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Abstract. Strong asymmetric password-authenticated key exchange 
(saPAKE) is the gold standard for password-based authentication. When 
authenticating using saPAKE, the client holds a cleartext password, and 
the server holds only a “digest” of the password. The two parties obtain 
a shared session key if and only if the client password matches the pass-
word encoded in the digest. 

In this work we initiate the study of strong asymmetric fuzzy 
PAKE (safPAKE), which allows the client and server to obtain a 
shared session key if the client’s password is “close enough” to the pass-
word encoded in the digest, according to some policy. safPAKE can be 
used to tolerate incidental password typos in the PAKE setting, which 
is becoming a standard industry practice outside the PAKE setting. Our 
safPAKE functionality supports any “typo policy”, and our protocol is 
practical when there are a small number of permissible mistypings of a 
password. 

1 Introduction 

Password-based authentication is delicate because passwords are low entropy. 
Cryptographic mechanisms that are safe when using high-entropy secrets can 
be unsuitable for passwords, allowing an attacker to locally check whether a 
password guess is correct after the fact. Such a mechanism will expose typical 
passwords after mounting an offline dictionary attack. Password-authenticated 
key exchange (PAKE) [ 7] was proposed as a cryptographic mechanism disallow-
ing such offline attacks. 

PAKE is an improvement over the password-over-TLS approach currently 
used on the Internet, in which a client sends (an encryption of) its password over 
a TLS channel, and the server, upon decryption, checks raw passwords against 
a password file stored in advance. The security of password-over-TLS critically 
relies on the assumption that the server’s public key is correctly distributed to 
the client; however, numerous instances of “PKI failure” in recent years 1 clearly 
show that a password protocol without PKI—the setting of PAKE—is preferable. 
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Password-Authenticated Key Exchange (PAKE). PAKE is a family of protocols 
that allow two parties to agree on a common session key if and only if they have 
matching passwords. PAKE protocols are carefully designed to avoid exposing 
offline dictionary attacks as the shared strings (the passwords) are assumed to 
be low-entropy and therefore the space of secret stings is efficiently enumerable. 
Instead, they achieve the best possible security: the only way for an adversary 
to check a password guess is by participating in an interactive protocol session. 

There are two main flavors of PAKE: 

– Symmetric PAKE [ 4, 6, 7, 9,11,23– 26] requires both parties to hold the pass-
words in cleartext. 

– Asymmetric PAKE [ 7,15,16,29,30] is more suitable for a client-server set-
ting, where the server holds only a one-way digest of the password. 

Asymmetric PAKE has the additional property that, even in the setting where 
the server’s password file might be compromised, an adversary must perform an 
(offline) dictionary attack to recover any passwords. In other words, the server 
cannot store its passwords in the clear, and furthermore never sees the raw 
passwords throughout the execution of the protocol, which is another advantage 
over the password-over-TLS approach. The gold standard security definition for 
asymmetric PAKE is strong asymmetric PAKE (saPAKE) [ 10,21] where, 
in addition to the asymmetric PAKE security requirements, computation for the 
offline dictionary attack must be performed after compromising the server. This 
distinction is analogous to the server holding a digest H(pw) for a public hash 
function H vs the server holding a digest H(s; pw) for some uniform and secret 
“salt” s. In the first case (aPAKE), all possible digests can be computed before 
server compromise at which point the adversary immediately learns the correct 
password; while in the second case (saPAKE), the adversary must wait until 
server compromise before launching an offline attack. 

The original security notion for PAKE is game-based [ 6]. In recent years, the 
standard has switched to the stronger notion in the Universal Composability 
(UC) framework [ 11,15,21], which supports arbitrary composition of the pro-
tocol (with itself or with other protocols). Variants of the original UC PAKE 
notion have been proposed, including relaxations of the UC functionality [ 1] and  
combining the security notion with idealized models [ 2]. 

Password Typos. Human-typed passwords are prone to typos, which prevent 
successful authentication. Some online services (in which the server sees the 
login password in the clear) are known to correct for some password typos. 
For example, Facebook accepts passwords with inverted upper/lowercase (e.g., 
erroneous Caps Lock) or an erroneously capitalized first letter (possible in many 
input methods on mobile phones) [ 28]. 

Chatterjee et al. [ 12] were the first to formally study the security implications 
of correcting minor typos—i.e., allowing users to authenticate even if they make 
certain incidental typos. In their study of real-world login attempts to Dropbox, 
they found that 20% of users that experienced a failed login attempt would have 
saved at least 1 min of time if simple typo-correction had been enabled. They
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found that 3% of users that experienced a failed login attempt were never able 
to successfully log in, even though they used a password that would have been 
accepted under a simple typo-correction scheme. 
Tolerating Typos in PAKE. It is relatively trivial to tolerate typos when the 
server sees the user’s password attempt in the clear—i.e., when authenticating 
with password-over-TLS. It is a challenge to tolerate typos in the PAKE setting, 
when neither party sees the other’s password attempt. Previous constructions of 
fuzzy PAKE variants have achieved varying levels of security. Dupont et al. [ 13] 
constructed two fuzzy-input tolerant symmetric PAKE protocols, one from gar-
bled circuits and oblivious transfer which can handle “closeness” for any effi-
ciently computable circuit (in the language of our construction, any efficiently 
computable similarity predicate) and one from PAKE which can handle fuzzy 
inputs in a small hamming ball. The former is a feasibility result that is inef-
ficient, whereas the latter was later found to be insecure [ 8]; [ 8] also presented 
another fuzzy symmetric PAKE protocol. 

Moving the result for fuzzy PAKE to cover asymmetric security, Erwig et 
al. [ 14] constructed two fuzzy-input tolerant asymmetric PAKE protocols, one 
from error correcting codes and oblivious transfer which can handle fuzzy inputs 
in a hamming ball and the second which compiled aPAKE into a fuzzy protocol 
which achieves a weaker functionality but can handle fixed size closeness notions. 
Namely, the functionality has been weakened to allow for a fixed number of 
unstructured guesses in an online attack. Pongmorrakot and Chatterjee [ 27] 
similarly construct a fuzzy PAKE protocol which has security guarantees in the 
face of server compromise. However, their result similarly allows the server to 
make a fixed number of unstructured guesses by design, and allows the adversary 
to impersonate the user on compromise of the server—something which is not 
standard for aPAKE protocols. 

Crucially, none of the results above achieves strong asymmetric security; even 
the fuzzy aPAKE protocols allow the adversary to perform some computation 
before server compromise, and recover the password immediately once the server 
is compromised. This is the starting point of our work: 

Can we construct a typo-tolerant strong aPAKE protocol resilient to pre-
computation attacks, preferably with reasonable efficiency? 

Näıve Approach. Let Σpw denote the set of allowable typos of the correct pass-
word pw. The server would like to authenticate any user who enters a pass-
word pw, from Σpw. The standard PAKE setting corresponds to the special case 
Σpw = {pw}. 

A natural way to tolerate typos in saPAKE is to run t independent instances 
of saPAKE, where t = |Σpw|. In more detail: the server holds a password digest 
for each ~pw ∈ Σpw. The client holds a password attempt pw, and tries to authen-
ticate t times—once against each of these digests. 

This näıve approach to typo tolerance has two main drawbacks: 
– Consider what would be the best possible security for a single authentica-

tion attempt of typo-tolerant saPAKE: A corrupt client should learn whether
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pw, ∈ Σpw, for  only one guess pw,. A corrupt server should learn whether 
pw, ∈ Σpw for only one guess pw. 
The näıve protocol leaks more than this. Namely, a corrupt client can learn 
whether pw,

i ∈ Σpw for t different and arbitrary guesses pw,
i. A corrupt server 

can learn whether pw, ∈ S for a completely unstructured set S of cardinality 
t (rather than a “typo ball” Σpw around a single center pw). In other words, 
the näıve protocol makes online dictionary attacks t times faster (in terms of 
number of authentication attempts), for either party. 
Fixing the issue for a corrupt client is relatively straight-forward. But it is 
non-trivial to prevent a corrupt server from making t unstructured guesses 
per authentication attempt. 

– All costs of the protocol scale with the number t of allowed typos. For most 
password-typo policies (described above), t is indeed a very small constant, 
so this overhead is not prohibitive. But it is nontrivial to make any aspect of 
the protocol’s complexity scale sublinearly with t. 

