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Abstract

Printer fingerprinting techniques have long played a critical

role in forensic applications, including the tracking of counter-

feiters and the safeguarding of confidential information. The

rise of 3D printing technology introduces significant risks to

public safety, enabling individuals with internet access and

consumer-grade 3D printers to produce untraceable firearms,

counterfeit products, and more. This growing threat calls for a

better mechanism to track the production of 3D-printed parts.

Inspired by the success of fingerprinting on traditional 2D

printers, we introduce SIDE (Secure Information EmbeDding

and Extraction), a novel fingerprinting framework tailored

for 3D printing. SIDE addresses the adversarial challenges

of 3D print forensics by offering both secure information em-

bedding and extraction. First, through novel coding-theoretic

techniques, SIDE is both break-resilient and loss-tolerant,

enabling fingerprint recovery even if the adversary breaks

the print into fragments and conceals a portion of them. Sec-

ond, SIDE further leverages Trusted Execution Environments

(TEE) to secure the fingerprint embedding process.

1 Introduction

3D printing is revolutionizing the consumption and distribu-

tion of goods, but also introduces unprecedented security risks

that are absent in traditional 2D printing. With internet access

and commercial 3D printers, individuals can fabricate untrace-

able firearms (ghost guns [1], [2]) and other illicit items, with

little to no technical expertise. For example, one such weapon

was implicated in the recent killing of Brian Thompson, the

CEO of UnitedHealthcare [3], [4] (Fig. 1). To assist authori-

ties and law enforcement in addressing these threats, forensic

techniques offer a promising path forward.

Existing Fingerprinting Solutions: Fingerprinting is a

widely employed forensic technique that embeds uniquely

∗These authors contributed equally to this work.
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Figure 1: (a) Renderings of a Glock 19 frame design. (b)

Fingerprinting fails when the frame is broken, with portions

missing.

traceable data into printed documents, e.g. timestamps, ge-

olocations, and printer IDs. These embedded fingerprints can

subsequently be extracted to trace the perpetrator. In the realm

of 2D printer fingerprinting, existing approaches generally fall

into two broad categories: active and passive methods. Active

methods involve deliberately placing invisible markers (e.g.,

a grid of dots [5] or traits from modulated laser intensity [6]).

Passive methods, on the other hand, rely on inherent varia-

tions of individual printers, including imperfections or speed

fluctuation patterns in specific printer components [7]. Ex-

tending these concepts to 3D printing, current fingerprinting

efforts have explored a variety of techniques, e.g., embedding

tags on the object surface by varying layer thickness [8] or

printing speed [9], altering layer material [10], inserting cavi-

ties [11], embedding RFID tags [12] or QR codes [13], [14],

and inserting acoustic barcodes using surface bumps [15]. In

addition, some studies focus on intrinsic signatures unique to

3D printers, including characteristics of stepper motors [16]

and heat systems [17]. Despite the comprehensiveness of vec-

tors investigated in previous studies, there is little focus on

the resiliency of the fingerprint against an active adversary,

who may tamper with the embedding software or destroy the

fingerprint by breaking the printed tools.

Resilient 3D Fingerprinting Solution under Adversaries:

To protect the integrity of 3D printing in adversarial scenar-
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Figure 2: Law Enforcement Agencies Fail Fingerprinting

ios, we proposed SIDE, a framework for Secure Information

EmbeDding and Extraction, designed to enhance the re-

siliency of the fingerprint. This necessitates cyber-physical

protection of the fingerprint in both the physical printed part

and the digital process that embeds the fingerprint. In this

work, SIDE tackles two key technical challenges.

Preventing Information Corruption: An adversary who is

fully aware of the embedding method can tamper with the

embedded fingerprint by breaking the object and hiding some

of the fragments, hindering the extraction of the embedded

information. Existing fingerprinting solutions [18], which em-

bed raw information into objects, cannot defend against such

adaptive adversaries due to their lack of resilience to missing

information. To address this challenge, we propose α-break-

resilient codes (α-BRC), a family of coding-theoretic tech-

niques designed for information extraction from 3D prints,

with α serves as a security parameter. These codes improve

robustness by allowing successful extraction of embedded

bits under fragmentation and partial loss, i.e., even when the

print is adversarially broken and some fragments are missing

up to the specified security threshold.

Preventing Fingerprint Embedding Tempering: An adversary

may also attempt to tamper with the processing that embeds

the fingerprint into the physical part. For example, if the fin-

gerprint is embedded by the slicing software, then an attacker

can attempt to remove the fingerprint by tampering with G-

code instructions. As a result, to maximize resiliency against

digital attacks, SIDE inserts the fingerprint embedding sub-

system into the process immediately before physical printing

in the 3D printing pipeline. By leveraging a TEE, SIDE en-

sures the integrity of the embedding process that translates the

digital fingerprint to its physical representation, even against

a strong attacker who can compromise the OS kernel.

Prototype and Evaluations: We implemented and tested a

prototype of SIDE, on a Creality Ender 3 3D FDM printer

controlled by a Raspberry Pi 3B board, with OP-TEE V3.4

as secure world OS, and extend the results to an Elegoo Mars

4 SLA printer. To evaluate the efficiency and effectiveness

SIDE, we measured both the runtime and memory overhead

introduced from SIDE, and the fingerprint extraction success

rate. The latter was measured under adversarial scenarios,

with a combination of real-world and simulation-based exper-

iments, with the help of a Leica S9D microscope and optical

coherence tomography (OCT) devices. In summary, we make

the following contributions.

• We propose a secure 3D fingerprinting mechanism

named SIDE that improves resiliency to adversarial op-

erations, including malicious manipulation on both the

information embedding procedure and the 3D prints.

• We design and implement coding and decoding mecha-

nisms with break-resiliency and loss-tolerance properties

to defend against adversaries attempting to tamper with

the fingerprinting information on 3D prints. To the best

of our knowledge, practical codes with these specific

properties have not been studied before. Additionally,

we develop a trusted execution environment for the fin-

gerprinting embedding process to protect its integrity

against software attacks.

• We implemented a prototype of SIDE on the Creality En-

der 3 3D printer controlled by a Raspberry Pi 3B board,

and evaluated the efficiency and effectiveness via a com-

bination of real-world and simulation-based experiments

on 3D objects with varying shapes and sizes.

2 Background

3D Printing: Additive manufacturing, colloquially referred

to as 3D printing, has emerged as a revolutionary technology

with profound implications across various industries [19]. In

contrast to the traditional subtractive manufacturing during

which materials are consecutively removed from the work-

piece, 3D printing refers to an additive process of creating a

physical object and is typically done by laying down many

thin layers of material in succession.

Numerous technologies have been developed for 3D print-

ing. By and large, they differ by which material is in use and

how layers are formed. A layer can either be formed by using

a nozzle that deposits molten thermoplastics while shifting

back and forth on a surface, e.g. Fused Deposition Modeling

(FDM), by depositing a layer of liquid polymers and curing it

by ultraviolet light exposure, e.g., Stereolithography (SLA), or

by binding powdered material using high-energy laser beams,

e.g., Selective Laser Sintering (SLS).

The additive manufacturing process begins by converting

a given 3D model into discrete 2D diagrams using a slicer

software. Each diagram represents a planar cross-section of

the model along the printing direction at a certain height.

Then, the slicer creates a series of machine commands to

instruct the printer about how to produce the corresponding

layers of the diagram sequence.

In this research, we focus on printers based on both FDM

and SLA technologies for their prevalence in commodity 3D
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printers. The commands for FDM printers, called G-Codes1,

include the nozzle movement along the x, y, and z axes, the

extrusion of material, and the temperature of nozzle/bed. The

commands for SLA printers may include the movement of

print platform and the exposure time of each layer. Other as-

pects based on the printer’s capabilities may also be specified

in these commands.

A typical FDM printer involves four stepper motors, which

are actuators that rotate in discrete angular steps of a constant

degree. Three of the motors control the nozzle movement

in the Cartesian space, and one is responsible for filament

extrusion. However, a G-code command specifies only the

expected action of the printer hardware in a relatively high

level, while the low-level implementation is not addressed.

For example, the command

G1 X98.302 Y96.831 E15.796 F400

merely instructs the printer to move its nozzle from its cur-

rent position to location (x,y) = (98.302,96.831) (with its

position relative to the z axis unchanged), and simultaneously

extrude 15.796 millimeters of molten thermoplastic filament,

at a feed rate (speed) of 400 mm/min. Completing this oper-

ation requires a series of stepping events, and each of them

defines the exact timing and direction to trigger one of the

four stepper motors for a single angular step.

The printer firmware bridges between the G-code and the

printer’s hardware, translating commands into precise actuator

movements that drive the printing process. The translation

process of a firmware is non-trivial, and has a significant

impact on print quality. For instance, a sudden jerk of the

printer nozzle may lead to uneven deposition of print material,

compromising or even failing a print. In contrast, a nozzle

movement with smooth velocity change is generally preferred.

Trusted Execution Environment: Trusted Execution En-

vironments (TEEs) have emerged as a reliable solution for

isolating sensitive and critical operations from untrusted soft-

ware stacks in computing systems. Utilizing hardware and/or

software isolation mechanisms, ARM TrustZone provides a

secure execution space, known as the secure world, for trusted

software stacks. User space applications within this environ-

ment are commonly referred to as Trusted Applications (TAs).

The code and data of secure software in the secure world

are protected from access or tampering by untrusted software

stacks, which operate in the Rich Execution Environment

(REE), also known as the normal world. Benefiting from

diverse TEE solutions provided by CPU vendors for differ-

ent architectures, such as ARM TrustZone, Intel Software

Guard Extensions (SGX), and RISC-V Keystone, applica-

tions across various domains have been effectively protected.

These domains include access control [20]–[22], cloud com-

puting [23]–[28], and real-time systems [29]–[33].

1Note that there exist other languages for controlling 3D printing hard-

ware, including variants of G-codes and propriety ones. Nevertheless, we

collectively refer to those as G-codes for clarity.

3 Threat Model

We assume that the adaptive attacker is fully aware of SIDE’s

embedding and extraction schemes and attempts to bypass

the fingerprinting mechanism through either the cyber vector

or the physical vector. Physically, we assume the attacker

can kinetically break apart the printed object to corrupt the

embedded fingerprint information. Furthermore, the attacker

is able to conceal some but not all of the fragments from the

forensic investigation. This is since physically eliminating all

traces of evidence often requires significantly greater domain

expertise and specialized training. Moreover, we do not be-

lieve it is possible to forensically link a printed object to a

specific printer if all identifiable fragments can be completely

concealed, especially given that physical evidence often plays

an important role in criminal trials. Digitally, we assume the

attacker is capable of modifying the files on the file system,

and leveraging exploitation tools to escalate privilege in the

system, compromising the rich execution environment (e.g.,

normal world). However, the attacker cannot forge signatures

for secure boot, and the secure software in TEE is free of

vulnerability and can be trusted.

