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Abstract
This paper formalizes an emerging learning
paradigm that uses a trained model as a refer-
ence to guide and enhance the training of a target
model through strategic data selection or weight-
ing, named model steering. While ad-hoc meth-
ods have been used in various contexts, including
the training of large foundation models, its under-
lying principles remain insufficiently understood,
leading to sub-optimal performance. In this work,
we propose a theory-driven framework for model
steering called DRRho risk minimization, which
is rooted in Distributionally Robust Optimization
(DRO). Through a generalization analysis, we pro-
vide theoretical insights into why this approach
improves generalization and data efficiency com-
pared to training without a reference model. To
the best of our knowledge, this is the first time
such theoretical insights are provided for the new
learning paradigm, which significantly enhance
our understanding and practice of model steering.
Building on these insights and the connection be-
tween contrastive learning and DRO, we intro-
duce a novel method for Contrastive Language-
Image Pretraining (CLIP) with a reference model,
termed DRRho-CLIP. Extensive experiments val-
idate the theoretical insights, reveal a superior
scaling law compared to CLIP without a refer-
ence model, and demonstrate its strength over
existing heuristic approaches. Code is released at
github.com/Optimization-AI/DRRho-CLIP

1. Introduction
With the success of large foundation models, numerous com-
panies and research groups have entered the race to develop
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Figure 1: Comparison between a target model (ViT-B/16)
trained by the proposed DRRho-CLIP and the reference
model it leverages. OpenAI CLIP (ViT-B/32) was trained
on a private 400M dataset with 12.8B samples seen and
32768 batch size. DRRho-CLIP model was trained on DFN-
192M with 1.28B samples seen and 5120 batch size, and
using OpenAI CLIP as a reference model 1.

state-of-the-art models. While the data and code are often
proprietary, the resulting models are sometimes released
publicly, such as the CLIP models from OpenAI (Radford
et al., 2021) and the Llama models from Meta (Dubey et al.,
2024). This raises an intriguing question:

“How can we leverage public models to improve training of
a target model on custom datasets?”

To study this question, we explore an emerging learning
paradigm that leverages a trained model as a reference to
guide and enhance the training through strategic data se-
lection or weighting. We refer to this paradigm as model
steering. Unlike the widely adopted knowledge distillation
framework, model steering does not assume that the ref-
erence model is a stronger teacher; in fact, it can lead to
the training of a model that ultimately surpasses the refer-
ence model in performance, i.e., enabling weak to strong
generalization (cf. Figure 1).

A few works have studied learning with a reference model
(LEAR) in different contexts and demonstrated its effective-

1Our training took 376 GPU hours on 8 H100 (2 days), OpenAI
CLIP (ViT-L/14) model was trained on 256 V100 with 12 days,
which gives an estimate of 256*12*24/11.6=6356 GPU hours for
training ViT-B/32 as its FLOPs is 11.6 smaller.
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ness in accelerating the training of various models, including
classification models (Mindermann et al., 2022; Evans et al.,
2025), large language models (Lin et al., 2024; Xie et al.,
2023), CLIP models (Evans et al., 2024a;b). An interest-
ing idea emerging from these studies is to perform online
data selection, sampling, or data weighting using the ref-
erence model through a shifted loss called the RHO loss
ℓ(θ, z)− ℓ(θref, z), where θ denotes the target model to be
learned, and θref denotes the reference model, z denotes
a data sample, and ℓ(·, ·) denotes a loss of interest. This
approach is intuitive in the sense that a data z with a high
loss of the current model ℓ(θt, z) and a low loss of the ref-
erence model ℓ(θref, z) means that it has high learnability
and should be used for training (Mindermann et al., 2022).

However, the theory behind this approach is quite limited,
especially on improving generalization, which hinders our
understanding of its effectiveness and derivation of best
practice for model steering. Mindermann et al. (2022) tried
to motivate this approach through maximizing the likelihood
of true labels of classification for a hold-out dataset based
on the selection of informative data in the current mini-
batch. Through Bayes’ theorem and the approximation of
negative log-likelihoods by losses, their analysis yields a
data selection strategy by selecting data in the mini-batch
that have the top values of ℓ(θt, z) − ℓ(θref, z), which is
termed RHO loss selection. While their analysis offers some
intuition into why the RHO loss is a reasonable choice for
data selection, it falls short of providing guarantees on how
and why this approach improves generalization with reduced
training data. Moreover, there is no theoretical framework to
guide the optimal selection or weighting of data to accelerate
training effectively. The heuristic approach that selects data
with top RHO losses in the mini-batch is not necessarily the
best.

To address this gap, this paper introduces a novel learning
framework for enhancing the understanding and practice of
model steering based on the RHO loss ℓ(θ, z)− ℓ(θref, z).
Here, we use the term RHO loss in a broader sense, which is
not necessarily restricted to classification as derived in Min-
dermann et al. (2022). Our framework builds on Distri-
butionally Robust Optimization (DRO). Traditional DRO
seeks to minimize the worst-case risk over perturbed data
distributions within an uncertainty set derived from the em-
pirical distribution. We extend this idea by applying DRO
to the RHO loss ℓ(θ, z)− ℓ(θref, z) across the training data,
yielding a risk function for model steering, which we term
DRRho risk. Leveraging the generalization theory of DRO,
we derive theoretical generalization bounds of DRRho risk
minimization, offering insights into how it enhances general-
ization. To the best of our knowledge, this work presents the
first generalization theory for model steering, significantly
advancing our understanding of its effectiveness.
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Figure 2: Scaling performance of OpenCLIP (Cherti et al.,
2023) and the proposed DRRho-CLIP, which uses the Ope-
nAI CLIP model (Radford et al., 2021) as the reference
model. We conduct experiments of the two methods under
different settings to fit scaling laws, as shown in the bottom
left corner (c.f. Section 6 for more detail).

Our framework not only provides a theoretical foundation
for existing heuristic approaches to data selection, sam-
pling, or weighting but also offers improved practices for
model steering. To illustrate its practical utility, we focus
on contrastive language-image pretraining (CLIP) with a
reference model. By leveraging the connection between
contrastive loss and DRO (Qiu et al., 2023), we introduce
a novel method for CLIP with a reference model, termed
DRRho-CLIP, which utilizes the DRRho risk for each an-
chor data point.

Our experiments demonstrate the effectiveness of DRRho-
CLIP. For example, when using OpenAI’s CLIP (ViT-
B/32) model as a reference, DRRho-CLIP with ViT-B/16
as the backbone trained from scratch on the DFN-192M
dataset (Fang et al., 2024) achieves 68.84% zero-shot clas-
sification accuracy on ImageNet-1K data. It outperforms
OpenAI’s CLIP performance of 63.32% trained on a differ-
ent 400M dataset, and OpenCLIP’s performance of 67.8%
trained on the same data (cf. Figure 1). In addition, our
extensive experiments using various reference models and
large-scale datasets reveal the following: (1) DRRho-CLIP
achieves comparable performance to the standard CLIP
training method (without a reference model) while using
significantly less training data (e.g., a 50% reduction). This
offers great potential in reducing the burden on collecting
high-quality data. (2) DRRho-CLIP outperforms existing
heuristic data sampling or selection methods applied to the
standard CLIP training framework. (3) When paired with a
strong reference model, DRRho-CLIP integrates seamlessly
with knowledge distillation, surpassing existing knowledge
distillation methods for CLIP training (Vasu et al., 2024).
(4) In terms of scaling performance, DRRho-CLIP has a
better scaling law than OpenCLIP (Cherti et al., 2023) (cf.
Figure 2).