1.1 Our Results 

We show how to resolve both of the problems described above by giving an 
efficient protocol for strong asymmetric fuzzy PAKE (safPAKE). Our 
protocol achieves best-possible security (with respect to password guesses) in 
the Universal Composability (UC) framework, with communication independent 
of t for a wide definition of “closeness” which includes a common subclass of 
the similarity predicates considered by Erwig et al. [ 14]. Our construction can 
be viewed as an extension of the saPAKE protocol by Jarecki, Krawczyk, and 
Xu [ 21], which is a compiler from any UC oblivious PRF (OPRF) and any UC 
aPAKE to UC saPAKE  2; the main difference is that we add a one-round Private 
Information Retrieval (PIR) protocol between the OPRF and aPAKE stages. 
The saPAKE protocol in [ 21] can be viewed as a special case of our protocol 
with the equality check function for a similarity predicate and the usual PAKE 
leakage functions. 

Additionally, our protocol up to the aPAKE stage can be seen independently 
as an input-normalization protocol where a client inputs a string x, and returns 
a “corrected” version of their string x. This normalization achieves the flavor of 
security needed for saPAKE—namely, resistance to online dictionary attacks and 
to precomputation for offline dictionary attacks. We believe that this conceptual 
contribution may find independent applications elsewhere. 

A final contribution is to modify the 2-hash-Diffie-Hellman (2HDH) OPRF 
protocol of [ 20,21] to support a kind of key-extraction property that is neces-
sary for our safPAKE protocol. As our OPRF functionality is key-aware and our 
OPRF protocol allows for key extraction, we believe that our safPAKE protocol 
is amenable to an interactive registration phase requiring only a single message

2 The provided security proof in [21] has not been updated to their new saPAKE 
security model. 



614 I. McQuoid et al.

and without the honest server receiving the client’s clear-text password. As a 
comparison, an interactive registration for OPAQUE [ 21] would require at least 
three messages as the OPRF would need to be evaluated in an online step. 
This is because OPAQUE’s OPRF functionality does not have a notion of trans-
ferrable OPRF keys 3. We leave modeling interactive registration in aPAKE, and 
its extensions, as future work. 

2 Preliminaries 
2.1 (Keyword) PIR 

Our safPAKE protocol requires a (single-server) keyword PIR protocol. In key-
word PIR, the server holds a key-value mapping DB : ui |→ vi and the client 
holds a key u. The outcome of the protocol is that the client learns (at least) 
v := DB[u], if it exists, while the server learns nothing about u. 

We write our safPAKE protocol in terms of a 1-round PIR protocol for the 
sake of simplicity, although our protocol can be easily extended to use a multi-
round PIR. Formally, a (1-round) keyword PIR protocol consists of the following 
algorithms: 

– PIR.Request(u) → (s, req) 
– PIR.Respond(req, DB) → resp 
– PIR.Finish(s, resp) → v 

It must satisfy the following properties: 

– Correctness: For all key-value mappings DB, and for all keys u appearing 
in DB, the following returns true with overwhelming probability: 

(s, req) ← PIR.Request(u) 
resp := PIR.Respond(req, DB) 
return DB[u] =  PIR.Finish(resp, s) 

There is no correctness required when u is not a key appearing in DB. 
– Client Privacy: For all u, u,, the following distributions are indistinguish-

able: 

(s, req) ← PIR.Request(u) 
return req ≈ (s,, req) ← PIR.Request(u,) 

return req

3 However, we provide evidence that an OPAQUE analog leveraging our OPRF func-
tionality is secure and, therefore, OPAQUE would likely enjoy a single-message inter-
active registration phase. 
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Our protocol requires a deterministic PIR.Respond algorithm, which is stan-
dard since PIR.Respond is involved only in correctness, but not privacy. 

Candidate Instantiations. In trivial PIR, req is empty and PIR.Respond := DB. 
A classic keyword PIR protocol has req := Enc(s, u), for a symmetric-key 

fully homomorphic encryption scheme. The server interpolates a polynomial P 
such that P (u) =  DB[u] for all u ∈ DB. It then homomorphically evaluates the 
polynomial on req to obtain an encryption of P (u) =  DB[u]. 

2.2 Authenticated Encryption 

Let E = (Enc, Dec) be a symmetric encryption scheme, with key space K, and  
where plaintexts of length n are encrypted to ciphertexts in the set C(n). 

Definition 1. We say that E satisfies authenticated encryption (AE$) 
security if the following two stateful oracles are computationally indistinguish-
able: 

k ← K  
enc(m ∈ M): 

return Enc(k, m) 
dec(c ∈ C): 

return Dec(k, c) 

≈ 

// ⊥ is the default value for undefined keys 
ptxts[] := ⊥ 
enc(m ∈ M): 

c ← C(|m|) 
ptxts[c] :=  m 
return c 

dec(c ∈ C): 
return ptxts[c] 

3 Oblivious PRF 

Our protocol requires an Oblivious PRF (OPRF), but prior OPRF ideal func-
tionalities [ 19– 21] from related work are not suitable for our purposes. In our 
protocol, when an honest client authenticates using a valid password, she learns 
the server’s OPRF key. This key gives her the ability to evaluate the OPRF 
without the server’s help, which is necessary for some consistency checks in the 
protocol. 

Existing OPRF functionalities do not explicitly have the notion of a “key” 
as a string that can be transferred or encrypted. In the OPAQUE protocol for 
instance, only an adversary can learn the server’s OPRF key—when it com-
promises the server storage. This is modeled in the protocol by the adversary 
sending an explicit “compromise” command to the OPRF functionality, which 
grants the adversary the ability to evaluate the OPRF. 

In this section, we describe an ideal OPRF functionality and corresponding 
protocol that supports transferrable PRF keys. The protocol is based on the 
2-hash-Diffie-Hellman (2HDH) OPRF protocol of [ 20]. The main challenge in
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our setting is identifying which key a corrupt server is using in a specific OPRF 
interaction. This is a challenge because the key is a Diffie-Hellman exponent and 
thus difficult for the simulator to extract. We accomplish this by strategically 
adding another random oracle hash, resulting in what we call the 3-hash-Diffie-
Hellman (3HDH) OPRF. 

3.1 The Functionality 

The OPRF functionality is presented in Fig. 2. It mostly follows the OPRF 
functionality used in [ 21]. The crucial difference is that our functionality has an 
explicit notion of server’s PRF key, resulting in the following concrete modifi-
cations: 

– Upon initialization, the functionality generates a random string k as the key 
for the server. 

– As mentioned above, there is no command to mark a server instance as “com-
promised” unlocking the adversary’s ability to make offline PRF evaluation 
queries. Instead, anyone can attempt an offline evaluation by providing a 
candidate key. The correct key will give outputs consistent with the honest 
server, whereas each other key will correspond to an independent random 
function. 

– The explicit PRF key can be used to index random functions. Since a man-
in-the-middle adversary can replace the honest server’s key with one of its 
own choosing, there might be multiple independent random functions, and 
the functionality needs to keep track of all of them. In the OPRF of [ 21], the 
simulator cannot extract those keys, but it can detect when the same key is 
used twice; therefore, the functionality maintains these random functions by 
letting the simulator supply the “index” of the chosen function. 
In our OPRF protocol, the simulator can often extract the correct key. In 
these cases, the index of the random function can be replaced by the actual 
key. However, there remain adversarial behaviors that result in a consistent 
random function (which the simulator can identify), but which are not con-
sistent with any key. Although the simulator cannot extract, it turns out that 
neither can the adversary! More specifically, even the adversary cannot pro-
duce any string k that explains their behavior in terms of the honest PRF 
function. Hence, these random functions are non-transferrable, and we model 
them using the “index” approach of [ 21]—that is, the simulator can detect 
when the same index is being used and inform the functionality. functionality 
represents transferrable keys (i.e., actual keys) as (k, 1) and non-transferrable 
keys (i.e., indices) as (k, 0). Honest parties can make offline PRF queries only 
on a transferrable key, which models the fact that there is no key that can 
make the honest PRF function agree with this random function.
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3.2 The 3-Hash Diffie-Hellman Protocol 

The 2-hash Diffie-Hellman (2HDH) OPRF protocol [ 20] is an oblivious protocol 
for evaluating the following PRF: 

F (k, x) =  H2(x, H1(x)k) 

Because k is used as an exponent, it is not feasible for the simulator to extract 
k. The protocol is proven secure when H1,H2 are random oracles, and the range 
of H1 is a group in which the One-More Gap Diffie-Hellman (OMGDH) assump-
tion [ 5,20] holds. 

Our modification is to simply apply a random oracle to k before running 
2HDH. The result is an oblivious protocol for evaluating the PRF: 

F (k, x) =  H2(x, H1(x)H3(k)) 

The rest of the protocol is unchanged. We call the resulting protocol 3-hash 
Diffie-Hellman (3HDH) for obvious reasons. The formal description is in 
Fig. 1. 