We further assume that attackers capable of building their

own 3D printing devices, or capable of purchasing untrace-

able hardware, are out of scope. This is since these approaches

often require significant expertise, incur substantial costs, and

deteriorate the quality of the resulting print. While SIDE

certainly has limitations in defending against resourceful at-

tackers with strong expertise in additive manufacturing, it

significantly raises the level of sophistication, prior knowl-

edge, and expertise required from the adversary in order to

remain undetected after committing the crime.

We further assume that hardware used by law enforcement

during decoding, such as microscopes or computed tomogra-

phy (CT) devices, is trusted and inaccessible to adversaries.

Additionally, we assume that the adversaries will not intention-

ally damage printer components like sensors and actuators, as

doing so would degrade print quality. The printer’s processor

is assumed to support a Trusted Execution Environment (TEE)

and to be reliable. Lastly, side-channel and denial-of-service

(DoS) attacks are considered out of scope.

4 Break-Resilient Codes

The secure information extraction feature of SIDE is at-

tributed to the α-break-resilient codes (α-BRC) specifically

developed for forensic fingerprinting purposes, in which α
serves as a security parameter.

The α-BRC includes an encoder which take a binary

string w ∈ {0,1}k
, i.e., the fingerprint, as input, where

k = (l−α) ·m−1, (1)
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Figure 3: Fragments of a transmission shaft. Breaks in (a)

cross multiple layers, and the assembly of fragments may

be inferred from their overlapping bits. Breaks in (b) are

perpendicular to the z direction, and the correct assembly (i.e.,

order) cannot be inferred from the fragments themselves.

with l and m being positive integers such that

l > α+1 and mg +2log l,+2, (2)

and outputs a codeword c ∈ {0,1}n
. For positive integers s

and t satisfying

4 · t +2s/(m+ +logm,+4)f 4 ·α, (3)

the codeword c is both t-break-resilient and s-loss-tolerant.

Specifically, this means that even if

1. (t-break-resiliency) c is broken into t +1 fragments, and

2. (s-loss-tolerance) some fragments are lost, totaling s bits,

then the α-BRC decoder can still recover w from the remain-

ing (unordered) subset of fragments, thereby secure informa-

tion extraction is guaranteed, resolving Challenge 2.

Remark 1. SIDE encodes information into objects using

physical elements such as variations in layer thickness. With

this setting, every break falls into one of two categories:

those that cross multiple layers (Fig.3a) and those that do

not (Fig.3b). Breaks in the former category result in overlap-

ping bits (i.e., bits which are shared between two or more

fragments), potentially providing information that enables

fragment assembly (see Section 4.3). Furthermore, if one

fragment which contains shared bits is concealed, the shared

bits remain accessible through other overlapping fragments.

Breaks in the former category, however, do not create shared

bits, and if a fragment in Figure 3b is concealed, all of its

embedded bits are omitted from law enforcement.

α-BRC are thus designed to handle the worst-case scenario,

where t represents the number of breaks that either produce no

overlapping bits or cannot be resolved using overlapping bits,

and s denotes the number of codeword bits entirely absent

from all fragments confiscated by law enforcement.

4.1 Preliminaries

The following notions from coding theory are employed as

basic building blocks for BRC.

Systematic Reed-Solomon (RS) Codes: A special type of

Reed-Solomon codes, which have been widely employed in

communication systems and data storage applications; for an

introduction to the topic see [18, Ch. 5].

For integers k and n such that n > k > 0, a systematic [n,k]
RS code is a set vectors of length n called codewords, each

entry of which is taken from Fq, a finite field with q ele-

ments. The first k entries of each codeword in a systematic RS

code carry information in raw form, and the remaining n− k

contain redundant field elements that are used for error cor-

rection. Reed-Solomon codes are maximum distance sep-

arable (MDS), a property which allows the recovery of a

codeword after being corrupted by x errors (incorrect symbols

with unknown locations) and y erasures (incorrect symbols

with known locations), as long as n− k g 2x+ y. Further, in

this paper we focus on the binary field and its extensions,

where q = 2z for some integer zg 1, and any element in Fq

can be represented by a binary string of length z.

Run-length Limited Codes: A run-length limited (RLL)

code has codewords in which the length of runs of repeated

bits is bounded. We employ the RLL code from [34, Algo-

rithm 1] in this paper for its simplicity of implementation.

Mutually Uncorrelated Codes: A mutually uncorrelated

(MU) code has the property that for every two (possibly iden-

tical) codewords, the prefix of one is not identical to the suffix

of another. As such, the codewords of a MU code do not over-

lap with each other when appearing as substrings of a binary

string. MU codes have been extensively investigated in the

past [34]–[43]. In this paper, we adopt a classic construction

of MU code, in which each codeword starts with +logk, zeros

followed by a one, where k is the length of the (binary) infor-

mation word. The last bit is fixed to one, and the remaining

bits are free from zero runs of length +logk,+1.

Distinct Block Codes. Inspired by ideas from [34, Algorithm

1] and [44, Algorithm 1], we provide an encoding process

that maps an input word to an array of distinct binary strings,

and offer the inverse operation. These procedures serve as an

important component in BRC. Both algorithms, as well as

proofs of their correctness, are given in Appendix A.

4.2 Encoding

The encoding procedure of α-BRC takes a binary string w

as input and outputs a codeword, and it is provided in Al-

gorithm 1. At high level, w will be converted to a sequence

1890    34th USENIX Security Symposium USENIX Association



Algorithm 1 ENCODE (α-BRC Encoding)

Input: An information word w ∈ {0,1}k
, where k = (l−α) ·m−1, and l,m are positive integers s. t. mg +2log l,+2.

Output: A codeword c ∈ {0,1}n
, where n = l · (m+ +logm,+4)+α · (4m+11).

1: Let u← p(0) ◦ . . .◦p(α−1) ◦w, where p(i) is the binary representation of i ∈ [0,α−1] using m bits.

2: Let dStrings← (u1, . . . ,ul) = D-ENCODE(u).
3: Let next be a key-value store with keys and values being elements in {0,1}m

.

4: for all keys s in next in ascending order do

5: if there exist i ∈ [0, l−2] such that s = ui then next[s]← ui+1 else next[s]← s

6: r1, . . . ,r4α← RS-ENCODE((next[p(0)]◦0,next[p(1)]◦0 . . . ,next[p(2m−1)]◦0),4α),
7: for i ∈ [0,α−1] do di← r4i ◦ r4i+1 ◦ r4i+2 ◦ r4i+3

8: c = MU(u0)◦ RLL(d0)◦ . . .◦MU(ua−1)◦ RLL(dα−1)◦MU(ua)◦ . . .◦MU(ul−1)
9: return c

of distinct binary strings with the method introduced in Ap-

pendix A, and their order will be recorded and then protected

using a systematic Reed-Solomon code. Synchronization is-

sues among the symbols of the RS code will be resolved using

the RLL and MU techniques mentioned earlier.

Let the information word be w ∈ {0,1}k
, and let p(i) ∈

{0,1}m
be the binary representation of integer i. The encoding

of w begins by prepending w with p(0),p(1), . . . ,p(α−1), and

as shown in line 1, resulting in

u = p(0) ◦ . . .◦p(α−1) ◦w ∈ {0,1}αm+k (1)
= {0,1}l·m−1. (4)

Then, as shown in line 2, the resulting string u is fed into the

function D-ENCODE (Alg. 3, Appendix A) and mapped to an

array of l pairwise-distinct binary strings of length m, i.e.,

dStrings= (u0, . . . ,ul−1), (5)

where ui ̸= u j for all distinct i and j in {0,1, . . . , l−1}.
Note that due to the implementation of D-ENCODE, the

first α elements of dStrings remain intact, i.e., ui = p(0) for

all i < a, and they are referred as markers. In the next step,

a key-value store next is defined to represent the ordering

of elements in dStrings as follows (line 4–5). For every

key s ∈ {0,1}m
, the value next[s] is defined as

next[s] =

{

ui+1 if s = ui for i ∈ [0, l−2],

s otherwise.

Note that the value next[s] is well defined, since ui ̸= u j for

every i ̸= j by the pairwise-distinct property of dStrings. It

is also worth noting that the mapping from dStrings to next

is injective; one may recover dStrings from next by observ-

ing every key r such that next(r) ̸= r, and connecting every

two ra,rb of them if next(ra) = rb.

We proceed to the treatment of next. Since the values

in next are binary strings of length m, we append each of

them with a 0, and hence they can be regarded as symbols in

the finite field F2m+1 . They are sorted by their corresponding

keys and fed into a systematic Reed-Solomon encoder, which

then generates 4α redundancy strings r1, . . . ,r4α ∈ {0,1}
m+1

(line 6). Note that such encoding is feasible since the code-

word length 2m +4α is smaller than the number of elements

in F2m+1
2.

The codeword c consists of two parts. The first re-

gion is called the information region, as it is generated

from uα, . . . ,ul−1, which directly originate from the infor-

mation word w. The second region is called the redundancy

region. As the name suggests, it is made from the redundant

bits generated from next.

Define an encoding function MU which maps ui ∈ {0,1}
m

to a codeword MU(ui) ∈ {0,1}
m++logm,+4

of a mutually-

uncorrelated code CMU. The information region is hereby

defined as

MU(uα)◦ . . .◦MU(ul−1) ∈ {0,1}
(l−α)...(m++logm,+4).

In addition, for i ∈ [0,α−1], define

di = r4i ◦ r4α+1 ◦ r4i+2 ◦ r4i+3 ∈ {0,1}
4m+4

as the concatenation of four redundancy strings.

Then, let RLL be an encoding function that maps di to a

binary sequence RLL(di) ∈ {0,1}
4m+11

, called redundancy

packet, which is free of zero runs longer than +logm,+1. The

redundancy region is then defined as

MU(u0)◦ RLL(d0)◦MU(uα−1)◦ RLL(dα−1)

∈ {0,1}α...(5m++logm,+15).

Finally, the codeword c is the two regions combined (line 8):

c = MU(u0)◦ RLL(d0)◦ . . .◦MU(uα−1)◦ RLL(dα−1)

◦MU(uα)◦ . . .◦MU(ul−1) ∈ {0,1}
l(m++logm,+4)+α(4m+11).

