
How to Tolerate Typos in Strong
Asymmetric PAKE

Ian McQuoid(B), Mike Rosulek, and Jiayu Xu

Oregon State University, Corvallis, USA
{mcquoidi,rosulekm,xujiay}@oregonstate.edu

Abstract. Strong asymmetric password-authenticated key exchange
(saPAKE) is the gold standard for password-based authentication. When
authenticating using saPAKE, the client holds a cleartext password, and
the server holds only a “digest” of the password. The two parties obtain
a shared session key if and only if the client password matches the pass-
word encoded in the digest.

In this work we initiate the study of strong asymmetric fuzzy
PAKE (safPAKE), which allows the client and server to obtain a
shared session key if the client’s password is “close enough” to the pass-
word encoded in the digest, according to some policy. safPAKE can be
used to tolerate incidental password typos in the PAKE setting, which
is becoming a standard industry practice outside the PAKE setting. Our
safPAKE functionality supports any “typo policy”, and our protocol is
practical when there are a small number of permissible mistypings of a
password.

1 Introduction

Password-based authentication is delicate because passwords are low entropy.
Cryptographic mechanisms that are safe when using high-entropy secrets can
be unsuitable for passwords, allowing an attacker to locally check whether a
password guess is correct after the fact. Such a mechanism will expose typical
passwords after mounting an offline dictionary attack. Password-authenticated
key exchange (PAKE) [7] was proposed as a cryptographic mechanism disallow-
ing such offline attacks.

PAKE is an improvement over the password-over-TLS approach currently
used on the Internet, in which a client sends (an encryption of) its password over
a TLS channel, and the server, upon decryption, checks raw passwords against
a password file stored in advance. The security of password-over-TLS critically
relies on the assumption that the server’s public key is correctly distributed to
the client; however, numerous instances of “PKI failure” in recent years 1 clearly
show that a password protocol without PKI—the setting of PAKE—is preferable.

Second author partially supported by NSF award 2150726.
1 Amir Herzberg has previously provided a list of famous PKI failures [17].
c○ International Association for Cryptologic Research 2025
Y. Tauman Kalai and S. F. Kamara (Eds.): CRYPTO 2025, LNCS 16002, pp. 610–641, 2025.
https://doi.org/10.1007/978-3-032-01881-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-01881-6_19&domain=pdf
https://doi.org/10.1007/978-3-032-01881-6_19

How to Tolerate Typos in Strong Asymmetric PAKE 611

Password-Authenticated Key Exchange (PAKE). PAKE is a family of protocols
that allow two parties to agree on a common session key if and only if they have
matching passwords. PAKE protocols are carefully designed to avoid exposing
offline dictionary attacks as the shared strings (the passwords) are assumed to
be low-entropy and therefore the space of secret stings is efficiently enumerable.
Instead, they achieve the best possible security: the only way for an adversary
to check a password guess is by participating in an interactive protocol session.

There are two main flavors of PAKE:

– Symmetric PAKE [4, 6, 7, 9,11,23– 26] requires both parties to hold the pass-
words in cleartext.

– Asymmetric PAKE [7,15,16,29,30] is more suitable for a client-server set-
ting, where the server holds only a one-way digest of the password.

Asymmetric PAKE has the additional property that, even in the setting where
the server’s password file might be compromised, an adversary must perform an
(offline) dictionary attack to recover any passwords. In other words, the server
cannot store its passwords in the clear, and furthermore never sees the raw
passwords throughout the execution of the protocol, which is another advantage
over the password-over-TLS approach. The gold standard security definition for
asymmetric PAKE is strong asymmetric PAKE (saPAKE) [10,21] where,
in addition to the asymmetric PAKE security requirements, computation for the
offline dictionary attack must be performed after compromising the server. This
distinction is analogous to the server holding a digest H(pw) for a public hash
function H vs the server holding a digest H(s; pw) for some uniform and secret
“salt” s. In the first case (aPAKE), all possible digests can be computed before
server compromise at which point the adversary immediately learns the correct
password; while in the second case (saPAKE), the adversary must wait until
server compromise before launching an offline attack.

The original security notion for PAKE is game-based [6]. In recent years, the
standard has switched to the stronger notion in the Universal Composability
(UC) framework [11,15,21], which supports arbitrary composition of the pro-
tocol (with itself or with other protocols). Variants of the original UC PAKE
notion have been proposed, including relaxations of the UC functionality [1] and
combining the security notion with idealized models [2].

Password Typos. Human-typed passwords are prone to typos, which prevent
successful authentication. Some online services (in which the server sees the
login password in the clear) are known to correct for some password typos.
For example, Facebook accepts passwords with inverted upper/lowercase (e.g.,
erroneous Caps Lock) or an erroneously capitalized first letter (possible in many
input methods on mobile phones) [28].

Chatterjee et al. [12] were the first to formally study the security implications
of correcting minor typos—i.e., allowing users to authenticate even if they make
certain incidental typos. In their study of real-world login attempts to Dropbox,
they found that 20% of users that experienced a failed login attempt would have
saved at least 1 min of time if simple typo-correction had been enabled. They

612 I. McQuoid et al.

found that 3% of users that experienced a failed login attempt were never able
to successfully log in, even though they used a password that would have been
accepted under a simple typo-correction scheme.
Tolerating Typos in PAKE. It is relatively trivial to tolerate typos when the
server sees the user’s password attempt in the clear—i.e., when authenticating
with password-over-TLS. It is a challenge to tolerate typos in the PAKE setting,
when neither party sees the other’s password attempt. Previous constructions of
fuzzy PAKE variants have achieved varying levels of security. Dupont et al. [13]
constructed two fuzzy-input tolerant symmetric PAKE protocols, one from gar-
bled circuits and oblivious transfer which can handle “closeness” for any effi-
ciently computable circuit (in the language of our construction, any efficiently
computable similarity predicate) and one from PAKE which can handle fuzzy
inputs in a small hamming ball. The former is a feasibility result that is inef-
ficient, whereas the latter was later found to be insecure [8]; [8] also presented
another fuzzy symmetric PAKE protocol.

Moving the result for fuzzy PAKE to cover asymmetric security, Erwig et
al. [14] constructed two fuzzy-input tolerant asymmetric PAKE protocols, one
from error correcting codes and oblivious transfer which can handle fuzzy inputs
in a hamming ball and the second which compiled aPAKE into a fuzzy protocol
which achieves a weaker functionality but can handle fixed size closeness notions.
Namely, the functionality has been weakened to allow for a fixed number of
unstructured guesses in an online attack. Pongmorrakot and Chatterjee [27]
similarly construct a fuzzy PAKE protocol which has security guarantees in the
face of server compromise. However, their result similarly allows the server to
make a fixed number of unstructured guesses by design, and allows the adversary
to impersonate the user on compromise of the server—something which is not
standard for aPAKE protocols.

Crucially, none of the results above achieves strong asymmetric security; even
the fuzzy aPAKE protocols allow the adversary to perform some computation
before server compromise, and recover the password immediately once the server
is compromised. This is the starting point of our work:

Can we construct a typo-tolerant strong aPAKE protocol resilient to pre-
computation attacks, preferably with reasonable efficiency?

Näıve Approach. Let Σpw denote the set of allowable typos of the correct pass-
word pw. The server would like to authenticate any user who enters a pass-
word pw, from Σpw. The standard PAKE setting corresponds to the special case
Σpw = {pw}.

A natural way to tolerate typos in saPAKE is to run t independent instances
of saPAKE, where t = |Σpw|. In more detail: the server holds a password digest
for each ~pw ∈ Σpw. The client holds a password attempt pw, and tries to authen-
ticate t times—once against each of these digests.