Fig. 1. Protocol 3HDH 

Security. Our 3HDH protocol (Fig. 1) realizes the OPRF functionality FOPRF 

(Fig. 2) under the (N = QH + Q, Q)-OMGDH assumption, where QH is the 
number of the adversary A’s H1 queries, and Q is the number of PRFEval mes-
sages issued by the environment Z. We assume w.l.o.g. that A never repeats a 
random oracle query. Below we describe the simulator.
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1. Sample r1, . . . , rN ← Zp, and compute g1 := gr1 , . . . , gN := grN . Initialize 
indices J := 1 (index of the current random group element gJ to be used) 
and I := 1 (the current function index). 

2. On A’s query H1(x), 4 set DL[x] :=  rJ , H1(x) :=  gJ , and  J := J + 1.  
3. On (PRFEval, sid, ssid, S) from  FOPRF, record ClientSession[ssid] := 

(rJ , a  := gJ) and send (sid, ssid, a) from  C to S and (sid, ssid, a) to  FOPRF. 
Set J := J + 1.  

4. On (PRFSendComplete, sid, ssid, S) from  FOPRF, and (sid, ssid, a∗) from  A 
sent to S, send (sid, ssid, a∗) to  FOPRF, and check if ServerKey is defined. 
If not, sample h ← Zp and record ServerKey := (h, gh). Either way, set 
b := (a∗)h, and send (sid, ssid, b) from  C to S. 

5. On (sid, ssid, b∗) from  A sent to C, retrieve (r, a) :=  ClientSession[ssid] and 
compute z := (b∗)1/r. 
A. If there exists a previous H3(k∗) query with b∗ = aH3(k

∗), send 
(PRFReceiveComplete, sid, ssid, C, (k∗, 1)) to FOPRF. 

B. Otherwise, if ServerKey is defined, send (PRFReceiveComplete, sid, ssid, 
C, S) to  FOPRF. 

C. Otherwise, if there exists a record z = index[i], send 
(PRFReceiveComplete, sid, ssid, C, (i, 0)) to FOPRF. 

D. Otherwise, set index[I] :=  z and send (PRFReceiveComplete, sid, ssid, C, 
(I, 0)) to FOPRF. Set I := I + 1.  

6. On A’s query H2(x, u), if DL[x] =  r, set  H2(x, u) :=  y where y is defined as 
follows: 
A. If there exists a previous H3(k) query with gH3(k) = u1/r, send 

(OfflineEval, sid, (k, 1), x) to  FOPRF and obtain FOPRF’s response 
(OfflineEval, sid, y). 

B. Otherwise, if S is not compromised and (h, z) :=  ServerKey is defined 
with z = u1/r, choose a new sub-session id ssid∗ that has not appeared 
anywhere else in the game, send (PRFEval, sid, ssid∗, ⊥, x) followed by 
(PRFReceiveComplete, sid, ssid∗, Sim, S) to  FOPRF, and obtain FOPRF’s 
response (PRFReceiveComplete, sid, ssid, y). If FOPRF does not respond, 
abort. 

C. Otherwise, if there exists a record z := index[I] such that z = u1/r, 
send (OfflineEval, sid, (i, 0), x) to  FOPRF and obtain FOPRF’s response 
(OfflineEval, sid, y). 

D. Otherwise, set index[I] =  z, send (OfflineEval, sid, (I, 0), x) to  FOPRF and 
obtain FOPRF’s response (OfflineEval, sid, y). Set I := I + 1.  

If H2(x, u) is still undefined, set H2(x, u) ← {0, 1}l. 
7. On A’s query H3(k), send (TestKey, sid, k) to  FOPRF. 

A. If (h, z) := ServerKey is defined, and FOPRF responds with 
(TestKey, sid, S, k), set H3(k) :=  h. 

B. If ServerKey is undefined, and FOPRF responds with (TestKey, sid, S, k), 
sample h := H3(k) ← Zp and set ServerKey := (h, gh). 

C. If FOPRF responds with (TestKey, sid, S, ⊥), set H3(k) ← Zp.

4 The session id is part of the input of all RO queries and is omitted. 
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We briefly compare our simulator and the simulator for 2HDH [ 21, 
Appendix B]: 

In the interactive OPRF protocol, the client sends a := H1(x)r, and the 
server raises this value to the exponent H3(k), resulting in b := H1(x)rH3(k). 
Following the logic of 2HDH, when the adversary is playing the role of a server, 
the simulator is able to detect when the same exponent is used. The 2HDH 
simulation strategy does not give any way to extract this exponent. In our 3HDH 
variant, the simulator has access to all the queries made by the adversary to H3. 
Therefore, it can test all of them to see whether the server has raised the group 
element to that power. If so, the simulator has identified the actual key k (step 
5A). Otherwise, the simulator is still able to associate an “index” of a random 
function, as in the simulator for 2HDH. Additionally, although the simulator 
does not know the effective exponent used by the server, no future (fresh) query 
to H3(k) will result in that exponent, except with negligible probability. This 
random function therefore is associated with a non-transferrable key (steps 5B 
and 5C). 

Whenever an adversary queries H2(x, u), the simulator checks whether u = 
H1(x)H3(k) for any k that has been previously queried to H3. If so, then this is 
an offline query for (k, x) (step 6A). If not, then this may represent the adversary 
completing an interactive query; the simulator detects these in the same manner 
as in 2HDH (steps 6B–6D). 

Finally, our OPRF functionality gives to the adversary a mechanism TestKey 
to check whether it has successfully obtained an honest server’s key. This is 
necessary because the simulator will simulate an honest server using a random 
exponent. Then later, the adversary may learn that server’s key k through the 
expected mechanism of the protocol. When that adversary queries H3(k), the 
simulator will need to detect this k as a special value, and program H3’s output 
to be the exponent that it has been using (step 7A). 

The security argument is very similar to that in [ 19], so we only provide a 
sketch. The only case where the simulator might fail to generate a view iden-
tical to the real-world view lies in step 6B, when FOPRF does not respond to 
the simulator’s PRFReceiveComplete message. This event can be reduced to the 
one-more gap Diffie-Hellman assumption: the reduction generates g1, . . . , gN by 
querying the h-th power oracle, and in steps 5C and 5D, even without knowing 
r1, . . . , rN , the reduction can use the DDH oracle to check if DL(a, b∗) is equal to 
some other DL(a,, (b∗),) (where a,, (b∗), are the values that appear in a previous 
client sub-session) and determine the index accordingly. Similarly, in step 7A the 
reduction can check if DL(gH3(k) , u) =  DL(x, gj), and in steps 7C and 7D it can 
check if DL(gj , u) is equal to some DL(a,, (b∗),) in a previous client sub-session. 
In sum, the reduction can run the simulator by replacing any computation using 
r1, . . . , rN with DDH oracle queries, and when the “bad event” happens it can 
break the one-more gap Diffie-Hellman assumption.



620 I. McQuoid et al.

Fig. 2. Ideal functionality FOPRF 

4 Security Model 

In this section, we detail the security modeling for fuzzy strong asymmet-
ric PAKE. Our functionality FsafPAKE (Fig. 3, Fig. 4) merges the fuzzy pass-
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word testing interfaces of FfaPAKE [ 14] and the strong asymmetric security of 
FsaPAKE [ 21]. We note that this is not the standard saPAKE functionalty, and 
our use of a relaxed OPRF functionality (as [ 21] does) requires that we inherit 
their functionality as a base. The three changes we have made to FsaPAKE are 

– We parameterize FsafPAKE to use any similarity predicate σ instead of the 
single definition of similarity (σ(x, x,) :=  x ? = x,). 

– We parameterize FsafPAKE to use two leakage functions lC, lS instead the 
default leakage function (lP(x, x,) :=“correct guess”). 

– We include Abdalla, Hasse, and Hesse’s strengthening of FPAKE’s NewKey 
interface [ 3]. Namely, we remove the clause where if either of the parties are 
corrupted, the adversary may set the all parties’ keys—even if the adversary 
hasn’t successfully attacked the session. 

We note that FsafPAKE can be parameterized with any predicate and leakage, 
however our protocol can support only certain predicates and leakage. We elab-
orate later when describing the protocol. 

4.1 Leakage Function 

Following previous formalizations of fuzzy PAKE [ 13,14] we provide a generalized 
OfflineTestPwd and TestPwd interface which can return leakage to the caller on 
a correct guess. Dupont et al. [ 13] define three leakage functions, based on what 
is leaked in the case of far/medium/close password guesses (under some metric). 