2RS codes requires the finite field size to be greater or equal to the length

of the codeword, i.e., 2m+1 g 2m +4α; this is the case due to (2) and the fact

that αg 1.
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Algorithm 2 DECODE (α-BRC Decoding)

Input: A multiset FRAGMENTS of unordered and partially missing fragments of a codeword c ∈ C .

Output: The information word w such that Algorithm 1 with input w yields c.

1: Let ri← erasure for all i ∈ [0,4α−1].
2: for all codeword MU(ui) ∈ CMU in the fragments in FRAGMENTS and ui = p(i) for some integer i < α do

3: if the number of bits after mi is less than 4m+11 then continue to next MU codeword.

4: Let mi be the 4m+11 bits after MU(ui), and di← DE-RLL(mi).
5: r4i,r4i+1,r4i+2,r4i+3← di[0,m],di[m+1,2m+1],di[2m+2,3m+2],di[3m+3,4m+3]

6: Let approxNext be a key-value store such that approxNext[s] = s for all s ∈ {0,1}m
.

7: for all fragment f = fstart ◦MU(uu)◦ . . .◦MU(uu+v)◦ fend ∈ FRAGMENTS where ug α do

8: for all c ∈ [0,v−1] do approxNext[uu+c] = uu+c+1.

9: next← RS-DECODE(approxNext,r1, . . . ,r4α)
10: Let dStrings= (u1, . . . ,ul) be an array of such that next(ui) = ui+1.

11: u← D-DECODE(dStrings)
12: return u[α ·m :]

4.3 Preprocessing

Recall that breaks may cross multiple layers, resulting in over-

laps between bit strings extracted from confiscated fragments.

If a MU codeword is found in two bit strings, the two strings

can be merged into one due to the uniqueness of MU code-

words (i.e., a MU codeword appears at most once in the BRC

codeword). This uniqueness arises from the pairwise distinct

property of the elements in dStrings, as defined in (5).

Hence, prior to BRC decoding, the bit strings from con-

fiscated fragments undergo a preprocessing stage in which

strings that share a MU codeword are merged.

4.4 Decoding

Algorithm 2 provides a procedure for extracting the infor-

mation word w from the unordered and partially missing

fragments of the respective codeword c. The crux of this

procedure is to reconstruct the key-value store next defined

previously, and recover the information word w from it.

Specifically, the decoding algorithm creates a key-value

store approxNext, which is slightly different from next, us-

ing the information which appears in the confiscated frag-

ments. Alongside the correctly identified redundancy strings,

approxNext goes through a Reed-Solomon decoding process

and is corrected to next. Having the correct next in hand, the

correct dStrings (5) can be found since the mapping from

the latter to the former is injective. Then, dStrings is fed

into D-DECODE (Alg. 4, Appendix A), which is the inverse

process of D-ENCODE (Alg. 3) to produce u (4), whose suffix

is the information word w.

In more detail, the decoding starts by distinguishing and

decoding the discernible codewords of CMU from the frag-

ments. Let MU(ui) be a discernible codeword in CMU which

fully resides within one fragment, where ui is its respective

decoding. If ui = p(i) for some integer i < a, it means that ui

is a marker, and hence the (4m+11) bits after it consist of a

redundancy packet (line 2). This redundancy packet, if resid-

ing in the fragment, is passed to an RLL-decoder which yields

four redundancy strings r4i,r4i+1,r4i+2,r4i+3 (line 4–5).

The other discernible codewords of CMU, i.e., those encoded

from non-markers (ui’s for ig a), are used to construct a key-

value store approxNext. Initially, approxNext(s) = s for

every key s ∈ {0,1}m
(line 6). For each fragment f, let

f = fstart ◦MU(uu)◦ . . .◦MU(uu+v)◦ fend,

where fstart and fend are the (possibly empty) prefix and suffix

of f with no discernible codeword from CMU that is encoded

from a non-marker. In line 8, the decoder updates

approxNext[uu+c] = uu+c+1,

for every c ∈ [0,v−1]. The above process stops once no more

codewords in CMU can be found.

The decoding algorithm proceeds to correct the constructed

key-value store approxNext to next, i.e., the key-value store

generated in Algorithm 1 from w, using the collected redun-

dancy strings and a standard Reed-Solomon decoder (line 9).

Next, the array dStrings is obtained from next (line 10),

and the function D-DECODE (Alg. 4, Appendix A) is em-

ployed to recover u. Recall that u = p(0) ◦ . . . ◦ p(a−1) ◦w

in (4), and hence the decoding procedure concludes by return-

ing the k rightmost bits of u (line 12).

Together, correct decoding is guaranteed by the following

theorem, whose proof is provided in Appendix B.

Theorem 1. Line 12 of Algorithm 2 returns correct informa-

tion word w if 4 · t +2s/(m+ +logm,+4)f 4 ·α.

4.5 Trusted Information Embedding

Figure 6 shows the system design of trusted fingerprint em-

bedding procedures. To prevent attackers from tampering

the fingerprint embedding procedures, SIDE executes the 3D
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normal

1 00110 10

stealthy

0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm 0.24 mm

Figure 4: Demonstration of embedding 01101001 with pa-

rameters x = 0.08 and (y,ε) = (0.12,0.02). In the normal

settings, each 0 is represented by two layers of 0.08 and 0.16

millimeters, and each 1 is represented by one layers of 0.24

millimeters. In the stealthy settings, each 0 is represented by

two layers of 0.10 and 0.14 millimeters, and each 1 is repre-

sented by two layers of 0.12 millimeters. In either case, the

length required for embedding one bit is 0.24 mm.

fingerprint embedding procedure and dependencies in TEE,

including fingerprint information encoding (codec), object

model slicing (layer-gen), toolpath generation (toolpath-gen),

and 3D printer driver (firmware). TEEs are constrained by

hardware resource limitations, notably their limited memory

for the secure domain. Consequently, attempting to execute

the entire fingerprint embedding procedure naïvely within

the TEE risks print failures due to insufficient secure heap

space, which is inadequate to handle the size of 3D model

files and the substantial intermediate data generated during

the slicing process. To mitigate this limitation, we propose

a progressive slicing strategy, which reduces peak memory

usage for procedures with the highest heap memory demand.

This approach leverages the inherent layer-by-layer nature of

the 3D printing process. Instead of pre-slicing the entire 3D

model and generating a G-code file prior to printing, slicing

is performed dynamically in an on-demand manner during

the printing process.

5 SIDE Implementation

This section details the implementation of SIDE, including

bit embedding, extraction, and TEE integration.

5.1 Bit Embedding Method

We address bit embedding at two levels: normal and stealthy.

The normal approach focuses solely on the readability of

the embedded bits, while the stealthy approach imposes an

additional requirement of indiscernibility.

Normal Embedding. In the proposed normal method, there

are three layer thicknesses: x, 2x, and 3x, where x is a base

thickness. A 0 bit is represented by two consecutive layers

of thickness x and 2x, respectively, and a 1 bit is represented

by a single layer of thickness 3x. This method has three key

advantages. First, it improves the readability as the substantial

stitch
011010011011...

...

parse

Confiscated Fragments Image Sequence

Embedded Bits

Figure 5: Procedure of bit extraction.

difference between the layers minimizes confusion during bit

reading. Second, it provides consistent embedding density, de-

fined as the number of bits embedded per unit distance. Since

both 0 and 1 are represented using the same total thickness 3x,

the embedding density remains consistent for both 0 and 1.

This ensures that the required object height depends solely on

the length of the codeword, rather than its content. Third, it

includes directional information, as the arrangement of layers

for 0’s implies the direction of the codeword.

Stealthy Embedding. The stealthy embedding method pri-

oritizes indiscernibility by minimizing differences in layer

thickness between layers. In this method, every bit is repre-

sented by two layers. Specifically, a 1 is represented by two

layers of y millimeters, and a 0 is represented by two layers

of y− ε and y+ ε millimeters, respectively. The ε shall be im-

perceptible to naked eyes but still discernible to bit extraction

equipments. This approach offers the added benefit of stealth-

iness, making it harder for the adversary to distinguish the

embedded bits. Yet, it demands higher resolution for accurate

bit extraction.

An illustration of both embedding methods is given in Fig-

ure 4. In reality, the x,y and ε are determined to accommodate

the resolutions of the printer and the bit extraction equipment.

5.2 Bit Extraction Method

The extraction of bits is performed by inspecting the thick-

nesses of the layers in the fragments using specialized equip-

ment and determining the corresponding bits. In this section,

we describe an optical extraction method that employs a mi-

croscope to inspect the ridges on the surface of the print3,

with a graphical illustration given in Figure 5.

Microscopes typically have a limited field of view, making

it impossible to inspect an entire fragment at once. To over-

come this limitation, we mount the fragment on a motorized

rail slider. During the extraction process, the fragment slides

over the microscope’s field of view, while the microscope

takes a series of pictures. The pictures are taken so that every

two consecutive pictures overlap, which allows us to fuse

them together and obtain a picture of the entire fragment.

3If surface examination is not feasible (e.g., due to post-processing done

on the surface), a computed-tomography based method can be utilized. How-

ever, it is beyond the scope of this paper
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Figure 6: TEE Protected Embedding Procedure

To automatically read bits from the stitched images, we

developed bit-parser, a program capable of parsing bits

in both normal and stealthy embedding settings. In the case

of normal embedding, bit-parser begins by identifying the

layers representing 1’s; they are characterized by a single,

thickest layer of 3x millimeters, making them easily distin-

guishable from others. The program then counts the layers

between these thick layers, with each pair of consecutive lay-

ers corresponding to a 0.

For stealthy embedding, bit-parser examines every two

consecutive layers. If the first layer is thinner than the sec-

ond by a specific threshold, the pair corresponds to a 0. The

program then counts the layers between the layer pairs repre-

senting 1’s, with each pair of consecutive layers corresponding

to a 1. This concludes the process of bit extraction.

5.3 TEE Protected Embedding

Following the blueprint in Figure 6, SIDE involves a host-

app that runs in the normal world to serve as the frontend

interface for printer users, and its backend, which consists

of four functional modules (codec, layer-gen, toolpath-gen,

and firmware), that fully reside in the TEE. The host bridges

the normal world with the trusted world using C Foreign

Function Interface (CFFI). Upon receiving a 3D model from

the user, it first cuts it into consecutive segments in the z

direction, and passes them to SIDE backend one after the other.

The thickness of segments equals to the distance required to

represent a bit determined by the bit embedding method.

The actual slicing, as well as the bit embedding, is executed

in the backend. The codec module is designed to perform

encoding, mapping an information word w to a break-resilient

codeword c; the details of the encoding process were given in

Section 4 and implemented in Algorithm 1. Recall that every

bit c[i] instructs the slicing of the corresponding segment.