This näıve approach to typo tolerance has two main drawbacks:
– Consider what would be the best possible security for a single authentica-

tion attempt of typo-tolerant saPAKE: A corrupt client should learn whether

How to Tolerate Typos in Strong Asymmetric PAKE 613

pw, ∈ Σpw, for only one guess pw,. A corrupt server should learn whether
pw, ∈ Σpw for only one guess pw.
The näıve protocol leaks more than this. Namely, a corrupt client can learn
whether pw,

i ∈ Σpw for t different and arbitrary guesses pw,
i. A corrupt server

can learn whether pw, ∈ S for a completely unstructured set S of cardinality
t (rather than a “typo ball” Σpw around a single center pw). In other words,
the näıve protocol makes online dictionary attacks t times faster (in terms of
number of authentication attempts), for either party.
Fixing the issue for a corrupt client is relatively straight-forward. But it is
non-trivial to prevent a corrupt server from making t unstructured guesses
per authentication attempt.

– All costs of the protocol scale with the number t of allowed typos. For most
password-typo policies (described above), t is indeed a very small constant,
so this overhead is not prohibitive. But it is nontrivial to make any aspect of
the protocol’s complexity scale sublinearly with t.

1.1 Our Results

We show how to resolve both of the problems described above by giving an
efficient protocol for strong asymmetric fuzzy PAKE (safPAKE). Our
protocol achieves best-possible security (with respect to password guesses) in
the Universal Composability (UC) framework, with communication independent
of t for a wide definition of “closeness” which includes a common subclass of
the similarity predicates considered by Erwig et al. [14]. Our construction can
be viewed as an extension of the saPAKE protocol by Jarecki, Krawczyk, and
Xu [21], which is a compiler from any UC oblivious PRF (OPRF) and any UC
aPAKE to UC saPAKE 2; the main difference is that we add a one-round Private
Information Retrieval (PIR) protocol between the OPRF and aPAKE stages.
The saPAKE protocol in [21] can be viewed as a special case of our protocol
with the equality check function for a similarity predicate and the usual PAKE
leakage functions.

Additionally, our protocol up to the aPAKE stage can be seen independently
as an input-normalization protocol where a client inputs a string x, and returns
a “corrected” version of their string x. This normalization achieves the flavor of
security needed for saPAKE—namely, resistance to online dictionary attacks and
to precomputation for offline dictionary attacks. We believe that this conceptual
contribution may find independent applications elsewhere.

A final contribution is to modify the 2-hash-Diffie-Hellman (2HDH) OPRF
protocol of [20,21] to support a kind of key-extraction property that is neces-
sary for our safPAKE protocol. As our OPRF functionality is key-aware and our
OPRF protocol allows for key extraction, we believe that our safPAKE protocol
is amenable to an interactive registration phase requiring only a single message

2 The provided security proof in [21] has not been updated to their new saPAKE
security model.

614 I. McQuoid et al.

and without the honest server receiving the client’s clear-text password. As a
comparison, an interactive registration for OPAQUE [21] would require at least
three messages as the OPRF would need to be evaluated in an online step.
This is because OPAQUE’s OPRF functionality does not have a notion of trans-
ferrable OPRF keys 3. We leave modeling interactive registration in aPAKE, and
its extensions, as future work.

2 Preliminaries
2.1 (Keyword) PIR

Our safPAKE protocol requires a (single-server) keyword PIR protocol. In key-
word PIR, the server holds a key-value mapping DB : ui |→ vi and the client
holds a key u. The outcome of the protocol is that the client learns (at least)
v := DB[u], if it exists, while the server learns nothing about u.

We write our safPAKE protocol in terms of a 1-round PIR protocol for the
sake of simplicity, although our protocol can be easily extended to use a multi-
round PIR. Formally, a (1-round) keyword PIR protocol consists of the following
algorithms:

– PIR.Request(u) → (s, req)
– PIR.Respond(req, DB) → resp
– PIR.Finish(s, resp) → v

It must satisfy the following properties:

– Correctness: For all key-value mappings DB, and for all keys u appearing
in DB, the following returns true with overwhelming probability:

(s, req) ← PIR.Request(u)
resp := PIR.Respond(req, DB)
return DB[u] = PIR.Finish(resp, s)

There is no correctness required when u is not a key appearing in DB.
– Client Privacy: For all u, u,, the following distributions are indistinguish-

able:

(s, req) ← PIR.Request(u)
return req ≈ (s,, req) ← PIR.Request(u,)

return req

3 However, we provide evidence that an OPAQUE analog leveraging our OPRF func-
tionality is secure and, therefore, OPAQUE would likely enjoy a single-message inter-
active registration phase.

How to Tolerate Typos in Strong Asymmetric PAKE 615

Our protocol requires a deterministic PIR.Respond algorithm, which is stan-
dard since PIR.Respond is involved only in correctness, but not privacy.

Candidate Instantiations. In trivial PIR, req is empty and PIR.Respond := DB.
A classic keyword PIR protocol has req := Enc(s, u), for a symmetric-key

fully homomorphic encryption scheme. The server interpolates a polynomial P
such that P (u) = DB[u] for all u ∈ DB. It then homomorphically evaluates the
polynomial on req to obtain an encryption of P (u) = DB[u].

2.2 Authenticated Encryption

Let E = (Enc, Dec) be a symmetric encryption scheme, with key space K, and
where plaintexts of length n are encrypted to ciphertexts in the set C(n).

Definition 1. We say that E satisfies authenticated encryption (AE$)
security if the following two stateful oracles are computationally indistinguish-
able:

k ← K
enc(m ∈ M):

return Enc(k, m)
dec(c ∈ C):

return Dec(k, c)

≈

// ⊥ is the default value for undefined keys
ptxts[] := ⊥
enc(m ∈ M):

c ← C(|m|)
ptxts[c] := m
return c

dec(c ∈ C):
return ptxts[c]

3 Oblivious PRF

Our protocol requires an Oblivious PRF (OPRF), but prior OPRF ideal func-
tionalities [19– 21] from related work are not suitable for our purposes. In our
protocol, when an honest client authenticates using a valid password, she learns
the server’s OPRF key. This key gives her the ability to evaluate the OPRF
without the server’s help, which is necessary for some consistency checks in the
protocol.

Existing OPRF functionalities do not explicitly have the notion of a “key”
as a string that can be transferred or encrypted. In the OPAQUE protocol for
instance, only an adversary can learn the server’s OPRF key—when it com-
promises the server storage. This is modeled in the protocol by the adversary
sending an explicit “compromise” command to the OPRF functionality, which
grants the adversary the ability to evaluate the OPRF.

In this section, we describe an ideal OPRF functionality and corresponding
protocol that supports transferrable PRF keys. The protocol is based on the
2-hash-Diffie-Hellman (2HDH) OPRF protocol of [20]. The main challenge in

616 I. McQuoid et al.

our setting is identifying which key a corrupt server is using in a specific OPRF
interaction. This is a challenge because the key is a Diffie-Hellman exponent and
thus difficult for the simulator to extract. We accomplish this by strategically
adding another random oracle hash, resulting in what we call the 3-hash-Diffie-
Hellman (3HDH) OPRF.

3.1 The Functionality

The OPRF functionality is presented in Fig. 2. It mostly follows the OPRF
functionality used in [21]. The crucial difference is that our functionality has an
explicit notion of server’s PRF key, resulting in the following concrete modifi-
cations:

– Upon initialization, the functionality generates a random string k as the key
for the server.