We handle leakage slightly differently. We allow the functionality to be 
parameterized by two different leakage functions: One for the client lC and one 
for the server lS. Specifically, if the password test is against party P, we use  
leakage function lP. In the case where the passwords are similar, we give the 
adversary lP(pw, pw,) in an all-or-nothing situation. In any other case, the func-
tionality simply replies “wrong password.” Our final safPAKE protocol supports 
a range of σ predicates, and leakage lS(pw, pw,) =  pw, lC(pw, pw,) =“correct 
guess”. That is, the client learns the “correct” password and key agreement suc-
ceeds when the two passwords are similar while from the server’s perspective, 
the key agreement simply succeeds or doesn’t. 

4.2 Functionality 

In our functionality, we consider an asymmetric interaction where one party 
takes on the role of the client C who has a password as input pw, and the other 
takes on the role of the server S who holds a “password file” file which is a 
digest of some password pw. The goal of the interaction is to arrive at a shared 
key exactly when σ(pw, pw,) /= ⊥. 

Since the parties are assumed to supply low-entropy passwords, an integral 
security property of PAKE lies in allowing the adversary exactly one password 
guess per session. FsafPAKE provides this interface in the form of the TestPwd 
query. This query can be sent once per subsession and provides the adversary
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a single password guess. We note that a single password guess will encompass 
a potentially large “guessing surface” of passwords that satisfy the similarity 
predicate with the target password. This is inherent to any PAKE protocol that 
supports fuzzy matches, and it is important to note that this is different from 
allowing an adversary an arbitrary “guessing surface” of the same size. An adver-
sary can guess only the “similarity neighborhood” Σpw∗ of one password pw∗. 
This can be seen in the TestPwd interface which only allows a single password 
as input. 

In (strong) asymmetric PAKE we must additionally account for the adver-
sary learning the server’s long-term secrets. To accomplish this, the adversary 
is capable of sending a corruption query StealPwdFile to the server and receiv-
ing the server’s password file file. We distinguish such a query from the static 
Byzantine corruptions by not allowing the adversary to control the server or 
to modify the server’s long-term storage. To ensure that precomputation does 
not allow the adversary to “instantly” learn passwords upon compromise, the 
OfflineTestPwd interface is only available after compromise, but allows the adver-
sary an unlimited number of guesses without online interaction. This models the 
adversary’s ability to perform a dictionary attack against the server’s file, which 
is inevitable since the adversary learns enough to simulate login attempts against 
the server’s password file. Aside from password guesses, the adversary may now 
impersonate the server through the Impersonate query which allows the server 
to use the password file file to connect with a client. No similar imperson-
ation interface exists for the client. This implies that the server must identify 
the password underlying the password file to impersonate a client to the honest 
server. 

5 Protocol Overview 

In this section, we build up the intuition for our safPAKE protocol, step by step. 
Step 0: JKX Compiler Jarecki, Krawczyk, and Xu, in their seminal paper on 
strong asymmetric PAKE (saPAKE) [ 21], provided a compiler from plain aPAKE 
to saPAKE. The server holds a PRF key k and the “aPAKE digest” of rw = 
F (k, pw), where F is a PRF. To authenticate, the client with input pw, learns 
F (k, pw,) via an oblivious PRF (OPRF) protocol. The parties then perform 
aPAKE where the client uses rw, := F (k, pw,) as input, and the server uses its 
digest of rw. Authentication succeeds if rw, = rw, which happens only when 
pw, = pw. 
Step 1: Run Many Instances. The intuitive starting point for safPAKE is to run 
t parallel instances of saPAKE, where t is the number of acceptable mistyped 
passwords. The client, who holds a password guess pw,, should use it as input 
to all instances. The server holds an saPAKE password file for each possible 
mistyping of the correct password pw. In this way, pw, is compared against 
every mistyping of pw. 

This näıve safPAKE protocol has several deficiencies, which we address next. 
First, both parties can make t guesses of the other’s password in each authenti-
cation attempt. These t guesses can be completely unrelated—i.e., they need not
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Fig. 3. Ideal functionality safPAKE (part 1). The framed text are generalizations of 
FsaPAKE [21]. 

correspond to a “typo neighborhood” around a single correct password. Second, 
the protocol is a factor t more expensive than saPAKE. 
Step 2: Reuse OPRF. The client is supposed to use the same pw, guess to each 
of the t saPAKE instances. It is easy to enforce this by using just a single OPRF
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Fig. 4. Ideal functionality safPAKE (part 2). The framed text are generalizations of 
FsaPAKE [21].



How to Tolerate Typos in Strong Asymmetric PAKE 625

instance of t of them. With just one OPRF instance, the client learns F (k, pw,) 
for its single password guess pw,. Now we need a way to check whether this 
OPRF output is consistent with one of the allowed mistypings of pw. 

A natural way to do this is for the server to hold and send “correction cipher-
texts” to the client. For every allowed mistyping ~pw of the correct password pw, 
there is a ciphertext that encrypts rw = F (k, pw) under the key F (k, ~pw). Sup-
pose the client obtains F (k, pw,) from an OPRF instance, and also holds these 
ciphertexts. Intuitively, if the client’s OPRF input is a valid mistyping of pw, 
then she can decrypt one of these ciphertexts and obtain rw = F (k, pw). If her 
OPRF input is not a valid mistyping of pw then the ciphertexts are meaningless 
to her. Then the parties can perform a single aPAKE instance, where the server 
holds a digest of rw. 
Step 3: Check All the Correction Ciphertexts. In step 2, we successfully restricted 
the client to a single password guess pw,. However, the server can still make 
t completely unrelated guesses of the client’s password. It can encrypt rw, t 
times, under the keys F (k, pw1), . . . , F  (k, pwt), where the pwi’s are completely 
unrelated instead of being the set of valid mistypings of a single password. As 
the server must be able to authenticate the client against t possible inputs, the 
server will always be allowed t guesses. However, in the best case scenario, the 
server must have all of these guesses (structurally) be known by the client upon 
connection. 

We fix this problem with the following two ideas: First, the correction cipher-
texts are encryptions of (k, pw) 5 instead of encryptions of rw. Second, the cor-
rection ciphertexts should be computed as a deterministic function of k and pw. 
Specifically, the randomness used for encryption should be derived from k and 
pw. 

With these two ideas in place, whenever the client successfully decrypts a 
correction ciphertext, she obtains (k, pw). From (k, pw) she can not only compute 
rw = F (k, pw) herself, but also compute the entire set of correction ciphertexts. 
Importantly, she can compute them knowing the set of valid mistypings of pw. 6
If she realizes that the server did not send this exact collection of ciphertexts, 
she will abort the interaction. 

Intuitively, if the server sends correction ciphertexts that do not correctly cor-
respond to the valid set of mistypings of a single password, then the client will 
always abort the protocol—either because the client couldn’t open any cipher-
text, or because the client opened a ciphertext but then detected that the set of 
ciphertexts was incorrect. 

Attentive readers will notice that there is some circularity in the new correc-
tion ciphertexts, where its plaintext (k, pw) is hidden, because the encryption 
key F (k, ~pw) is random, because the PRF seed k is hidden. We must indeed 
be careful about such circularity! Fortunately, saPAKE protocols like OPAQUE

5 The server actually provides a way for the client to reconstruct pw instead of provid-
ing pw directly, but for simplicity in this section, we write the plaintexts as containing 
pw. 

6 This requires the password typo policy to be public. 
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already require a very strong OPRF where F (k, x) can look random even to 
someone who knows k—provided that they haven’t queried the PRF at F (k, x) 
yet. Such a strong [O]PRF is enough to resolve the apparent circularity. 
Step 4: Compress Communication with PIR. As a result of the previous step, we 
have a safPAKE protocol where both the client and server can make only a single 
password guess. However, the protocol’s communication cost still scales with t, 
the number of valid mistypings. This is due to the t correction ciphertexts, which 
the server must send to the client. 

We can compress this communication by using PIR. In our safPAKE protocol, 
there is only one ciphertext that the client can decrypt using its key F (k, pw,). 
If the client can find a way to “identify” which ciphertext to decrypt, then 
she can use (single-server) keyword PIR to fetch it from the server with low 
communication. 

In more detail, let us interpret the output of F (k, ~pw) in two pieces: 
tag

~pw||ek
~pw := F (k, ~pw), where ek is an encryption key and tag is a random iden-

tifier. The server can prepare a key-value mapping that maps tag
~pw to the correc-

tion ciphertext Enc(ek
~pw; (k, pw)). 7 The client learns F (k, pw,) = tagpw,||ekpw, , 

and then initiates a keyword PIR protocol on input tagpw, . If this is the tag cor-
responding to some ciphertext, then the client will obtain that ciphertext and 
be able to decrypt it as usual. 

But whenever the client successfully decrypts the ciphertext, it must then 
recompute the entire set of correction ciphertexts and compare to what the 
server has sent. However, now the server is not actually sending the entire collec-
tion of ciphertexts, but is only running a PIR protocol. We resolve this problem 
by observing that typical PIR protocols can have deterministic server behav-
ior (because PIR has no privacy guarantees for the server). So the client can 
recompute (in her head) the entire collection of correction ciphertexts, and check 
whether the server followed the deterministic PIR protocol with this collection 
as its input. 