If c[i] = 1, then the segment is sliced to a layer of 3x mm

with normal embedding, or 2y mm with stealthy embedding.

Otherwise, it is sliced to two layers of x mm and 2x mm

with normal embedding, respectively, or y− ε mm and y+ ε
mm with stealthy embedding (see Section 5.3 for details).

The slicing is performed by the layer-gen module. For each

layer, it generates the cross-sectional diagram, and feed them

to toolpath-gen along with their corresponding heights, i.e.,

their distances to the printer bed. With these inputs from layer-

gen, the toolpath-gen generates nozzle toolpath (represented

by G-code) used to manufacture these layers. Both the layer-

gen module and the toolpath-gen module are developed on

top of t43 [45].

Finally, the firmware performs the parsing of G-code gener-

ated from toolpath-gen. It is a collection of core functionalities

provided by Klipper, including the computation of precise

nozzle movement and the generation of stepper events. The

stepper events are then converted to signals passed to the

printer hardware. This concludes the handling of c[i]. Upon

finishing the slicing of a segment, the host-app module is

triggered to feed in the next layer segment, and the printing

process is concluded after handling all segments. Since the

entire printing process is hidden in the trusted world and no

intermediate data (e.g., a G-code file) is exposed to the user,

the adversary is unable to strip off the embedded bits.

In prototyping our design, we employ a Creality Ender 3

3D printer, and a Raspberry Pi 3B board (with OP-TEE V3.4

support enabled in its ARMv8-A architecture, and Raspbian

Linux 4.14.98-v7 installed for the normal world) to serve as

the control board. Our development is heavily based on the

Klipper open-source project [46] and t43 [45]. The former

is a 3D printer firmware known for offering high precision

stepper movements offering support to printers with multiple

micro-controllers, and is suitable for running on low-cost

devices such as Raspberry Pi. The latter is an open-source

slicer program with basic functionalities and is purely written

in C, making it suitable for trusted environments with limited

language support.

6 Evaluation

This section presents a comprehensive evaluation of SIDE,

focusing on fingerprint recovery, its impact on the printing

process, and print quality. Specifically, we provide: (1) Exper-

iments and simulations assessing fingerprint recovery from

broken prints. (2) Analysis of the BRC code rate and the min-

imum object dimensions required for successful fingerprint-

ing. (3) Analysis the practicality of stealthy embedding. (4)

Print quality comparisons across normal embedding, stealthy

embedding, and no embedding. (5) Assessment of printer im-

perfections through analysis and experiments. (6) Evaluation

of TEE integration overhead and its effects on the printing

process and print quality.
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(a)

(b)

Figure 7: The readings of (a) an FDM fragment using the

Leica S9D microscope, in which every bright line is the center

of a layer, and (b) an SLA fragment using OCT equipment,

which shows the cross-section of fragment surface, in which

a ridge represents a layer. Both fragments are printed with the

normal embedding method.

6.1 Fingerprint Recovery

We conducted experiments and simulations to validate finger-

print recoverability. The experiments replicate the forensic

information flow, including BRC encoding, bit embedding,

fragmentation, bit extraction, and BRC decoding, demonstrat-

ing the core functionality of SIDE. In simulations, we assess

fingerprint recovery success under varying conditions, such as

model size and shape, extent of fragmentation, and fragment

loss. The results confirm the robustness and practicality of

SIDE for forensic fingerprinting applications.

Real World Scenarios: We conduct experiments to verify

the recoverability of fingerprints, providing a proof of concept

for SIDE. The experiments mimic the information flow in a

forensic scenario, involving BRC encoding, bit embedding,

fragmentation, bit extraction, and BRC decoding. Specifically,

we prepared a fingerprint of 120 bits, and encoded it into 1-, 2-,

and 3-BRC codewords of 281, 353, and 425 bits, respectively.

The experiments were carried out using both FDM and SLA

printers, employing the bit embedding method introduced in

Section 5.1. For the Creality Ender 3 FDM printer, we set x =
0.08, while for the Elegoo Mars 4 SLA resin printer, x = 0.04.

These values were selected to balance information density

(i.e., the number of bits embedded per unit length) with the

resolution capabilities of the respective printers.

For each printer, we printed a cuboid of width 6mm and

length 20mm, while the height is determined by the embed-

ding method and codeword length. The printed cuboids were

then manually broken apart to the maximum allowance of

fragmentation by the embedded BRC codeword.

The fragments from FDM printer are examined using the

methods described in Section 5.2 with the help of a Leica

S9D microscope. The fragments from SLA printer, however,

are examined with an Optical Coherence Tomography (OCT)

(a) β = 0 (b) β = 10.

(c) β = 50. (d) β = 100.

Figure 8: Results of fragmentation under different β values.

device, since their layer thickness are beyond the resolution

of optical microscopes. OCT is based on low-coherence inter-

ferometry to capture depth-resolved images with micro-level

resolution in a non-invasive manner. It provides fast 3D imag-

ing and quantitative, layer-by-layer analysis. Although widely

used in biomedical and clinical diagnostics, OCT has also

been adopted in non-biomedical fields such as industrial in-

spection [47], art conservation [48], and geology [49]. To

extract the embedding information from 3D prints, we built

our customized spectral domain OCT (SD-OCT) system us-

ing visible light with an axial resolution of 1.9 µm.

Finally, the extracted bits were fed to the BRC decoder

(Alg. 2). In all cases, we achieved a 100% success rate, i.e.,

the information word perfectly matched the output of the

decoding algorithm.

Simulation Environment: This section presents a simulation-

based study of fingerprint recovery, which extends the experi-

ments described in the previous section with three significant

enhancements. First, it removes the constraints on the num-

ber and orientation of breaks.4 Second, it introduces greater

diversity in model shape and security parameter. Finally, it

evaluates the decoding success rate under the condition of

fragment loss. These enhancements provide more realistic

simulations that closely mirror real-world forensic scenarios.

Each simulation is defined by three parameters, α, β, and ρ.

With a fingerprint information of 128 bits (the value is chosen

based on the length of serial numbers of printers used in exper-

iments), an α-BRC codeword is generated. The parameter β
determines the granularity of fragmentation. Specifically, a

3D Voronoi diagram from β randomly chosen points within

the model mesh is generated, and the model is fractured us-

ing the planes separating the Voronoi cells. This procedure

ensures at least β fragments since there are β Voronoi cells,

4In experiments, breaks are restricted to being orthogonal to the printing

direction, and their number is limited by the maximum allowable fragmenta-

tion of embedded BRC codeword.
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4-BRC, 0.342 mm/bit 8-BRC, 0.215 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75%

20 100% 99.90% 97.05% 48.36% 100% 100% 100% 95.95%

40 100% 99.98% 99.00% 57.52% 100% 100% 100% 99.80%

60 100% 99.98% 98.80% 53.00% 100% 100% 100% 99.95%

80 100% 99.98% 98.17% 46.80% 100% 100% 100% 99.98%

100 100% 99.93% 96.75% 33.59% 100% 100% 100% 100%

Table 1: A portion of simulation results on the FMDA Glock

frame using 4-BRC and 8-BRC, which demonstrates an ex-

ceptionally high probabilities of fingerprint recovery even in

the extreme cases.

each corresponds to at least one fragment (see fragmentation

results in Figure 8). Finally, the parameter ρ determines the

ratio of fragments hidden from law enforcement.

Simulations are conducted on three models: the FMDA

Glock frame (Fig. 1a), an AR-15 lower receiver, and the

benign 3DBenchy. For each β ∈ {10,20, . . . ,100}, the pre-

viously described random fragmentation process is applied

to each model, generating 128 fragmentation instances. For

each of these 128 instances, we conceal a uniformly ran-

dom ρ percent of the resulting fragments for each ρ ∈
{0%,25%,50%,75%}, and repeat over 32 simulations. The

decoder is then tested to determine whether it can recover the

fingerprint from the remaining fragments.

We record the success rate of fingerprint recovery for every

possible configuration (α,β,ρ) and every model. All simula-

tion results are provided in Appendix C, while Table 1 offers

a subset of them. With α = 8, we observe an exceptionally

high probability of fingerprint recovery even in the scenario

when the printed Glock frame is broken into 100 fragments

with 75% missing from the law enforcements.

6.2 Code Rate

The code rate r of BRC is defined as the ratio between the

codeword length n and the information length k, i.e.,

r =
k

n
=

l ·m−1

l(m+ +logm,+4)+a(4m+11)
,

and plays a critical role in forensic applications. Given an

object to print and a security parameter α, a higher code rate

allows embedding more information bits, supporting more

advanced forensic functionalities. These bits may include user

IDs, geoposition data, and even the hash of model file. For

example, embedding a unique user ID into a printed object

can help trace adversaries using Manufacturing-as-a-Service

(MaaS) to make the criminal tool. Geoposition data at the time

of printing can aid law enforcement in tracking adversaries,

while hash values act as watermarks for robust IP protection.

Conversely, given a fixed model and specific fingerprinting

information, a higher code rate permits using a larger security

parameter α, increasing resilience to breaks and fragment

losses. Alternatively, when embedding fingerprints of a spe-

cific length with a given security parameter, a higher code rate
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Figure 9: An illustration of minimum object dimension that

allows for BRC codeword embedding, in which a bit is repre-

sented by 0.12 mm in object height, with respect to informa-

tion length k and security parameter α.

(a) (b)

Figure 10: (a) From a single information word of 39 bits, we

generate 1-BRC, 2-BRC, and 3-BRC codewords with lengths

of 133, 191, and 249 bits, respectively. For each codeword,

we calculate the minimum required dimensions based on the

embedding parameters described in Section 5.1. Using these

dimensions, we print information-bearing cubes with both the

Ender 3 and Mars 4 printers. The resulting cubes have side

lengths of 15.96 mm, 31.92 mm, 22.92 mm, 45.84 mm, 29.88

mm, and 59.76 mm. (b) 3DBenchy models printed for surface

roughness evaluation.

reduces the required object dimension along the printing di-

rection, and hence broadens the applicability of SIDE. To this

end, we visualized the minimum object dimensions required

to embed BRC codewords in Figure 9, and printed 6 cubes

with BRC codeword embedded to validate the feasibility of

embedding; each is of the minimum dimension corresponding

to the information length and security parameter (Figure 10a).

In Figure 11, we demonstrate how the code rate r is affected

by the information length k = m · l−1 and the security thresh-

old t ∈ [10].5 Meanwhile, as we will introduce in Section 8.2,

the method of using cyclically permutable codes (CPC) for

the t-break-resilient property requires repeating the CPC code-

word t +1 times, and hence the code rate is at most 1/(t +1).
We also mark this value in the figure for every t in the same

color. In the majority of cases, BRC outperforms CPC-based

5Since we fix m= 12, the maximum l we can have is 2(12−2)/2−t = 32−t.