Our contributions are summarized as follows:
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• We propose a novel framework for model steering
based on DRO and th RHO loss. Theoretical gen-
eralization bounds are derived and analyzed, which
provide insights into why it improves generalization.

• We introduce DRRho-CLIP, a method for training
CLIP models with a reference model. Extensive exper-
iments on large-scale datasets and various reference
models demonstrate the effectiveness of DRRho-CLIP,
including better scaling laws.

2. Related Work
Using a pretrained model to improve the training of a target
model is not a new idea, which has been long studied in deep
learning. A typical approach is transfer learning (Donahue
et al., 2013), which uses a pretrained encoder as initializa-
tion for finetuning a target model on a different supervised
dataset. However, transfer learning restricts the target model
to have the same structure (at least in the encoder part) as
the pretrained model. There have been some studies trying
to expand the architecture of the pretrained model to that
of the target model so that the target model can inherit the
knowledge of the pretrained model (Chen et al., 2016; Wang
et al., 2023; Du et al., 2024). Another category of related
works is knowledge distillation, which distills knowledge
from a stronger, usually larger, teacher model to a smaller
student model (Hinton, 2015). Knowledge distillation has
been extensively studied for learning various models (Hin-
ton, 2015; Vasu et al., 2024; Qin et al., 2022). However,
these approaches do not consider using the pretrained model
for data selection or weighting to facilitate the training of a
target model. Hence, the studied technique in this paper is
complementary to knowledge distillation.

Leveraging a pretrained model for offline data selection
or pruning has been studied. For example, Schuhmann
et al. (2021; 2022); Gadre et al. (2023); Fang et al. (2024)
leveraged a pretrained model to curate a training dataset to
accelerate the training of CLIP models. For each image-
text pair in the original dataset, they use the pretrained
model (e.g., OpenAI’s CLIP model) to compute a score (e.g.,
similarity score between the image and text) for evaluating
its quality. A new subset is then constructed by selecting
samples whose score exceeds a certain threshold. Ankner
et al. (2024); Marion et al. (2023) have studied a similar
idea for pruning the training data for language modeling.

This paper falls into the category of exploiting a pretrained
model for online data selection, sampling or weighting. We
refer to this learning paradigm as model steering, as the
pretrained model is used as a reference to guide training.
Mindermann et al. (2022) proposed the RHO loss for se-
lecting samples in a mini-batch for training a classification
model. Though similar to offline data curation approaches,

the key differences lie in: (1) a sample that may be dis-
carded in a later stage of training could be useful in the
early stage of training; (2) both the model to be trained
and the reference model are used together for data selection,
sampling, or weighting. The RHO loss has been used in mul-
tiple papers (Mindermann et al., 2022; Evans et al., 2025;
Lin et al., 2024; Xie et al., 2023; Evans et al., 2024a;b) for
training different models. Different from these prior works,
our work aims to provide a theoretical foundation for data
selection, sampling or weighting with the RHO loss, and
use it to derive better practical approaches for training CLIP
models. To the best of our knowledge, this is the first work
that provides a generalization analysis for learning with a
reference model.

Our algorithm for optimizing the proposed contrastive loss
informed by DRRho risk is based on recent advances for
optimizing global contrastive losses (Yuan et al., 2022; Qiu
et al., 2023; Wei et al., 2024). In particular, Yuan et al.
(2022) proposed an optimization algorithm termed SogCLR
for optimizing a global contrastive loss, which does not
suffer from the limitation of using a small mini-batch size.
Qiu et al. (2023) has established the connection between
DRO and the global contrastive losses, which enables opti-
mization of individual temperature parameters in contrastive
learning. Wei et al. (2024) proposed techniques for training
CLIP models in a distributed system.

Our theory of DRRho risk minimization is built on existing
generalization error bounds for distributionally robust opti-
mization (DRO) (Duchi & Namkoong, 2016; Duchi et al.,
2021), which will be reviewed in next section. We notice
that a group DRO formulation was considered in (Xie et al.,
2023) for using a reference model to learn the weight of a
dataset when training language models. However, their for-
mulation does not consider the regularization on the weight
variables in DRO, which cannot benefit from the theoretical
guarantee as derived in this paper.

3. Preliminaries: DRO
Notations: Let z ∼ P denote a random data, where P
represents the distribution of data. We denote by θ ∈ Θ the
model parameters, where Θ is the space of model param-
eters. Let ℓ(θ, z) denote a loss of interest. The expected
risk of θ is defined as R(θ) = Ez∼P [ℓ(θ, z)]. Denote by
θ∗ = argminθ∈Θ R(θ) the optimal solution that minimizes
the expected risk. For any model θ ∈ Θ, the excess risk
R(θ)−R(θ∗) is a measure of generalization performance
of θ. Let F = {ℓ(θ, ·), θ ∈ Θ}. To derive the generaliza-
tion error bounds, we need some complexity measure of the
function class F . We follow Duchi & Namkoong (2016)
by using the VC-dimension of F denoted by dv = VC(F),
which is defined as VC-dimension of the set of subgraphs
of functions in F (van der Vaart & Wellner, 1996).
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Given n samples z1, . . . , zn drawn i.i.d. from P , DRO
solves the following problem:

θ̂∗ ∈ argmin
θ∈Θ

sup
p∈∆

Dϕ(p,1/n)≤ρ/n

n∑
i=1

piℓ(θ, zi), (1)

where ∆ = {p ∈ Rn : p ≥ 0,
∑n

i=1 pi = 1}
is a simplex, Dϕ(p, 1/n) = 1

n

∑n
i=1 ϕ(pin) denotes

the ϕ-divergence between p and uniform probabilities,
(e.g., Kullback-Leibler divergence (Kullback, 1997), CVaR-
divergence (Levy et al., 2020), χ2-divergence (Duchi &
Namkoong, 2016)), and ρ ≥ 0 is a hyperparameter. DRO
minimizes a worst-case risk over all possible perturbed dis-
tributions from the empirical distribution within an uncer-
tainty set. The supremum over the weights p indicates that
if a sample is hard (i.e., has a large loss value), then it will
have a large weight so that the algorithm will pay more
attention to optimizing it.