– As mentioned above, there is no command to mark a server instance as “com-
promised” unlocking the adversary’s ability to make offline PRF evaluation
queries. Instead, anyone can attempt an offline evaluation by providing a
candidate key. The correct key will give outputs consistent with the honest
server, whereas each other key will correspond to an independent random
function.

– The explicit PRF key can be used to index random functions. Since a man-
in-the-middle adversary can replace the honest server’s key with one of its
own choosing, there might be multiple independent random functions, and
the functionality needs to keep track of all of them. In the OPRF of [21], the
simulator cannot extract those keys, but it can detect when the same key is
used twice; therefore, the functionality maintains these random functions by
letting the simulator supply the “index” of the chosen function.
In our OPRF protocol, the simulator can often extract the correct key. In
these cases, the index of the random function can be replaced by the actual
key. However, there remain adversarial behaviors that result in a consistent
random function (which the simulator can identify), but which are not con-
sistent with any key. Although the simulator cannot extract, it turns out that
neither can the adversary! More specifically, even the adversary cannot pro-
duce any string k that explains their behavior in terms of the honest PRF
function. Hence, these random functions are non-transferrable, and we model
them using the “index” approach of [21]—that is, the simulator can detect
when the same index is being used and inform the functionality. functionality
represents transferrable keys (i.e., actual keys) as (k, 1) and non-transferrable
keys (i.e., indices) as (k, 0). Honest parties can make offline PRF queries only
on a transferrable key, which models the fact that there is no key that can
make the honest PRF function agree with this random function.

How to Tolerate Typos in Strong Asymmetric PAKE 617

3.2 The 3-Hash Diffie-Hellman Protocol

The 2-hash Diffie-Hellman (2HDH) OPRF protocol [20] is an oblivious protocol
for evaluating the following PRF:

F (k, x) = H2(x, H1(x)k)

Because k is used as an exponent, it is not feasible for the simulator to extract
k. The protocol is proven secure when H1,H2 are random oracles, and the range
of H1 is a group in which the One-More Gap Diffie-Hellman (OMGDH) assump-
tion [5,20] holds.

Our modification is to simply apply a random oracle to k before running
2HDH. The result is an oblivious protocol for evaluating the PRF:

F (k, x) = H2(x, H1(x)H3(k))

The rest of the protocol is unchanged. We call the resulting protocol 3-hash
Diffie-Hellman (3HDH) for obvious reasons. The formal description is in
Fig. 1.

Fig. 1. Protocol 3HDH

Security. Our 3HDH protocol (Fig. 1) realizes the OPRF functionality FOPRF

(Fig. 2) under the (N = QH + Q, Q)-OMGDH assumption, where QH is the
number of the adversary A’s H1 queries, and Q is the number of PRFEval mes-
sages issued by the environment Z. We assume w.l.o.g. that A never repeats a
random oracle query. Below we describe the simulator.

618 I. McQuoid et al.

1. Sample r1, . . . , rN ← Zp, and compute g1 := gr1 , . . . , gN := grN . Initialize
indices J := 1 (index of the current random group element gJ to be used)
and I := 1 (the current function index).

2. On A’s query H1(x), 4 set DL[x] := rJ , H1(x) := gJ , and J := J + 1.
3. On (PRFEval, sid, ssid, S) from FOPRF, record ClientSession[ssid] :=

(rJ , a := gJ) and send (sid, ssid, a) from C to S and (sid, ssid, a) to FOPRF.
Set J := J + 1.

4. On (PRFSendComplete, sid, ssid, S) from FOPRF, and (sid, ssid, a∗) from A
sent to S, send (sid, ssid, a∗) to FOPRF, and check if ServerKey is defined.
If not, sample h ← Zp and record ServerKey := (h, gh). Either way, set
b := (a∗)h, and send (sid, ssid, b) from C to S.

5. On (sid, ssid, b∗) from A sent to C, retrieve (r, a) := ClientSession[ssid] and
compute z := (b∗)1/r.
A. If there exists a previous H3(k∗) query with b∗ = aH3(k

∗), send
(PRFReceiveComplete, sid, ssid, C, (k∗, 1)) to FOPRF.

B. Otherwise, if ServerKey is defined, send (PRFReceiveComplete, sid, ssid,
C, S) to FOPRF.

C. Otherwise, if there exists a record z = index[i], send
(PRFReceiveComplete, sid, ssid, C, (i, 0)) to FOPRF.

D. Otherwise, set index[I] := z and send (PRFReceiveComplete, sid, ssid, C,
(I, 0)) to FOPRF. Set I := I + 1.

6. On A’s query H2(x, u), if DL[x] = r, set H2(x, u) := y where y is defined as
follows:
A. If there exists a previous H3(k) query with gH3(k) = u1/r, send

(OfflineEval, sid, (k, 1), x) to FOPRF and obtain FOPRF’s response
(OfflineEval, sid, y).

B. Otherwise, if S is not compromised and (h, z) := ServerKey is defined
with z = u1/r, choose a new sub-session id ssid∗ that has not appeared
anywhere else in the game, send (PRFEval, sid, ssid∗, ⊥, x) followed by
(PRFReceiveComplete, sid, ssid∗, Sim, S) to FOPRF, and obtain FOPRF’s
response (PRFReceiveComplete, sid, ssid, y). If FOPRF does not respond,
abort.

C. Otherwise, if there exists a record z := index[I] such that z = u1/r,
send (OfflineEval, sid, (i, 0), x) to FOPRF and obtain FOPRF’s response
(OfflineEval, sid, y).

D. Otherwise, set index[I] = z, send (OfflineEval, sid, (I, 0), x) to FOPRF and
obtain FOPRF’s response (OfflineEval, sid, y). Set I := I + 1.

If H2(x, u) is still undefined, set H2(x, u) ← {0, 1}l.
7. On A’s query H3(k), send (TestKey, sid, k) to FOPRF.

A. If (h, z) := ServerKey is defined, and FOPRF responds with
(TestKey, sid, S, k), set H3(k) := h.

B. If ServerKey is undefined, and FOPRF responds with (TestKey, sid, S, k),
sample h := H3(k) ← Zp and set ServerKey := (h, gh).

C. If FOPRF responds with (TestKey, sid, S, ⊥), set H3(k) ← Zp.

4 The session id is part of the input of all RO queries and is omitted.

How to Tolerate Typos in Strong Asymmetric PAKE 619

We briefly compare our simulator and the simulator for 2HDH [21,
Appendix B]:

In the interactive OPRF protocol, the client sends a := H1(x)r, and the
server raises this value to the exponent H3(k), resulting in b := H1(x)rH3(k).
Following the logic of 2HDH, when the adversary is playing the role of a server,
the simulator is able to detect when the same exponent is used. The 2HDH
simulation strategy does not give any way to extract this exponent. In our 3HDH
variant, the simulator has access to all the queries made by the adversary to H3.
Therefore, it can test all of them to see whether the server has raised the group
element to that power. If so, the simulator has identified the actual key k (step
5A). Otherwise, the simulator is still able to associate an “index” of a random
function, as in the simulator for 2HDH. Additionally, although the simulator
does not know the effective exponent used by the server, no future (fresh) query
to H3(k) will result in that exponent, except with negligible probability. This
random function therefore is associated with a non-transferrable key (steps 5B
and 5C).

Whenever an adversary queries H2(x, u), the simulator checks whether u =
H1(x)H3(k) for any k that has been previously queried to H3. If so, then this is
an offline query for (k, x) (step 6A). If not, then this may represent the adversary
completing an interactive query; the simulator detects these in the same manner
as in 2HDH (steps 6B–6D).