Therefore, the set of values of k is different with different t.
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Figure 11: An illustration of the code rate r verses the in-

formation length k and security parameter α. The horizontal

lines serve as upper bounds on the code rates of a traditional

CPC-based scheme (Section 8.2). The curved lines represent

the code rate of our scheme (Section 4), color coded by α.

scheme in terms of the code rate.

6.3 Stealthy Embedding

The primary goal of stealthy embedding is to minimize de-

tectability, ensuring that the fingerprint remains hidden from

adversaries while preserving its readability by forensic tools.

Hence, the feasibility of a stealthy embedding method is de-

termined by its stealthiness and readability.

To evaluate stealthiness, we conducted experiments using

both FDM and SLA printers. Specifically, we use the stealthy

embedding method introduced in Section 5.1 with param-

eter (y,ε) = (0.12,0.04) for the FDM printer and (y,ε) =
(0.6,0.02) for the SLA printer. Results indicate that the differ-

ences in layer thicknesses were invisible to naked eyes under

normal lighting conditions, unless the object is observed in

certain angles. We further measured surface roughness with

our SD-OCT system. The results, shown in Table 2, reveal a

higher RMS value in prints with no embedded bits, but lower

than prints using normal bit embedding.

Readability refers to the accuracy of bit extraction. With

the extraction method introduced in Section 5.2 and the SLA

printer with parameters (y,ε) = (0.08,0.04), we successfully

extracted embedded bits using SD-OCT system. Yet, we ob-

served a trade-off between stealthiness and readability: while

reducing ε enhances stealthiness, it increases the demand for

both high-resolution printer and extraction tools.

6.4 Impacts on Print Quality

Due to the inherently discrete, layer-by-layer nature of the ad-

ditive manufacturing process, surface roughness is a common

(a) SLA, no embedding. (b) SLA, stealthy embedding.

(c) FDM, no embedding. (d) FDM, stealthy embedding.

Figure 12: OCT scans on different materials and embeddings.

No Embedding Stealthy Normal

Ender 3 (FDM) 10.741 µm 13.267 µm 14.719 µm

Mars 4 (SLA) 7.260 µm 11.275 µm 12.918 µm

Table 2: The RMS values with different embedding methods

and materials.

characteristic of 3D-printed objects, often necessitating post-

processing techniques such as sanding or filing. Yet, SIDE’s

bit embedding requires to vary layer thickness, which can po-

tentially increase surface roughness and expose the presence

of the embedded bits to the adversary.

To quantify this impact, we printed 3DBenchy with nor-

mal embedding, stealthy embedding, and no embedding (uni-

form 0.12 and 0.06 mm layer thicknesses for FDM and SLA,

respectively) with both FDM and SLA printers. For each

printed model, we used OCT to capture surface height devi-

ations at five randomly chosen points of the flat part of its

surface. With the collected data, we computed and averaged

the root mean square (RMS) roughness value, which is a

widely recognized metric for surface roughness that quanti-

fies the root mean square of surface height deviations from

the mean surface height. The results are provided in Table 2,

which quantify the impacts on print quality.

6.5 Impact of Printer Imperfection

In this section we briefly discuss the effect that printer im-

perfections might have on the ability to embed information.

Recall that SIDE embeds bits by varying layer thickness, and

as a result, imperfections in 3D printers—particularly inaccu-

racies in the z-axis movement—can have negative effects on

the embedding process. The z-axis movements are typically

controlled by a stepper motor, which converts its rotational

motion (i.e., discrete steps) into linear motion along the print-

ing direction; the ratio between them is reflected in z-step

value (e.g., 0.04 mm/step). Calibration of a printer involves

matching this parameter in the printer firmware with the ac-

tual z-step value.

A perfectly manufactured printer would have a uniform

z-step, i.e., the nozzle displacement along the z-axis, which is
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Peak Heap Usage Print Time Firmware Execution Time

Object w/ TEE w/o TEE w/ TEE (s) w/o TEE (s) w/ TEE w/o TEE

Glock 1.475 MB 9.841 MB 53344.201 53344.103 163.85 s 163.85 s

AR-15 1.305 MB 8.438 MB 76831.497 76831.397 209.69 s 209.69 s

3DBenchy 0.965 MB 9.979 MB 11828.314 11828.241 34.90 s 34.90 s

Table 3: System Performance of SIDE.

triggered by one microstep, is uniform across the entire range.

Yet, due to manufacturing errors, individual steps may lead to

different nozzle displacements during printing, and the actual

layer thickness may not align with the desired value.

SIDE’s embedding method is designed to tolerate these

imperfections. For normal embedding, layers with designed

thicknesses of x, 2x, and 3x may be in the range of [(1−δ) ·
x,(1+ δ) · x], [(1− δ) · 2x,(1+ δ) · 2x], and [(1− δ) · 3x,(1+
δ) · 3x], where δ upper bounds the magnitude of errors in

each step. To avoid confusion in the reading of bits from

layer thickness, these ranges must not overlap, requiring δ <
0.2; this is an extremely low standards, considering that the

common stepper motors used in 3D printers (e.g., NEMA 17)

usually have δ = 0.05.

To evaluate SIDE’s robustness under these imperfections, a

cuboid was printed using an FDM printer with noise added to

the z-step value in the firmware; this simulates the behaviors

of a poorly manufactured printer. Despite these imperfections,

bits were successfully extracted, demonstrating the method’s

reliability even in the extreme real-world conditions.

6.6 Impact on Printing from TEE Protection

SIDE prevents attackers from exploiting vulnerabilities in un-

trusted software by leveraging TEE to isolate SIDE from un-

trusted components. To evaluate the impact of TEE protection

on 3D printing, we measure (1) the execution delay of SIDE’s

software components, (2) the execution delay and memory

overhead of the whole 3D printing procedures, and (3) the im-

pact on the quality of printed objects with and without SIDE

on Glock frame, AR-15 lower receiver, and 3DBenchy.

Software Components Execution and 3D Printing Delay:

To measure the execution delay of SIDE’s main components,

including the codec, G-Code generation (involving both layer

and toolpath generation), and firmware, we record timestamps

at the start and end of each component’s execution and calcu-

late the average delays over 10 printing processes. To evaluate

the overall 3D printing delay, we record timestamps marking

the start and completion of the printing application execu-

tion and calculate the difference to determine the delay. As

shown in Table 3, SIDE introduces no runtime overhead for

the execution delays of individual software components under

protection of TEE, as the printing binaries remain the same

on the same architecture regardless of the CPU security state.

However, SIDE reduces peak memory usage by employing

the progressive slicing strategy, which introduces multiple

context switches between the REE and TEE. This results in

additional execution delay for the overall printing process.

Nonetheless, when compared to the delay inherent in physical

printing, this runtime overhead is negligible.

Memory Overhead: To measure the effectiveness of SIDE

in automatically splitting 3D object models to reduce heap

consumption, we instrument dynamic memory allocation and

deallocation APIs within the 3D printing software to monitor

the size of dynamically allocated memory, both with and with-

out SIDE. As shown in Table 3, SIDE reduces the peak heap

memory usage to 14.99%, 15.47%, and 9.67% on Glock, AR-

15, and 3DBenchy respectively through progressive slicing,

effectively addressing the memory limitations of TEE.

Printed Object Quality: To measure the quality impact on

printed object from TEE implementation, we calculate the

root mean square (RMS) roughness of printed object with

observed height from optical coherence tomography with and

without TEE implementation. We observe that the difference

in the roughness of both objects is negligible.

7 Security Analysis and Discussion

This section analyzes the security of SIDE against various

potential attacks.

Excessive breaking and hiding: In order to jeopardize finger-

print extraction, the adversary may attempt to compromise the

availability of embedded information by excessively break-

ing the printed tool and hide a great amount of fragments.

However, as shown in the simulation results in Appendix C,

SIDE provide an exceptionally high success rate of finger-

printing recovery even in the extreme case that the tool is

broken into 100 pieces, with 75% of them being missing from

the decoder.

This is attributed to the break-resiliency and loss-tolerance

properties of α-BRC. First, as stated in Remark 1 and Sec-

tion 4.3, fragments can be reassembled if they retain sufficient

overlapping bits. Thus, a break is repairable in the preprocess-

ing stage unless it is perpendicular, or nearly perpendicular,

to the printing direction. Additionally, concealing fragments

does not necessarily result in the loss of information, as their

content may also exist in confiscated fragments. Finally, the

breaks and missing bits that cannot be fixed in the preprocess-

ing stage are addressed in BRC decoding (Section 4.4).

Forging Attacks: Attackers may attempt forging attacks by

embedding incorrect information into a printed object to im-

personate another printer. We propose two tiered defense

against such attacks. First, in order to impersonate another

printer, one would have to breach the TEE of one’s own

printer, contradicting our security assupmtion. Second, even

if the TEE is broken successfully, impersonation can still be

prevented via exploiting intrinsic printer properties as follows.

It was shown in the literature that much like firearms, 3D

printers carry a unique signature that is manifested in various

minor defects in the resulting prints [16], [17]. Hence, SIDE

1898    34th USENIX Security Symposium USENIX Association



can embed a hash of these imperfections inside the object.

Then, forging attacks would fail since the de-facto defects of

the object would not match the hash of the printer’s imperfec-

tion. However, manipulating the embedding mechanisms in

SIDE requires significant additional effort, such as breaching

the TEE-protected 3D printing software or employing special-

ized hardware and expertise to modify the object’s surface.

Thus, SIDE raises the bar for this attack. Furthermore, SIDE

can authenticate the print by embedding the hash of intrinsic

printer properties, such as manufacturing imperfections [16]

or thermodynamic characteristics [17], enabling detection of

mismatches between the print and its originating printer.

Hardware Attacks: Adversaries may attempt hardware at-

tacks, such as replacing the control board or injecting signals

between the control board and printers, to bypass fingerprint

embedding. While SIDE does not defend against these hard-

ware attacks, which require specialized expertise and signif-

icant cost, establishing secure communication channels and

authentication mechanisms between the control board and

printer component controllers can help mitigate such attacks,

further raising the barriers to bypassing 3D fingerprinting.

Surface Altering Attack: Attackers may attempt to alter

the surface of 3D prints to tamping with the 3D fingerprint-

ing information. SIDE is inherently immune to this type of

attack by its design. Recall that SIDE embeds information

by altering physical elements on the printing direction (e.g.,

layer thickness), which is an intrinsic property of the printed

object and cannot be altered by post processings on the sur-

face. Indeed, the reading of bits does not require the surface

of the fragment to be free of adversarial tampering, as less-

economical solutions, such as an industrial CT scanner, can

be used to infer the layer thickness via tomographic analysis.