The generalization error bounds of DRO have been devel-
oped (Duchi & Namkoong, 2016; Duchi et al., 2021). We
present a corollary from Duchi & Namkoong, Theorem 3.
Theorem 3.1. Let Dϕ be χ2-divergence with ϕ(t) = (t−
1)2/2. Assume that ℓ(θ, ·) ∈ [M0,M1] with M = M1−M0.
Let C1 = log 1

δ +log c+ dv log 16e+2dv log n for a given
δ > 0 and some constant c < ∞. If C1 · n ≥ 8M2 and
ρ ≥ 9C1, then with probability at least 1− δ,

R(θ̂∗) ≤ inf
θ∈Θ

(
R(θ) + 2

√
2ρ

n
Var(ℓ(θ, ·))

)
+

C2

n
,

where Var(ℓ(θ, ·)) denotes the variance of ℓ(θ, z) for z ∼
P and C2 = (25ρ/3 + 2)M .

The above theorem indicates that DRO may have a better
excess risk R(θ̂∗) − R(θ∗) than that of ERM when the
variance term Var(ℓ(θ∗, ·)) at the optimal solution θ∗ is
small (Duchi & Namkoong, 2016). Although the above re-
sult is derived for the χ2-divergence, one can follow Duchi
et al. (2021) to derive similar results for other divergence,
e.g., KL-divergence. Nevertheless, we focus on the theoreti-
cal insights that DRO can bring to our framework.

4. DRRho Risk Minimization
A central argument for the improved generalization bound of
DRO is when the variance Var(ℓ(θ∗, ·)) is small. However,
achieving a low variance is not always guaranteed. To ad-
dress this, we propose to leverage a reference model θref to
reduce this variance. Specifically, our framework of model
steering involves replacing the standard loss function ℓ(θ, ·)
with the RHO loss, defined as ℓ̂(θ, ·) = ℓ(θ, ·)− ℓ(θref , ·).
In particular, we define the following risk:

F (θ) := sup
p∈∆

Dϕ(p,1/n)≤ρ/n

n∑
i=1

pi(ℓ(θ, zi)− ℓ(θref , zi)). (2)

We refer to F (θ) as the DRRho risk. Building upon this,
we formulate the DRRho risk minimization problem:

θ̃∗ ∈ argmin
θ∈Θ

F (θ). (3)

Next, we present the generalization error bounds of DRRho
risk minimization. We consider the function class Fr =
{ℓ(θ, ·) − ℓ(θref , ·), θ ∈ Θ} and abuse the notation dv =
VC(Fr). The proofs of the following results are presented
in Appendix A.

Theorem 4.1. Under the same setting of Theorem 3.1, let
C1 = log 1

δ + log c + dv log 16e + 2dv log n for a given
δ > 0 and some constant c < ∞. If C1 · n ≥ 32M2 and
ρ ≥ 9C1, with probability at least 1− δ,

R(θ̃∗) ≤ inf
θ∈Θ

(
R(θ) +

√
2ρ

n
Var(ℓ(θ, ·)− ℓ(θref , ·))

)
+

C2

n
,

where C2 = (50ρ/3 + 4)M .

We present two corollaries to understand how DRRho risk
minimization improves the generalization over DRO / ERM.

Corollary 4.2. Under the same setting of Theorem 4.1, we
have

R(θ̃∗) ≤ R(θ∗) +

√
2ρ

n
Var(ℓ(θ∗, ·)− ℓ(θref , ·)) +

C2

n
.

Remark: Comparing the excess risk bound of R(θ̃∗) −
R(θ∗) for DRRho with that of R(θ̂∗) − R(θ∗) for DRO,
we can see that the variance term changes to Var(ℓ(θ∗, ·)−
ℓ(θref , ·)) from Var(ℓ(θ∗, ·)). It is reasonable to assume
that the reference model θref is sufficiently trained such
that ℓ(θref , ·) has a similar distribution to ℓ(θ∗, ·); hence we
expect that Var(ℓ(θ∗, ·)−ℓ(θref , ·)) would be much smaller
than Var(ℓ(θ∗, ·)).

The following corollary provides insights into the reduced
sample complexity of DRRho risk minimization in achiev-
ing the same level of generalization as the reference model.

Corollary 4.3. Under the same setting of Theorem 4.1, and
assume θref ∈ Θ, we have

R(θ̃∗)−R(θ∗) ≤ R(θref)−R(θ∗) +
C2

n
.

Remark: The above result allows us to compare the ex-
cess risk of DRRho risk minimizer θ̃∗ with that of a refer-
ence model θref ∈ Θ that is from the same family. Sup-
pose that reference model θref is learned using ERM on
a dataset of m samples. A standard generalization error
analysis (Boucheron et al., 2005) would yield an excess risk
bound on the level of O(

√
1/m), i.e., R(θref)−R(θ∗) =

O(1/
√
m). In order to reach the same level of general-

ization error of the reference model, DRRho needs only

4



n = O(
√
m) samples, which dramatically reduces the sam-

ple complexity O(m) of ERM without a reference model.

Before ending this section, we discuss how DRRho risk
minimization provides a foundation for existing heuristic ap-
proaches for data selection, weighting, and sampling based
on the RHO loss, and for inducing better practices.

Data Selection: When we use the CVaR divergence ϕ(t) =
1 if t ≤ n/k, and ϕ(t) = ∞ otherwise, the DRRho risk
becomes the average of top-k RHO losses:

F (θ) :=
1

k

k∑
i=1

ℓ(θ, z[i])− ℓ(θref , z[i]). (4)

where z[i] denotes the data whose RHO loss is ranked at
the i-th position in descending order. Existing studies have
applied RHO-loss-based data selection to the mini-batch
for simplicity (Mindermann et al., 2022; Lin et al., 2024),
which do not necessarily optimize the average of top-k RHO
loss among the whole dataset as in our framework.

Data Weighting / Sampling: If we use the KL-divergence
KL(p,1/n) =

∑n
i=1 pi log(pin), where ϕ(t) = t log t −

t+ 1, then from the Lagrange dual theory we can derive:

F (θ) := min
τ≥0

τ log

(
1

n

n∑
i=1

exp(
(ℓ(θ, zi)− ℓ(θref , zi)

τ
)

)
+ τρ/n. (5)

If we compute the gradient of the above objective in terms
of θ given τ , we obtain

∑n
i=1 pi∇θℓ(θ, zi), where

pi =

exp

(
ℓ(θ,zi)−ℓ(θref ,zi)

τ

)
∑n

j=1 exp

(
ℓ(θ,zj)−ℓ(θref ,zj)

τ

) .

Hence, the above DRRho risk acts like assigning different
data different weights such that data with a larger RHO loss
has a higher weight in the gradient calculation. Heuristic
approaches have implemented this idea by sampling data
in a large batch following pi calculated based on the mini-
batch data to create a smaller batch (Evans et al., 2024a;b).

To simplify the complexity of optimization, one can turn τ
into a hyperparameter, which is equivalent to using a KL
divergence as regularization in defining the DRRho risk:

F (θ) = sup
p∈∆

n∑
i=1

pi(ℓ(θ, zi)− ℓ(θref , zi))− τKL(p,1/n)

= τ log

(
1

n

n∑
i=1

exp(
(ℓ(θ, zi)− ℓ(θref , zi)

τ
)

)
.

