital attacks, SIDE inserts the fingerprint embedding sub-
system into the process immediately before physical printing
in the 3D printing pipeline. By leveraging a TEE, SIDE en-
sures the integrity of the embedding process that translates the
digital fingerprint to its physical representation, even against
a strong attacker who can compromise the OS kernel.

Prototype and Evaluations: We implemented and tested a
prototype of SIDE, on a Creality Ender 3 3D FDM printer
controlled by a Raspberry Pi 3B board, with OP-TEE V3.4
as secure world OS, and extend the results to an Elegoo Mars
4 SLA printer. To evaluate the efficiency and effectiveness
SIDE, we measured both the runtime and memory overhead
introduced from SIDE, and the fingerprint extraction success
rate. The latter was measured under adversarial scenarios,
with a combination of real-world and simulation-based exper-

iments, with the help of a Leica S9D microscope and optical
coherence tomography (OCT) devices. In summary, we make
the following contributions.

* We propose a secure 3D fingerprinting mechanism
named SIDE that improves resiliency to adversarial op-
erations, including malicious manipulation on both the
information embedding procedure and the 3D prints.

We design and implement coding and decoding mecha-
nisms with break-resiliency and loss-tolerance properties
to defend against adversaries attempting to tamper with
the fingerprinting information on 3D prints. To the best
of our knowledge, practical codes with these specific
properties have not been studied before. Additionally,
we develop a trusted execution environment for the fin-
gerprinting embedding process to protect its integrity
against software attacks.

We implemented a prototype of SIDE on the Creality En-
der 3 3D printer controlled by a Raspberry Pi 3B board,
and evaluated the efficiency and effectiveness via a com-
bination of real-world and simulation-based experiments
on 3D objects with varying shapes and sizes.

2 Background

3D Printing: Additive manufacturing, colloquially referred
to as 3D printing, has emerged as a revolutionary technology
with profound implications across various industries [19]. In
contrast to the traditional subtractive manufacturing during
which materials are consecutively removed from the work-
piece, 3D printing refers to an additive process of creating a
physical object and is typically done by laying down many
thin layers of material in succession.

Numerous technologies have been developed for 3D print-
ing. By and large, they differ by which material is in use and
how layers are formed. A layer can either be formed by using
a nozzle that deposits molten thermoplastics while shifting
back and forth on a surface, e.g. Fused Deposition Modeling
(FDM), by depositing a layer of liquid polymers and curing it
by ultraviolet light exposure, e.g., Stereolithography (SLA), or
by binding powdered material using high-energy laser beams,
e.g., Selective Laser Sintering (SLS).

The additive manufacturing process begins by converting
a given 3D model into discrete 2D diagrams using a slicer
software. Each diagram represents a planar cross-section of
the model along the printing direction at a certain height.
Then, the slicer creates a series of machine commands to
instruct the printer about how to produce the corresponding
layers of the diagram sequence.

In this research, we focus on printers based on both FDM
and SLA technologies for their prevalence in commodity 3D

1888 34th USENIX Security Symposium

USENIX Association

printers. The commands for FDM printers, called G-Codes',
include the nozzle movement along the x, y, and z axes, the
extrusion of material, and the temperature of nozzle/bed. The
commands for SLA printers may include the movement of
print platform and the exposure time of each layer. Other as-
pects based on the printer’s capabilities may also be specified
in these commands.

A typical FDM printer involves four stepper motors, which
are actuators that rotate in discrete angular steps of a constant
degree. Three of the motors control the nozzle movement
in the Cartesian space, and one is responsible for filament
extrusion. However, a G-code command specifies only the
expected action of the printer hardware in a relatively high
level, while the low-level implementation is not addressed.
For example, the command

Gl X98.302 Y96.831 E15.796 F400

merely instructs the printer to move its nozzle from its cur-
rent position to location (x,y) = (98.302,96.831) (with its
position relative to the z axis unchanged), and simultaneously
extrude 15.796 millimeters of molten thermoplastic filament,
at a feed rate (speed) of 400 mm/min. Completing this oper-
ation requires a series of stepping events, and each of them
defines the exact timing and direction to trigger one of the
four stepper motors for a single angular step.

The printer firmware bridges between the G-code and the
printer’s hardware, translating commands into precise actuator
movements that drive the printing process. The translation
process of a firmware is non-trivial, and has a significant
impact on print quality. For instance, a sudden jerk of the
printer nozzle may lead to uneven deposition of print material,
compromising or even failing a print. In contrast, a nozzle
movement with smooth velocity change is generally preferred.

Trusted Execution Environment: Trusted Execution En-
vironments (TEEs) have emerged as a reliable solution for
isolating sensitive and critical operations from untrusted soft-
ware stacks in computing systems. Utilizing hardware and/or
software isolation mechanisms, ARM TrustZone provides a
secure execution space, known as the secure world, for trusted
software stacks. User space applications within this environ-
ment are commonly referred to as Trusted Applications (TAs).
The code and data of secure software in the secure world
are protected from access or tampering by untrusted software
stacks, which operate in the Rich Execution Environment
(REE), also known as the normal world. Benefiting from
diverse TEE solutions provided by CPU vendors for differ-
ent architectures, such as ARM TrustZone, Intel Software
Guard Extensions (SGX), and RISC-V Keystone, applica-
tions across various domains have been effectively protected.
These domains include access control [20]-[22], cloud com-
puting [23]-[28], and real-time systems [29]—[33].

'Note that there exist other languages for controlling 3D printing hard-
ware, including variants of G-codes and propriety ones. Nevertheless, we
collectively refer to those as G-codes for clarity.

3 Threat Model

We assume that the adaptive attacker is fully aware of SIDE’s
embedding and extraction schemes and attempts to bypass
the fingerprinting mechanism through either the cyber vector
or the physical vector. Physically, we assume the attacker
can kinetically break apart the printed object to corrupt the
embedded fingerprint information. Furthermore, the attacker
is able to conceal some but not all of the fragments from the
forensic investigation. This is since physically eliminating all
traces of evidence often requires significantly greater domain
expertise and specialized training. Moreover, we do not be-
lieve it is possible to forensically link a printed object to a
specific printer if all identifiable fragments can be completely
concealed, especially given that physical evidence often plays
an important role in criminal trials. Digitally, we assume the
attacker is capable of modifying the files on the file system,
and leveraging exploitation tools to escalate privilege in the
system, compromising the rich execution environment (e.g.,
normal world). However, the attacker cannot forge signatures
for secure boot, and the secure software in TEE is free of
vulnerability and can be trusted.

We further assume that attackers capable of building their
own 3D printing devices, or capable of purchasing untrace-
able hardware, are out of scope. This is since these approaches
often require significant expertise, incur substantial costs, and
deteriorate the quality of the resulting print. While SIDE
certainly has limitations in defending against resourceful at-
tackers with strong expertise in additive manufacturing, it
significantly raises the level of sophistication, prior knowl-
edge, and expertise required from the adversary in order to
remain undetected after committing the crime.

We further assume that hardware used by law enforcement
during decoding, such as microscopes or computed tomogra-
phy (CT) devices, is trusted and inaccessible to adversaries.
Additionally, we assume that the adversaries will not intention-
ally damage printer components like sensors and actuators, as
doing so would degrade print quality. The printer’s processor
is assumed to support a Trusted Execution Environment (TEE)
and to be reliable. Lastly, side-channel and denial-of-service
(DoS) attacks are considered out of scope.

4 Break-Resilient Codes

The secure information extraction feature of SIDE is at-
tributed to the o-break-resilient codes (0.-BRC) specifically
developed for forensic fingerprinting purposes, in which o
serves as a security parameter.

The o-BRC includes an encoder which take a binary
string w € {0, l}k, i.e., the fingerprint, as input, where

k=(1-0)-m—1, (1

USENIX Association

34th USENIX Security Symposium 1889

— 2z direction ——p
{]
N
—
|
\

(@)

z direction >
i =
= : = (7\
= ((E (0
e =
(b)

Figure 3: Fragments of a transmission shaft. Breaks in (a)
cross multiple layers, and the assembly of fragments may
be inferred from their overlapping bits. Breaks in (b) are
perpendicular to the z direction, and the correct assembly (i.e.,
order) cannot be inferred from the fragments themselves.

with [and m being positive integers such that
I>a+1and m> [2logl]|+2, 2)

and outputs a codeword ¢ € {0,1}". For positive integers s
and ¢ satisfying

4-t+2s/(m+ [logm] +4) <4-q, 3)

the codeword c is both t-break-resilient and s-loss-tolerant.
Specifically, this means that even if

1. (z-break-resiliency) ¢ is broken into 7 4 1 fragments, and
2. (s-loss-tolerance) some fragments are lost, totaling s bits,

then the a-BRC decoder can still recover w from the remain-
ing (unordered) subset of fragments, thereby secure informa-
tion extraction is guaranteed, resolving Challenge 2.

Remark 1. SIDE encodes information into objects using
physical elements such as variations in layer thickness. With
this setting, every break falls into one of two categories:
those that cross multiple layers (Fig.3a) and those that do
not (Fig.3b). Breaks in the former category result in overlap-
ping bits (i.e., bits which are shared between two or more
fragments), potentially providing information that enables
fragment assembly (see Section 4.3). Furthermore, if one
fragment which contains shared bits is concealed, the shared
bits remain accessible through other overlapping fragments.
Breaks in the former category, however, do not create shared
bits, and if a fragment in Figure 3b is concealed, all of its
embedded bits are omitted from law enforcement.

o-BRC are thus designed to handle the worst-case scenario,
where ¢ represents the number of breaks that either produce no

overlapping bits or cannot be resolved using overlapping bits,
and s denotes the number of codeword bits entirely absent
from all fragments confiscated by law enforcement.

4.1 Preliminaries

The following notions from coding theory are employed as
basic building blocks for BRC.

Systematic Reed-Solomon (RS) Codes: A special type of
Reed-Solomon codes, which have been widely employed in
communication systems and data storage applications; for an
introduction to the topic see [18, Ch. 5].

For integers k and n such that n > k > 0, a systematic [n, k]

RS code is a set vectors of length n called codewords, each
entry of which is taken from [F,, a finite field with g ele-
ments. The first k entries of each codeword in a systematic RS
code carry information in raw form, and the remaining n — k
contain redundant field elements that are used for error cor-
rection. Reed-Solomon codes are maximum distance sep-
arable (MDS), a property which allows the recovery of a
codeword after being corrupted by x errors (incorrect symbols
with unknown locations) and y erasures (incorrect symbols
with known locations), as long as n — k > 2x +y. Further, in
this paper we focus on the binary field and its extensions,
where g = 2° for some integer z > 1, and any element in I,
can be represented by a binary string of length z.
Run-length Limited Codes: A run-length limited (RLL)
code has codewords in which the length of runs of repeated
bits is bounded. We employ the RLL code from [34, Algo-
rithm 1] in this paper for its simplicity of implementation.
Mutually Uncorrelated Codes: A mutually uncorrelated
(MU) code has the property that for every two (possibly iden-
tical) codewords, the prefix of one is not identical to the suffix
of another. As such, the codewords of a MU code do not over-
lap with each other when appearing as substrings of a binary
string. MU codes have been extensively investigated in the
past [34]-[43]. In this paper, we adopt a classic construction
of MU code, in which each codeword starts with [logk] zeros
followed by a one, where k is the length of the (binary) infor-
mation word. The last bit is fixed to one, and the remaining
bits are free from zero runs of length [logk] + 1.
Distinct Block Codes. Inspired by ideas from [34, Algorithm
1] and [44, Algorithm 1], we provide an encoding process
that maps an input word to an array of distinct binary strings,
and offer the inverse operation. These procedures serve as an
important component in BRC. Both algorithms, as well as
proofs of their correctness, are given in Appendix A.