8 Related Work

8.1 Existing 3D Fingerprinting Methods

Several methods for embedding bits in 3D-printed objects

have recently been proposed in the literature. These technolo-

gies allow the printer to vary either the orientation of the noz-

zle, the thickness of the layer, or the printing speed. Within

reasonable bounds, varying either of those has a marginal

effect on the functionality of the object. By varying layer

thickness, for example, the printer can embed a 0 by printing

a layer that is slightly thinner, and a 1 by printing a layer that

is slightly thicker, than some reference thickness. By varying

the orientation of the nozzle, bits can be embedded by the

relative orientation of adjacent layers; for example, if two ad-

jacent layers are oriented similarly, the embedded bit is 0, and

otherwise it is 1. Both methods are illustrated in Figure 13.

Similar ideas have been implemented successfully in sev-

eral recent works. Delmotte et al. vary the thickness of each

layer across several adjacent layers to create a matrix of bits

(a) (b)

Figure 13: Two possible methods for embedding bits in a

3D printed object with little to no effect on functionality: (a)

Embedding by layer thickness; thicker layers represent 1 and

thinner layers represent 0. (b) Embedding bits using the ori-

entation of adjacent layers; if two adjacent layers are oriented

similarly, it is a 0, and if oriented differently, it is a 1. Both

left and right figures contain the bits 0101.

that is visible to the naked eye on the surface of the object [8].

Parity bits were then added to resolve reliability issues in

some cases, and additional noise patterns were discussed,

such as orientation issues and sanding. In the method Lay-

erCode [50], variations in color and thickness were used to

embed a barcode on the surface of the printed object, that can

be retrieved using a smartphone camera. An orientation-based

method has been implemented in [51], where the authors print

a reference layer that is circularly grooved by a sequence with

low auto-correlation. Data is embedded in all other layers by

the respective angle of the layer to the reference layer; this

enables encoding with alphabet size larger than two.

Other creative ideas have been explored, including embed-

ding information-carrying cavities within the object [52], [53],

water-marking the 3D-mesh of the surface of the object [54],

inserting RFID tags [12], inserting a series of notches which

create an acoustic barcode when tapped [15], etc. In the data

extraction phase, most existing methods rely on an RGB cam-

era, a 3D scanner, or an ordinary scanner. Future technologies

however, such as the ones in Figure 13, might require an in-

dustrial CT scanner. However, none of these approaches is

suitable for forensic applications. First, they all implicitly

assume that a mechanism ensuring correct information em-

bedding is in place. Such a mechanism is crucial since in

most scenarios the adversary owns the printer and/or the file,

and might potentially remove the embedded bits altogether.

Second, none of the methods is provably resilient to adver-

sarial tampering; they can be easily breached by an adaptive

adversary that can scrape the object or break it apart.

PrinTracker [16] represents a different line of works, which

apply machine-learning based methods to identify the intrin-

sic fingerprint resulting from printer hardware imperfections.

Our proposed solution allows for embedding arbitrary bits,

which enables a variety of forensic applications, including but

not limited to fingerprinting. For example, certain applications

may require the embedding of timestamp or geoposition of the

printing into the printed object in order to check whether the
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printer has been misused in unauthorized time and location.

8.2 Coding Methods

Secure information extraction is essentially a problem of com-

municating in the presence of (potentially adversarial) noise.

Such problems are studied in the information-theoretic litera-

ture under the title of coding theory [18]. A typical problem

setup in coding theory includes a sender (e.g., the printer),

which would like to send a message (e.g., printer ID) to a

receiver (e.g., law-enforcement). This must be accomplished

successfully even if an adversary (e.g., a criminal) injects

adversarial noise that is limited by some security parameter.

Coding problems of information extraction from fragments

have been previously studied in the literature, motivated by

applications in distributed systems [55]–[58], and DNA stor-

age. In particular, several variations of the torn-paper chan-

nel were studied in [59]–[62], where [59]–[61] focused on

a probabilistic error model which is incompatible with our

adversarial setting, and [62] studied an adversarial model in

which fragment are restricted in length. SIDE complements

these probabilistic-based solutions by relaxing the assump-

tions. In fact, we assume an adaptive adversary who is fully

aware of the coding scheme, and is constrained only by the

parameters t and s. Consequently, previous methods fail to

ensure secure information embedding facing such an adver-

sary, as they can be exploited by strategically selecting break

locations and concealing specific fragments.

Similarly to our scenario, a video watermarking solution

for IP protection [63] employs cyclically permutable codes

(CPC). As the name suggests, CPC codewords are cyclically

distinct, i.e., one cannot obtain a codeword by cyclically shift-

ing another codeword. In CPC-based solutions, the watermark

is encoded to a CPC codeword, and then iteratively spread

over consecutive video frames. Due to its cyclically distinct

feature, the embedded CPC codeword can be obtained from

every video clip that has more frames than the codeword

length. Although this method may serve as a simple solution

to the 3D fingerprinting problem, it requires to repeat the CPC

codeword at least t + 1 times to guarantee the existence of

such a video clip in every possible way to cut the video t times.

Hence, it leads to a code rate of at most 1/(t+1), i.e., k(t+1)
bits needs to be actually embedded in the video to represent k

bits of information, which hinders its applicability in real-

world scenario; see Figure 11 for rate comparison.

Most closely related, [64] studied t-break codes, which

concerns the recovery of information from arbitrarily broken

codewords, which is fundamentally different from probabilis-

tic error models mentioned earlier. They provided a theoretical

analysis of the fundamental limits, and an (almost) matching

code construction. However, the scheme described in [64]

involves random encoding, is only effective for a very large

number of embedded bits, and only tolerates a small amount

of lost bits. SIDE complements these works by offering a

Coding Method Model Minimum Length of Fragments Loss Tolerance

Shomorony et al. [59], [60] probability Not Assumed No

Ravi et al. [61] probability Not Assumed Yes

Bar-Lev et al. [62] adversarial Assumed No

Kuribayashi et al. [63] adversarial Not Assumed Yes

Wang et al. [64] adversarial Not Assumed No

α-BRC adversarial Not Assumed Yes

Table 4: Coding Method Comparison

coding scheme with tolerance to fragment loss, explicit and

efficient encoding function, and high code rate.

9 Conclusion

This paper introduces SIDE, a forensic fingerprinting mecha-

nism for 3D prints that ensures secure information embedding

and extraction against adversarial threats. To enable finger-

print recovery despite malicious breaks and fragment hiding,

SIDE employs break-resilient, loss-tolerant embedding tech-

niques. It safeguards the embedding process using a TEE and

a progressive slicing mechanism. SIDE’s efficiency and effec-

tiveness are validated through simulations and a prototype on

a Creality Ender 3 printer with a Raspberry Pi 3B.

Acknowledgments

This research was supported by the National Science Founda-

tion (Grants CNS-2223032, CNS-2038995, and CNS-223863)

and the Army Research Office (Grant W911NF-24-1-0155).

Ethics Considerations

This work focuses on advancing 3D printing forensics by

proposing a novel fingerprinting solution leveraging Trusted

Execution Environments (TEEs) and coding techniques. The

proposed method allows reconstructing fingerprints even if

the print is fragmented and with some parts missing.

This work does not reveal new vulnerabilities or introduce

new attack vectors. Additionally, we do not anticipate that this

solution could be misused to facilitate new types of attacks.

The experiments conducted in this work do not involve live

systems, and do not affect the well-being of team members.

Open Science

The research artifacts generated during this research include:

• Source code for BRC: This includes the implementation

of our break-resilient coding (BRC) scheme, including

the encoding and decoding algorithms.
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specifically designed to ensure compatibility with TEE.
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• Scripts for simulation: The script that performs random

fragmentation of a 3D mesh, and the script that parses

the simulation results.

• Microscope images: For each sample in the experiments,

we provide a collection of images collected using Leica

S9D microscope and the SD-OCT device.

• Script for bit extraction: The script extracts bits from the

the aforementioned microscope images, and bit extrac-

tion results.

All artifacts are made publicly available at [65].
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A Distinct Strings

A.1 Encoding

Alg. 3 offers a procedure that maps an input word w ∈
{0,1}l·m−1

to dStrings, which is an array of l pairwise dis-

tinct binary strings of length m. Besides, the inverse operation,

as given in Alg. 4, outputs w given the array dStrings.

The encoding algorithm first appends a 1 to w (line 1), and

as a result, |w|= l ·m. The word w is segmented to l intervals

of length m and placed in a tentative array dStrings (line 1).

The segments are not necessarily pairwise distinct at this

point, and they are referred as the original.

The encoding algorithm continues to look for identical

original segments, deletes one of them, and appended a new

binary string to dStrings; this new string contains the in-

dexing information of the two identical binary strings which

allows for decoding at a later point in time. Moreover, we end

every new string with a 0 to distinguish it from the rightmost

original segment which ends with a 1.

With indices i and iend initially set to 0 and l− 1, the en-

coder enumerates every index j ∈ [i+ 1, iend] for a match,

i.e., dStrings[i] is identical to dStrings[ j] (line 4). Once a

match is found, the latter is deleted from dStrings (line 6)

and the indices i, j are recorded in a binary string to be placed

at the end of dStrings, which will be used for recovering the

deleted entry during decoding.

Note that, naïvely defining the new strings as the concate-

nation of binary representations of i and j may introduce

more repeated strings; it may coincide with existing elements

in dStrings. To this end, the algorithm looks for an alterna-

tive binary representation of j which is not identical to the

first +log l,+1 bits of every existing element in dStrings.

Starting from j′ = 0, the following procedure is repeated j

times. In each time, j′ is increased by 1 (line 10). Then, it

continues to increase until its binary representation in +log l,+
1 bits does not coincide with the first +log l,+1 bits of every

existing element in dStrings (line 11). One may imagine this

process as looking for the j-th available parking slot in a row,

in which some have been occupied (unavailable). A slot is

unavailable if the binary representation of its index coincides

with the first +log l,+ 1 bits of any element in dStrings.

Otherwise, it is available. Starting for index 0, j′ is indeed the

index of the j-th available slot.

Note that when the repetition stops, j′ equals to the sum

of j and the number of times the condition in line 11 was

true. Recall that 1 f j f l− 1, and the latter equals to the

number of unavailable slots that may be encountered during

the increment of j′, which is at most l− 1 since there are

only l−1 elements in dStrings. Therefore, j′ f 2l−2 and

can be represented by +log l,+1 bits.