(6)

Finally, we would like to mention that efficient stochastic
algorithms have been developed to optimize the objectives in
Equations (4) to (6) (Qi et al., 2023b;a; Wang & Yang, 2023;
Hu et al., 2023). Hence, solving the proposed DRRho risk
minimization with these advanced optimization algorithms
could yield better guarantees than heuristic approaches in
existing studies. We illustrate this with an application of
CLIP training in next section.

5. DRRho-CLIP with a Reference Model
In this section, we explore the application of the DRRho
risk to CLIP training (Radford et al., 2021) with a reference
model. Although the proposed DRRho risk minimization
framework is general and can be applied to training vari-
ous models, we focus on CLIP training for several reasons:
(i) CLIP involves more complex data structures, including
anchor data and their corresponding negative samples for
contrastive learning. Without guidance from theory, heuris-
tic methods that sample data based on the RHO loss may
not give optimal performance (Evans et al., 2024a). (ii) The
publicly available OpenAI’s CLIP model has already been
utilized to enhance CLIP training by filtering high-quality
data based on the CLIP score (Gadre et al., 2023). This
raises an intriguing question: can our framework deliver
additional improvements when using OpenAI’s CLIP model
as a reference on the filtered data?

For CLIP, the training dataset consists of images and their
corresponding text descriptions. We use x to denote an
image and y to denote a text, and use z = (x,y) to denote
a pair. We use S = {(x1,y1), . . . , (xn,yn)} to denote
a training set of size n. Given an image xi, let e1,i =
e1(θ1,xi) ∈ Rd denote image representation by an image
encoder with parameter θ1. Similarly, e2,i = e2(θ2,yi) ∈
Rd denotes the embedding of text yi by the text encoder
with parameter θ2. Let θ = (θ1,θ2) denote the parameters
of the image encoder and the text encoder jointly. Let Si− =
S\{i} denote the dataset without i-th pair. Let s(xi,yj)
denote the cosine similarity between i-th image embedding
e1,i and j-th text embedding e2,j .

In order to apply DRRho risk to CLIP, we leverage the
connection between a contrastive loss and DRO (Qiu et al.,
2023). For simplicity of our presentation, we consider the
KL-regularized DRO formulation (6), which yields an ob-
jective with a tunable temperature parameter τ . Similar
extensions can be made to KL-constrained DRO (5) for
learnable temperature (cf. Appendix C.3). First we define
the contrastive loss function for each anchor image data xi

without using a reference model. To this end, we define a
pairwise loss ℓ(θ,xi,yj) = s(xi,yj) − s(xi,yi), which
measures the gap of similarities between a negative pair
(xi,yj) and the positive pair (xi,yi) of the anchor data xi.
Then we use DRO to aggregate these individual pairwise
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losses for yj ∈ S into the following loss of xi:

Fdro(θ,xi,S) := max
p∈∆

n∑
j=1

pjℓ(θ,xi,yj)− τKL(p,1/n),

= τ log

 1

n

n∑
j=1

exp(
ℓ(θ,xi,yj)

τ
)

 . (7)

To apply DRRho risk for integrating a reference model, we
plug the following shifted loss into the above formulation:

ℓ̂(θ,θref ,xi,yj) := ℓ(θ,xi,yj)− ℓ(θref ,xi,yj).

As a result, we obtain the following DRRho contrastive loss
for each image xi:

F (θ,xi,S) = τ log

(
1

n

n∑
j=1

exp(
ℓ̂(θ,θref ,xi,yj)

τ
)

)
.

(8)
Similarly, we define a DRRho contrastive loss for text yi:

F (θ,yi,S) = τ log

(
1

n

n∑
j=1

exp(
ℓ̂(θ,θref ,yi,xj)

τ
)

)
(9)

Then, we solve the following optimization problem:

min
θ

1

n

n∑
i=1

(F (θ,xi,S) + F (θ,yi,S)).

To optimize the above objective, we use the SogCLR algo-
rithm (Yuan et al., 2022) that has a provable convergence
guarantee without using a large batch size. In particu-
lar, the algorithm maintains two sequences of estimators
ut
1,i, u

t
2,i, t = 1, . . . , T to track the inner average in the log

function of F (θ,xi,S) and F (θ,yi,S). At t-th iteration,
the following update with mini-batch Bt are executed:

ut+1
1,i = (1− γt)u

t
1,i + γtEj∈Bt

i−
exp(

ℓ̂1(θt,θref ,xi,yj)

τ
),

ut+1
2,i = (1− γt)u

t
2,i + γtEj∈Bt

i−
exp(

ℓ̂2(θt,θref ,yi,xj)

τ
),

(10)
where Bt

i− = Bt \ {i} and Ej∈Bt
i−

denotes the average over
data in Bt

i−, and γt is regarded as an inner learning rate.
Then we compute the gradient estimators by

Gt
1 = Ei∈Bt

τ

ε+ ut+1
1,i

· ∇θEj∈Bt
i−

exp(
ℓ̂1(θt,θref ,xi,yj)

τ
),

Gt
2 = Ei∈Bt

τ

ε+ ut+1
2,i

· ∇θEj∈Bt
i−

exp(
ℓ̂2(θt,θref ,yi,xj)

τ
).

(11)
where ε is treated as a hyperparameter in practice (Wei
et al., 2024). We present the details of our algorithm in
Algorithm 1, which is referred to as DRRho-CLIP.

Algorithm 1 DRRho-CLIP

1: Input: Model θ0, τ0, sequences {u0
1,i}, {u0

2,i}, number
of iterations T .

2: for t = 0, . . . , T − 1 do
3: Sample a batch Bt ⊂ S and compute features
4: Update ut+1

1,i , ut+1
2,i using (10) for all i ∈ Bt

5: Set ut+1
1,i = ut

1,i, u
t+1
2,i = ut

2,i for i /∈ Bt

6: Compute Gt
1, G

t
2 using Equation (11)

7: Update θt+1 using Gt
1 +Gt

2 as a gradient estimator
with an optimizer (e.g., AdamW)

8: end for

Efficient Implementation: It is notable that, like other
LEAR methods, DRRho-CLIP requires computing the loss
of the reference model on the training data. It is expensive
to compute these losses on the fly. To reduce this cost, we
compute the embedding vectors of training data by the ref-
erence model in an offline manner. During training, we load
the pre-computed features of the current mini-batch from
the disk and compute the loss based on the pre-computed
features. Similar approaches have been used in (Vasu et al.,
2024; Evans et al., 2024a).

6. Experiments
In this section, we conduct experiments to demonstrate the
superiority of our proposed framework, where we focus on
training CLIP models. First, we empirically verify claims
of our theory: (1) our framework is more data-efficient than
learning without a reference model, and (2) the variance of
the RHO loss in the excess risk bound of our framework
is lower than that of a regular loss. Next, we compare
DRRho-CLIP with other baselines, and we also show that
DRRho-CLIP can be seamlessly integrated with distillation
methods. Finally, we study the scaling law of DRRho-CLIP
and show that it has a better scaling trend than OpenCLIP.