The consistency check in Step 3 (the client recomputes all the correction 
ciphertexts and compares to what the server previously sent) is in fact an instan-
tiation of this deterministic-PIR consistency check, because sending the entire 
ciphertext database is a trivial PIR protocol. 

5.1 Similarity Predicates 

As we briefly introduced in the previous section, the client needs to know the set 
of valid mistypings of her input pw, in order to verify the server’s computation. 
We define this set in terms of a similarity predicate σ. In traditional PAKE, 
we concern ourselves with a password dictionary D from which the parties can 
choose their inputs from. As we now must consider errors, we use an expanded 
dictionary ~D in our definitions.

7 For simplicity, we are ignoring the encryption randomness which also should be 
derived from the output of F (k, ~pw). 
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Definition 2 (Similarity Predicate). A similarity predicate is an effi-
ciently computable function σ : ~D × ~D → {⊥}  ∪  {0, 1}κ along with an efficiently 
computable reconstruction function ρ : ~D × {0, 1}κ → {⊥} ∪ ~D such that 

– correctness: ∀x, x, ∈ ~D such that y := σ(x, x,): y /= ⊥ =⇒ ρ(x,, y) =  x. 
– reconstruction bounded: ∀x ∈ ~D, y ∈ {0, 1}κ such that z := ρ(x, y): z /= 
⊥ =⇒ x ∈ Σz where Σz := {x, | σ(z, x,) /= ⊥}. 

In other words, x is said to be “similar” to x, if and only if x can be “recon-
structed” from x,: ρ(x,, σ(x, x,)) = x. The set Σx is then said to be the set of all 
values “similar” to x. 

We require four additional properties of σ: 

– self similarity: ∀x ∈ ~D, σ(x, x) /= ⊥. 
– input independent size: ∀x ∈ ~D, Σx is of some fixed cardinality n. 
– efficient enumerability: ∀x ∈ ~D, Σx can be enumerated in polynomial time. 
– predictable hints: ∀x ∈ ~D, σ(x, Σx) =  {1, 2, 3, . . .  , n}. 

We assume that ~D, and  n are part of σ’s description. It is important to note 
that our definition of predictable hints may seem stronger than necessary for our 
proof. Indeed, the set does not need to be exactly {1, 2, 3, . . .  , n}, but rather just 
needs to be some fixed set. We use {1, 2, 3, . . .  , n}, without loss of generality, 
to not bog down notation when we use the set’s lexicographic ordering as an 
indexing set. We also conjecture that given a PIR protocol which hides the size 
of the server’s database, we can drop the input independent size property for a 
weaker property which only requires an upper bound on the size of Σx. 

The general definition covers many fuzzy distance functions such as rep-
etition mistakes, capitalization errors, and hamming distance for fixed length 
passwords. This is a similar notion to the implicit requirements for the aPAKE 
to fuzzy aPAKE compiler due to Erwig et al. [ 14]. Additionally, for any symmet-
ric similarity predicate which is also efficiently enumerable, we may generically 
implement σ(x, x,) by outputting the index of x in Σx, (following some known 
ordering) and ρ(x,, y) can then output the yth element of Σx, . 

6 A Strong Asymmetric Fuzzy PAKE Protocol 

In this section we describe a compiler from an OPRF, PIR protocol, and an 
aPAKE protocol to a safPAKE protocol. The actual protocol isn’t far from the 
intuition we have built so far and we present a graphical representation of the 
protocol in Fig. 5. 

Registration In the registration phase, the server begins by interacting with 
the OPRF functionality to receive the user-specific key k and computes its salted 
password rw from F (k, pw). The server then initializes the aPAKE server stor-
age using rw and constructs its local PIR database centered around pw. This 
is accomplished by mapping password tags fpwi 

.tag to encryptions of the corre-
sponding reconstruction hints dpwi 

:= σ(pw, pwi).
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Fig. 5. Graphical representation of our protocol. See text for omitted details. 

1. Upon receiving (StorePwdFile, sid, C, pw), S sends (Init, sid) to FOPRF and 
receives (Init, sid, k). 

2. S then sends (OfflineEval, sid, (k, 1), ~pw) to  FOPRF for each ~pw ∈ Σpw := 
{~pw ∈ ~D | σ(pw, ~pw) /= ⊥} 

3. Upon receiving (OfflineEval, sid, f
~pw), S parses f

~pw as four equilength strings 
f

~pw.tag||f
~pw.ek||f

~pw.rs||f
~pw.rw each of length κ. We recall that as σ provides
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predictable hints, we may use these hints as an ordering for passwords Σpw = 
{pw1, pw2, . . . ,  pwn}. 

4. S then generates keyword PIR database DB := {fpwi 
.tag |→ 

E .Enc(fpwi 
.ek; (k, dpwi 

:= σ(pw, pwi)); fpwi 
.rs)} for i ∈ {1, 2, . . .  , n}. 

5. Finally, S sends (StorePwdFile, sid, C, fpw.rw) to  FaPAKE and stores file[sid] := 
(DB, k). 

Server Compromise 
1. Upon receiving (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to 

A. 
Login 
During login, the client learns a PIR tag associated with their password pw,

by evaluating the OPRF with the server. The client and server then perform 
a PIR exchange on the client’s tag. Once the client receives the response, the 
client decrypts the reconstruction hint d, and reconstructs the server’s password 
pw := ρ(pw,, d,). The client then verifies the server’s messages and runs an 
aPAKE subsession with the server on the salted password rw computed from 
F (k, pw). 
1. Upon receiving (ClientSession, sid, ssid, S, pw,), C sends (PRFEval, sid, ssid, S, 

pw,) to  FOPRF receiving (Prefix, sid, ssid, prfxC). 
2. Upon receiving (ServerSession, sid, ssid), S retrieves (DB, k) :=  

file[sid] and sends (PRFSendComplete, sid, ssid) to FOPRF receiving 
(Prefix, sid, ssid, prfxS). 

3. Upon receiving (PRFReceiveComplete, sid, ssid, f) from  FOPRF C parses f as 
four equilength strings f.tag||f.ek||f.rs||f.rw then C computes (state, req) ← 
PIR.Request(f.tag) and sends (sid, ssid, req) to S. 

4. Upon receiving (sid, ssid, req) from C, S computes resp := 
PIR.Respond(req, DB), queries FRO on input DB receiving h ∈ {0, 1}κ 

and sends (sid, ssid, (resp, h)) to C. 
5. Upon receiving (sid, ssid, (resp, h)) from S, C computes v := 

PIR.Finish(resp, state). 
1. C computes z := E .Dec(f.ek, v) and checks if z parses as (k, ∈ {0, 1}κ 

, d, ∈ 
{0, 1}κ ). 

2. If so, C then sets pw := ρ(pw,, d,). 
3. C sends (OfflineEval, sid, (k,, 1), pwi) to  FOPRF for each pwi ∈ Σpw and 

catalogs the responses fpwi 
. 

4. C generates PIR database DB, using k, and the fpwi 
then computes 

resp, := PIR.Respond(req, DB,). 
5. C queries FRO on input DB, receiving h, ∈ {0, 1}κ . 
6. C checks if resp, = resp and h, = h. 
7. If this check fails, parsing z failed, or fpw, /= f C sets fpw.rw ← {0, 1}κ . 
8. C sends (ClientSession, sid, ssid,, S, fpw.rw) to  FaPAKE where ssid, = 

ssid||prfxC||req||resp||h. 
7. S sends (ServerSession, sid, ssid,) to  FaPAKE where ssid, = 

ssid||prfxS||req||resp||h. 
8. Either party, upon receiving (sid, ssid,, sk) or (Abort, sid, ssid,) from  FaPAKE, 

outputs the message received.
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7 Security Analysis 

We will now show that our protocol is a secure realization of the FsafPAKE 

functionality. 

Theorem 1. The protocol in Sect. 6 securely realizes the safPAKE functional-
ity FsafPAKE (Fig. 3 and Fig. 4) in the (FRO, FaPAKE, FOPRF)-hybrid model and 
the static Byzantine corruption setting, for any authenticated encryption scheme 
(Definition 1) E; efficiently enumerable, input-independent-sized, self-similar, 
similarity predicate with predictable hints (Sect. 5.1) σ; secure keyword private 
information retrieval scheme (PIR.Request, PIR.Respond, PIR.Finish) (Sect. 2.1); 
and leakage functions lS(pw, pw,) =  pw, lC(pw, pw,) =“correct password”. 