Therefore, we use the binary representation of j′ in +log l,+
1 to serve as the alternative representation of j. It is con-

catenated with the binary representation of i (in +log l, bits

since i < l) and sufficiently many 0’s to make a new string

(line 12). The new string is appended to dStrings, and is

different from every other element in the first +log l,+1 bits;

this fact gives the following lemma.

Lemma 1. The new binary string being appended in line 12

is different from every existing elements in dStrings.

Lemma 1 allows us to decrease iend by one (line 13) since

there is no need to compare dStrings[ j] with element whose

index is greater than iend−1. The algorithm terminates when
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Algorithm 3 D-ENCODE (distinct strings encoding)

Input: A binary string w ∈ {0,1}l·m−1
, where l,m are positive integers such that mg +2log l,+2.

Output: Array dStrings of l length-m pairwise distinct binary strings.

1: Let w← w◦1, i← 0, iend← l−1, and dStrings[a]← w[a ·m : (a+1) ·m) for a ∈ [0, l−1].
2: while i < iend do

3: j← i+1

4: while j f iend do

5: if dStrings[i] = dStrings[ j] then

6: dStrings← (dStrings[0 : j−1],dStrings[ j+1 : l−1])
7: j′← 0

8: repeat j times:

9: do

10: j′← j′+1

11: while ∃r ∈ [l−2] s.t. dStrings[r−1][0 : +log l,] = BINARY( j′,+log l,+1)

12: dStrings.APPEND(BINARY( j′,+log l,+1)◦ BINARY(i,+log l,)◦0m−2+log l,−1)
13: iend← iend−1

14: else

15: j← j+1

16: i← i+1

17: return dStrings

Algorithm 4 D-DECODE (distinct strings decoding)

Input: Array dStrings of l length-m pairwise distinct binary strings.

Output: The information word w ∈ {0,1}k
used to generate dStrings.

1: while dStrings[−1][−1] = 0 do

2: i← INTEGER(dStrings[l][+log l,+2 : 2+log l,+1])
3: j, j′← INTEGER(dStrings[l−1][1 : +log l,+1])
4: for all r ∈ [0, l−2] and s ∈ [ j′−1] do

5: if dStrings[r][1 : +log l,+1] = BINARY(s,+log l,+1) then j← j−1

6: dStrings← (dStrings[0 : j−1],dStrings[i],dStrings[ j : l−2])

7: w← dStrings[0]◦ . . .◦dStrings[l−1]
8: return w[:−1]

there are no elements of dStrings remains to be compared

(line 2), and its output satisfies the following.

Theorem 2. Algorithm 3 outputs an array dStrings of l

pairwise distinct binary strings of length m.

Proof. Assume, for sake of contradiction, that there ex-

ist a,b ∈ [0, l − 1] and a < b such that dStrings[a] =
dStrings[b]. There are two possible cases for dStrings[b].

If dStrings[b] is a new string constructed in line 12,

then it is distinct from every other elements on its left by

Lemma 1, a contradiction. If dStrings[b] is not a new

string, then the dStrings[a] on its left is not as well. As

such, dStrings[b] would have been deleted in line 6 when i=
a and j = b, a contradiction.

A.2 Decoding

We proceed to introduce the decoding procedure in Algo-

rithm 4, which is essentially the inverse operation of the

encoding process. Given the array dStrings, the decoding

algorithm reads i, j′ from the rightmost element if it is a con-

structed new string, i.e., if last bit of which is 0 (line 1). Recall

that a new string is created when two identical strings is found,

with i being the index of the first one (the reference) and j′

being the alternative index of the second (the referent).

Line 2 reads the value of i, and line 3 reads the value of j′.

Recall that j′ is the index of the j-th available slots in a

row. Hence, the variable j is initially set to j′, and then sub-

tracted by the number of unavailable slots with indices less

than j′ to reaches the actual index of the referent (line 4–5).

Together, i, j enable the recovery of the referent, and the right-

most element is deleted (line 6). Once all new strings have

been consumed in the aforementioned process, the decoding
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is concluded and w is returned (line 8).

B Proof of Theorem 1

The crux of proving Theorem 1 is showing that the decoder

is able to obtain the key-value store next from unordered

and partially missing fragments which result from breaking a

codeword c at t arbitrary places and hiding fragments whose

total length is at most s bits. That is, the Reed-Solomon decod-

ing in line 9 of Algorithm 2 concludes successfully—it is well

known that this requires the number of erasures plus twice

the number of errors to be at most 4α in the RS codeword

(approxNext,r1, . . . ,r4α). (6)

Recall that every α-BRC codeword c is a concatenation

of CMU codewords, which start with +logm,+1 consecutive

zeros (see Section 4.1), and redundancy packets, which are

free of zero runs of length +logm,+ 1 or more thanks to

the RLL encoding. Hence, every discernible CMU codeword

in c does not overlap with redundancy packets, and the de-

coder does not confuse the two.

The following lemma counts the number of erasures in (6),

which equals to the number of redundancy strings that the

decoder fails to obtain from the fragments.

Lemma 2. Let t2 be the number of breaks that fall in the

redundancy region, or separate the redundancy regions from

the information region, and let s2 be the number of missing

bits that originally reside in the redundancy region. Then, the

number of redundancy strings that the decoder fails to obtain

is at most 4[t2 + s2/(5m+ +logm,+15)].

Proof. The decoding algorithm may fail to obtain a redun-

dancy packet due to exactly one of the following reasons.

1. There exists a break either in the packet itself, or in its

preceding marker.

2. The packet, as well as its preceding marker, wholly re-

sides in a missing fragment.

Since t2 breaks occur in the redundancy region, there are at

most t2 missing redundant packets due to the first reason.
Recall that a redundancy packet and a marker add up

to 5m+ +logm,+ 15 bits. Then, for a missing fragment f
that resides in the redundancy region (if f cross both regions,
we only consider the part in the redundancy region), at most

| f |/(5m+ +logm,+15)

packets, together with their preceding markers, are lost due to
the second reason. Together, the number of missing redundant
packets is no more than

t2 + ∑
f in redundancy region

| f |

5m+ +logm,+15

f t2 + s2/(5m+ +logm,+15).

Finally, since one redundancy packet contains four redun-

dancy strings, it follows that the decoder fails to obtain at

most 4(t2+s2/(5m+ +logm,+15)) redundancy strings.

We continue to count the number of errors in (6), i.e., the

number of entries in which approxNext and next differ.

Lemma 3. Let t1 be the number of breaks that occur in the

information region, and s1 be the number of missing bits that

originally reside in the information region. Then, the number

of entries in which approxNext and next differ is at most

2 · t1 + s1/(m+ +logm,+4). (7)

Proof. Observe that the decoding algorithm may fail to find

a non-marker (i.e., ui for ig t) in the information region due

to exactly one of the following reasons.

1. There exists a break in it.

2. It wholly resides in a missing fragment.

Notice that, failing to capture a non-marker uu affects

at most two key-value pairs of next, i.e., next[uu−1]
and next[uu+1], and hence next and approxNext differ in at

most 2t1 positions due to the first reason.
Recall that the code length of CMU is m + +logm,+ 4.

Hence, for a missing fragment f that resides in the information
region (if f cross both regions, we only consider the part in
the information region), there are at most

| f |/(m+ +logm,+4)

consecutive non-markers being lost due to the second reason.
This leads to at most

| f |/(m+ +logm,+4)−1

different entries in approxNext in addition to the ones caused
by breaks. Together, the number of entries that approxNext
and next differ is at most

2t1 + ∑
f in information region

| f |

m+ +logm,+4
−1

f2t1 + s1/(m+ +logm,+4).

Now, by Lemma 2 and Lemma 3, the sum of the number of
errors and twice the number of erasures in (6) is no more than

4(t1 + t2)+4s2/(5m+ +logm,+15)+2s1/(m+ +logm,+4)

f 4t +2s2(m+ +logm,+4)+2s1/(m+ +logm,+4)

f 4t +2s/(m+ +logm,+4)f 4α,

where the last inequality follows from (3). The proof is con-

cluded since line 9 outputs the correct key-value store next,

given that a (2m+4α,2m) Reed-Solomon code can simultane-

ously correct x errors and y erasures provided that 2x+yf 4α.

C Simulation Results

This section presents simulation results on the success rate of

fingerprint recovery using α-BRC across three models.
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1-BRC, 0.613 mm/bit 2-BRC, 0.485 mm/bit 3-BRC, 0.401 mm/bit 4-BRC, 0.342 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 81.25% 45.41% 13.87% 0.78% 100.00% 83.15% 43.24% 6.67% 100.00% 97.27% 76.71% 21.07% 100.00% 99.54% 89.67% 37.26%

20 60.16% 25.98% 5.10% 0.17% 99.22% 85.82% 46.24% 4.08% 100.00% 99.71% 89.36% 24.80% 100.00% 99.90% 97.05% 48.36%

30 32.03% 11.06% 1.27% 0.00% 100.00% 85.35% 40.38% 2.66% 100.00% 99.68% 90.11% 24.41% 100.00% 100.00% 98.56% 55.25%

40 10.94% 3.34% 0.56% 0.00% 96.09% 75.46% 32.71% 1.64% 100.00% 99.49% 88.13% 23.97% 100.00% 99.98% 99.00% 57.52%

50 5.47% 1.17% 0.07% 0.00% 86.72% 61.62% 20.43% 0.32% 100.00% 99.58% 88.11% 18.99% 100.00% 100.00% 99.29% 58.30%

60 0.00% 0.00% 0.00% 0.00% 78.91% 43.09% 10.52% 0.27% 100.00% 99.44% 83.54% 14.77% 100.00% 99.98% 98.80% 53.00%

70 0.00% 0.00% 0.00% 0.00% 54.69% 26.05% 4.83% 0.20% 100.00% 98.90% 79.42% 12.13% 100.00% 100.00% 99.02% 50.34%

80 0.00% 0.00% 0.00% 0.00% 50.78% 20.95% 3.56% 0.05% 100.00% 97.68% 71.78% 8.11% 100.00% 99.98% 98.17% 46.80%

90 0.00% 0.00% 0.00% 0.00% 37.50% 13.04% 2.17% 0.02% 100.00% 95.97% 64.60% 5.27% 100.00% 99.98% 98.24% 43.12%

100 0.00% 0.00% 0.00% 0.00% 14.06% 4.25% 0.29% 0.00% 100.00% 90.70% 53.10% 3.64% 100.00% 99.93% 96.75% 33.59%

5-BRC, 0.298 mm/bit 6-BRC, 0.264 mm/bit 7-BRC, 0.237 mm/bit 8-BRC, 0.215 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 100.00% 99.80% 96.00% 56.30% 100.00% 100.00% 97.63% 66.60% 100.00% 99.95% 99.05% 74.51% 100.00% 100.00% 99.61% 81.74%