• Data: The training datasets we use consist of CC12M (9M
samples) (Changpinyo et al., 2021), DFN-192M (192M
samples) (Fang et al., 2024) and DFN-12M (a 12M subset
selected from DFN-192M).

• Models: The reference model is either ViT-B/32, ViT-
B/16 or ViT-L/14, which are either pretrained open-weight
models or models we trained from scratch. For ease of
presentation, we use “model (data)” to denote a model
and the data on which it is pretrained. The following
reference models are pretrained open-weight models: ViT-
B/32 (WIT-400M) (Radford et al., 2021), ViT-B/16 (DFN-
2B) and ViT-L/14 (DFN-2B) (Fang et al., 2024). The
target model trained from scratch could be ViT-B/32 or
ViT-B/16.

• Metrics: We leverage the Datacomp benchmark (Gadre
et al., 2023) to evaluate the performance of target models,
which comprises 38 zero-shot classification and retrieval
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(a) Target: ViT-B/32 (CC12M)
Reference: ViT-B/32 (WIT-400M)

100 200 300
Samples…Seen…(million)

27.5

30.0

32.5

35.0

37.5

40.0

42.5

(b) Target: ViT-B/16 (DFN-12M)
Reference: ViT-B/32 (WIT-400M)

100 200 300
Samples…Seen…(million)

28

30

32

34

36

38

40

(c) Target: ViT-B/16 (DFN-12M)
Reference: ViT-B/16 (DFN-9M)

Figure 3: Performance curves of FastCLIP and DRRho-CLIP with different target and reference models (with each column
representing one combination). Top row: ImageNet Top-1 accuracy, bottom row: Datacomp average performance.

tasks. The numbers we report are the ImageNet-1K Top 1
accuracy and the average performance on the 38 tasks.

• Hardware and Training framework: Unless otherwise
specified, we use a batch size of 5120 on 8 H100 GPUs
for training ViT-B/16, and use a batch size of 4096 on
8 A100 GPUs for training ViT-B/32. We implement our
method using the codebase of FastCLIP distributed train-
ing framework (Wei et al., 2024). For hyperparameter
tuning, we refer readers to Appendix C.2.

6.1. Empirical Verification of Theoretical Results

DRRho-CLIP is more data-efficient. Corollary 4.3 im-
plies that DRRho requires less amount of training data than
learning without a reference model to achieve the same level
of excess risk. To empirically verify this theory, we run
DRRho-CLIP on different portions of the training dataset
(100%, 75% and 50%) and compare it with the baseline
FastCLIP (Wei et al., 2024) on the whole training dataset
(100%). Multiple target / reference model combination are
tested, as specified in the following table.

Target Model (Data) Reference Model (Data)

ViT-B/32 (CC12M) ViT-B/32 (WIT-400M)
ViT-B/16 (DFN-12M) ViT-B/32 (WIT-400M)
ViT-B/16 (DFN-12M) ViT-B/16 (DFN-9M)

The performance curves of different methods on different
metrics are plotted in Figure 3. From the results we can
observe that (i) with OpenAI’s ViT-B/32 (WIT-400M) as
the reference model, DRRho-CLIP with 50% of training
data can achieve comparable performance to FastCLIP on
the whole training data (Figure 3a, b); (ii) with 100% train-
ing data, DRRho-CLIP outperforms FastCLIP by a large
margin; (iii) even with a weaker reference model ViT-B/16
(DFN-9M) (Figure 3c) trained by us using FastCLIP on a
9M subset of DFN-12M, DRRho-CLIP still benefits from
it, achieving better performance with 75% data (9M) than
FastCLIP trained on DFN-12M without a reference model.

DRRho-CLIP has a lower variance of RHO loss. From
Corollary 4.2 and the remark below we know that the main
difference between the excess risk bound of DRO and that
of DRRho lies in the variance term (Var(ℓ(θ∗, ·)) for DRO
and Var(ℓ(θ∗, ·) − ℓ(θref , ·)) for DRRho). To have a bet-
ter understanding of the two terms, we train a ViT-B/16
target model on DFN-12M with 320M samples seen using
FastCLIP and DRRho-CLIP with a reference model ViT-
B/32 (WIT-400M). Then we select a 200K subset from the
training data and compute the variance of the original pair-
wise loss in FastCLIP and the RHO loss in DRRho-CLIP
w.r.t. each image and text. We use the trained model for
computing the variance of the RHO loss and the original.
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Table 1: Comparison of different methods on DFN-192M with 1.28B samples seen. Reference denotes the performance of
the reference model. OpenCLIP and FastCLIP does not leverage a reference model. For distillation-based methods, the
reference model is also the teacher model for distillation.

Reference ModelMetric Method ViT-B/32 (WIT-400M) ViT-B/16 (DFN-2B) ViT-L/14 (DFN-2B)

Reference 63.32 76.23 81.41
OpenCLIP 66.94 66.94 66.94
FastCLIP 67.37 67.37 67.37
JEST 56.40 56.56 55.96ImageNet JEST (Top-k) 57.75 57.34 56.96Top 1 DRRho-CLIP 68.84 69.19 68.69
MobileCLIP (w/ Distillation) 66.94 68.67 68.47
FastCLIP (w/ Distillation) 67.33 69.15 68.85
DRRho-CLIP (w/ Distillation) 68.84 69.50 69.25

Reference 52.27 60.75 66.65
OpenCLIP 54.58 54.58 54.58
FastCLIP 54.69 54.69 54.69
JEST 48.25 48.97 48.27

Datacomp JEST (Top-k) 48.26 49.22 48.67
DRRho-CLIP 55.20 55.48 54.74
MobileCLIP (w/ Distillation) 54.58 55.21 55.31
FastCLIP (w/ Distillation) 54.69 55.60 55.91
DRRho-CLIP (w/ Distillation) 55.20 57.17 56.29

Loss Variance (×10−3)Ref. Model Image Text DC

No Ref. 7.26 (0.58) 7.02 (0.91) 38.57
ViT-B/32 (WIT-400M) 4.49 (0.54) 4.09 (0.60) 43.02

We report the mean and standard deviation of the variance
above, along with the Datacomp (DC) average performance
of both methods. The results show that with a reference
model, the variance of the RHO loss is lower than that of
the original loss.

6.2. Comparison with Baselines

In this section, we compare our method with other baselines
of learning with reference models and knowledge distilla-
tion. For the former, we compare with JEST (Evans et al.,
2024a), which is a heuristic approach of applying the RHO
loss for data sampling. In particular, they first sample image-
text pairs from a large batch according to their similarities,
and then compute an averaged RHO loss for each remaining
data using the selected data in previous step as negative data
and then perform sampling. We also implement another vari-
ant that chooses the top pairs in the remaining data based
on their averaged RHO loss in the second step, which is
referred to as JEST (Top-k). Then a mini-batch contrastive
loss is computed based on the selected data for updating the
model parameter. These methods are implemented to select
the same size of mini-batch samples as our method from a 5

times larger super-batch.