4.2 Encoding

The encoding procedure of a-BRC takes a binary string w
as input and outputs a codeword, and it is provided in Al-
gorithm 1. At high level, w will be converted to a sequence

1890 34th USENIX Security Symposium

USENIX Association

Algorithm 1 ENCODE (a-BRC Encoding)

Input: An information word w € {0,1}*, where k = (I — o) - m — 1, and [, m are positive integers s. t. m > [2log/] +2.
Output: A codeword ¢ € {0,1}", where n =1- (m+ [logm| +4) +o- (4m+11).

Letu + p®o...op® D ow, where p'¥) is the binary representation of i € [0, — 1] using m bits.

1:

2: LetdStrings « (uy,...,u;) = D-ENCODE(u).

3: Let next be a key-value store with keys and values being elements in {0,1}".

4: for all keys s in next in ascending order do

5: if there exist i € [0,/ — 2] such that s = u; then next[s] < u;| else next[s] < s
6: T1,...,Taq RS-ENCODE((next [p(©)] 00, next [p(] 00.. . next [p?")] 00),4a),
7: for i € [0,00— 1] do d; <~ r4;0r4; 4] OT4i1p OT4i+3

8: ¢=MU(ug) oRLL(dg)o...oMU(u,—1)oRLL(dy—1)oMU(ug)o...oMU(u;_1)

9: return c

of distinct binary strings with the method introduced in Ap-
pendix A, and their order will be recorded and then protected
using a systematic Reed-Solomon code. Synchronization is-
sues among the symbols of the RS code will be resolved using
the RLL and MU techniques mentioned earlier.

Let the information word be w € {0,1}*, and let p) e
{0,1}" be the binary representation of integer i. The encoding
of w begins by prepending w with p(® p(") ... p(®=1) and
as shown in line 1, resulting in

u=p@o...op@Vowe {0,139 L o 1111 (4)

Then, as shown in line 2, the resulting string u is fed into the
function D-ENCODE (Alg. 3, Appendix A) and mapped to an
array of [pairwise-distinct binary strings of length m, i.e.,

dStrings = (ug,...,w_1), 5)

where u; # u; for all distinct 7 and jin {0,1,...,/ —1}.

Note that due to the implementation of D-ENCODE, the
first o elements of dStrings remain intact, i.e., u; = p(o) for
all i < a, and they are referred as markers. In the next step,
a key-value store next is defined to represent the ordering
of elements in dStrings as follows (line 4-5). For every
key s € {0,1}", the value next/[s] is defined as

s uw;y ifs=u;forie|0,/-2],
nex =
S otherwise.

Note that the value next [s] is well defined, since u; # u; for
every i # j by the pairwise-distinct property of dStrings. It
is also worth noting that the mapping from dStrings to next
is injective; one may recover dStrings from next by observ-
ing every key r such that next (r) # r, and connecting every
two ry, 1} of them if next(r,) =rp.

We proceed to the treatment of next. Since the values
in next are binary strings of length m, we append each of
them with a 0, and hence they can be regarded as symbols in
the finite field IF,11. They are sorted by their corresponding
keys and fed into a systematic Reed-Solomon encoder, which

then generates 40 redundancy strings ry, ..., raq € {0, 1}”’“
(line 6). Note that such encoding is feasible since the code-
word length 2 + 4o is smaller than the number of elements
in]F2m+1 2.

The codeword ¢ consists of two parts. The first re-
gion is called the information region, as it is generated
from ug,...,u;_1, which directly originate from the infor-
mation word w. The second region is called the redundancy
region. As the name suggests, it is made from the redundant
bits generated from next.

Define an encoding function MU which maps w; € {0,1}"
to a codeword MU(u;) € {0,1}"1°8m1+4 of 4 mutually-
uncorrelated code Gyu. The information region is hereby
defined as

MU(ug)0...oMU (1) € {0, 1317 (mHTlogml4),

In addition, for i € [0, — 1], define

4m+4
d; =r4iorse 1 0ryip0r443 €{0,1}

as the concatenation of four redundancy strings.

Then, let RLL be an encoding function that maps d; to a
binary sequence RLL(d;) € {0,1}*""!! called redundancy
packet, which is free of zero runs longer than [logm] + 1. The
redundancy region is then defined as

MU (ug) oRLL(dg) oMU(ug—_1) oRLL(dg—_1)
c {O, 1}u4.4(5m+ﬂogmw+15).

Finally, the codeword c is the two regions combined (line 8):

¢ =MU(ug) oRLL(dp)o...oMU(ug_1)oRLL(dg—1)

° MU(U(X) 0...0 MU(U[,I) c {07 1}l(m+ﬂogm]+4)+oc(4m+11).

ZRS codes requires the finite field size to be greater or equal to the length
of the codeword, i.e., 21 > 2™ 4 4q; this is the case due to (2) and the fact
that o > 1.

USENIX Association

34th USENIX Security Symposium 1891

Algorithm 2 DECODE (0-BRC Decoding)

Input: A multiset FRAGMENTS of unordered and partially missing fragments of a codeword ¢ € C.
Output: The information word w such that Algorithm 1 with input w yields c.

1: Letr; < erasure foralli € [0,40.— 1].

2: for all codeword MU(u;) € Gyy in the fragments in FRAGMENTS and u; = p(i> for some integer i < oL do
3: if the number of bits after m; is less than 4m + 11 then continue to next MU codeword.
4: Let m; be the 4m + 11 bits after MU(u;), and d; < DE-RLL(my;).

5: Y4i,Y4it+1,Y4i42,T4i43 < di[O,m] ,d; [m +1,2m+ 1],d,~[2m +2,3m+ 2],d,‘ [3m +3,4m+ 3]
6: Let approxNext be a key-value store such that approxNext[s] = s for all s € {0,1}".

7: for all fragment f = f, oMU(u,) 0... o MU(u,4y) 0 feng € FRAGMENTS where u > o do

8: for all ¢ € [0,v— 1] do approxNext [W,i¢] = Wyqcq1-

9: next <— RS-DECODE (approxNext,ri,...,I4iq)
10: Let dStrings = (uy,...,u;) be an array of such that next (w;) = u;4;.
11: u < D-DECODE(dStrings)
12: return ufo-m]

4.3 Preprocessing

Recall that breaks may cross multiple layers, resulting in over-
laps between bit strings extracted from confiscated fragments.
If a MU codeword is found in two bit strings, the two strings
can be merged into one due to the uniqueness of MU code-
words (i.e., a MU codeword appears at most once in the BRC
codeword). This uniqueness arises from the pairwise distinct
property of the elements in dStrings, as defined in (5).

Hence, prior to BRC decoding, the bit strings from con-
fiscated fragments undergo a preprocessing stage in which
strings that share a MU codeword are merged.

4.4 Decoding

Algorithm 2 provides a procedure for extracting the infor-
mation word w from the unordered and partially missing
fragments of the respective codeword ¢. The crux of this
procedure is to reconstruct the key-value store next defined
previously, and recover the information word w from it.

Specifically, the decoding algorithm creates a key-value
store approxNext, which is slightly different from next, us-
ing the information which appears in the confiscated frag-
ments. Alongside the correctly identified redundancy strings,
approxNext goes through a Reed-Solomon decoding process
and is corrected to next. Having the correct next in hand, the
correct dStrings (5) can be found since the mapping from
the latter to the former is injective. Then, dStrings is fed
into D-DECODE (Alg. 4, Appendix A), which is the inverse
process of D-ENCODE (Alg. 3) to produce u (4), whose suffix
is the information word w.

In more detail, the decoding starts by distinguishing and
decoding the discernible codewords of (yy from the frag-
ments. Let MU(u;) be a discernible codeword in vy which
fully resides within one fragment, where u; is its respective
decoding. If u; = p(i) for some integer i < a, it means that u;
is a marker, and hence the (4m+ 11) bits after it consist of a

redundancy packet (line 2). This redundancy packet, if resid-
ing in the fragment, is passed to an RLL-decoder which yields
four redundancy strings ra;,r4iy1,¥4i+2, 413 (line 4-5).

The other discernible codewords of Gy, i.€., those encoded
from non-markers (u;’s for i > a), are used to construct a key-
value store approxNext. Initially, approxNext(s) = s for
every key s € {0,1}" (line 6). For each fragment f, let

f = fsaroMU(uy) 0... oMU (W 4y) © fend,

where g, and fepg are the (possibly empty) prefix and suffix
of f with no discernible codeword from Gyy that is encoded
from a non-marker. In line 8, the decoder updates

approxNext U, ¢] = Wytet1,

for every ¢ € [0,v— 1]. The above process stops once no more
codewords in Gyy can be found.

The decoding algorithm proceeds to correct the constructed
key-value store approxNext to next, i.e., the key-value store
generated in Algorithm 1 from w, using the collected redun-
dancy strings and a standard Reed-Solomon decoder (line 9).

Next, the array dStrings is obtained from next (line 10),
and the function D-DECODE (Alg. 4, Appendix A) is em-
ployed to recover u. Recall that u = p(o) a-1) o w
in (4), and hence the decoding procedure concludes by return-
ing the k rightmost bits of u (line 12).

Together, correct decoding is guaranteed by the following
theorem, whose proof is provided in Appendix B.

O...Op<

Theorem 1. Line 12 of Algorithm 2 returns correct informa-
tion word w if 4 - ¢ +2s/(m+ [logm] +4) < 4-o.

4.5 Trusted Information Embedding

Figure 6 shows the system design of trusted fingerprint em-
bedding procedures. To prevent attackers from tampering
the fingerprint embedding procedures, SIDE executes the 3D

1892 34th USENIX Security Symposium

USENIX Association

normal

stealthy

T T T T T T T T 1
0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm

Figure 4: Demonstration of embedding 01101001 with pa-
rameters x = 0.08 and (y,€) = (0.12,0.02). In the normal
settings, each 0 is represented by two layers of 0.08 and 0.16
millimeters, and each 1 is represented by one layers of 0.24
millimeters. In the stealthy settings, each 0 is represented by
two layers of 0.10 and 0.14 millimeters, and each 1 is repre-
sented by two layers of 0.12 millimeters. In either case, the
length required for embedding one bit is 0.24 mm.

fingerprint embedding procedure and dependencies in TEE,
including fingerprint information encoding (codec), object
model slicing (layer-gen), toolpath generation (toolpath-gen),
and 3D printer driver (firmware). TEEs are constrained by
hardware resource limitations, notably their limited memory
for the secure domain. Consequently, attempting to execute
the entire fingerprint embedding procedure naively within
the TEE risks print failures due to insufficient secure heap
space, which is inadequate to handle the size of 3D model
files and the substantial intermediate data generated during
the slicing process. To mitigate this limitation, we propose
a progressive slicing strategy, which reduces peak memory
usage for procedures with the highest heap memory demand.
This approach leverages the inherent layer-by-layer nature of
the 3D printing process. Instead of pre-slicing the entire 3D
model and generating a G-code file prior to printing, slicing
is performed dynamically in an on-demand manner during
the printing process.

5 SIDE Implementation

This section details the implementation of SIDE, including
bit embedding, extraction, and TEE integration.

5.1 Bit Embedding Method

We address bit embedding at two levels: normal and stealthy.
The normal approach focuses solely on the readability of
the embedded bits, while the stealthy approach imposes an
additional requirement of indiscernibility.

Normal Embedding. In the proposed normal method, there
are three layer thicknesses: x, 2x, and 3x, where x is a base
thickness. A 0 bit is represented by two consecutive layers
of thickness x and 2x, respectively, and a 1 bit is represented
by a single layer of thickness 3x. This method has three key
advantages. First, it improves the readability as the substantial

: Confiscated Fragments 1 Image Sequence

1

1
: N ey W [2 2
RZ A\ 2}
1 \

o .
arse stitch

Figure 5: Procedure of bit extraction.

difference between the layers minimizes confusion during bit
reading. Second, it provides consistent embedding density, de-
fined as the number of bits embedded per unit distance. Since
both 0 and 1 are represented using the same total thickness 3x,
the embedding density remains consistent for both 0 and 1.
This ensures that the required object height depends solely on
the length of the codeword, rather than its content. Third, it
includes directional information, as the arrangement of layers
for 0’s implies the direction of the codeword.
Stealthy Embedding. The stealthy embedding method pri-
oritizes indiscernibility by minimizing differences in layer
thickness between layers. In this method, every bit is repre-
sented by two layers. Specifically, a 1 is represented by two
layers of y millimeters, and a 0 is represented by two layers
of y — € and y + € millimeters, respectively. The € shall be im-
perceptible to naked eyes but still discernible to bit extraction
equipments. This approach offers the added benefit of stealth-
iness, making it harder for the adversary to distinguish the
embedded bits. Yet, it demands higher resolution for accurate
bit extraction.