Finally, our OPRF functionality gives to the adversary a mechanism TestKey
to check whether it has successfully obtained an honest server’s key. This is
necessary because the simulator will simulate an honest server using a random
exponent. Then later, the adversary may learn that server’s key k through the
expected mechanism of the protocol. When that adversary queries H3(k), the
simulator will need to detect this k as a special value, and program H3’s output
to be the exponent that it has been using (step 7A).

The security argument is very similar to that in [19], so we only provide a
sketch. The only case where the simulator might fail to generate a view iden-
tical to the real-world view lies in step 6B, when FOPRF does not respond to
the simulator’s PRFReceiveComplete message. This event can be reduced to the
one-more gap Diffie-Hellman assumption: the reduction generates g1, . . . , gN by
querying the h-th power oracle, and in steps 5C and 5D, even without knowing
r1, . . . , rN , the reduction can use the DDH oracle to check if DL(a, b∗) is equal to
some other DL(a,, (b∗),) (where a,, (b∗), are the values that appear in a previous
client sub-session) and determine the index accordingly. Similarly, in step 7A the
reduction can check if DL(gH3(k) , u) = DL(x, gj), and in steps 7C and 7D it can
check if DL(gj , u) is equal to some DL(a,, (b∗),) in a previous client sub-session.
In sum, the reduction can run the simulator by replacing any computation using
r1, . . . , rN with DDH oracle queries, and when the “bad event” happens it can
break the one-more gap Diffie-Hellman assumption.

620 I. McQuoid et al.

Fig. 2. Ideal functionality FOPRF

4 Security Model

In this section, we detail the security modeling for fuzzy strong asymmet-
ric PAKE. Our functionality FsafPAKE (Fig. 3, Fig. 4) merges the fuzzy pass-

How to Tolerate Typos in Strong Asymmetric PAKE 621

word testing interfaces of FfaPAKE [14] and the strong asymmetric security of
FsaPAKE [21]. We note that this is not the standard saPAKE functionalty, and
our use of a relaxed OPRF functionality (as [21] does) requires that we inherit
their functionality as a base. The three changes we have made to FsaPAKE are

– We parameterize FsafPAKE to use any similarity predicate σ instead of the
single definition of similarity (σ(x, x,) := x ? = x,).

– We parameterize FsafPAKE to use two leakage functions lC, lS instead the
default leakage function (lP(x, x,) :=“correct guess”).

– We include Abdalla, Hasse, and Hesse’s strengthening of FPAKE’s NewKey
interface [3]. Namely, we remove the clause where if either of the parties are
corrupted, the adversary may set the all parties’ keys—even if the adversary
hasn’t successfully attacked the session.

We note that FsafPAKE can be parameterized with any predicate and leakage,
however our protocol can support only certain predicates and leakage. We elab-
orate later when describing the protocol.

4.1 Leakage Function

Following previous formalizations of fuzzy PAKE [13,14] we provide a generalized
OfflineTestPwd and TestPwd interface which can return leakage to the caller on
a correct guess. Dupont et al. [13] define three leakage functions, based on what
is leaked in the case of far/medium/close password guesses (under some metric).

We handle leakage slightly differently. We allow the functionality to be
parameterized by two different leakage functions: One for the client lC and one
for the server lS. Specifically, if the password test is against party P, we use
leakage function lP. In the case where the passwords are similar, we give the
adversary lP(pw, pw,) in an all-or-nothing situation. In any other case, the func-
tionality simply replies “wrong password.” Our final safPAKE protocol supports
a range of σ predicates, and leakage lS(pw, pw,) = pw, lC(pw, pw,) =“correct
guess”. That is, the client learns the “correct” password and key agreement suc-
ceeds when the two passwords are similar while from the server’s perspective,
the key agreement simply succeeds or doesn’t.

4.2 Functionality

In our functionality, we consider an asymmetric interaction where one party
takes on the role of the client C who has a password as input pw, and the other
takes on the role of the server S who holds a “password file” file which is a
digest of some password pw. The goal of the interaction is to arrive at a shared
key exactly when σ(pw, pw,) /= ⊥.

Since the parties are assumed to supply low-entropy passwords, an integral
security property of PAKE lies in allowing the adversary exactly one password
guess per session. FsafPAKE provides this interface in the form of the TestPwd
query. This query can be sent once per subsession and provides the adversary

622 I. McQuoid et al.

a single password guess. We note that a single password guess will encompass
a potentially large “guessing surface” of passwords that satisfy the similarity
predicate with the target password. This is inherent to any PAKE protocol that
supports fuzzy matches, and it is important to note that this is different from
allowing an adversary an arbitrary “guessing surface” of the same size. An adver-
sary can guess only the “similarity neighborhood” Σpw∗ of one password pw∗.
This can be seen in the TestPwd interface which only allows a single password
as input.

In (strong) asymmetric PAKE we must additionally account for the adver-
sary learning the server’s long-term secrets. To accomplish this, the adversary
is capable of sending a corruption query StealPwdFile to the server and receiv-
ing the server’s password file file. We distinguish such a query from the static
Byzantine corruptions by not allowing the adversary to control the server or
to modify the server’s long-term storage. To ensure that precomputation does
not allow the adversary to “instantly” learn passwords upon compromise, the
OfflineTestPwd interface is only available after compromise, but allows the adver-
sary an unlimited number of guesses without online interaction. This models the
adversary’s ability to perform a dictionary attack against the server’s file, which
is inevitable since the adversary learns enough to simulate login attempts against
the server’s password file. Aside from password guesses, the adversary may now
impersonate the server through the Impersonate query which allows the server
to use the password file file to connect with a client. No similar imperson-
ation interface exists for the client. This implies that the server must identify
the password underlying the password file to impersonate a client to the honest
server.

5 Protocol Overview

In this section, we build up the intuition for our safPAKE protocol, step by step.
Step 0: JKX Compiler Jarecki, Krawczyk, and Xu, in their seminal paper on
strong asymmetric PAKE (saPAKE) [21], provided a compiler from plain aPAKE
to saPAKE. The server holds a PRF key k and the “aPAKE digest” of rw =
F (k, pw), where F is a PRF. To authenticate, the client with input pw, learns
F (k, pw,) via an oblivious PRF (OPRF) protocol. The parties then perform
aPAKE where the client uses rw, := F (k, pw,) as input, and the server uses its
digest of rw. Authentication succeeds if rw, = rw, which happens only when
pw, = pw.
Step 1: Run Many Instances. The intuitive starting point for safPAKE is to run
t parallel instances of saPAKE, where t is the number of acceptable mistyped
passwords. The client, who holds a password guess pw,, should use it as input
to all instances. The server holds an saPAKE password file for each possible
mistyping of the correct password pw. In this way, pw, is compared against
every mistyping of pw.

This näıve safPAKE protocol has several deficiencies, which we address next.
First, both parties can make t guesses of the other’s password in each authenti-
cation attempt. These t guesses can be completely unrelated—i.e., they need not

How to Tolerate Typos in Strong Asymmetric PAKE 623

Fig. 3. Ideal functionality safPAKE (part 1). The framed text are generalizations of
FsaPAKE [21].

correspond to a “typo neighborhood” around a single correct password. Second,
the protocol is a factor t more expensive than saPAKE.
Step 2: Reuse OPRF. The client is supposed to use the same pw, guess to each
of the t saPAKE instances. It is easy to enforce this by using just a single OPRF

624 I. McQuoid et al.

Fig. 4. Ideal functionality safPAKE (part 2). The framed text are generalizations of
FsaPAKE [21].

How to Tolerate Typos in Strong Asymmetric PAKE 625

instance of t of them. With just one OPRF instance, the client learns F (k, pw,)
for its single password guess pw,. Now we need a way to check whether this
OPRF output is consistent with one of the allowed mistypings of pw.