7.1 Simulator 

We construct the following simulator Sim for any PPT environment Z. As stan-
dard in UC, we assume that the real adversary A is “dummy”, i.e., it merely 
passes messages to and from Z. Without loss of generality, we also assume that 
all FRO queries are made via A, i.e., Z does not make these queries on its own. 
In the following, the session ID is always included as part of a random oracle 
input and is omitted (i.e., H(sid, x) is simplified to H(x)). 

Generating the Password File Upon receiving the first server message for a given 
sid, Sim generates a database on uniform values as follows. We recall that for 
any input x ∈ ~D, the set of all similar inputs Σx = {~x | σ(x, ~x) /= ⊥} is of some 
fixed size n. 

1. Sample n uniform strings f1, . . . , fn ← {0, 1}3κ , sample two strings k ← 
{0, 1}κ 

, rw ← {0, 1}κ , and store these values params[sid] := {f1, . . . , fn}, 
rw[sid] := rw. 

2. For i ∈ {1, 2, 3, . . .  , n}, parse  fi = fi.tag||fi.ek||fi.rs each with length κ. If  
any tag, ek, or rs collide, abort. Then generate the database database[sid] := 
{fi.tag |→ E .Enc(fi.ek; (k, i); fi.rs)}. 

3. Finally, store file[sid] := (database[sid], k) and set password[sid] := ⊥. 

The difference between what the simulator does and a server’s honest run of 
the protocol is that the honest server would receive a random OPRF key k from 
FOPRF, and would compute fi||fi.rw := Fk,1(pwi) and  rw := Fk,1(pw).rw using 
OfflineTestPwd queries to FOPRF. Programming the Password File In many parts 

of the simulator, when A successfully guesses the session’s password through 
OfflineTestPwd or through TestPwd, Sim needs to equivocate or “explain” the 
password file it previously generated. To do so, we define a function the simulator 
can call to, ProgramDatabase(sid, pw, rw, k,  {f1, . . . , fn}), as follows: 

1. Compute Σpw. Recall that by the predictable hints property of σ, we may  
number all elements ~pw ∈ Σpw with ~pw being assigned σ(pw, ~pw). 

2. For each pwi ∈ Σpw, if  Fk,1(pwi) is undefined and pwi /= pw, sample rwi ← 
{0, 1}κ and set Fk,1(pwi) :=  fi||rwi. If any  rwi collide, abort.
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3. If Fk,1(pw) is undefined, set Fk,1(pw) :=  fj||rw where j is the index of pw 
in Σpw. 

Stealing the Password File and Offline Queries 

4. Initialize tested[sid] := ∅. 
5. Upon receiving (StealPwdFile, sid) from A sent to FaPAKE, and  

(StealPwdFile, sid) from A sent to S: 
A. Send (StealPwdFile, sid) to FsafPAKE. 
B. If FsafPAKE returns “password file stolen”, then 

I. Mark S compromised. 
II. For rw := rw[sid], if rw ∈ tested[sid], then return rw to A from 

FaPAKE. Otherwise, return “password file stolen” to A from FaPAKE. 
III. Return file[sid] to A from S. 

C. Otherwise, return “no password file” to A as a message from FaPAKE. 
6. Upon receiving (OfflineEval, sid, (k∗, trans∗), x) from  A sent to FOPRF: 

A. If S is marked compromised, k = k∗, and  trans = 1 where (DB, k) :=  
file[sid], send (OfflineTestPwd, sid, x) to  FsafPAKE. 

B. If FsafPAKE returns pw, retrieve rw := rw[sid], (k, {fi}) :=  
params[sid], record password[sid] := pw, and run 
ProgramDatabase(sid, pw, rw, k,  {fi}). 

C. If S is not marked compromised, k∗ = k, and  Fk,1(password[sid]) is 
undefined, abort. 

D. In any other case: 
I. If undefined, sample Fk∗,trans∗(x) :=  f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ 

and abort if there exists another OPRF output with which collides 
on the tag, ek, rs, or rw. 

II. Return (OfflineEval, sid, Fk∗,trans∗(x)) to A from FOPRF. 

7. Upon receiving (TestKey, sid, k∗) from  A sent to FOPRF: 
A. If k = k∗ where (DB, k) :=  file[sid], set P := S. 
B. Otherwise, set P := ⊥. 
C. Return (TestKey, sid, k∗, P) to  A from FOPRF. 

8. Upon receiving (OfflineTestPwd, sid, rw∗) from  A sent to FaPAKE: 
A. Add rw∗ to tested[sid]. 
B. If S is marked compromised, retrieve rw := rw[sid] (rw[sid] is defined 

when Sim generates file[sid], which in turn is no later than S is com-
promised): 
I. If rw = rw∗, send “correct guess” to A from FaPAKE. 

II. Otherwise, send “wrong guess” to A from FaPAKE.
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Password Authentication 

9. Initialize maps clientSession, serverSession, delayedTests, and  
delayedSessions. 

10. Upon receiving (ClientSession, sid, ssid, C, S) from  FsafPAKE: 
A. If clientSession[ssid] is undefined, set clientSession[ssid] := 

(C, S, ⊥, ⊥, ⊥, ⊥, ⊥); otherwise, ignore the query. 
B. Send (PRFEval, sid, ssid, C, S) to A from FOPRF and await 

(sid, ssid, prfx ) from  A. Reject the response unless prfx is new. 
C. Update clientSession[ssid] := (C, S, ⊥, prfx , ⊥, ⊥, ⊥) and await 

(PRFReceiveComplete, sid, ssid, C, i) from  A sent to FOPRF. 
D. If i = S and (serverSession[ssid] is undefined or 

serverSession[ssid] /= (C, S, ·, prfx , ·, ·)): 
I. If delayedTests[sid] = 0, ignore this message. 

II. Otherwise, set delayedTests[sid] := delayedTests[sid] − 1. 
E. If the request wasn’t ignored, compute (state, req) := PIR.Request(0κ) 

and send (sid, ssid, req) to A from C then await (sid, ssid, (resp, h)) from 
A sent to C. 

F. Upon receiving (sid, ssid, (resp, h)), send 
(ClientSession, sid, ssid||prfx||req||resp||h, C, S) to  A from FaPAKE, 
set clientSession[ssid] := (C, S, i,  prfx , req, resp, h), and mark 
clientSession[ssid] as “aPAKE active”. 

11. Upon receiving (ServerSession, sid, ssid, C, S) from  FsafPAKE 

A. If serverSession[ssid] is undefined, set serverSession[ssid] := 
(C, S, ⊥, ⊥, ⊥, ⊥, ⊥); otherwise, ignore the query. 

B. Send (PRFSendCompletesid, ssid, S) to A from FOPRF, await 
(sid, ssid, prfx ) from  A, and update serverSession[ssid] := 
(C, S, ⊥, prfx , ⊥, ⊥, ⊥). 

C. If clientSession[ssid] /= (C, S, ·, prfx , ·, ·, ·) or if  clientSession[ssid] 
is undefined, send (Interrupt, sid, ssid, S) to  FsafPAKE, set  
delayedTests[sid] := delayedTests[sid] + 1, and add ssid to 
delayedSessions[sid]. 

D. Upon receiving (PRFEval, sid, ssid, S, x) from  A sent to FOPRF send 
(PRFEval, sid, ssid, A, S) to  A from FOPRF. 
I. Await (PRFReceiveComplete, sid, ssid, A, i) from  A sent to FOPRF. 

II. If i = S and delayedTests[sid] > 0, set delayedTests[sid] := 
delayedTests[sid] − 1, choose any sub-session ssid, ∈ 
delayedSessions[sid] send (TestPwd, sid, ssid,, S, x) to  FsafPAKE 

and remove ssid, from delayedSessions[sid]. 
III. If i = (k, 1) where (DB, k) :=  file[sid]: If S is not compro-

mised, and password has not been set, abort; otherwise, send 
(OfflineTestPwd, sid, x) to  FsafPAKE. 
a. If FsafPAKE responds with pw in either case, set password[sid] := 

pw, retrieve rw := rw[sid], (DB, k) :=  file[sid], {fj} := 
params[sid], and run ProgramDatabase(sid, pw, rw, k,  {fj}).
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b. In any case, if Fk,1(x) is undefined, sample Fk,1(x) :=  
f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ and abort if there exists 
another OPRF output with which collides on the tag, ek, rs, 
or rw. 

c. Finally, send (PRFReceiveComplete, sid, ssid, Fk,1(x)) to A. 
IV. Otherwise, parse i as (k∗, trans∗) and  if  Fk∗,trans∗(x) is undefined; 

sample Fk∗,trans∗(x) :=  f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ and abort 
if there exists another OPRF output with which collides on the tag, 
ek, rs, or rw; and send (PRFReceiveComplete, sid, Fk∗,trans∗(x)) to 
A. 