An illustration of both embedding methods is given in Fig-
ure 4. In reality, the x,y and € are determined to accommodate
the resolutions of the printer and the bit extraction equipment.

5.2 Bit Extraction Method

The extraction of bits is performed by inspecting the thick-
nesses of the layers in the fragments using specialized equip-
ment and determining the corresponding bits. In this section,
we describe an optical extraction method that employs a mi-
croscope to inspect the ridges on the surface of the print?,
with a graphical illustration given in Figure 5.

Microscopes typically have a limited field of view, making
it impossible to inspect an entire fragment at once. To over-
come this limitation, we mount the fragment on a motorized
rail slider. During the extraction process, the fragment slides
over the microscope’s field of view, while the microscope
takes a series of pictures. The pictures are taken so that every
two consecutive pictures overlap, which allows us to fuse
them together and obtain a picture of the entire fragment.

31f surface examination is not feasible (e.g., due to post-processing done
on the surface), a computed-tomography based method can be utilized. How-
ever, it is beyond the scope of this paper

USENIX Association

34th USENIX Security Symposium 1893

Rich Execution Trusted Execution
Environment Environment

f []

! RRE:

\ [(hostapp |———++[layergen |
: L vy J
[eodec] <

J_;;‘?i? toolpath-gen
pﬁan gcode*

events -
hardware D firmware
1

Figure 6: TEE Protected Embedding Procedure

sweibeTp

To automatically read bits from the stitched images, we
developed bit-parser, a program capable of parsing bits
in both normal and stealthy embedding settings. In the case
of normal embedding, bit-parser begins by identifying the
layers representing 1’s; they are characterized by a single,
thickest layer of 3x millimeters, making them easily distin-
guishable from others. The program then counts the layers
between these thick layers, with each pair of consecutive lay-
ers corresponding to a 0.

For stealthy embedding, bit-parser examines every two
consecutive layers. If the first layer is thinner than the sec-
ond by a specific threshold, the pair corresponds to a 0. The
program then counts the layers between the layer pairs repre-
senting 1’s, with each pair of consecutive layers corresponding
to a 1. This concludes the process of bit extraction.

5.3 TEE Protected Embedding

Following the blueprint in Figure 6, SIDE involves a host-
app that runs in the normal world to serve as the frontend
interface for printer users, and its backend, which consists
of four functional modules (codec, layer-gen, toolpath-gen,
and firmware), that fully reside in the TEE. The host bridges
the normal world with the trusted world using C Foreign
Function Interface (CFFI). Upon receiving a 3D model from
the user, it first cuts it into consecutive segments in the z
direction, and passes them to SIDE backend one after the other.
The thickness of segments equals to the distance required to
represent a bit determined by the bit embedding method.
The actual slicing, as well as the bit embedding, is executed
in the backend. The codec module is designed to perform
encoding, mapping an information word w to a break-resilient
codeword c; the details of the encoding process were given in
Section 4 and implemented in Algorithm 1. Recall that every
bit ¢[i] instructs the slicing of the corresponding segment.
If ¢[i] = 1, then the segment is sliced to a layer of 3x mm
with normal embedding, or 2y mm with stealthy embedding.

Otherwise, it is sliced to two layers of x mm and 2x mm
with normal embedding, respectively, or y —€ mm and y+ €
mm with stealthy embedding (see Section 5.3 for details).
The slicing is performed by the layer-gen module. For each
layer, it generates the cross-sectional diagram, and feed them
to toolpath-gen along with their corresponding heights, i.e.,
their distances to the printer bed. With these inputs from layer-
gen, the toolpath-gen generates nozzle toolpath (represented
by G-code) used to manufacture these layers. Both the layer-
gen module and the toolpath-gen module are developed on
top of t43 [45].

Finally, the firmware performs the parsing of G-code gener-
ated from toolpath-gen. It is a collection of core functionalities
provided by Klipper, including the computation of precise
nozzle movement and the generation of stepper events. The
stepper events are then converted to signals passed to the
printer hardware. This concludes the handling of ¢[i]. Upon
finishing the slicing of a segment, the host-app module is
triggered to feed in the next layer segment, and the printing
process is concluded after handling all segments. Since the
entire printing process is hidden in the trusted world and no
intermediate data (e.g., a G-code file) is exposed to the user,
the adversary is unable to strip off the embedded bits.

In prototyping our design, we employ a Creality Ender 3
3D printer, and a Raspberry Pi 3B board (with OP-TEE V3.4
support enabled in its ARMv8-A architecture, and Raspbian
Linux 4.14.98-v7 installed for the normal world) to serve as
the control board. Our development is heavily based on the
Klipper open-source project [46] and t43 [45]. The former
is a 3D printer firmware known for offering high precision
stepper movements offering support to printers with multiple
micro-controllers, and is suitable for running on low-cost
devices such as Raspberry Pi. The latter is an open-source
slicer program with basic functionalities and is purely written
in C, making it suitable for trusted environments with limited
language support.

6 Evaluation

This section presents a comprehensive evaluation of SIDE,
focusing on fingerprint recovery, its impact on the printing
process, and print quality. Specifically, we provide: (1) Exper-
iments and simulations assessing fingerprint recovery from
broken prints. (2) Analysis of the BRC code rate and the min-
imum object dimensions required for successful fingerprint-
ing. (3) Analysis the practicality of stealthy embedding. (4)
Print quality comparisons across normal embedding, stealthy
embedding, and no embedding. (5) Assessment of printer im-
perfections through analysis and experiments. (6) Evaluation
of TEE integration overhead and its effects on the printing
process and print quality.

1894 34th USENIX Security Symposium

USENIX Association

(b)

Figure 7: The readings of (a) an FDM fragment using the
Leica S9D microscope, in which every bright line is the center
of a layer, and (b) an SLA fragment using OCT equipment,
which shows the cross-section of fragment surface, in which
aridge represents a layer. Both fragments are printed with the
normal embedding method.

6.1 Fingerprint Recovery

We conducted experiments and simulations to validate finger-
print recoverability. The experiments replicate the forensic
information flow, including BRC encoding, bit embedding,
fragmentation, bit extraction, and BRC decoding, demonstrat-
ing the core functionality of SIDE. In simulations, we assess
fingerprint recovery success under varying conditions, such as
model size and shape, extent of fragmentation, and fragment
loss. The results confirm the robustness and practicality of
SIDE for forensic fingerprinting applications.

Real World Scenarios: We conduct experiments to verify
the recoverability of fingerprints, providing a proof of concept
for SIDE. The experiments mimic the information flow in a
forensic scenario, involving BRC encoding, bit embedding,
fragmentation, bit extraction, and BRC decoding. Specifically,
we prepared a fingerprint of 120 bits, and encoded itinto 1-, 2-,
and 3-BRC codewords of 281, 353, and 425 bits, respectively.

The experiments were carried out using both FDM and SLA
printers, employing the bit embedding method introduced in
Section 5.1. For the Creality Ender 3 FDM printer, we set x =
0.08, while for the Elegoo Mars 4 SLA resin printer, x = 0.04.
These values were selected to balance information density
(i.e., the number of bits embedded per unit length) with the
resolution capabilities of the respective printers.

For each printer, we printed a cuboid of width 6mm and
length 20mm, while the height is determined by the embed-
ding method and codeword length. The printed cuboids were
then manually broken apart to the maximum allowance of
fragmentation by the embedded BRC codeword.

The fragments from FDM printer are examined using the
methods described in Section 5.2 with the help of a Leica
S9D microscope. The fragments from SLA printer, however,
are examined with an Optical Coherence Tomography (OCT)

(c) B = 50. (d) B = 100.

Figure 8: Results of fragmentation under different values.

device, since their layer thickness are beyond the resolution
of optical microscopes. OCT is based on low-coherence inter-
ferometry to capture depth-resolved images with micro-level
resolution in a non-invasive manner. It provides fast 3D imag-
ing and quantitative, layer-by-layer analysis. Although widely
used in biomedical and clinical diagnostics, OCT has also
been adopted in non-biomedical fields such as industrial in-
spection [47], art conservation [48], and geology [49]. To
extract the embedding information from 3D prints, we built
our customized spectral domain OCT (SD-OCT) system us-
ing visible light with an axial resolution of 1.9 ym.

Finally, the extracted bits were fed to the BRC decoder
(Alg. 2). In all cases, we achieved a 100% success rate, i.e.,
the information word perfectly matched the output of the
decoding algorithm.

Simulation Environment: This section presents a simulation-
based study of fingerprint recovery, which extends the experi-
ments described in the previous section with three significant
enhancements. First, it removes the constraints on the num-
ber and orientation of breaks.* Second, it introduces greater
diversity in model shape and security parameter. Finally, it
evaluates the decoding success rate under the condition of
fragment loss. These enhancements provide more realistic
simulations that closely mirror real-world forensic scenarios.

Each simulation is defined by three parameters, o, 3, and p.
With a fingerprint information of 128 bits (the value is chosen
based on the length of serial numbers of printers used in exper-
iments), an a-BRC codeword is generated. The parameter B
determines the granularity of fragmentation. Specifically, a
3D Voronoi diagram from B randomly chosen points within
the model mesh is generated, and the model is fractured us-
ing the planes separating the Voronoi cells. This procedure
ensures at least § fragments since there are Voronoi cells,

“4In experiments, breaks are restricted to being orthogonal to the printing
direction, and their number is limited by the maximum allowable fragmenta-
tion of embedded BRC codeword.

USENIX Association

34th USENIX Security Symposium 1895

4-BRC, 0.342 mm/bit 8-BRC, 0.215 mm/bit

B 0% 25% 50% 75% 0% 25% 50% 75%
20 100% 99.90% 97.05% 48.36% | 100% 100% 100% 95.95%
40 100% 99.98% 99.00% 57.52% | 100% 100% 100% 99.80%
60 100% 99.98% 98.80% 53.00% | 100% 100% 100% 99.95%
80 100% 99.98% 98.17% 46.80% | 100% 100% 100% 99.98%
100 | 100% 99.93% 96.75% 33.59% | 100% 100% 100% 100%

Table 1: A portion of simulation results on the FMDA Glock
frame using 4-BRC and 8-BRC, which demonstrates an ex-
ceptionally high probabilities of fingerprint recovery even in
the extreme cases.

each corresponds to at least one fragment (see fragmentation
results in Figure 8). Finally, the parameter p determines the
ratio of fragments hidden from law enforcement.

Simulations are conducted on three models: the FMDA
Glock frame (Fig. 1a), an AR-15 lower receiver, and the
benign 3DBenchy. For each B € {10,20,...,100}, the pre-
viously described random fragmentation process is applied
to each model, generating 128 fragmentation instances. For
each of these 128 instances, we conceal a uniformly ran-
dom p percent of the resulting fragments for each p €
{0%,25%,50%,75%}, and repeat over 32 simulations. The
decoder is then tested to determine whether it can recover the
fingerprint from the remaining fragments.

We record the success rate of fingerprint recovery for every
possible configuration (o, 3,p) and every model. All simula-
tion results are provided in Appendix C, while Table 1 offers
a subset of them. With oo = 8§, we observe an exceptionally
high probability of fingerprint recovery even in the scenario
when the printed Glock frame is broken into 100 fragments
with 75% missing from the law enforcements.