For knowledge distillation, we compare with Mobile-
CLIP (Vasu et al., 2024), which optimizes:

min
θ∈Θ

(1− λ)Lcon(θ) + λEB⊂SLdist(θ,θref ,B). (12)

where λ ∈ [0, 1] is a hyperparameter, Lcon denotes a mini-
batch contrastive loss and Ldist is the distillation loss be-
tween the target model and reference model (cf. Equa-
tion (16) in Appendix C). To demonstrate the benefit of
our approach integrated with knowledge distillation, we re-
place the contrastive loss above with our DRRho contrastive
loss, which is referred to as DRRho-CLIP (w/Distillation).
For comparison, we also implement another baseline Fast-
CLIP (w/Distillation) which uses the global contrastive loss
instead of the mini-batch contrastive loss as in MobileCLIP.

We present the results on DFN-192M in Table 1 (results on
DFN-12M are presented in Table 3 in Appendix C due to
space limit). All methods reported train a target model of
ViT-B/16 from scratch. From the results we arrive at the
following conclusions: (1) Compared with JEST and JEST
(Top-k), our approach achieves much better performance.
This shows that our theory-driven approach is better than
the heuristic approaches. (2) When the reference model
is relatively weak, e.g., ViT-B/32 (WIT-400M), DRRho-
CLIP achieves better performance (68.84% ImageNet Top-1
accuracy) than MobileCLIP (66.94%) and the reference
model itself (cf. Figure 4); (3) when the reference models
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Figure 4: Zero-shot Top 1 Accuracy on ImageNet-1K of
different models. DFN model was trained on DFN-192M
dataset with 1.28B samples seen with batch size 8192 (Fang
et al., 2024), DRRho-CLIP model was trained under the
same setting with batch size 5120, and using OpenAI CLIP
as a reference model.

are strong, e.g., ViT-B/16 (DFN-2B), ViT-L/14 (DFN-2B),
DRRho-CLIP (w/ Distillation) achieves the best result.

6.3. Scaling Law

Finally, we study the scaling law of DRRho-CLIP, running
with a batch size of 5120 on 8 H100 GPUs and using ViT-
B/32 (WIT-400M) as the reference model. Similar to Cherti
et al. (2023), we aim at uncovering the scaling law in the
following form: E = α·Cβ , where E denotes the ImageNet
error rate, C denotes the amount of compute (GFLOPs),
α, β are real numbers that need to be determined. We choose
number of samples seen T = 0.32, 0.64, 1.28, 2.56B for our
experiments, and use ViT-B/32, ViT-B/16 and ViT-L/14 as
the target model. We follow the open clip repository and
use its calculated amount of compute for each model2.

To estimate E for each C, we run our method with ViT-B/16
on datasets of varying sizes from 144M to 624M, which are
subsets selected from DFN-2B (Fang et al., 2024), and use
the lowest error rate among different dataset sizes to estimate
E. Next, we run our method with ViT-B/32 and ViT-L/14
on datasets of the same sizes as in ViT-B/16 training. Then
we fit the power law with different C and corresponding
E. We repeat the same procedure for OpenCLIP. We plot
the relationship logE = logα + β logC in Figure 2 for
both DRRho-CLIP and OpenCLIP. We observe that DRRho-
CLIP has a better scaling law than OpenCLIP with smaller
β. This also demonstrates that our theory has practical
implications.

7. Conclusion
In this paper, we have presented a novel learning paradigm
of model steering, which uses a reference model to guide

2github.com/mlfoundations/open clip/docs/model profile.csv

the training. Different from other heuristic approaches for
learning with a reference model, our framework is grounded
on distributionally robust optimization theory. We provided
generalization analysis for our framework to analyze the
improved generalization and data efficiency of our method.
We applied our approach to CLIP training and proposed
DRRho-CLIP. Experiments of DRRho-CLIP not only ver-
ified the theory but also demonstrated its superiority over
heuristic approaches and a better scaling law than that of
the state-of-the-art CLIP training method.
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A. Detailed Theoretical Analysis
In this section, we provide generalization analysis of our DRRho framework. Given a function class F and set Xn with n
samples, define

N∞(F , ϵ, n) = sup
x∈Xn

N(F(x), ϵ, ∥ · ∥∞),

where F(x) = {(f(x1), . . . , f(xn)) : f ∈ F} for x ∈ Xn, and

N(V, ϵ, ∥ · ∥) := inf{N ∈ N : there is an ϵ-cover of size N of V w.r.t. ∥ · ∥}.

Theorem A.1 (Theorem 3 in (Duchi & Namkoong, 2016)). Assume that f(·) ∈ [M0,M1] with M = M1 −M0 for all
f ∈ F . Let n ≥ 8M2/t, t ≥ log 12, ϵ > 0, and ρ ≥ 9t. Then with probability at least 1− 2(3N∞ (F , ϵ, 2n) + 1)e−t,

E[f(X)] ≤ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [f(X)] +
11

3

Mρ

n
+

(
2 + 4

√
2t

n

)
ϵ (13)

for all f ∈ F . Defining the empirical minimizer

f̂ ∈ argmin
f∈F

{
sup
P

{
EP [f(X)] : Dϕ(P∥P̂ ) ≤ ρ

n

}}
we have with the same probability that

E[f̂ ] ≤ inf
f∈F

{
E[f ] + 2

√
2ρ

n
Var(f)

}
+

19Mρ

3n
+

(
2 + 4

√
2t

n

)
ϵ. (14)

Corollary A.2 (Corollary 3.1 in (Duchi & Namkoong, 2016)). In addition to the conditions of Theorem A.1, let F have
finite VC-dimension VC(F). Then for a numerical constant c < ∞, the bounds in Theorem A.1 hold with probability at least

1−

(
cVC(F)

(
16Mne

ϵ

)VC(F)−1

+ 2

)
e−t.

Theorem A.3. Under the conditions of Theorem A.1, let dv denote the VC-dimension of Θ and c < ∞ denote a constant.

1. For any θ ∈ Θ, let t = log 1
δ + log c + dv log 16e + 2dv log n and ρ ≥ 9t for δ > 0, then with probability at least

1− δ,

R(θ) ≤ inf
θ∈Θ

(
R(θ) + 2

√
2ρ

n
Var(ℓ(θ, ·))

)
+

(
25ρ

3
+ 2

)
M

n

+ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)]−min
θ∈Θ

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)].

2. For the solution θ∗ of

min
θ∈Θ

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)], (15)

let t = log 1
δ + log c+ dv log 16e+ 2dv log n and ρ ≥ 9t for δ > 0, then with probability at least 1− δ,

R(θ∗) ≤ inf
θ∈Θ

(
R(θ) + 2

√
2ρ

n
Var(ℓ(θ, ·))

)
+

(
25ρ

3
+ 2

)
M

n
.
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Proof. We first prove the first part of the theorem, which follows the proof of Theorem 3 in (Duchi & Namkoong, 2016).
From Theorem A.1 we know for any f ∈ F , with probability at least 1− 2(3N∞ (F , ϵ, 2n) + 1)e−t,

E[f(X)] ≤ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [f(X)] +
11

3

Mρ

n
+

(
2 + 4

√
2t

n

)
ϵ

=min
f̂∈F

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [f̂(X)] +
11

3

Mρ

n
+

(
2 + 4

√
2t

n

)
ϵ

+ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [f(X)]−min
f̂∈F

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [f̂(X)].