A natural way to do this is for the server to hold and send “correction cipher-
texts” to the client. For every allowed mistyping ~pw of the correct password pw,
there is a ciphertext that encrypts rw = F (k, pw) under the key F (k, ~pw). Sup-
pose the client obtains F (k, pw,) from an OPRF instance, and also holds these
ciphertexts. Intuitively, if the client’s OPRF input is a valid mistyping of pw,
then she can decrypt one of these ciphertexts and obtain rw = F (k, pw). If her
OPRF input is not a valid mistyping of pw then the ciphertexts are meaningless
to her. Then the parties can perform a single aPAKE instance, where the server
holds a digest of rw.
Step 3: Check All the Correction Ciphertexts. In step 2, we successfully restricted
the client to a single password guess pw,. However, the server can still make
t completely unrelated guesses of the client’s password. It can encrypt rw, t
times, under the keys F (k, pw1), . . . , F (k, pwt), where the pwi’s are completely
unrelated instead of being the set of valid mistypings of a single password. As
the server must be able to authenticate the client against t possible inputs, the
server will always be allowed t guesses. However, in the best case scenario, the
server must have all of these guesses (structurally) be known by the client upon
connection.

We fix this problem with the following two ideas: First, the correction cipher-
texts are encryptions of (k, pw) 5 instead of encryptions of rw. Second, the cor-
rection ciphertexts should be computed as a deterministic function of k and pw.
Specifically, the randomness used for encryption should be derived from k and
pw.

With these two ideas in place, whenever the client successfully decrypts a
correction ciphertext, she obtains (k, pw). From (k, pw) she can not only compute
rw = F (k, pw) herself, but also compute the entire set of correction ciphertexts.
Importantly, she can compute them knowing the set of valid mistypings of pw. 6
If she realizes that the server did not send this exact collection of ciphertexts,
she will abort the interaction.

Intuitively, if the server sends correction ciphertexts that do not correctly cor-
respond to the valid set of mistypings of a single password, then the client will
always abort the protocol—either because the client couldn’t open any cipher-
text, or because the client opened a ciphertext but then detected that the set of
ciphertexts was incorrect.

Attentive readers will notice that there is some circularity in the new correc-
tion ciphertexts, where its plaintext (k, pw) is hidden, because the encryption
key F (k, ~pw) is random, because the PRF seed k is hidden. We must indeed
be careful about such circularity! Fortunately, saPAKE protocols like OPAQUE

5 The server actually provides a way for the client to reconstruct pw instead of provid-
ing pw directly, but for simplicity in this section, we write the plaintexts as containing
pw.

6 This requires the password typo policy to be public.

626 I. McQuoid et al.

already require a very strong OPRF where F (k, x) can look random even to
someone who knows k—provided that they haven’t queried the PRF at F (k, x)
yet. Such a strong [O]PRF is enough to resolve the apparent circularity.
Step 4: Compress Communication with PIR. As a result of the previous step, we
have a safPAKE protocol where both the client and server can make only a single
password guess. However, the protocol’s communication cost still scales with t,
the number of valid mistypings. This is due to the t correction ciphertexts, which
the server must send to the client.

We can compress this communication by using PIR. In our safPAKE protocol,
there is only one ciphertext that the client can decrypt using its key F (k, pw,).
If the client can find a way to “identify” which ciphertext to decrypt, then
she can use (single-server) keyword PIR to fetch it from the server with low
communication.

In more detail, let us interpret the output of F (k, ~pw) in two pieces:
tag

~pw||ek
~pw := F (k, ~pw), where ek is an encryption key and tag is a random iden-

tifier. The server can prepare a key-value mapping that maps tag
~pw to the correc-

tion ciphertext Enc(ek
~pw; (k, pw)). 7 The client learns F (k, pw,) = tagpw,||ekpw, ,

and then initiates a keyword PIR protocol on input tagpw, . If this is the tag cor-
responding to some ciphertext, then the client will obtain that ciphertext and
be able to decrypt it as usual.

But whenever the client successfully decrypts the ciphertext, it must then
recompute the entire set of correction ciphertexts and compare to what the
server has sent. However, now the server is not actually sending the entire collec-
tion of ciphertexts, but is only running a PIR protocol. We resolve this problem
by observing that typical PIR protocols can have deterministic server behav-
ior (because PIR has no privacy guarantees for the server). So the client can
recompute (in her head) the entire collection of correction ciphertexts, and check
whether the server followed the deterministic PIR protocol with this collection
as its input.

The consistency check in Step 3 (the client recomputes all the correction
ciphertexts and compares to what the server previously sent) is in fact an instan-
tiation of this deterministic-PIR consistency check, because sending the entire
ciphertext database is a trivial PIR protocol.

5.1 Similarity Predicates

As we briefly introduced in the previous section, the client needs to know the set
of valid mistypings of her input pw, in order to verify the server’s computation.
We define this set in terms of a similarity predicate σ. In traditional PAKE,
we concern ourselves with a password dictionary D from which the parties can
choose their inputs from. As we now must consider errors, we use an expanded
dictionary ~D in our definitions.

7 For simplicity, we are ignoring the encryption randomness which also should be
derived from the output of F (k, ~pw).

How to Tolerate Typos in Strong Asymmetric PAKE 627

Definition 2 (Similarity Predicate). A similarity predicate is an effi-
ciently computable function σ : ~D × ~D → {⊥} ∪ {0, 1}κ along with an efficiently
computable reconstruction function ρ : ~D × {0, 1}κ → {⊥} ∪ ~D such that

– correctness: ∀x, x, ∈ ~D such that y := σ(x, x,): y /= ⊥ =⇒ ρ(x,, y) = x.
– reconstruction bounded: ∀x ∈ ~D, y ∈ {0, 1}κ such that z := ρ(x, y): z /=
⊥ =⇒ x ∈ Σz where Σz := {x, | σ(z, x,) /= ⊥}.

In other words, x is said to be “similar” to x, if and only if x can be “recon-
structed” from x,: ρ(x,, σ(x, x,)) = x. The set Σx is then said to be the set of all
values “similar” to x.

We require four additional properties of σ:

– self similarity: ∀x ∈ ~D, σ(x, x) /= ⊥.
– input independent size: ∀x ∈ ~D, Σx is of some fixed cardinality n.
– efficient enumerability: ∀x ∈ ~D, Σx can be enumerated in polynomial time.
– predictable hints: ∀x ∈ ~D, σ(x, Σx) = {1, 2, 3, . . . , n}.

We assume that ~D, and n are part of σ’s description. It is important to note
that our definition of predictable hints may seem stronger than necessary for our
proof. Indeed, the set does not need to be exactly {1, 2, 3, . . . , n}, but rather just
needs to be some fixed set. We use {1, 2, 3, . . . , n}, without loss of generality,
to not bog down notation when we use the set’s lexicographic ordering as an
indexing set. We also conjecture that given a PIR protocol which hides the size
of the server’s database, we can drop the input independent size property for a
weaker property which only requires an upper bound on the size of Σx.

The general definition covers many fuzzy distance functions such as rep-
etition mistakes, capitalization errors, and hamming distance for fixed length
passwords. This is a similar notion to the implicit requirements for the aPAKE
to fuzzy aPAKE compiler due to Erwig et al. [14]. Additionally, for any symmet-
ric similarity predicate which is also efficiently enumerable, we may generically
implement σ(x, x,) by outputting the index of x in Σx, (following some known
ordering) and ρ(x,, y) can then output the yth element of Σx, .