6.2 Code Rate

The code rate r of BRC is defined as the ratio between the
codeword length n and the information length £, i.e.,
k l-m—1
"T 0 T I(m+ [logm] +4) +a(dm+11)°

and plays a critical role in forensic applications. Given an
object to print and a security parameter ., a higher code rate
allows embedding more information bits, supporting more
advanced forensic functionalities. These bits may include user
IDs, geoposition data, and even the hash of model file. For
example, embedding a unique user ID into a printed object
can help trace adversaries using Manufacturing-as-a-Service
(MaaS) to make the criminal tool. Geoposition data at the time
of printing can aid law enforcement in tracking adversaries,
while hash values act as watermarks for robust IP protection.

Conversely, given a fixed model and specific fingerprinting
information, a higher code rate permits using a larger security
parameter o, increasing resilience to breaks and fragment
losses. Alternatively, when embedding fingerprints of a spe-
cific length with a given security parameter, a higher code rate

Minimum object dimension versus k and o

G

E£250(

= .

B200f

l

g150(

ks B

g 100 [

E i

E s0f

g M

E 0 — 106@‘
—L &

0 10015020025 &

0300350490 2 3%
gth 4 &

informau'on len
Figure 9: An illustration of minimum object dimension that
allows for BRC codeword embedding, in which a bit is repre-
sented by 0.12 mm in object height, with respect to informa-
tion length k and security parameter .

(@ (b)

Figure 10: (a) From a single information word of 39 bits, we
generate 1-BRC, 2-BRC, and 3-BRC codewords with lengths
of 133, 191, and 249 bits, respectively. For each codeword,
we calculate the minimum required dimensions based on the
embedding parameters described in Section 5.1. Using these
dimensions, we print information-bearing cubes with both the
Ender 3 and Mars 4 printers. The resulting cubes have side
lengths of 15.96 mm, 31.92 mm, 22.92 mm, 45.84 mm, 29.88
mm, and 59.76 mm. (b) 3DBenchy models printed for surface
roughness evaluation.

reduces the required object dimension along the printing di-
rection, and hence broadens the applicability of SIDE. To this
end, we visualized the minimum object dimensions required
to embed BRC codewords in Figure 9, and printed 6 cubes
with BRC codeword embedded to validate the feasibility of
embedding; each is of the minimum dimension corresponding
to the information length and security parameter (Figure 10a).

In Figure 11, we demonstrate how the code rate r is affected
by the information length k = m-I — 1 and the security thresh-
old t € [10].°> Meanwhile, as we will introduce in Section 8.2,
the method of using cyclically permutable codes (CPC) for
the #-break-resilient property requires repeating the CPC code-
word ¢ + 1 times, and hence the code rate is at most 1/(¢ + 1).
We also mark this value in the figure for every ¢ in the same
color. In the majority of cases, BRC outperforms CPC-based

5Since we fix m = 12, the maximum / we can have is 2012-2)/2_ 4 —3p 4,
Therefore, the set of values of k is different with different ¢.

1896 34th USENIX Security Symposium

USENIX Association

code rate r vs. k, 0
0.6 T T T T T T

0.5+

0.4

0.3

code rate r = k/n

0.2

0.1

1 1
50 100 150 200 250 300 350 400
information length k

Figure 11: An illustration of the code rate r verses the in-
formation length k and security parameter . The horizontal
lines serve as upper bounds on the code rates of a traditional
CPC-based scheme (Section 8.2). The curved lines represent
the code rate of our scheme (Section 4), color coded by a.

scheme in terms of the code rate.

6.3 Stealthy Embedding

The primary goal of stealthy embedding is to minimize de-
tectability, ensuring that the fingerprint remains hidden from
adversaries while preserving its readability by forensic tools.
Hence, the feasibility of a stealthy embedding method is de-
termined by its stealthiness and readability.

To evaluate stealthiness, we conducted experiments using
both FDM and SLA printers. Specifically, we use the stealthy
embedding method introduced in Section 5.1 with param-
eter (y,€) = (0.12,0.04) for the FDM printer and (y,&) =
(0.6,0.02) for the SLA printer. Results indicate that the differ-
ences in layer thicknesses were invisible to naked eyes under
normal lighting conditions, unless the object is observed in
certain angles. We further measured surface roughness with
our SD-OCT system. The results, shown in Table 2, reveal a
higher RMS value in prints with no embedded bits, but lower
than prints using normal bit embedding.

Readability refers to the accuracy of bit extraction. With
the extraction method introduced in Section 5.2 and the SLA
printer with parameters (y,€) = (0.08,0.04), we successfully
extracted embedded bits using SD-OCT system. Yet, we ob-
served a trade-off between stealthiness and readability: while
reducing € enhances stealthiness, it increases the demand for
both high-resolution printer and extraction tools.

6.4 Impacts on Print Quality

Due to the inherently discrete, layer-by-layer nature of the ad-
ditive manufacturing process, surface roughness is a common

(a) SLA, no embedding. (b) SLA, stealthy embedding.

(d) FDM, stealthy embedding.

(c) FDM, no embedding.

Figure 12: OCT scans on different materials and embeddings.

No Embedding Stealthy Normal
Ender 3 (FDM) 10.741 ym 13.267 ym | 14.719 um
Mars 4 (SLA) 7.260 um 11.275 ym | 12.918 um

Table 2: The RMS values with different embedding methods
and materials.

characteristic of 3D-printed objects, often necessitating post-
processing techniques such as sanding or filing. Yet, SIDE’s
bit embedding requires to vary layer thickness, which can po-
tentially increase surface roughness and expose the presence
of the embedded bits to the adversary.

To quantify this impact, we printed 3DBenchy with nor-
mal embedding, stealthy embedding, and no embedding (uni-
form 0.12 and 0.06 mm layer thicknesses for FDM and SLA,
respectively) with both FDM and SLA printers. For each
printed model, we used OCT to capture surface height devi-
ations at five randomly chosen points of the flat part of its
surface. With the collected data, we computed and averaged
the root mean square (RMS) roughness value, which is a
widely recognized metric for surface roughness that quanti-
fies the root mean square of surface height deviations from
the mean surface height. The results are provided in Table 2,
which quantify the impacts on print quality.

6.5 Impact of Printer Imperfection

In this section we briefly discuss the effect that printer im-
perfections might have on the ability to embed information.
Recall that SIDE embeds bits by varying layer thickness, and
as a result, imperfections in 3D printers—particularly inaccu-
racies in the z-axis movement—can have negative effects on
the embedding process. The z-axis movements are typically
controlled by a stepper motor, which converts its rotational
motion (i.e., discrete steps) into linear motion along the print-
ing direction; the ratio between them is reflected in z-step
value (e.g., 0.04 mm/step). Calibration of a printer involves
matching this parameter in the printer firmware with the ac-
tual z-step value.

A perfectly manufactured printer would have a uniform
z-step, i.e., the nozzle displacement along the z-axis, which is

USENIX Association

34th USENIX Security Symposium 1897

Peak Heap Usage Print Time Firmware Execution Time
Object w/ TEE w/o TEE | w/ TEE (s) w/oTEE (s) | w/ TEE w/o TEE
Glock 1.475MB 9.841 MB | 53344.201 53344.103 | 163.85s 163.85 s
AR-15 1.305MB 8438 MB | 76831.497 76831.397 | 209.69 s 209.69 s
3DBenchy | 0.965MB 9.979 MB | 11828.314 11828.241 3490 s 3490

Table 3: System Performance of SIDE.

triggered by one microstep, is uniform across the entire range.
Yet, due to manufacturing errors, individual steps may lead to
different nozzle displacements during printing, and the actual
layer thickness may not align with the desired value.

SIDE’s embedding method is designed to tolerate these
imperfections. For normal embedding, layers with designed
thicknesses of x, 2x, and 3x may be in the range of [(1—9) -
x,(1+8)-x],[(1—8)-2x,(1+3)-2x], and [(1 —9)-3x,(1+
d) - 3x], where & upper bounds the magnitude of errors in
each step. To avoid confusion in the reading of bits from
layer thickness, these ranges must not overlap, requiring & <
0.2; this is an extremely low standards, considering that the
common stepper motors used in 3D printers (e.g., NEMA 17)
usually have 6 = 0.05.

To evaluate SIDE’s robustness under these imperfections, a
cuboid was printed using an FDM printer with noise added to
the z-step value in the firmware; this simulates the behaviors
of a poorly manufactured printer. Despite these imperfections,
bits were successfully extracted, demonstrating the method’s
reliability even in the extreme real-world conditions.

6.6 Impact on Printing from TEE Protection

SIDE prevents attackers from exploiting vulnerabilities in un-
trusted software by leveraging TEE to isolate SIDE from un-
trusted components. To evaluate the impact of TEE protection
on 3D printing, we measure (1) the execution delay of SIDE’s
software components, (2) the execution delay and memory
overhead of the whole 3D printing procedures, and (3) the im-
pact on the quality of printed objects with and without SIDE
on Glock frame, AR-15 lower receiver, and 3DBenchy.

Software Components Execution and 3D Printing Delay:
To measure the execution delay of SIDE’s main components,
including the codec, G-Code generation (involving both layer
and toolpath generation), and firmware, we record timestamps
at the start and end of each component’s execution and calcu-
late the average delays over 10 printing processes. To evaluate
the overall 3D printing delay, we record timestamps marking
the start and completion of the printing application execu-
tion and calculate the difference to determine the delay. As
shown in Table 3, SIDE introduces no runtime overhead for
the execution delays of individual software components under
protection of TEE, as the printing binaries remain the same
on the same architecture regardless of the CPU security state.
However, SIDE reduces peak memory usage by employing
the progressive slicing strategy, which introduces multiple
context switches between the REE and TEE. This results in

additional execution delay for the overall printing process.
Nonetheless, when compared to the delay inherent in physical
printing, this runtime overhead is negligible.

Memory Overhead: To measure the effectiveness of SIDE
in automatically splitting 3D object models to reduce heap
consumption, we instrument dynamic memory allocation and
deallocation APIs within the 3D printing software to monitor
the size of dynamically allocated memory, both with and with-
out SIDE. As shown in Table 3, SIDE reduces the peak heap
memory usage to 14.99%, 15.47%, and 9.67% on Glock, AR-
15, and 3DBenchy respectively through progressive slicing,
effectively addressing the memory limitations of TEE.

Printed Object Quality: To measure the quality impact on
printed object from TEE implementation, we calculate the
root mean square (RMS) roughness of printed object with
observed height from optical coherence tomography with and
without TEE implementation. We observe that the difference
in the roughness of both objects is negligible.

7 Security Analysis and Discussion

This section analyzes the security of SIDE against various
potential attacks.

Excessive breaking and hiding: In order to jeopardize finger-
print extraction, the adversary may attempt to compromise the
availability of embedded information by excessively break-
ing the printed tool and hide a great amount of fragments.
However, as shown in the simulation results in Appendix C,
SIDE provide an exceptionally high success rate of finger-
printing recovery even in the extreme case that the tool is
broken into 100 pieces, with 75% of them being missing from
the decoder.

This is attributed to the break-resiliency and loss-tolerance
properties of a-BRC. First, as stated in Remark 1 and Sec-
tion 4.3, fragments can be reassembled if they retain sufficient
overlapping bits. Thus, a break is repairable in the preprocess-
ing stage unless it is perpendicular, or nearly perpendicular,
to the printing direction. Additionally, concealing fragments
does not necessarily result in the loss of information, as their
content may also exist in confiscated fragments. Finally, the
breaks and missing bits that cannot be fixed in the preprocess-
ing stage are addressed in BRC decoding (Section 4.4).

Forging Attacks: Attackers may attempt forging attacks by
embedding incorrect information into a printed object to im-
personate another printer. We propose two tiered defense
against such attacks. First, in order to impersonate another
printer, one would have to breach the TEE of one’s own
printer, contradicting our security assupmtion. Second, even
if the TEE is broken successfully, impersonation can still be
prevented via exploiting intrinsic printer properties as follows.
It was shown in the literature that much like firearms, 3D
printers carry a unique signature that is manifested in various
minor defects in the resulting prints [16], [17]. Hence, SIDE

1898 34th USENIX Security Symposium

USENIX Association

can embed a hash of these imperfections inside the object.
Then, forging attacks would fail since the de-facto defects of
the object would not match the hash of the printer’s imperfec-
tion. However, manipulating the embedding mechanisms in
SIDE requires significant additional effort, such as breaching
the TEE-protected 3D printing software or employing special-
ized hardware and expertise to modify the object’s surface.
Thus, SIDE raises the bar for this attack. Furthermore, SIDE
can authenticate the print by embedding the hash of intrinsic
printer properties, such as manufacturing imperfections [16]
or thermodynamic characteristics [17], enabling detection of
mismatches between the print and its originating printer.