Following the proof of Theorem 3 in (Duchi & Namkoong, 2016), setting ϵ = M
n , t = log 1

δ +log c+dv log 16e+2dv log n,
we know for any θ ∈ Θ, with ρ ≥ 9t and probability at least 1− 2(3N∞ (F , ϵ, 2n) + 1)e−t,

R(θ) ≤ inf
θ∈Θ

(
R(θ) + 2

√
2ρ

n
Var(ℓ(θ, ·))

)
+

(
25ρ

3
+ 2

)
M

n

+ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)]−min
θ∈Θ

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)].

From Corollary A.2 we know the probability is at least

1−

(
cVC(F)

(
16Mne

ϵ

)VC(F)−1
)
e−t

for some c < ∞. Let dv denote the VC-dimension of F , then we know the probability is at least

1−
(
c dv

(
16n2e

)dv−1
)
exp(−t)

=1− exp (log c+ log dv + (dv − 1)(log 16e+ 2 log n)) · exp(−t)

≥1− exp (log c+ dv log 16e+ 2dv log n− t)

Since t = log 1
δ + log c+ dv log 16e+ 2dv log n, we know that with ρ ≥ 9t and probability at least 1− δ,

R(θ) ≤ inf
θ∈Θ

(
R(θ) + 2

√
2ρ

n
Var(ℓ(θ, ·))

)
+

(
25ρ

3
+ 2

)
M

n

+ sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)]−min
θ∈Θ

sup
P :Dϕ(P∥P̂ )≤ ρ

n

EP [ℓ(θ, ·)].

This completes the proof for the first part. The second part then follows from the fact that θ∗ is the solution of Equation (15).
This completes the proof.

Proof of Theorem 4.1. Since θ̃∗ minimizes Equation (3), applying Theorem A.3 with f(·) := ℓ(θ, ·)− ℓ(θref , ·) (where the
range becomes 2M ), letting t = log 1

δ + log c+ dv log 16e+ 2dv log n and ρ ≥ 9t for given δ > 0 and constant c < ∞,
then with probability at least 1− δ,

R(θ̃∗)−R(θref) ≤ inf
θ∈Θo

(
R(θ)−R(θref) +

√
2ρ

n
Var(ℓ(θ, ·)− ℓ(θref , ·))

)
+

(
50ρ

3
+ 4

)
M

n
,

which is

R(θ̃∗) ≤ inf
θ∈Θo

(
R(θ) +

√
2ρ

n
Var(ℓ(θ, ·)− ℓ(θref , ·))

)
+

(
50ρ

3
+ 4

)
M

n
.

This completes the proof.

14



Proof of Corollary 4.2. From the definition we have θ∗ ∈ Θ. Thus we know

inf
θ∈Θo

(
R(θ) +

√
2ρ

n
Var(ℓ(θ, ·)− ℓ(θref , ·))

)
≤ R(θ∗) +

√
2ρ

n
Var(ℓ(θ∗, ·)− ℓ(θref , ·)).

Plugging the above inequality into Theorem 4.1, we get

R(θ̃∗) ≤ R(θ∗) +

√
2ρ

n
Var(ℓ(θ∗, ·)− ℓ(θref , ·)) +

C2

n
.

This completes the proof.

Proof of Corollary 4.3. Since θref ∈ Θ, we know

inf
θ∈Θo

(
R(θ) +

√
2ρ

n
Var(ℓ(θ, ·)− ℓ(θref , ·))

)
≤ R(θref) +

√
2ρ

n
Var(ℓ(θref , ·)− ℓ(θref , ·)) = R(θref).

Plugging the above inequality into Theorem 4.1, and subtracting R(θ∗) on both sides, we get

R(θ̃∗)−R(θ∗) ≤ R(θref)−R(θ∗) +
C2

n
.

This completes the proof.

B. Connection between DRRho and Existing Methods
In Section 4 we show that our proposed framework can be applied to data selection, weighting and sampling. Here we
provide a comparison between our framework and existing methods.

Data Selection: With the CVaR divergence, the DRRho objective becomes the average of top-k RHO losses (Equation (4)).
This is connected to RHO (Mindermann et al., 2022) and RHO-1 (Lin et al., 2024). The key idea of both RHO and RHO-1
is both to first sample a large batch of data points, then leverage a reference model to compute the RHO loss for each sample
in the large batch, and in the end only samples with the largest RHO loss values are kept for back-propagation. The major
difference between our framework and the two existing works is that our objective will select top samples in the whole
dataset for back-propagation, while existing works operate in batch level.

Data Weighting / Sampling: With the KL-divergence, our framework becomes a data weighting method that assigns
different weights to different samples. In the CLIP training setting, data weighting is applied to every combination of image
and text. Evans et al. (2025) applied the idea for data sampling and proposed ActiveCLIP. Specifically, given a large batch
of data points, they first compute the RHO loss using a reference model for each sample in the batch, then they pass the loss
scores through a softmax function and view it as a probability distribution to sample a small batch for back-propagation.
Evans et al. (2024a) builds upon the idea of ActiveCLIP and proposed JEST, which leverages the RHO loss as well but use a
fine-grained sampling approach due to the special structure of the contrastive loss. Note that both ActiveCLIP and JEST are
proposed for training CLIP models, which is the same as our DRRho-CLIP. The core difference between our DRRho-CLIP
and ActiveCLIP and JEST is that their losses are used for data selection of anchor data while ours has an effect of data
re-weighting of the negative data for each anchor data. Moreover, their methods use mini-batch contrastive loss to define
a RHO loss. While we define the loss using all negative data in the training dataset (instead of the mini-batch) and use a
rigorous optimization approach (SogCLR) to optimize the objective.

C. More Experiment Results
C.1. Implementation Details

Our implementation is based on FastCLIP (Wei et al., 2024), which includes the implementation of FastCLIP and OpenCLIP.
We leveraged the code provided by Evans et al. (2024a) with minor modification for our implementation of JEST and JEST
(Top-k). We merge the code released by Vasu et al. (2024) into our code base for the implementation of MobileCLIP.
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C.2. Hyperparameters

DRRho-CLIP. We set the learning rate to 3.125e-4 for training ViT-B/16, and set the learning rate to 8e-4 for training
ViT-B/32. In most experiments in Section 6, we set the temperature to 0.01. The only exception is the one with reference
model trained on DFN-9M where the temperature is learnable (cf. Appendix C.3) and the initial temperature is set to 0.07.

Baselines: OpenCLIP and FastCLIP We use the FastCLIP-v3 from Wei et al. (2024) as the FastCLIP baseline. For both
OpenCLIP and FastCLIP, we set the learning rate to 3.125e-4 for training ViT-B/16, and set the learning rate to 8e-4 for
training ViT-B/32. We set the initial temperature to 0.07. For FastCLIP, we set the learning rate of τ to be 1/4 of the learning
rate of the model, we set ρ to 11.0 for training ViT-B/16 and 8.5 for training ViT-B/32.