6 A Strong Asymmetric Fuzzy PAKE Protocol

In this section we describe a compiler from an OPRF, PIR protocol, and an
aPAKE protocol to a safPAKE protocol. The actual protocol isn’t far from the
intuition we have built so far and we present a graphical representation of the
protocol in Fig. 5.

Registration In the registration phase, the server begins by interacting with
the OPRF functionality to receive the user-specific key k and computes its salted
password rw from F (k, pw). The server then initializes the aPAKE server stor-
age using rw and constructs its local PIR database centered around pw. This
is accomplished by mapping password tags fpwi

.tag to encryptions of the corre-
sponding reconstruction hints dpwi

:= σ(pw, pwi).

628 I. McQuoid et al.

Fig. 5. Graphical representation of our protocol. See text for omitted details.

1. Upon receiving (StorePwdFile, sid, C, pw), S sends (Init, sid) to FOPRF and
receives (Init, sid, k).

2. S then sends (OfflineEval, sid, (k, 1), ~pw) to FOPRF for each ~pw ∈ Σpw :=
{~pw ∈ ~D | σ(pw, ~pw) /= ⊥}

3. Upon receiving (OfflineEval, sid, f
~pw), S parses f

~pw as four equilength strings
f

~pw.tag||f
~pw.ek||f

~pw.rs||f
~pw.rw each of length κ. We recall that as σ provides

How to Tolerate Typos in Strong Asymmetric PAKE 629

predictable hints, we may use these hints as an ordering for passwords Σpw =
{pw1, pw2, . . . , pwn}.

4. S then generates keyword PIR database DB := {fpwi
.tag |→

E .Enc(fpwi
.ek; (k, dpwi

:= σ(pw, pwi)); fpwi
.rs)} for i ∈ {1, 2, . . . , n}.

5. Finally, S sends (StorePwdFile, sid, C, fpw.rw) to FaPAKE and stores file[sid] :=
(DB, k).

Server Compromise
1. Upon receiving (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to

A.
Login
During login, the client learns a PIR tag associated with their password pw,

by evaluating the OPRF with the server. The client and server then perform
a PIR exchange on the client’s tag. Once the client receives the response, the
client decrypts the reconstruction hint d, and reconstructs the server’s password
pw := ρ(pw,, d,). The client then verifies the server’s messages and runs an
aPAKE subsession with the server on the salted password rw computed from
F (k, pw).
1. Upon receiving (ClientSession, sid, ssid, S, pw,), C sends (PRFEval, sid, ssid, S,

pw,) to FOPRF receiving (Prefix, sid, ssid, prfxC).
2. Upon receiving (ServerSession, sid, ssid), S retrieves (DB, k) :=

file[sid] and sends (PRFSendComplete, sid, ssid) to FOPRF receiving
(Prefix, sid, ssid, prfxS).

3. Upon receiving (PRFReceiveComplete, sid, ssid, f) from FOPRF C parses f as
four equilength strings f.tag||f.ek||f.rs||f.rw then C computes (state, req) ←
PIR.Request(f.tag) and sends (sid, ssid, req) to S.

4. Upon receiving (sid, ssid, req) from C, S computes resp :=
PIR.Respond(req, DB), queries FRO on input DB receiving h ∈ {0, 1}κ

and sends (sid, ssid, (resp, h)) to C.
5. Upon receiving (sid, ssid, (resp, h)) from S, C computes v :=

PIR.Finish(resp, state).
1. C computes z := E .Dec(f.ek, v) and checks if z parses as (k, ∈ {0, 1}κ

, d, ∈
{0, 1}κ).

2. If so, C then sets pw := ρ(pw,, d,).
3. C sends (OfflineEval, sid, (k,, 1), pwi) to FOPRF for each pwi ∈ Σpw and

catalogs the responses fpwi
.

4. C generates PIR database DB, using k, and the fpwi
then computes

resp, := PIR.Respond(req, DB,).
5. C queries FRO on input DB, receiving h, ∈ {0, 1}κ .
6. C checks if resp, = resp and h, = h.
7. If this check fails, parsing z failed, or fpw, /= f C sets fpw.rw ← {0, 1}κ .
8. C sends (ClientSession, sid, ssid,, S, fpw.rw) to FaPAKE where ssid, =

ssid||prfxC||req||resp||h.
7. S sends (ServerSession, sid, ssid,) to FaPAKE where ssid, =

ssid||prfxS||req||resp||h.
8. Either party, upon receiving (sid, ssid,, sk) or (Abort, sid, ssid,) from FaPAKE,

outputs the message received.

630 I. McQuoid et al.

7 Security Analysis

We will now show that our protocol is a secure realization of the FsafPAKE

functionality.

Theorem 1. The protocol in Sect. 6 securely realizes the safPAKE functional-
ity FsafPAKE (Fig. 3 and Fig. 4) in the (FRO, FaPAKE, FOPRF)-hybrid model and
the static Byzantine corruption setting, for any authenticated encryption scheme
(Definition 1) E; efficiently enumerable, input-independent-sized, self-similar,
similarity predicate with predictable hints (Sect. 5.1) σ; secure keyword private
information retrieval scheme (PIR.Request, PIR.Respond, PIR.Finish) (Sect. 2.1);
and leakage functions lS(pw, pw,) = pw, lC(pw, pw,) =“correct password”.

7.1 Simulator

We construct the following simulator Sim for any PPT environment Z. As stan-
dard in UC, we assume that the real adversary A is “dummy”, i.e., it merely
passes messages to and from Z. Without loss of generality, we also assume that
all FRO queries are made via A, i.e., Z does not make these queries on its own.
In the following, the session ID is always included as part of a random oracle
input and is omitted (i.e., H(sid, x) is simplified to H(x)).

Generating the Password File Upon receiving the first server message for a given
sid, Sim generates a database on uniform values as follows. We recall that for
any input x ∈ ~D, the set of all similar inputs Σx = {~x | σ(x, ~x) /= ⊥} is of some
fixed size n.

1. Sample n uniform strings f1, . . . , fn ← {0, 1}3κ , sample two strings k ←
{0, 1}κ

, rw ← {0, 1}κ , and store these values params[sid] := {f1, . . . , fn},
rw[sid] := rw.

2. For i ∈ {1, 2, 3, . . . , n}, parse fi = fi.tag||fi.ek||fi.rs each with length κ. If
any tag, ek, or rs collide, abort. Then generate the database database[sid] :=
{fi.tag |→ E .Enc(fi.ek; (k, i); fi.rs)}.

3. Finally, store file[sid] := (database[sid], k) and set password[sid] := ⊥.

The difference between what the simulator does and a server’s honest run of
the protocol is that the honest server would receive a random OPRF key k from
FOPRF, and would compute fi||fi.rw := Fk,1(pwi) and rw := Fk,1(pw).rw using
OfflineTestPwd queries to FOPRF. Programming the Password File In many parts

of the simulator, when A successfully guesses the session’s password through
OfflineTestPwd or through TestPwd, Sim needs to equivocate or “explain” the
password file it previously generated. To do so, we define a function the simulator
can call to, ProgramDatabase(sid, pw, rw, k, {f1, . . . , fn}), as follows:

1. Compute Σpw. Recall that by the predictable hints property of σ, we may
number all elements ~pw ∈ Σpw with ~pw being assigned σ(pw, ~pw).

2. For each pwi ∈ Σpw, if Fk,1(pwi) is undefined and pwi /= pw, sample rwi ←
{0, 1}κ and set Fk,1(pwi) := fi||rwi. If any rwi collide, abort.