Hardware Attacks: Adversaries may attempt hardware at-
tacks, such as replacing the control board or injecting signals
between the control board and printers, to bypass fingerprint
embedding. While SIDE does not defend against these hard-
ware attacks, which require specialized expertise and signif-
icant cost, establishing secure communication channels and
authentication mechanisms between the control board and
printer component controllers can help mitigate such attacks,
further raising the barriers to bypassing 3D fingerprinting.

Surface Altering Attack: Attackers may attempt to alter
the surface of 3D prints to tamping with the 3D fingerprint-
ing information. SIDE is inherently immune to this type of
attack by its design. Recall that SIDE embeds information
by altering physical elements on the printing direction (e.g.,
layer thickness), which is an intrinsic property of the printed
object and cannot be altered by post processings on the sur-
face. Indeed, the reading of bits does not require the surface
of the fragment to be free of adversarial tampering, as less-
economical solutions, such as an industrial CT scanner, can
be used to infer the layer thickness via tomographic analysis.

8 Related Work

8.1 Existing 3D Fingerprinting Methods

Several methods for embedding bits in 3D-printed objects
have recently been proposed in the literature. These technolo-
gies allow the printer to vary either the orientation of the noz-
zle, the thickness of the layer, or the printing speed. Within
reasonable bounds, varying either of those has a marginal
effect on the functionality of the object. By varying layer
thickness, for example, the printer can embed a O by printing
a layer that is slightly thinner, and a 1 by printing a layer that
is slightly thicker, than some reference thickness. By varying
the orientation of the nozzle, bits can be embedded by the
relative orientation of adjacent layers; for example, if two ad-
jacent layers are oriented similarly, the embedded bit is 0, and
otherwise it is 1. Both methods are illustrated in Figure 13.
Similar ideas have been implemented successfully in sev-
eral recent works. Delmotte et al. vary the thickness of each
layer across several adjacent layers to create a matrix of bits

(a) (b)

Figure 13: Two possible methods for embedding bits in a
3D printed object with little to no effect on functionality: (a)
Embedding by layer thickness; thicker layers represent 1 and
thinner layers represent 0. (b) Embedding bits using the ori-
entation of adjacent layers; if two adjacent layers are oriented
similarly, it is a 0, and if oriented differently, it is a 1. Both
left and right figures contain the bits 0101.

that is visible to the naked eye on the surface of the object [8].
Parity bits were then added to resolve reliability issues in
some cases, and additional noise patterns were discussed,
such as orientation issues and sanding. In the method Lay-
erCode [50], variations in color and thickness were used to
embed a barcode on the surface of the printed object, that can
be retrieved using a smartphone camera. An orientation-based
method has been implemented in [51], where the authors print
a reference layer that is circularly grooved by a sequence with
low auto-correlation. Data is embedded in all other layers by
the respective angle of the layer to the reference layer; this
enables encoding with alphabet size larger than two.

Other creative ideas have been explored, including embed-
ding information-carrying cavities within the object [52], [53],
water-marking the 3D-mesh of the surface of the object [54],
inserting RFID tags [12], inserting a series of notches which
create an acoustic barcode when tapped [15], etc. In the data
extraction phase, most existing methods rely on an RGB cam-
era, a 3D scanner, or an ordinary scanner. Future technologies
however, such as the ones in Figure 13, might require an in-
dustrial CT scanner. However, none of these approaches is
suitable for forensic applications. First, they all implicitly
assume that a mechanism ensuring correct information em-
bedding is in place. Such a mechanism is crucial since in
most scenarios the adversary owns the printer and/or the file,
and might potentially remove the embedded bits altogether.
Second, none of the methods is provably resilient to adver-
sarial tampering; they can be easily breached by an adaptive
adversary that can scrape the object or break it apart.

PrinTracker [16] represents a different line of works, which
apply machine-learning based methods to identify the intrin-
sic fingerprint resulting from printer hardware imperfections.
Our proposed solution allows for embedding arbitrary bits,
which enables a variety of forensic applications, including but
not limited to fingerprinting. For example, certain applications
may require the embedding of timestamp or geoposition of the
printing into the printed object in order to check whether the

USENIX Association

34th USENIX Security Symposium 1899

printer has been misused in unauthorized time and location.

8.2 Coding Methods

Secure information extraction is essentially a problem of com-
municating in the presence of (potentially adversarial) noise.
Such problems are studied in the information-theoretic litera-
ture under the title of coding theory [18]. A typical problem
setup in coding theory includes a sender (e.g., the printer),
which would like to send a message (e.g., printer ID) to a
receiver (e.g., law-enforcement). This must be accomplished
successfully even if an adversary (e.g., a criminal) injects
adversarial noise that is limited by some security parameter.

Coding problems of information extraction from fragments
have been previously studied in the literature, motivated by
applications in distributed systems [55]-[58], and DNA stor-
age. In particular, several variations of the torn-paper chan-
nel were studied in [59]-[62], where [59]-[61] focused on
a probabilistic error model which is incompatible with our
adversarial setting, and [62] studied an adversarial model in
which fragment are restricted in length. SIDE complements
these probabilistic-based solutions by relaxing the assump-
tions. In fact, we assume an adaptive adversary who is fully
aware of the coding scheme, and is constrained only by the
parameters ¢ and s. Consequently, previous methods fail to
ensure secure information embedding facing such an adver-
sary, as they can be exploited by strategically selecting break
locations and concealing specific fragments.

Similarly to our scenario, a video watermarking solution
for IP protection [63] employs cyclically permutable codes
(CPC). As the name suggests, CPC codewords are cyclically
distinct, i.e., one cannot obtain a codeword by cyclically shift-
ing another codeword. In CPC-based solutions, the watermark
is encoded to a CPC codeword, and then iteratively spread
over consecutive video frames. Due to its cyclically distinct
feature, the embedded CPC codeword can be obtained from
every video clip that has more frames than the codeword
length. Although this method may serve as a simple solution
to the 3D fingerprinting problem, it requires to repeat the CPC
codeword at least # + 1 times to guarantee the existence of
such a video clip in every possible way to cut the video 7 times.
Hence, it leads to a code rate of at most 1/(¢+ 1), i.e., k(r+ 1)
bits needs to be actually embedded in the video to represent k
bits of information, which hinders its applicability in real-
world scenario; see Figure 11 for rate comparison.

Most closely related, [64] studied ¢-break codes, which
concerns the recovery of information from arbitrarily broken
codewords, which is fundamentally different from probabilis-
tic error models mentioned earlier. They provided a theoretical
analysis of the fundamental limits, and an (almost) matching
code construction. However, the scheme described in [64]
involves random encoding, is only effective for a very large
number of embedded bits, and only tolerates a small amount
of lost bits. SIDE complements these works by offering a

Coding Method Model Mini Length of Fra; Loss Tolerance
Shomorony et al. [59], [60] | probability Not Assumed No
Ravi et al. [61] probability Not Assumed Yes
Bar-Lev et al. [62] adversarial Assumed No
Kuribayashi et al. [63] adversarial Not Assumed Yes
Wang et al. [64] adversarial Not Assumed No
a-BRC adversarial Not Assumed Yes

Table 4: Coding Method Comparison

coding scheme with tolerance to fragment loss, explicit and
efficient encoding function, and high code rate.

9 Conclusion

This paper introduces SIDE, a forensic fingerprinting mecha-
nism for 3D prints that ensures secure information embedding
and extraction against adversarial threats. To enable finger-
print recovery despite malicious breaks and fragment hiding,
SIDE employs break-resilient, loss-tolerant embedding tech-
niques. It safeguards the embedding process using a TEE and
a progressive slicing mechanism. SIDE’s efficiency and effec-
tiveness are validated through simulations and a prototype on
a Creality Ender 3 printer with a Raspberry Pi 3B.

Acknowledgments

This research was supported by the National Science Founda-
tion (Grants CNS-2223032, CNS-2038995, and CNS-223863)
and the Army Research Office (Grant W911NF-24-1-0155).

Ethics Considerations

This work focuses on advancing 3D printing forensics by
proposing a novel fingerprinting solution leveraging Trusted
Execution Environments (TEEs) and coding techniques. The
proposed method allows reconstructing fingerprints even if
the print is fragmented and with some parts missing.

This work does not reveal new vulnerabilities or introduce
new attack vectors. Additionally, we do not anticipate that this
solution could be misused to facilitate new types of attacks.
The experiments conducted in this work do not involve live
systems, and do not affect the well-being of team members.

Open Science

The research artifacts generated during this research include:

* Source code for BRC: This includes the implementation
of our break-resilient coding (BRC) scheme, including
the encoding and decoding algorithms.

e Source code for the slicer software: Slicer software
specifically designed to ensure compatibility with TEE.

1900 34th USENIX Security Symposium

USENIX Association

Scripts for simulation: The script that performs random
fragmentation of a 3D mesh, and the script that parses
the simulation results.

Microscope images: For each sample in the experiments,
we provide a collection of images collected using Leica
S9D microscope and the SD-OCT device.

Script for bit extraction: The script extracts bits from the
the aforementioned microscope images, and bit extrac-
tion results.

All artifacts are made publicly available at [65].

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

H. Jiang and T. Hunt, Untraceable ‘ghost guns’ are
easier than ever to 3d print — we went inside a com-
pany that helps people do it, 2021. [Online]. Available:
https://news.yahoo.com/untraceable-ghost-
guns-easier-ever-150015562.html.

C. M. McNulty, N. Arnas, and T. A. Campbell, “To-
ward the printed world: Additive manufacturing and
implications for national security,” Defense Horizons,
no. 73, p. 1, 2012.

T. Gibbons-Neff and A. Toler, When a glock isn’t
a glock: The history of the pistol found with luigi
mangione, Dec. 2024. [Online]. Available: https :
/ / www . nytimes . com / 2024 /12 / 12 / us /
unitedhealthcare-luigi-mangione-gun.html.

A. Greenberg, The “ghost gun” linked to luigi man-
gione shows just how far 3d-printed weapons have
come, Dec. 2024. [Online]. Available: https : / /
. wired . com / story / luigi - mangione -
united-healthcare - 3d-printed-gun- fmda -
chairmanwon-vl/.

WwWw

D. Schoen, “Investigating machine identification code
technology in color laser printers,” The Electronic Fron-
tier Foundation, 2005.

P.-J. Chiang, A. Mikkilineni, E. Delp, J. Allebach, and
G. Chiu, “Extrinsic signatures embedding and detec-
tion in electrophotographic halftone images through
laser intensity modulation,” in NIP & Digital Fabrica-
tion Conference, vol. 22, 2006, pp. 432-435.

G. Ali, A. Mikkilineni, J. Allebach, E. Delp, P.-J. Chi-
ang, and G. Chiu, “Intrinsic and extrinsic signatures
for information hiding and secure printing with elec-
trophotographic devices,” in NIP & Digital Fabrication
Conference, vol. 19, 2003, pp. 511-515.

A. Delmotte, K. Tanaka, H. Kubo, T. Funatomi, and
Y. Mukaigawa, “Blind watermarking for 3-d printed
objects by locally modifying layer thickness,” IEEE
Trans. Multimed., vol. 22, no. 11, pp. 2780-2791, 2019.

[9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

K. ElSayed, A. Dachowicz, and J. Panchal, “Informa-
tion embedding in additive manufacturing through
printing speed control,” in ACM CCS Workshop on
Additive Manufacturing Security, 2021, pp. 31-37.