20 100.00% 100.00% 99.51% 74.41% 100.00% 100.00% 99.73% 84.30% 100.00% 100.00% 99.95% 92.19% 100.00% 100.00% 100.00% 95.95%

30 100.00% 100.00% 99.93% 82.54% 100.00% 100.00% 99.98% 93.16% 100.00% 100.00% 100.00% 97.53% 100.00% 100.00% 100.00% 99.17%

40 100.00% 100.00% 99.98% 87.52% 100.00% 100.00% 100.00% 96.29% 100.00% 100.00% 100.00% 98.58% 100.00% 100.00% 100.00% 99.80%

50 100.00% 100.00% 99.93% 88.94% 100.00% 100.00% 100.00% 97.53% 100.00% 100.00% 100.00% 99.49% 100.00% 100.00% 100.00% 99.95%

60 100.00% 100.00% 99.98% 87.99% 100.00% 100.00% 100.00% 98.24% 100.00% 100.00% 100.00% 99.71% 100.00% 100.00% 100.00% 99.95%

70 100.00% 100.00% 100.00% 90.04% 100.00% 100.00% 100.00% 98.95% 100.00% 100.00% 100.00% 99.95% 100.00% 100.00% 100.00% 100.00%

80 100.00% 100.00% 100.00% 89.70% 100.00% 100.00% 100.00% 99.19% 100.00% 100.00% 100.00% 99.95% 100.00% 100.00% 100.00% 99.98%

90 100.00% 100.00% 99.98% 87.94% 100.00% 100.00% 100.00% 98.80% 100.00% 100.00% 100.00% 99.88% 100.00% 100.00% 100.00% 100.00%

100 100.00% 100.00% 99.93% 85.28% 100.00% 100.00% 100.00% 99.07% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table 5: Simulation results of the FMDA Glock Frame.

1-BRC, 0.653 mm/bit 2-BRC, 0.5168 mm/bit 3-BRC, 0.427 mm/bit 4-BRC, 0.364 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 80.47% 42.77% 10.55% 0.44% 100.00% 89.14% 53.91% 8.94% 100.00% 97.19% 78.37% 23.56% 100.00% 99.10% 88.96% 41.82%

20 67.97% 31.69% 6.71% 0.20% 100.00% 95.39% 63.92% 8.52% 100.00% 99.73% 92.99% 36.82% 100.00% 99.98% 98.29% 60.50%

30 44.53% 16.70% 2.10% 0.02% 100.00% 93.92% 59.42% 5.30% 100.00% 99.95% 95.92% 36.35% 100.00% 100.00% 99.44% 68.36%

40 30.47% 10.55% 1.20% 0.00% 99.22% 91.26% 50.76% 3.71% 100.00% 100.00% 96.95% 36.38% 100.00% 100.00% 99.85% 75.17%

50 15.62% 4.88% 0.44% 0.02% 98.44% 85.33% 40.62% 1.93% 100.00% 99.95% 95.53% 31.62% 100.00% 100.00% 99.95% 73.32%

60 7.81% 1.49% 0.10% 0.00% 96.09% 78.15% 30.62% 1.15% 100.00% 99.95% 96.39% 31.05% 100.00% 100.00% 99.78% 72.36%

70 2.34% 0.51% 0.00% 0.00% 95.31% 69.09% 21.56% 0.29% 100.00% 100.00% 94.78% 26.10% 100.00% 100.00% 99.83% 70.70%

80 0.00% 0.00% 0.00% 0.00% 88.28% 55.64% 13.94% 0.27% 100.00% 99.98% 91.85% 20.14% 100.00% 100.00% 99.93% 67.07%

90 0.00% 0.00% 0.00% 0.00% 75.78% 42.65% 7.89% 0.00% 100.00% 99.63% 88.13% 15.84% 100.00% 100.00% 99.68% 63.35%

100 0.00% 0.00% 0.00% 0.00% 67.97% 31.10% 4.54% 0.02% 100.00% 99.63% 84.64% 11.47% 100.00% 100.00% 99.78% 61.60%

5-BRC, 0.318 mm/bit 6-BRC, 0.281 mm/bit 7-BRC, 0.253 mm/bit 8-BRC, 0.229 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 100.00% 99.39% 93.92% 53.44% 100.00% 99.66% 96.75% 62.30% 100.00% 99.85% 97.63% 70.87% 100.00% 99.61% 98.34% 76.86%

20 100.00% 99.98% 99.68% 78.27% 100.00% 100.00% 99.98% 87.48% 100.00% 100.00% 99.98% 92.41% 100.00% 100.00% 100.00% 95.48%

30 100.00% 100.00% 99.95% 86.04% 100.00% 100.00% 99.98% 94.41% 100.00% 100.00% 100.00% 97.49% 100.00% 100.00% 100.00% 98.75%

40 100.00% 100.00% 100.00% 90.58% 100.00% 100.00% 100.00% 97.53% 100.00% 100.00% 100.00% 99.54% 100.00% 100.00% 100.00% 99.83%

50 100.00% 100.00% 100.00% 91.80% 100.00% 100.00% 100.00% 98.12% 100.00% 100.00% 100.00% 99.66% 100.00% 100.00% 100.00% 99.88%

60 100.00% 100.00% 100.00% 93.77% 100.00% 100.00% 100.00% 98.54% 100.00% 100.00% 100.00% 99.90% 100.00% 100.00% 100.00% 99.98%

70 100.00% 100.00% 100.00% 92.77% 100.00% 100.00% 100.00% 98.97% 100.00% 100.00% 100.00% 99.80% 100.00% 100.00% 100.00% 99.98%

80 100.00% 100.00% 100.00% 93.48% 100.00% 100.00% 100.00% 99.10% 100.00% 100.00% 100.00% 99.88% 100.00% 100.00% 100.00% 100.00%

90 100.00% 100.00% 100.00% 93.31% 100.00% 100.00% 100.00% 99.44% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

100 100.00% 100.00% 100.00% 93.09% 100.00% 100.00% 100.00% 99.24% 100.00% 100.00% 100.00% 99.98% 100.00% 100.00% 100.00% 100.00%

Table 6: Simulation results of AR-15 lower receiver.

1-BRC, 0.161 mm/bit 2-BRC, 0.127 mm/bit 3-BRC, 0.105 mm/bit 4-BRC, 0.090 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 100.00% 78.34% 53.69% 20.41% 100.00% 92.63% 74.68% 39.60% 100.00% 94.19% 77.69% 44.75% 100.00% 95.65% 81.69% 49.51%

20 100.00% 79.91% 56.13% 19.97% 100.00% 96.78% 81.64% 43.51% 100.00% 97.80% 88.70% 57.37% 100.00% 98.27% 90.84% 62.26%

30 100.00% 83.23% 57.28% 18.53% 100.00% 98.85% 89.18% 48.44% 100.00% 99.29% 93.87% 66.09% 100.00% 99.76% 95.70% 73.36%

40 100.00% 84.23% 57.32% 19.60% 100.00% 99.41% 91.43% 49.66% 100.00% 99.83% 95.95% 70.80% 100.00% 99.93% 97.53% 79.71%

50 99.22% 84.03% 56.35% 16.21% 100.00% 99.80% 92.75% 50.88% 100.00% 99.98% 97.78% 74.83% 100.00% 99.93% 98.68% 83.67%

60 98.44% 83.98% 53.76% 14.60% 100.00% 99.76% 93.02% 51.44% 100.00% 99.93% 98.41% 77.10% 100.00% 99.98% 99.19% 86.33%

70 96.09% 79.42% 48.00% 11.52% 100.00% 99.83% 93.41% 49.95% 100.00% 99.98% 98.90% 79.66% 100.00% 100.00% 99.61% 88.92%

80 96.09% 78.74% 50.46% 10.57% 100.00% 99.63% 92.85% 47.73% 100.00% 100.00% 98.97% 79.17% 100.00% 100.00% 99.83% 91.33%

90 92.97% 76.07% 43.09% 8.79% 100.00% 99.58% 92.53% 46.17% 100.00% 100.00% 99.39% 81.54% 100.00% 100.00% 99.90% 92.72%

100 91.41% 70.19% 37.35% 6.54% 100.00% 99.41% 91.14% 43.51% 100.00% 100.00% 99.32% 80.52% 100.00% 100.00% 99.95% 92.65%

5-BRC, 0.078 mm/bit 6-BRC, 0.062 mm/bit 7-BRC, 0.062 mm/bit 8-BRC, 0.056 mm/bit

β ρ 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75% 0% 25% 50% 75%

10 100.00% 97.31% 87.40% 58.37% 100.00% 99.73% 95.51% 71.73% 100.00% 99.98% 98.22% 82.42% 100.00% 99.98% 99.46% 89.50%

20 100.00% 99.49% 95.39% 72.34% 100.00% 100.00% 99.15% 86.82% 100.00% 100.00% 99.90% 93.21% 100.00% 100.00% 99.98% 96.36%

30 100.00% 99.80% 97.88% 81.01% 100.00% 99.98% 99.61% 90.84% 100.00% 100.00% 100.00% 97.05% 100.00% 100.00% 100.00% 98.44%

40 100.00% 99.95% 98.97% 86.82% 100.00% 100.00% 99.80% 94.87% 100.00% 100.00% 99.98% 98.56% 100.00% 100.00% 100.00% 99.46%

50 100.00% 100.00% 99.37% 90.80% 100.00% 100.00% 99.88% 96.02% 100.00% 100.00% 99.98% 99.10% 100.00% 100.00% 100.00% 99.78%

60 100.00% 100.00% 99.73% 93.92% 100.00% 100.00% 99.95% 97.73% 100.00% 100.00% 100.00% 99.41% 100.00% 100.00% 100.00% 99.90%

70 100.00% 100.00% 99.83% 95.61% 100.00% 100.00% 99.98% 98.39% 100.00% 100.00% 100.00% 99.46% 100.00% 100.00% 100.00% 99.98%

80 100.00% 100.00% 99.95% 95.95% 100.00% 100.00% 100.00% 98.97% 100.00% 100.00% 100.00% 99.78% 100.00% 100.00% 100.00% 99.93%

90 100.00% 100.00% 100.00% 97.41% 100.00% 100.00% 100.00% 99.19% 100.00% 100.00% 100.00% 99.88% 100.00% 100.00% 100.00% 100.00%

100 100.00% 100.00% 99.95% 97.63% 100.00% 100.00% 100.00% 99.44% 100.00% 100.00% 100.00% 99.90% 100.00% 100.00% 100.00% 100.00%

Table 7: Simulation results of 3DBenchy.
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