E. Upon receiving (sid, ssid, req), compute resp := 
PIR.Respond(req, database[sid]) and h := H(database[sid]), send 
(sid, ssid, (resp, h)) to A from S, and set serverSession[ssid] := 
(C, S, S, prfx , req, resp, h). 

F. Finally, send (ServerSession, sid, ssid||prfx||req||resp||h, C, S) to  A from 
FaPAKE and mark serverSession[ssid] as “aPAKE active”. 

Active Session Attacks 

12. Upon receiving (TestPwd, sid, ssid||prfx||req||resp||h, C, rw∗) from  A sent 
to FaPAKE, if (C, S, i,  prfx , req, resp, h) :=  clientSession[ssid] is marked 
“aPAKE active”: 
A. If i = S, set  i := (k, 1) where (DB, k) :=  file[sid]. 
B. If trans∗ = 0,  set  pw∗ := ⊥. 
C. If there exists an OPRF entry Fk∗,trans∗(pw∗) =  s||rw∗ (s ∈ {0, 1}3κ ), 

set pw∗ := x, otherwise set pw∗ := ⊥. 
D. If i = (k, 1), set DB∗ = DB and if either password[sid] is undefined or 

pw∗ /= password[sid], set pw∗ := ⊥. 
E. Otherwise, generate database DB∗ := DB(pw∗, (k∗, trans∗)) using 

Fk∗,trans∗(~pw) for ~pw ∈ Σpw∗ . If any such value is undefined, set 
pw∗ := ⊥. 

F. If either resp /= PIR.Respond(DB∗, req) or h /= H(DB∗), set pw∗ := ⊥. 
G. Send (TestPwd, sid, ssid, C, pw∗) to  FsafPAKE and if FsafPAKE responds 

“wrong guess”, Sim sets pw∗ := ⊥. 
H. If FsafPAKE responds with pw, set password[sid] := pw, 

retrieve rw := rw[sid], {fj} := params[sid], and run 
ProgramDatabase(sid, pw, rw, k,  {fj}), mark clientSession[ssid] 
compromised, and send “correct guess” to A. 

I. Otherwise, send “wrong guess” to A from FaPAKE. 
J. In all cases, mark clientSession[ssid] “aPAKE key-ready”. 

13. Upon receiving (TestPwd, sid, ssid||prfx||req||resp, S, rw∗) from  A sent to 
FaPAKE, if (C, S, S, prfx , req, resp, h) :=  serverSession[ssid] is marked 
“aPAKE active”. 
A. If rw[sid] = rw∗, then send “correct guess” to A. 
B. Otherwise, send “wrong guess” to A.
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C. In all cases, mark serverSession[ssid] “aPAKE key-ready”. 
14. Upon receiving (Impersonate, sid, ssid||prfx||req||resp||h) from  A to FaPAKE, 

if (C, S, i,  prfx , req, resp, h) :=  clientSession[ssid] is marked “aPAKE 
active”: 
A. If S is not compromised, ignore this query. 
B. If (i = S or i = (k, 1)), resp = PIR.Respond(req, DB), and h = H(DB), 

where (DB, k) :=  file[sid], send (Impersonate, sid, ssid) to FsafPAKE and 
forward the response (“correct guess” or “wrong guess”) to A. 

C. If “correct guess” was sent, mark clientSession[ssid] compromised. 
D. If “wrong guess” was sent, send (TestPwd, sid, ssid, C, ⊥) to  FsafPAKE. 
E. In both cases, mark clientSession[ssid] “aPAKE key-ready”. 

Key Generation and Authentication 

15. Upon receiving (NewKey, sid, ssid||prfxC||req||resp||h, C, k∗) from  A to 
FaPAKE, and (C, S, i,  prfx , req, resp, h) :=  clientSession[ssid] is marked 
“aPAKE active” or “aPAKE key-ready”: 
A. If there is a corresponding aPAKE session for the server (i.e., 

serverSession[ssid] = (C, S, S, prfxS, req,, resp,, h,)) and i /= S, prfxC /= 
prfxS, req /= req,, resp /= resp,, or  h /= h,, send (TestPwd, sid, ssid, P, ⊥) 
to FsafPAKE. 

B. Send (NewKey, sid, ssid, P, k∗) to FsafPAKE and mark 
clientSession[ssid] “aPAKE completed”. 

16. Upon receiving (NewKey, sid, ssid||prfxC||req||resp||h, S, k∗) from  A to 
FaPAKE, and (C, S, i,  prfx , req, resp, h) :=  serverSession[ssid] is marked 
“aPAKE active” or “aPAKE key-ready”: 
A. If there is a corresponding aPAKE session for the client (i.e., 

clientSession[ssid] = (C, S, S, prfxC, req,, resp,, h,)) and i /= S, req /= 
req,, resp /= resp,, or  h /= h,, send (TestPwd, sid, ssid, S, ⊥) to  FsafPAKE. 

B. Send (NewKey, sid, ssid, P, k∗) to FsafPAKE and mark 
serverSession[ssid] “aPAKE completed”. 

17. Upon receiving (TestAbort, sid, ssid||prfxC||req||resp||h, S) from  A to 
FaPAKE, and  S has such an active aPAKE session: 
A. If there is a corresponding aPAKE session for the server (i.e., 

serverSession[ssid] = (C, S, S, prfxS, req,, resp,, h,)) and i /= S, prfxC /= 
prfxS, req /= req,, resp /= resp,, or  h /= h,, send (TestPwd, sid, ssid, P, ⊥) 
to FsafPAKE. 

B. Send (TestAbort, sid, ssid, C) to  FsafPAKE, relay the response (“success” 
or “abort”) to A from FaPAKE, and mark C’s session record “aPAKE 
completed”. 

18. Upon receiving (TestAbort, sid, ssid||prfxS||req||resp||h, S) from  A to 
FaPAKE, and  S has such an active aPAKE session: 
A. If there is a corresponding aPAKE session for the client (i.e., 

clientSession[ssid] = (C, S, S, prfxC, req,, resp,, h,)) and i /= S, req /= 
req,, resp /= resp,, or  h /= h,, send (TestPwd, sid, ssid, S, ⊥) to  FsafPAKE.
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B. Send (TestAbort, sid, ssid, C) to  FsafPAKE, relay the response (“success” 
or “abort”) to A from FaPAKE, and mark S’s session record “aPAKE 
completed”. 

Proof (Proof Outline). The proof follows a sequence of indistinguishable hybrids 
starting in the real world where the parties follow the protocol described in 
Sect. 6 and ending with the ideal world where interactions are simulated as per 
our simulator Sim in Sect. 7.1 which runs independently of the parties’ passwords. 

The first step of our hybrids introduces a dummy party for the client and 
the server which simply passes messages from the environment to their real 
counterparts. We then introduce a partial functionality F which sits between 
the dummy and real parties. This partial functionality begins by relaying all 
messages it receives to the simulator, and along the hybrids we build this 
partial functionality into FsafPAKE. In the beginning, the simulator receives 
(StorePwdFile, sid, C, pw) when the dummy server sends the message to F and 
receives (ClientSession, sid, ssid, S, pw,) when the dummy client sends the mes-
sage to F and can run the real world protocol personally giving the keys to 
each of the parties. After setting up the conceptual functionality party, we give 
it all necessary interfaces, but provide it a partial NewKey interface which we 
eventually modify into the correct one found in FsafPAKE. 

We then modify the client’s code to run independently of the input pass-
word. This is accomplished by first replacing the client’s PIR verification step. 
Instead of verifying the PIR response from the server using the client’s PIR 
state, we extract the adversary’s input to the aPAKE stage and compare it to 
the messages sent in the PIR stage (culminating in either a TestPwd query or an 
Impersonate query). Now, the client runs independently of its PIR state and by 
the client privacy property of PIR, we may replace the client’s PIR request and 
OPRF request with a “dummy” request (state, req) ← PIR.Request(0κ). After 
this step, the client’s code runs independently of the client password except for 
its preliminary query to FOPRF. 