D. Salas, D. Ebeperi, M. Elverud, R. Arrdyave, R.
Malak, and I. Karaman, “Embedding hidden informa-
tion in additively manufactured metals via magnetic
property grading for traceability,” Additive Manufac-
turing, vol. 60, p. 103261, 2022.

M. Suzuki, P. Dechrueng, S. Techavichian, P. Silapa-
suphakornwong, H. Torii, and K. Uehira, “Embedding
information into objects fabricated with 3-d printers by
forming fine cavities inside them,” Electronic Imaging,
vol. 29, pp. 6-9, 2017.

J. Voris, B. F. Christen, J. Alted, and D. W. Crawford,
Three dimensional printed objects with embedded iden-
tification elements, US Patent 9,656,428, May 2017.

C. Wei, Z. Sun, Y. Huang, and L. Li, “Embedding anti-
counterfeiting features in metallic components via mul-
tiple material additive manufacturing,” Additive Manu-
facturing, vol. 24, pp. 1-12, 2018.

F. Chen, Y. Luo, N. G. Tsoutsos, M. Maniatakos, K.
Shahin, and N. Gupta, “Embedding tracking codes in
additive manufactured parts for product authentication,’
Adv. Eng. Mater., vol. 21, no. 4, p. 1 800495, 2019.

C. Harrison, R. Xiao, and S. Hudson, “Acoustic bar-
codes: Passive, durable and inexpensive notched iden-
tification tags,” in ACM UIST, 2012, pp. 563-568.

Z.L1i, A. Rathore, C. Song, S. Wei, Y. Wang, and W.
Xu, “Printracker: Fingerprinting 3d printers using com-
modity scanners,” in ACM CCS, 2018, pp. 1306-1323.

Y. Gao, W. Wang, Y. Jin, C. Zhou, W. Xu, and Z. Jin,
“Thermotag: A hidden id of 3d printers for fingerprint-
ing and watermarking,” IEEE Trans. Inf. Forensics
Secur., vol. 16, pp. 2805-2820, 2021.

R. Roth, Introduction to Coding Theory. Cambridge
University Press, 2006.

Z. Yu, Y. Chang, S. Zhai, et al., “XCheck: Verifying
integrity of 3d printed Patient-Specific devices via
computing tomography,” in USENIX Security, 2023,
pp. 2815-2832.

K. Krawiecka, A. Kurnikov, A. Paverd, M. Man-
nan, and N. Asokan, “Safekeeper: Protecting web
passwords using trusted execution environments,” in
TheWebConf, 2018, pp. 349-358.

F. Schwarz and C. Rossow, “SENG, the SGX-
Enforcing network gateway: Authorizing communica-
tion from shielded clients,” in USENIX Security, 2020,
pp- 753-770.

il

USENIX Association

34th USENIX Security Symposium 1901

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J. B. Djoko, J. Lange, and A. J. Lee, “Nexus: Practical
and secure access control on untrusted storage plat-
forms using client-side sgx,” in IEEE/IFIP DSN, 1EEE,
2019, pp. 401-413.

A. Baumann, M. Peinado, and G. Hunt, “Shielding
applications from an untrusted cloud with haven,” ACM
Trans. Comput. Syst., vol. 33, no. 3, pp. 1-26, 2015.

F. Schuster, M. Costa, C. Fournet, et al., “Vc3: Trust-
worthy data analytics in the cloud using sgx,” in IEEE
S&P, IEEE, 2015, pp. 38-54.

R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy,
“Safebricks: Shielding network functions in the cloud,”
in USENIX NSDI, 2018, pp. 201-216.

T. Hunt, Z. Jia, V. Miller, et al., “Telekine: Secure
computing with cloud gpus,” in USENIX NSDI, 2020,
pp- 817-833.

F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino,
and N. Kourtellis, “Ppfl: Privacy-preserving federated
learning with trusted execution environments,” in ACM
MobiSys, 2021, pp. 94-108.

J. Wang, Y. Cheng, Q. Li, and Y. Jiang, “Interface-based
side channel attack against intel sgx,” arXiv preprint
arXiv:1811.05378, 2018.

J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “Rt-tee:
Real-time system availability for cyber-physical sys-
tems using arm trustzone,” in IEEE S&P, IEEE, 2022,
pp- 352-369.

S. Pinto, H. Araujo, D. Oliveira, J. Martins, and
A. Tavares, “Virtualization on trustzone-enabled mi-
crocontrollers? voila!” In IEEE RTAS, IEEE, 2019,
pp- 293-304.

J. Wang, Y. Wang, A. Li, et al., “ARI: Attestation of
real-time mission execution integrity,” in USENIX Se-
curity, 2023, pp. 2761-2778.

J. Wang, Y. Wang, and N. Zhang, “Secure and timely
gpu execution in cyber-physical systems,” in ACM
CCS, 2023, pp. 2591-2605.

J. Wang, Y. Wu, H. Liu, B. Yuan, R. Chamberlain, and
N. Zhang, “Ip protection in tinyml,” in ACM/IEEE
DAC, IEEE, 2023, pp. 1-6.

M. Levy and E. Yaakobi, “Mutually uncorrelated codes
for dna storage,” IEEE Trans. Inf. Theory, vol. 65, no. 6,
pp- 3671-3691, 2018.

V. Levenshtein, “Decoding automata invariant with
respect to the initial state,” Problems of Cybernetics,
vol. 12, pp. 125-136, 1964.

V. Levenshtein, “Maximum number of words in codes
without overlaps,” Problemy Peredachi Informatsii,
vol. 6, no. 4, pp. 355-357, 1970.

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

E. Gilbert, “Synchronization of binary messages,” IRE
Trans. Inf. Theory, vol. 6, no. 4, pp. 470-477, 1960.

D. Bajic and J. Stojanovic, “Distributed sequences and
search process,” in IEEE ICC, vol. 1, 2004, pp. 514—
518.

D. Bajic and T. Loncar-Turukalo, “A simple subop-
timal construction of cross-bifix-free codes,” Crypro.
and Commun., vol. 6, no. 1, pp. 27-36, 2013.

Y. M. Chee, H. M. Kiah, P. Purkayastha, and C. Wang,
“Cross-bifix-free codes within a constant factor of op-
timality,” IEEE Trans. Inf. Theory, vol. 59, no. 7,
pp- 4668-4674, 2013.

S. Bilotta, E. Pergola, and R. Pinzani, “A new ap-
proach to cross-bifix-free sets,” IEEE Trans. Inf. The-
ory, vol. 58, no. 6, pp. 4058—-4063, 2012.

S. R. Blackburn, “Non-overlapping codes,” IEEE
Trans. Inf. Theory, vol. 61, no. 9, pp. 4890-4894, 2015.

G. Wang and Q. Wang, “Q-ary non-overlapping codes:
A generating function approach,” IEEE Trans. Inf. The-
ory, vol. 68, no. 8, pp. 5154-5164, 2022.

O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard,
“Repeat-free codes,” IEEE Trans. Inf. Theory, vol. 67,
no. 9, pp. 5749-5764, 2021.

L. Huang, 743, 2024. [Online]. Available: https://
github.com/LingDong-/t43.

Klipper3d, Klipper, 2024. [Online]. Available: https:
//github.com/Klipper3d/klipper.

B. He, Y. Zhang, L. Zhao, et al., “Robotic-oct guided
inspection and microsurgery of monolithic storage de-
vices,” Nat. Commun., vol. 14, no. 1, p. 5701, 2023.

H. Liang, M. G. Cid, R. G. Cucu, et al., “En-face opti-
cal coherence tomography-a novel application of non-
invasive imaging to art conservation,” Optics Express,
vol. 13, no. 16, pp. 6133-6144, 2005.

S. Campello, W. Dos Santos, V. Machado, C. Mota,
A. Gomes, and R. de Souza, “Micro-structural infor-
mation of porous materials by optical coherence to-

mography,” Microporous and mesoporous materials,
vol. 198, pp. 50-54, 2014.

H. T. Maia, D. Li, Y. Yang, and C. Zheng, “Layercode:
Optical barcodes for 3d printed shapes,” ACM Trans.
Graph., vol. 38, no. 4, pp. 1-14, 2019.

J.-U. Hou, D.-G. Kim, S. Choi, and H.-K. Lee, “3d
print-scan resilient watermarking using a histogram-
based circular shift coding structure,” in ACM
IH&MMSec, 2015, pp. 115-121.

K. D. Willis and A. D. Wilson, “Infrastructs: Fabri-
cating information inside physical objects for imaging
in the terahertz region,” ACM Trans. Graph., vol. 32,
no. 4, pp. 1-10, 2013.

1902 34th USENIX Security Symposium

USENIX Association

[53] D.Li, A.S. Nair, S. K. Nayar, and C. Zheng, “Aircode:
Unobtrusive physical tags for digital fabrication,” in
ACM UIST, 2017, pp. 449-460.

[54] J.-W. Cho, R. Prost, and H.-Y. Jung, “An oblivious wa-
termarking for 3-d polygonal meshes using distribution
of vertex norms,” IEEE Trans. Signal Process., vol. 55,
no. 1, pp. 142-155, 2007.

[55] C. Wang and N. Raviv, “Low latency cross-shard trans-
actions in coded blockchain,” in IEEE ISIT, IEEE,
2021, pp. 2678-2683.

[56] C.Wang and N. Raviv, “Breaking blockchain’s commu-
nication barrier with coded computation,” IEEE Jour-
nal on Selected Areas in Information Theory, vol. 3,
no. 2, pp. 405421, 2022.

[57] C. Wang and N. Raviv, “All-to-all encode in syn-
chronous systems,” in IEEE ITW, 2022, pp. 738-743.

[58] C. Wang and N. Raviv, “On the encoding process in de-
centralized systems,” arXiv preprint arXiv:2408.15203,
2024.

[59] 1. Shomorony and A. Vahid, “Communicating over the
torn-paper channel,” in IEEE Globecom, 2020, pp. 1-6.

[60] I. Shomorony and A. Vahid, “Torn-paper coding,’
IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 7904—
7913, 2021.

[61] A.N. Ravi, A. Vahid, and I. Shomorony, “Capacity of
the torn paper channel with lost pieces,” in IEEE ISIT,
IEEE, 2021, pp. 1937-1942.

[62] D.Bar-Lev, S. Yaakobi, and Y. Yehezkeally, “Adversar-
ial torn-paper codes,” IEEE Trans. Inf. Theory, 2023.

[63] M. Kuribayashi and H. Tanaka, “How to generate cycli-
cally permutable codes from cyclic codes,” IEEE Trans.
Inf. Theory, vol. 52, no. 10, pp. 4660—4663, 2006.

[64] C.Wang,]J. Sima, and N. Raviv, “Break-resilient codes
for forensic 3d fingerprinting,” in /IEEE ISIT, IEEE,
2024, pp. 3148-3153.

[65] C. Wang,J. Wang, M. Zhou, et al., Artifects, Jan. 2025.
[Online]. Available: https://doi.org/10.5281/
zenodo.14737894.

A Distinct Strings

A.1 Encoding

Alg. 3 offers a procedure that maps an input word w €
{0,1}'"! to dstrings, which is an array of I pairwise dis-
tinct binary strings of length m. Besides, the inverse operation,
as given in Alg. 4, outputs w given the array dStrings.

The encoding algorithm first appends a 1 to w (line 1), and
as aresult, |w| =/ -m. The word w is segmented to / intervals

of length m and placed in a tentative array dStrings (line 1).
The segments are not necessarily pairwise distinct at this
point, and they are referred as the original.

The encoding algorithm continues to look for identical
original segments, deletes one of them, and appended a new
binary string to dStrings; this new string contains the in-
dexing information of the two identical binary strings which
allows for decoding at a later point in time. Moreover, we end
every new string with a 0 to distinguish it from the rightmost
original segment which ends with a 1.