JEST and JEST (Top-k) We set the learning rate to 3.125e-4 for training ViT-B/16. Following Evans et al. (2024a), the
selection ratio is set to 0.2, which means only 20% of the super-batch will be used for training. The size of the super-batch
at each iteration is 25600 and the size of the mini-batch for training is 5120, which is the same as other methods. We set the
number of chunks to 2 so that the chunk size of 2560, which is close to the value 2048 suggested by Evans et al. (2024a). At
selection ratio 0.2, JEST and JEST (Top-k) spends 5 times more compute on forward propagation (and the same amount of
compute on backward propagation) compared with other approaches. Since the amount of compute of forward propagation
is approximately 1/3 of that of backward propagation (Evans et al., 2024a), we increase the number of iterations to 1.87
times of that of other approaches so that these methods consume the same amount of compute.

MobileCLIP, FastCLIP with Distillation, DRRho-CLIP with Distillation We set the learning rate to 3.125e-4 for training
ViT-B/16. We set the value of λ of DRRho-CLIP with Distillation to be the same as that of FastCLIP with Distillation. On
DFN-12M, for MobileCLIP, we set the value of λ to 0.4; for FastCLIP with Distillation, we set the value of λ to 0.25. On
DFN-192M, for MobileCLIP, we set the value of λ to 0.75; for FastCLIP with Distillation, we set the value of λ to 0.25. On
DFN-192M with reference model ViT-B/32 (WIT-400M), since the performance of the reference model is low, the value λ
is set to 0.0 (i.e., no distillation) for all three methods.

C.3. Additional Ablation Study

Comparison between Fixed and Learnable Temperature τ . In most our experiments of DRRho-CLIP, we set the
temperature τ to 0.01 and fix it throughout training. The only exception is the one with reference model trained on DFN-9M
where we set τ to a learnable hyperparameter as in FastCLIP(-v3), which gives better performance than using a fixed
temperature. To further study this, we conduct experiments to compare the performance of learnable temperature and fixed
temperature. Mathematically, the loss formulation with learnable temperature is similar to Equations (8) and (9) except that
the temperature now becomes a parameter that can be optimized:

min
θ,τ

1

n

n∑
i=1

τ log

(
1

n

n∑
j=1

exp(
ℓ̂(θ,θref ,xi,yj)

τ
)

)
+ τ log

(
1

n

n∑
j=1

exp(
ℓ̂(θ,θref ,yi,xj)

τ
)

)
+ 2τρ,

where ρ > 0 is a hyperparameter. We conduct experiments of DRRho-CLIP with fixed and learnable temperature on
different target model and reference model combinations. We present the results in Table 2 and Figure 5. We find that, for a
reference model with high performance, using a fixed temperature leads to slightly better performance than using a learnable
temperature. While for reference models with low performance, a learnable temperature yields higher performance.

Table 2: ImageNet Top 1 accuracy of DRRho-CLIP with fixed and learnable temperature on different target models and
reference models.

ImageNet Top 1 Accuracy
FastCLIP DRRho-CLIP DRRho-CLIP ReferenceTarget Model (Data) Reference Model (Data)

(Learnable τ ) (Fixed τ )

ViT-B/16 (DFN-12M) ViT-B/32 (DFN-12M) 43.49 46.31 37.65 36.27
ViT-B/16 (DFN-12M) ViT-B/32 (WIT-400M) 43.49 49.81 49.91 63.32
ViT-B/16 (DFN-192M) ViT-B/32 (WIT-400M) 67.37 68.17 68.84 63.32
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(c) Target: ViT-B/16 (DFN-192M)
Reference: ViT-B/32 (WIT-400M)

Figure 5: ImageNet Top 1 accuracy curves of DRRho-CLIP with fixed and learnable temperature on different target models
and reference models.

C.4. Comparison with Baselines

The distillation loss we consider is the same as in Vasu et al. (2024), and is defined as follows

Ldistill(θ,θref ,B) :=− 1

|B|2
∑
i∈B

∑
j∈B

exp(ŝ(xi,yj)/τ̂)∑
k∈B exp(ŝ(xi,yk)/τ̂)

log
exp(s(xi,yj)/τ)∑

k∈B exp(s(xi,yk)/τ)

− 1

|B|2
∑
i∈B

∑
j∈B

exp(ŝ(xj ,yi)/τ̂)∑
k∈B exp(ŝ(xk,yi)/τ̂)

log
exp(s(xj ,yi)/τ)∑

k∈B exp(s(xk,yi)/τ)
,

(16)

where s(xi,yj) (ŝ(xi,yj), resp.) denotes the cosine similarity between i-th image and j-th text output by the target model
(reference model, resp.).

In Table 3, we present the results of different baselines on DFN-12M with 320M samples seen.

In the following figure, we plot the ImageNet-1K Top 1 accuracy of different models trained using OpenCLIP or DRRho-
CLIP.
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Figure 6: Zero-shot Top 1 Accuracy on ImageNet-1K of different models. Reference model is a ViT-B/16 (left figure) or
ViT-L/14 (right figure) pretrained on DFN-2B dataset with 12.8B samples seen and a batch size of 90112 (Fang et al., 2024);
OpenCLIP model is a ViT-B/16 trained on DFN-192M dataset with 1.28B samples seen and a batch size of 8192 (Fang et al.,
2024), DRRho-CLIP model was trained on DFN-192M dataset with 1.28B samples seen and using the reference model with
a batch size of 5120. The latter two use the same model structure.
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Table 3: Comparison of different methods on DFN-12M with 320M samples seen. Reference denotes the performance of
the reference model. OpenCLIP and FastCLIP does not leverage a reference model. For distillation-based methods, the
reference model is also the teacher model for distillation.

Reference ModelMetric Method ViT-B/32 (WIT-400M) ViT-B/16 (DFN-2B) ViT-L/14 (DFN-2B)

Reference 63.32 76.23 81.41
OpenCLIP 41.10 41.10 41.10
FastCLIP 43.49 43.49 43.49
JEST 36.78 34.63 33.46
JEST (Top-k) 36.30 34.75 33.38
DRRho-CLIP 49.95 47.57 46.70
MobileCLIP (w/ Distillation) 52.77 48.01 45.80

ImageNet

FastCLIP (w/ Distillation) 53.21 50.38 47.86

Top 1

DRRho-CLIP (w/ Distillation) 53.33 52.58 49.84

Reference 52.27 60.75 66.65
OpenCLIP 37.67 37.67 37.67
FastCLIP 38.57 38.57 38.57
JEST 35.59 35.42 34.36
JEST (Top-k) 34.60 34.56 34.88
DRRho-CLIP 43.02 42.15 41.47
MobileCLIP 44.57 41.68 39.81
FastCLIP (w/ Distillation) 44.57 43.72 42.04

Datacomp

DRRho-CLIP (w/ Distillation) 46.29 43.88 42.49
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