We then modify the server’s code to run independently of the input pass-
word unless it receives it from the functionality on a password testing query. 
To achieve this, we begin by distinguishing sub-sessions where the OPRF pre-
fixes match from ones where they diverge. In the case of divergent sub-sessions, 
the simulator provides a single TestPwd ticket to the environment which can be 
redeemed to make a password guess. In such divergent sub-sessions, the sim-
ulator sends an Interrupt query and awaits a PRFReceiveComplete query which 
consumes a ticket. Upon consuming a ticket, the simulator extracts a guess from 
the OPRF query, sends a TestPwd query to the functionality, and aligns the 
aPAKE session accordingly. In the next set of hybrids, we replace the server’s 
storage with a uniformly generated database independent of the server’s pass-
word. We then align these databases whenever a ticket is redeemed, resulting in 
a correct password guess against the server, by programming the OPRF outputs 
of all passwords ~pw ∈ Σpw to match those used in the generation of the database.
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Finally, we modify the partial functionality to align with FsafPAKE. This is 
done, first, by replacing the intermediate NewKey interface in the partial simu-
lator with the one found in FsafPAKE. Once this is accomplished, we modify the 
functionality to no longer provide the simulator with the full ClientSession and 
ServerSession messages. As the simulator still relies on these messages, we make 
the final modifications to the simulator. First, we modify the server’s execution 
to generate the dummy database upon receiving a successful StealPwdFile query 
or a ServerSession query. We then modify the client’s code to no longer make its 
first OPRF query and for the simulator to instead send a PRFEval message to 
the environment without prompting. To finish the hybrids, we modify the partial 
functionality to no longer prompt the simulator by sending StorePwdFile. 

We present a complete proof of theorem 1 in the full version of our 
paper. We additionally note, as a conjecture, that if the client leakage function
lC(pw, pw,) =“correct password” is replaced with the server’s leakage function
lS(pw, pw,) =  pw, then we may achieve a more efficient protocol which no longer 
requires the client to verify the server’s PIR response. This also means that the 
PIR scheme would not need to have deterministic messages; however, this leak-
age function is no longer minimal in that it does not match what the honest 
parties learn at the end of the protocol. 

8 Concrete Instantiations & Efficiency 

We now discuss concrete instantiations for the components of our protocol (PIR 
scheme and aPAKE), and the resulting performance. 
Choice of PIR Scheme. We consider two PIR schemes: 
– Trivial PIR: The server sends the entire database to the client. Communi-

cation equals the size of the database. 
– FHE-PIR: The client sends an FHE encryption of its query (tag) q to the 

server. The server homomorphically evaluates P (q), where P is a polyno-
mial obtained by interpolating P (x) =  DB[x]. Communication is the size of 
one FHE-encrypted database element in each direction. Computation for the 
server is O(|DB|) FHE operations. 

Other PIR protocols between these extremes are possible. For example, it is 
possible to exponentially reduce the multiplicative depth of the FHE circuit by 
having the client send FHE encryptions of q, q2 , q4 , q8 , · · ·  instead of just an FHE 
encryption of q. This variant trades a log |DB| factor increase in communication 
for a significant reduction in FHE costs. 

In our protocol, database items are symmetric-key encrypted ciphertexts, 
where the plaintext contains a PRF key and a small integer. Pessimistically, we 
consider each ciphertext to be 3κ bits, and we assume an additive overhead of 
O(κ) to further encrypt the database item under FHE. 
Round Complexity of safPAKE. Our OPRF protocol consists of two sequential 
rounds, with the client speaking first. Each OPRF message is a single group ele-
ment. Afterwards, the rest of our protocol contains several sequential bottlenecks 
that affect the total round complexity:
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– The client must obtain its OPRF output before making its PIR query. How-
ever, when using trivial-PIR, the client makes no query, so the server can just 
send its trivial-PIR message together with its final OPRF message. 

– The client must obtain its PIR output before sending its first aPAKE message. 
However, if the server is first to speak in the aPAKE protocol, it may send 
the first aPAKE message along with its PIR response. Hence, our protocol 
favors aPAKE in which the server speaks first. 

Overall, our protocol requires 2 + 2P + A − S rounds, where P = 1 for nontrivial 
PIR (P = 0 otherwise), the aPAKE has A sequential rounds, and S = 1 if the 
server speaks first in the aPAKE (S = 0 otherwise). 

Among aPAKE protocols, the one of Hwang et al. [ 18] instantiated with 
the PAKE protocol of McQuoid et al. [ 26] is best suited to our application. It 
requires only one message from each party, and the server may be first to speak. 
Its communication cost is 7κ bits more than bare Diffie-Hellman, and it requires 
only one more exponentiation for the client than bare Diffie-Hellman. 

Summary of safPAKE Costs. In Table 1 we show the concrete costs of our pro-
tocol when instantiated according to our recommendations here vs the näıve 
safPAKE described previously instantiated with OPAQUE [ 22] and reusing the 
OPRF stage. The reader should remember that the resultant protocol does not 
actually securely UC-realize the FsafPAKE functionality as there are no guaran-
tees that the server uses the correct inputs. Importantly, when using a nontrivial 
PIR, the communication cost of our protocol is independent of the number of 
allowed password variants. When using a trivial PIR, communication is linear 
in the number of password variants, but the server’s computation is constant. 

Much of the computational cost comes from the client re-computing the PIR 
database. This involves O(|DB|) PRF evaluations, each of which requires an 
exponentiation. In Table 1 we list our costs in terms of exponentiations E, hash-
to-group operations H, and FHE multiplications F as these are our computa-
tional bottlenecks. Here, by n we mean the size of the typo-set Σpw—recall that 
this should be constant across all passwords. 

Table 1. Cost evaluation of our safPAKE protocol. The “näıve” protocol is the insecure 
protocol described in Sect. 1. 

Näıve + [21] Ours + Trivial PIR Ours + FHE PIR 

C Cost 3n + 2E,  1H (n + 4)E,  (n + 3)H  (n + 4)E,  (n + 3)H,  
O(n)F 

S Cost 3n + 1E 3E, 2H 3E, 2H, nF 
Rounds 3 3 5 

Communication (2n +2)G +(5n +2)κ (3n + 9)κ + 4G O(κ) + 4G + 9κ 
S Storage (5n + 1)κ + 2nG (3n + 1)κ O(κ)n + (3n + 1)κ
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Typo Policies: Our protocol is suitable for typo policies with a small or moderate 
number of allowable typos. Here we propose several such policies: 

– Facebook’s policy: Facebook allows the client to enter either a case-reversed 
password, a repeated first/last character password, or a case-reversed first 
letter password so, including the correct password, Σpw = 5 total password 
variants will be accepted 8. 

– Keyboard-adjacent character substitutions: Suppose we allow at most 
k characters of the length-l ≥ k password to be substituted for characters 
that are adjacent on the keyboard, then Σpw =

∑ 

i≤k

(

l
i

)

7i total password 
variants will be accepted. 

– Consecutive characters transposed: Suppose we allow at most k pairs of 
consecutive characters in the length-l ≥ k password to be transposed, then 
Σpw =

∑ 

i≤k

(

l−1 
i

)

total password variants will be accepted. 
– Erroneous repeated or dropped characters: Suppose we allow at most 

k characters in the length-l ≥ k password to be repeated or dropped, then 
Σpw =

∑ 

i≤k

(

l
i

)

2i total password variants will be accepted. 

If we consider the cost of implementing Facebook’s simple password-typo policy 
using our scheme, instantiated with the trivial PIR and a 256-bit elliptic curve 
group κ = 128, authentication would require 3 rounds, ((3·5+9)·128+4·256)/8 =  
512 bytes of communication, 12 exponentiations, 10 hash-to-curve operations, 
and 256 bytes of server storage. 

9 Conclusion 

Following in a line of study for fuzzy symmetric PAKE [ 13] and fuzzy asymmet-
ric PAKE [ 14,27], we present a functionality for fuzzy strong asymmetric PAKE 
which affords the same strong guarantees of the saPAKE functionality from the 
literature [ 21] while allowing for arbitrary measures of similarity. We addition-
ally provide a construction in the spirit of the aPAKE to saPAKE compiler 
due to Jarecki, Krawczyk, and Xu [ 21] and tPAKE due to Pongmorrakot and 
Chatterjee [ 27]. Our protocol realizing the FsafPAKE functionality for a com-
mon subclass of the similarity predicates considered by Erwig et al. [ 14] and  
can be built from a variant of the 2-hash-Diffie-Hellman OPRF herein called 3-
hash-Diffie-Hellman, keyword private information retrieval, and existing aPAKE 
protocols. Additionally, we provide an incidental protocol for strong asymmetric 
normalization which we believe to be an independent interest for future study. 

Our construction can achieve constant communication size in the size of 
the server’s database, however has client computation equal to constructing the 
server’s PIR database. For simple predicates such as first word capitalization 
or first-second letter transposition, this is reasonable, but for biometric appli-
cations may be too expensive for deployment. We believe that reducing the 

8 This count doesn’t hold for all passwords, but will hold for the majority of passwords. 
e.g., the empty password will have Σpw = 1.  
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computational burden for the client is possible and may pave the path to strong 
asymmetric biometric authentication. We leave this as an interesting line for 
future work. 
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