With indices i and ieqq initially set to 0 and / — 1, the en-
coder enumerates every index j € [i + 1,igng] for a match,
i.e., dStrings][i] is identical to dStrings[j] (line 4). Once a
match is found, the latter is deleted from dStrings (line 6)
and the indices i, j are recorded in a binary string to be placed
at the end of dStrings, which will be used for recovering the
deleted entry during decoding.

Note that, naively defining the new strings as the concate-
nation of binary representations of i and j may introduce
more repeated strings; it may coincide with existing elements
in dStrings. To this end, the algorithm looks for an alterna-
tive binary representation of j which is not identical to the
first [log/] + 1 bits of every existing element in dStrings.

Starting from j' = 0, the following procedure is repeated j
times. In each time, j is increased by 1 (line 10). Then, it
continues to increase until its binary representation in [log/]+
1 bits does not coincide with the first [log/] + 1 bits of every
existing element in dStrings (line 11). One may imagine this
process as looking for the j-th available parking slot in a row,
in which some have been occupied (unavailable). A slot is
unavailable if the binary representation of its index coincides
with the first [log/] 4 1 bits of any element in dStrings.
Otherwise, it is available. Starting for index 0, j’ is indeed the
index of the j-th available slot.

Note that when the repetition stops, j’ equals to the sum
of j and the number of times the condition in line 11 was
true. Recall that 1 < j <[—1, and the latter equals to the
number of unavailable slots that may be encountered during
the increment of j/, which is at most / — 1 since there are
only [— 1 elements in dStrings. Therefore, j/ < 21 —2 and
can be represented by [log/] + 1 bits.

Therefore, we use the binary representation of j in [log/]+
1 to serve as the alternative representation of j. It is con-
catenated with the binary representation of i (in [log/] bits
since i < [) and sufficiently many 0’s to make a new string
(line 12). The new string is appended to dStrings, and is
different from every other element in the first [log/| + 1 bits;
this fact gives the following lemma.

Lemma 1. The new binary string being appended in line 12
is different from every existing elements in dStrings.

Lemma 1 allows us to decrease iepg by one (line 13) since
there is no need to compare dSt rings[;] with element whose
index is greater than i.pg — 1. The algorithm terminates when

USENIX Association

34th USENIX Security Symposium 1903

Algorithm 3 D-ENCODE (distinct strings encoding)

I-m—1

Input: A binary string w € {0,1}

, where [, m are positive integers such that m > [2log/] + 2.

Output: Array dStrings of / length-m pairwise distinct binary strings.
1: Letw<wol,i< 0,ieng [— 1, and dStrings[a] - wla-m: (a+1)-m) fora € [0,/ —1].

2: while i < iopq do
3: j—i+1

4: while j < i¢,q do

5: if dStringsli] = dStrings[j] then

6: dStrings « (dStrings[0: j—1],dStrings[j+1:1—1])

7: j <0

8: repeat j times:

9: do

10: J—Jj+1

11: while 3r € [[— 2] s.t. dStrings[r—1][0: [log/]] = BINARY(/, [logl] +1)
12: dStrings.APPEND(BINARY(j', [log/] + 1) o BINARY (i, [log/]) o 0" ~2[log/I=1)
13: Tend < lend — 1

14: else

15: j—j+1

16: i+—i+1

17: return dStrings

Algorithm 4 D-DECODE (distinct strings decoding)

Input: Array dStrings of / length-m pairwise distinct binary strings.
Output: The information word w € {0, l}k used to generate dStrings.

while dStrings[—1][-1] =0do

J»J' < INTEGER(dStrings[l — 1][1 : [log/] +1])
forall r € [0,/—2] and s € [j/ — 1] do

W < dStrings[0]o...odStrings[/ — 1]
return w|: —1]

AN A R i

i < INTEGER(dStrings[l][[log!] +2: 2[logl] +1])

if dstrings(r][1: [logl] + 1] = BINARY(s, [log/] + 1) then j < j—1
dStrings + (dStrings[0: j— 1],dStringsli],dStrings[j:]—2])

there are no elements of dStrings remains to be compared
(line 2), and its output satisfies the following.

Theorem 2. Algorithm 3 outputs an array dStrings of /
pairwise distinct binary strings of length m.

Proof. Assume, for sake of contradiction, that there ex-
ist a,b € [0,/ — 1] and a < b such that dStrings[a] =
dstringslb]. There are two possible cases for dStrings[b].

If dStrings[b] is a new string constructed in line 12,
then it is distinct from every other elements on its left by
Lemma 1, a contradiction. If dStrings[b] is not a new
string, then the dStrings[a] on its left is not as well. As
such, dStrings[b] would have been deleted in line 6 when i =
a and j = b, a contradiction. O

A.2 Decoding

We proceed to introduce the decoding procedure in Algo-
rithm 4, which is essentially the inverse operation of the
encoding process. Given the array dStrings, the decoding
algorithm reads i, j/ from the rightmost element if it is a con-
structed new string, i.e., if last bit of which is O (line 1). Recall
that a new string is created when two identical strings is found,
with i being the index of the first one (the reference) and ;'
being the alternative index of the second (the referent).

Line 2 reads the value of i, and line 3 reads the value of j’.
Recall that j/ is the index of the j-th available slots in a
row. Hence, the variable j is initially set to j/, and then sub-
tracted by the number of unavailable slots with indices less
than j' to reaches the actual index of the referent (line 4-5).
Together, i, j enable the recovery of the referent, and the right-
most element is deleted (line 6). Once all new strings have
been consumed in the aforementioned process, the decoding

1904 34th USENIX Security Symposium

USENIX Association

is concluded and w is returned (line 8).

B Proof of Theorem 1

The crux of proving Theorem 1 is showing that the decoder
is able to obtain the key-value store next from unordered
and partially missing fragments which result from breaking a
codeword c at ¢ arbitrary places and hiding fragments whose
total length is at most s bits. That is, the Reed-Solomon decod-
ing in line 9 of Algorithm 2 concludes successfully—it is well
known that this requires the number of erasures plus twice
the number of errors to be at most 4o in the RS codeword

(approxNext,ry,...,T4q). (6)

Recall that every a-BRC codeword ¢ is a concatenation
of Guu codewords, which start with [logm] + 1 consecutive
zeros (see Section 4.1), and redundancy packets, which are
free of zero runs of length [logm] + 1 or more thanks to
the RLL encoding. Hence, every discernible Gy codeword
in ¢ does not overlap with redundancy packets, and the de-
coder does not confuse the two.

The following lemma counts the number of erasures in (6),
which equals to the number of redundancy strings that the
decoder fails to obtain from the fragments.

Lemma 2. Let 7, be the number of breaks that fall in the
redundancy region, or separate the redundancy regions from
the information region, and let s, be the number of missing
bits that originally reside in the redundancy region. Then, the
number of redundancy strings that the decoder fails to obtain
is at most 4[t; + 52/ (5m+ [logm] + 15)].

Proof. The decoding algorithm may fail to obtain a redun-
dancy packet due to exactly one of the following reasons.

1. There exists a break either in the packet itself, or in its
preceding marker.

2. The packet, as well as its preceding marker, wholly re-
sides in a missing fragment.

Since #; breaks occur in the redundancy region, there are at
most f, missing redundant packets due to the first reason.

Recall that a redundancy packet and a marker add up
to 5m+ [logm|] + 15 bits. Then, for a missing fragment f
that resides in the redundancy region (if f cross both regions,
we only consider the part in the redundancy region), at most

| £]/(5m+ [logm] + 15)

packets, together with their preceding markers, are lost due to
the second reason. Together, the number of missing redundant
packets is no more than

R

t -
2t 5m+ [logm] +15

f in redundancy region

<ty+s2/(5m+ [logm] +15).

Finally, since one redundancy packet contains four redun-
dancy strings, it follows that the decoder fails to obtain at
most 4(t + 52/ (5m + [logm] + 15)) redundancy strings. [

‘We continue to count the number of errors in (6), i.e., the
number of entries in which approxNext and next differ.

Lemma 3. Let #; be the number of breaks that occur in the
information region, and s be the number of missing bits that
originally reside in the information region. Then, the number
of entries in which approxNext and next differ is at most

211 +s1/(m+ [logm] +4). @)

Proof. Observe that the decoding algorithm may fail to find
a non-marker (i.e., u; for i > ¢t) in the information region due
to exactly one of the following reasons.

1. There exists a break in it.

2. It wholly resides in a missing fragment.

Notice that, failing to capture a non-marker u, affects
at most two key-value pairs of next, i.e., next[u,_i]
and next[u,], and hence next and approxNext differ in at
most 2¢; positions due to the first reason.

Recall that the code length of Guy is m + [logm] + 4.
Hence, for a missing fragment f that resides in the information
region (if f cross both regions, we only consider the part in
the information region), there are at most

| £]/(m+ [logm]+4)

consecutive non-markers being lost due to the second reason.
This leads to at most

[£]/(m+ [logm]+4)—1

different entries in approxNext in addition to the ones caused
by breaks. Together, the number of entries that approxNext
and next differ is at most

2t + Yy
f in information region
<2t +s1/(m+ [logm] +4). O

£

—
m+ [logm] +4

Now, by Lemma 2 and Lemma 3, the sum of the number of
errors and twice the number of erasures in (6) is no more than
A(t) +1p) +4s2/(5m+ [logm] +15) +2s1 /(m+ [logm] +4)
<4t +2sy(m+ [logm] +4) +2s1/(m+ [logm] +4)
<4t+2s/(m+ [logm] +4) < 4a,
where the last inequality follows from (3). The proof is con-
cluded since line 9 outputs the correct key-value store next,

given that a (2" 4-40.,2™) Reed-Solomon code can simultane-
ously correct x errors and y erasures provided that 2x+y < 4qL.

C Simulation Results

This section presents simulation results on the success rate of
fingerprint recovery using o-BRC across three models.