How to Tolerate Typos in Strong Asymmetric PAKE 631

3. If Fk,1(pw) is undefined, set Fk,1(pw) := fj||rw where j is the index of pw
in Σpw.

Stealing the Password File and Offline Queries

4. Initialize tested[sid] := ∅.
5. Upon receiving (StealPwdFile, sid) from A sent to FaPAKE, and

(StealPwdFile, sid) from A sent to S:
A. Send (StealPwdFile, sid) to FsafPAKE.
B. If FsafPAKE returns “password file stolen”, then

I. Mark S compromised.
II. For rw := rw[sid], if rw ∈ tested[sid], then return rw to A from

FaPAKE. Otherwise, return “password file stolen” to A from FaPAKE.
III. Return file[sid] to A from S.

C. Otherwise, return “no password file” to A as a message from FaPAKE.
6. Upon receiving (OfflineEval, sid, (k∗, trans∗), x) from A sent to FOPRF:

A. If S is marked compromised, k = k∗, and trans = 1 where (DB, k) :=
file[sid], send (OfflineTestPwd, sid, x) to FsafPAKE.

B. If FsafPAKE returns pw, retrieve rw := rw[sid], (k, {fi}) :=
params[sid], record password[sid] := pw, and run
ProgramDatabase(sid, pw, rw, k, {fi}).

C. If S is not marked compromised, k∗ = k, and Fk,1(password[sid]) is
undefined, abort.

D. In any other case:
I. If undefined, sample Fk∗,trans∗(x) := f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ

and abort if there exists another OPRF output with which collides
on the tag, ek, rs, or rw.

II. Return (OfflineEval, sid, Fk∗,trans∗(x)) to A from FOPRF.

7. Upon receiving (TestKey, sid, k∗) from A sent to FOPRF:
A. If k = k∗ where (DB, k) := file[sid], set P := S.
B. Otherwise, set P := ⊥.
C. Return (TestKey, sid, k∗, P) to A from FOPRF.

8. Upon receiving (OfflineTestPwd, sid, rw∗) from A sent to FaPAKE:
A. Add rw∗ to tested[sid].
B. If S is marked compromised, retrieve rw := rw[sid] (rw[sid] is defined

when Sim generates file[sid], which in turn is no later than S is com-
promised):
I. If rw = rw∗, send “correct guess” to A from FaPAKE.

II. Otherwise, send “wrong guess” to A from FaPAKE.

632 I. McQuoid et al.

Password Authentication

9. Initialize maps clientSession, serverSession, delayedTests, and
delayedSessions.

10. Upon receiving (ClientSession, sid, ssid, C, S) from FsafPAKE:
A. If clientSession[ssid] is undefined, set clientSession[ssid] :=

(C, S, ⊥, ⊥, ⊥, ⊥, ⊥); otherwise, ignore the query.
B. Send (PRFEval, sid, ssid, C, S) to A from FOPRF and await

(sid, ssid, prfx) from A. Reject the response unless prfx is new.
C. Update clientSession[ssid] := (C, S, ⊥, prfx , ⊥, ⊥, ⊥) and await

(PRFReceiveComplete, sid, ssid, C, i) from A sent to FOPRF.
D. If i = S and (serverSession[ssid] is undefined or

serverSession[ssid] /= (C, S, ·, prfx , ·, ·)):
I. If delayedTests[sid] = 0, ignore this message.

II. Otherwise, set delayedTests[sid] := delayedTests[sid] − 1.
E. If the request wasn’t ignored, compute (state, req) := PIR.Request(0κ)

and send (sid, ssid, req) to A from C then await (sid, ssid, (resp, h)) from
A sent to C.

F. Upon receiving (sid, ssid, (resp, h)), send
(ClientSession, sid, ssid||prfx||req||resp||h, C, S) to A from FaPAKE,
set clientSession[ssid] := (C, S, i, prfx , req, resp, h), and mark
clientSession[ssid] as “aPAKE active”.

11. Upon receiving (ServerSession, sid, ssid, C, S) from FsafPAKE

A. If serverSession[ssid] is undefined, set serverSession[ssid] :=
(C, S, ⊥, ⊥, ⊥, ⊥, ⊥); otherwise, ignore the query.

B. Send (PRFSendCompletesid, ssid, S) to A from FOPRF, await
(sid, ssid, prfx) from A, and update serverSession[ssid] :=
(C, S, ⊥, prfx , ⊥, ⊥, ⊥).

C. If clientSession[ssid] /= (C, S, ·, prfx , ·, ·, ·) or if clientSession[ssid]
is undefined, send (Interrupt, sid, ssid, S) to FsafPAKE, set
delayedTests[sid] := delayedTests[sid] + 1, and add ssid to
delayedSessions[sid].

D. Upon receiving (PRFEval, sid, ssid, S, x) from A sent to FOPRF send
(PRFEval, sid, ssid, A, S) to A from FOPRF.
I. Await (PRFReceiveComplete, sid, ssid, A, i) from A sent to FOPRF.

II. If i = S and delayedTests[sid] > 0, set delayedTests[sid] :=
delayedTests[sid] − 1, choose any sub-session ssid, ∈
delayedSessions[sid] send (TestPwd, sid, ssid,, S, x) to FsafPAKE

and remove ssid, from delayedSessions[sid].
III. If i = (k, 1) where (DB, k) := file[sid]: If S is not compro-

mised, and password has not been set, abort; otherwise, send
(OfflineTestPwd, sid, x) to FsafPAKE.
a. If FsafPAKE responds with pw in either case, set password[sid] :=

pw, retrieve rw := rw[sid], (DB, k) := file[sid], {fj} :=
params[sid], and run ProgramDatabase(sid, pw, rw, k, {fj}).

How to Tolerate Typos in Strong Asymmetric PAKE 633

b. In any case, if Fk,1(x) is undefined, sample Fk,1(x) :=
f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ and abort if there exists
another OPRF output with which collides on the tag, ek, rs,
or rw.

c. Finally, send (PRFReceiveComplete, sid, ssid, Fk,1(x)) to A.
IV. Otherwise, parse i as (k∗, trans∗) and if Fk∗,trans∗(x) is undefined;

sample Fk∗,trans∗(x) := f.tag||f.ek||f.rs||f.rw ← {0, 1}4κ and abort
if there exists another OPRF output with which collides on the tag,
ek, rs, or rw; and send (PRFReceiveComplete, sid, Fk∗,trans∗(x)) to
A.

E. Upon receiving (sid, ssid, req), compute resp :=
PIR.Respond(req, database[sid]) and h := H(database[sid]), send
(sid, ssid, (resp, h)) to A from S, and set serverSession[ssid] :=
(C, S, S, prfx , req, resp, h).

F. Finally, send (ServerSession, sid, ssid||prfx||req||resp||h, C, S) to A from
FaPAKE and mark serverSession[ssid] as “aPAKE active”.

Active Session Attacks

12. Upon receiving (TestPwd, sid, ssid||prfx||req||resp||h, C, rw∗) from A sent
to FaPAKE, if (C, S, i, prfx , req, resp, h) := clientSession[ssid] is marked
“aPAKE active”:
A. If i = S, set i := (k, 1) where (DB, k) := file[sid].
B. If trans∗ = 0, set pw∗ := ⊥.
C. If there exists an OPRF entry Fk∗,trans∗(pw∗) = s||rw∗ (s ∈ {0, 1}3κ),

set pw∗ := x, otherwise set pw∗ := ⊥.
D. If i = (k, 1), set DB∗ = DB and if either password[sid] is undefined or

pw∗ /= password[sid], set pw∗ := ⊥.
E. Otherwise, generate database DB∗ := DB(pw∗, (k∗, trans∗)) using

Fk∗,trans∗(~pw) for ~pw ∈ Σpw∗ . If any such value is undefined, set
pw∗ := ⊥.