USENIX Association

34th USENIX Security Symposium 1905

1-BRC, 0.613 mm/bit 2-BRC, 0.485 mm/bit 3-BRC, 0.401 mm/bit 4-BRC, 0.342 mm/bit
B 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 81.25% 45.41% 13.87% 0.78% 100.00% 83.15% 43.24% 6.67% 100.00% 97.27% 76.71% 21.07% 100.00% 99.54% 89.67% 37.26%
20 60.16% 25.98% 5.10% 0.17% 99.22% 85.82% 46.24% 4.08% | 100.00% 99.71% 89.36% 24.80% 100.00% 99.90% 97.05% 48.36%
30 32.03% 11.06% 1.27% 0.00% | 100.00% 85.35% 40.38% 2.66% | 100.00% 99.68% 90.11% 24.41% | 100.00% 100.00% 98.56% 55.25%
40 10.94% 3.34% 0.56% 0.00% 96.09% 75.46% 32.71% 1.64% 100.00% 99.49% 88.13% 23.97% 100.00% 99.98% 99.00% 57.52%
50 5.47% 1.17% 0.07% 0.00% 86.72% 61.62% 20.43% 0.32% 100.00% 99.58% 88.11% 18.99% 100.00% 100.00% 99.29% 58.30%
60 0.00% 0.00% 0.00% 0.00% 78.91% 43.09% 10.52% 0.27% 100.00% 99.44% 83.54% 14.77% 100.00% 99.98% 98.80% 53.00%
70 0.00% 0.00% 0.00% 0.00% 54.69% 26.05% 4.83% 0.20% | 100.00% 98.90% 79.42% 12.13% 100.00% 100.00% 99.02% 50.34%
80 0.00% 0.00% 0.00% 0.00% 50.78% 20.95% 3.56% 0.05% | 100.00% 97.68% 71.78% 8.11% 100.00% 99.98% 98.17% 46.80%
90 0.00% 0.00% 0.00% 0.00% 37.50% 13.04% 2.17% 0.02% 100.00% 95.97% 64.60% 5.27% 100.00% 99.98% 98.24% 43.12%
100 0.00% 0.00% 0.00% 0.00% 14.06% 4.25% 0.29% 0.00% 100.00% 90.70% 53.10% 3.64% 100.00% 99.93% 96.75% 33.59%
5-BRC, 0.298 mm/bit 6-BRC, 0.264 mm/bit 7-BRC, 0.237 mm/bit 8-BRC, 0.215 mm/bit
0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 100.00% 99.80% 96.00% 56.30% | 100.00% 100.00% 97.63% 66.60% | 100.00% 99.95% 99.05% 74.51% 100.00% 100.00% 99.61% 81.74%
20 100.00% 100.00% 99.51% 74.41% | 100.00% 100.00% 99.73% 84.30% | 100.00% 100.00% 99.95% 92.19% 100.00% 100.00% 100.00% 95.95%
30 100.00% 100.00% 99.93% 82.54% | 100.00% 100.00% 99.98% 93.16% | 100.00% 100.00% 100.00% 97.53% 100.00% 100.00% 100.00% 99.17%
40 100.00% 100.00% 99.98% 87.52% | 100.00% 100.00% 100.00% 96.29% | 100.00% 100.00% 100.00% 98.58% 100.00% 100.00% 100.00% 99.80%
50 100.00% 100.00% 99.93% 88.94% | 100.00% 100.00% 100.00% 97.53% | 100.00% 100.00% 100.00% 99.49% | 100.00% 100.00% 100.00% 99.95%
60 100.00% 100.00% 99.98% 87.99% | 100.00% 100.00% 100.00% 98.24% | 100.00% 100.00% 100.00% 99.71% 100.00% 100.00% 100.00% 99.95%
70 100.00% 100.00% 100.00% 90.04% | 100.00% 100.00% 100.00% 98.95% | 100.00% 100.00% 100.00% 99.95% 100.00% 100.00% 100.00% 100.00%
80 100.00% 100.00% 100.00% 89.70% | 100.00% 100.00% 100.00% 99.19% | 100.00% 100.00% 100.00% 99.95% 100.00% 100.00% 100.00% 99.98%
90 100.00% 100.00% 99.98% 87.94% | 100.00% 100.00% 100.00% 98.80% | 100.00% 100.00% 100.00% 99.88% 100.00% 100.00% 100.00% 100.00%
100 100.00% 100.00% 99.93% 85.28% | 100.00% 100.00% 100.00% 99.07% | 100.00% 100.00% 100.00% 100.00% | 100.00% 100.00% 100.00% 100.00%
Table 5: Simulation results of the FMDA Glock Frame.
1-BRC, 0.653 mm/bit 2-BRC, 0.5168 mm/bit 3-BRC, 0.427 mm/bit 4-BRC, 0.364 mm/bit
0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 80.47% 42.77% 10.55% 0.44% 100.00% 89.14% 53.91% 8.94% 100.00% 97.19% 78.37% 23.56% 100.00% 99.10% 88.96% 41.82%
20 67.97% 31.69% 6.71% 0.20% 100.00% 95.39% 63.92% 8.52% 100.00% 99.73% 92.99% 36.82% 100.00% 99.98% 98.29% 60.50%
30 44.53% 16.70% 2.10% 0.02% 100.00% 93.92% 59.42% 5.30% 100.00% 99.95% 95.92% 36.35% 100.00% 100.00% 99.44% 68.36%
40 30.47% 10.55% 1.20% 0.00% 99.22% 91.26% 50.76% 3.71% 100.00% 100.00% 96.95% 36.38% 100.00% 100.00% 99.85% 75.17%
50 15.62% 4.88% 0.44% 0.02% 98.44% 85.33% 40.62% 1.93% | 100.00% 99.95% 95.53% 31.62% | 100.00% 100.00% 99.95% 73.32%
60 7.81% 1.49% 0.10% 0.00% 96.09% 78.15% 30.62% 1.15% 100.00% 99.95% 96.39% 31.05% 100.00% 100.00% 99.78% 72.36%
70 2.34% 0.51% 0.00% 0.00% 95.31% 69.09% 21.56% 0.29% 100.00% 100.00% 94.78% 26.10% 100.00% 100.00% 99.83% 70.70%
80 0.00% 0.00% 0.00% 0.00% 88.28% 55.64% 13.94% 0.27% 100.00% 99.98% 91.85% 20.14% 100.00% 100.00% 99.93% 67.07%
90 0.00% 0.00% 0.00% 0.00% 75.78% 42.65% 7.89% 0.00% 100.00% 99.63% 88.13% 15.84% 100.00% 100.00% 99.68% 63.35%
100 0.00% 0.00% 0.00% 0.00% 67.97% 31.10% 4.54% 0.02% | 100.00% 99.63% 84.64% 11.47% | 100.00% 100.00% 99.78% 61.60%
5-BRC, 0.318 mm/bit 6-BRC, 0.281 mm/bit 7-BRC, 0.253 mm/bit 8-BRC, 0.229 mm/bit
0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 100.00% 99.39% 93.92% 53.44% | 100.00% 99.66% 96.75% 62.30% | 100.00% 99.85% 97.63% 70.87% 100.00% 99.61% 98.34% 76.86%
20 100.00% 99.98% 99.68% 78.27% | 100.00% 100.00% 99.98% 87.48% | 100.00% 100.00% 99.98% 92.41% 100.00% 100.00% 100.00% 95.48%
30 100.00% 100.00% 99.95% 86.04% | 100.00% 100.00% 99.98% 94.41% | 100.00% 100.00% 100.00% 97.49% | 100.00% 100.00% 100.00% 98.75%
40 100.00% 100.00% 100.00% 90.58% | 100.00% 100.00% 100.00% 97.53% | 100.00% 100.00% 100.00% 99.54% 100.00% 100.00% 100.00% 99.83%
50 100.00% 100.00% 100.00% 91.80% | 100.00% 100.00% 100.00% 98.12% | 100.00% 100.00% 100.00% 99.66% 100.00% 100.00% 100.00% 99.88%
60 100.00% 100.00% 100.00% 93.77% | 100.00% 100.00% 100.00% 98.54% | 100.00% 100.00% 100.00% 99.90% 100.00% 100.00% 100.00% 99.98%
70 100.00% 100.00% 100.00% 92.77% | 100.00% 100.00% 100.00% 98.97% | 100.00% 100.00% 100.00% 99.80% 100.00% 100.00% 100.00% 99.98%
80 100.00% 100.00% 100.00% 93.48% | 100.00% 100.00% 100.00% 99.10% | 100.00% 100.00% 100.00% 99.88% 100.00% 100.00% 100.00% 100.00%
90 100.00% 100.00% 100.00% 93.31% | 100.00% 100.00% 100.00% 99.44% | 100.00% 100.00% 100.00% 100.00% | 100.00% 100.00% 100.00% 100.00%
100 100.00% 100.00% 100.00% 93.09% | 100.00% 100.00% 100.00% 99.24% | 100.00% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 100.00%
Table 6: Simulation results of AR-15 lower receiver.
1-BRC, 0.161 mm/bit 2-BRC, 0.127 mm/bit 3-BRC, 0.105 mm/bit 4-BRC, 0.090 mm/bit
B 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 100.00% 78.34% 53.69% 20.41% | 100.00% 92.63% 74.68% 39.60% | 100.00% 94.19% 77.69% 44.75% | 100.00% 95.65% 81.69% 49.51%
20 100.00% 79.91% 56.13% 19.97% | 100.00% 96.78% 81.64% 43.51% | 100.00% 97.80% 88.70% 57.37% | 100.00% 98.27% 90.84% 62.26%
30 100.00% 83.23% 57.28% 18.53% | 100.00% 98.85% 89.18% 48.44% | 100.00% 99.29% 93.87% 66.09% | 100.00% 99.76% 95.70% 73.36%
40 100.00% 84.23% 57.32% 19.60% | 100.00% 99.41% 91.43% 49.66% | 100.00% 99.83% 95.95% 70.80% | 100.00% 99.93% 97.53% 79.71%
50 99.22% 84.03% 56.35% 16.21% | 100.00% 99.80% 92.75% 50.88% | 100.00% 99.98% 97.78% 74.83% | 100.00% 99.93% 98.68% 83.67%
60 98.44% 83.98% 53.76% 14.60% | 100.00% 99.76% 93.02% 51.44% | 100.00% 99.93% 98.41% 77.10% | 100.00% 99.98% 99.19% 86.33%
70 96.09% 79.42% 48.00% 11.52% | 100.00% 99.83% 93.41% 49.95% | 100.00% 99.98% 98.90% 79.66% | 100.00% 100.00% 99.61% 88.92%
80 96.09% 78.74% 50.46% 10.57% | 100.00% 99.63% 92.85% 47.73% | 100.00% 100.00% 98.97% 79.17% | 100.00% 100.00% 99.83% 91.33%
90 92.97% 76.07% 43.09% 8.79% 100.00% 99.58% 92.53% 46.17% | 100.00% 100.00% 99.39% 81.54% | 100.00% 100.00% 99.90% 92.72%
100 91.41% 70.19% 37.35% 6.54% 100.00% 99.41% 91.14% 43.51% | 100.00% 100.00% 99.32% 80.52% | 100.00% 100.00% 99.95% 92.65%
5-BRC, 0.078 mm/bit 6-BRC, 0.062 mm/bit 7-BRC, 0.062 mm/bit 8-BRC, 0.056 mm/bit
B 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%
10 100.00% 97.31% 87.40% 58.37% | 100.00% 99.73% 95.51% 71.73% | 100.00% 99.98% 98.22% 82.42% | 100.00% 99.98% 99.46% 89.50%
20 100.00% 99.49% 95.39% 72.34% | 100.00% 100.00% 99.15% 86.82% | 100.00% 100.00% 99.90% 93.21% | 100.00% 100.00% 99.98% 96.36%
30 100.00% 99.80% 97.88% 81.01% | 100.00% 99.98% 99.61% 90.84% | 100.00% 100.00% 100.00% 97.05% | 100.00% 100.00% 100.00% 98.44%
40 100.00% 99.95% 98.97% 86.82% | 100.00% 100.00% 99.80% 94.87% | 100.00% 100.00% 99.98% 98.56% | 100.00% 100.00% 100.00% 99.46%
50 100.00% 100.00% 99.37% 90.80% | 100.00% 100.00% 99.88% 96.02% | 100.00% 100.00% 99.98% 99.10% | 100.00% 100.00% 100.00% 99.78%
60 100.00% 100.00% 99.73% 93.92% | 100.00% 100.00% 99.95% 97.73% | 100.00% 100.00% 100.00% 99.41% | 100.00% 100.00% 100.00% 99.90%
70 100.00% 100.00% 99.83% 95.61% | 100.00% 100.00% 99.98% 98.39% | 100.00% 100.00% 100.00% 99.46% | 100.00% 100.00% 100.00% 99.98%
80 100.00% 100.00% 99.95% 95.95% | 100.00% 100.00% 100.00% 98.97% | 100.00% 100.00% 100.00% 99.78% | 100.00% 100.00% 100.00% 99.93%
90 100.00% 100.00% 100.00% 97.41% | 100.00% 100.00% 100.00% 99.19% | 100.00% 100.00% 100.00% 99.88% | 100.00% 100.00% 100.00% 100.00%
100 100.00% 100.00% 99.95% 97.63% | 100.00% 100.00% 100.00% 99.44% | 100.00% 100.00% 100.00% 99.90% | 100.00% 100.00% 100.00% 100.00%

Table 7: Simulation results of 3DBenchy.

1906 34th USENIX Security Symposium

USENIX Association

	Introduction
	Background
	Threat Model
	Break-Resilient Codes
	Preliminaries
	Encoding
	Preprocessing
	Decoding
	Trusted Information Embedding

	SIDE Implementation
	Bit Embedding Method
	Bit Extraction Method
	TEE Protected Embedding

	Evaluation
	Fingerprint Recovery
	Code Rate
	Stealthy Embedding
	Impacts on Print Quality
	Impact of Printer Imperfection
	Impact on Printing from TEE Protection

	Security Analysis and Discussion
	Related Work
	Existing 3D Fingerprinting Methods
	Coding Methods

	Conclusion
	Distinct Strings
	Encoding
	Decoding

	Proof of Theorem 1
	Simulation Results