F. If either resp /= PIR.Respond(DB∗, req) or h /= H(DB∗), set pw∗ := ⊥.
G. Send (TestPwd, sid, ssid, C, pw∗) to FsafPAKE and if FsafPAKE responds

“wrong guess”, Sim sets pw∗ := ⊥.
H. If FsafPAKE responds with pw, set password[sid] := pw,

retrieve rw := rw[sid], {fj} := params[sid], and run
ProgramDatabase(sid, pw, rw, k, {fj}), mark clientSession[ssid]
compromised, and send “correct guess” to A.

I. Otherwise, send “wrong guess” to A from FaPAKE.
J. In all cases, mark clientSession[ssid] “aPAKE key-ready”.

13. Upon receiving (TestPwd, sid, ssid||prfx||req||resp, S, rw∗) from A sent to
FaPAKE, if (C, S, S, prfx , req, resp, h) := serverSession[ssid] is marked
“aPAKE active”.
A. If rw[sid] = rw∗, then send “correct guess” to A.
B. Otherwise, send “wrong guess” to A.

634 I. McQuoid et al.

C. In all cases, mark serverSession[ssid] “aPAKE key-ready”.
14. Upon receiving (Impersonate, sid, ssid||prfx||req||resp||h) from A to FaPAKE,

if (C, S, i, prfx , req, resp, h) := clientSession[ssid] is marked “aPAKE
active”:
A. If S is not compromised, ignore this query.
B. If (i = S or i = (k, 1)), resp = PIR.Respond(req, DB), and h = H(DB),

where (DB, k) := file[sid], send (Impersonate, sid, ssid) to FsafPAKE and
forward the response (“correct guess” or “wrong guess”) to A.

C. If “correct guess” was sent, mark clientSession[ssid] compromised.
D. If “wrong guess” was sent, send (TestPwd, sid, ssid, C, ⊥) to FsafPAKE.
E. In both cases, mark clientSession[ssid] “aPAKE key-ready”.

Key Generation and Authentication

15. Upon receiving (NewKey, sid, ssid||prfxC||req||resp||h, C, k∗) from A to
FaPAKE, and (C, S, i, prfx , req, resp, h) := clientSession[ssid] is marked
“aPAKE active” or “aPAKE key-ready”:
A. If there is a corresponding aPAKE session for the server (i.e.,

serverSession[ssid] = (C, S, S, prfxS, req,, resp,, h,)) and i /= S, prfxC /=
prfxS, req /= req,, resp /= resp,, or h /= h,, send (TestPwd, sid, ssid, P, ⊥)
to FsafPAKE.

B. Send (NewKey, sid, ssid, P, k∗) to FsafPAKE and mark
clientSession[ssid] “aPAKE completed”.

16. Upon receiving (NewKey, sid, ssid||prfxC||req||resp||h, S, k∗) from A to
FaPAKE, and (C, S, i, prfx , req, resp, h) := serverSession[ssid] is marked
“aPAKE active” or “aPAKE key-ready”:
A. If there is a corresponding aPAKE session for the client (i.e.,

clientSession[ssid] = (C, S, S, prfxC, req,, resp,, h,)) and i /= S, req /=
req,, resp /= resp,, or h /= h,, send (TestPwd, sid, ssid, S, ⊥) to FsafPAKE.

B. Send (NewKey, sid, ssid, P, k∗) to FsafPAKE and mark
serverSession[ssid] “aPAKE completed”.

17. Upon receiving (TestAbort, sid, ssid||prfxC||req||resp||h, S) from A to
FaPAKE, and S has such an active aPAKE session:
A. If there is a corresponding aPAKE session for the server (i.e.,

serverSession[ssid] = (C, S, S, prfxS, req,, resp,, h,)) and i /= S, prfxC /=
prfxS, req /= req,, resp /= resp,, or h /= h,, send (TestPwd, sid, ssid, P, ⊥)
to FsafPAKE.

B. Send (TestAbort, sid, ssid, C) to FsafPAKE, relay the response (“success”
or “abort”) to A from FaPAKE, and mark C’s session record “aPAKE
completed”.

18. Upon receiving (TestAbort, sid, ssid||prfxS||req||resp||h, S) from A to
FaPAKE, and S has such an active aPAKE session:
A. If there is a corresponding aPAKE session for the client (i.e.,

clientSession[ssid] = (C, S, S, prfxC, req,, resp,, h,)) and i /= S, req /=
req,, resp /= resp,, or h /= h,, send (TestPwd, sid, ssid, S, ⊥) to FsafPAKE.

How to Tolerate Typos in Strong Asymmetric PAKE 635

B. Send (TestAbort, sid, ssid, C) to FsafPAKE, relay the response (“success”
or “abort”) to A from FaPAKE, and mark S’s session record “aPAKE
completed”.

Proof (Proof Outline). The proof follows a sequence of indistinguishable hybrids
starting in the real world where the parties follow the protocol described in
Sect. 6 and ending with the ideal world where interactions are simulated as per
our simulator Sim in Sect. 7.1 which runs independently of the parties’ passwords.

The first step of our hybrids introduces a dummy party for the client and
the server which simply passes messages from the environment to their real
counterparts. We then introduce a partial functionality F which sits between
the dummy and real parties. This partial functionality begins by relaying all
messages it receives to the simulator, and along the hybrids we build this
partial functionality into FsafPAKE. In the beginning, the simulator receives
(StorePwdFile, sid, C, pw) when the dummy server sends the message to F and
receives (ClientSession, sid, ssid, S, pw,) when the dummy client sends the mes-
sage to F and can run the real world protocol personally giving the keys to
each of the parties. After setting up the conceptual functionality party, we give
it all necessary interfaces, but provide it a partial NewKey interface which we
eventually modify into the correct one found in FsafPAKE.

We then modify the client’s code to run independently of the input pass-
word. This is accomplished by first replacing the client’s PIR verification step.
Instead of verifying the PIR response from the server using the client’s PIR
state, we extract the adversary’s input to the aPAKE stage and compare it to
the messages sent in the PIR stage (culminating in either a TestPwd query or an
Impersonate query). Now, the client runs independently of its PIR state and by
the client privacy property of PIR, we may replace the client’s PIR request and
OPRF request with a “dummy” request (state, req) ← PIR.Request(0κ). After
this step, the client’s code runs independently of the client password except for
its preliminary query to FOPRF.

We then modify the server’s code to run independently of the input pass-
word unless it receives it from the functionality on a password testing query.
To achieve this, we begin by distinguishing sub-sessions where the OPRF pre-
fixes match from ones where they diverge. In the case of divergent sub-sessions,
the simulator provides a single TestPwd ticket to the environment which can be
redeemed to make a password guess. In such divergent sub-sessions, the sim-
ulator sends an Interrupt query and awaits a PRFReceiveComplete query which
consumes a ticket. Upon consuming a ticket, the simulator extracts a guess from
the OPRF query, sends a TestPwd query to the functionality, and aligns the
aPAKE session accordingly. In the next set of hybrids, we replace the server’s
storage with a uniformly generated database independent of the server’s pass-
word. We then align these databases whenever a ticket is redeemed, resulting in
a correct password guess against the server, by programming the OPRF outputs
of all passwords ~pw ∈ Σpw to match those used in the generation of the database.

636 I. McQuoid et al.

Finally, we modify the partial functionality to align with FsafPAKE. This is
done, first, by replacing the intermediate NewKey interface in the partial simu-
lator with the one found in FsafPAKE. Once this is accomplished, we modify the
functionality to no longer provide the simulator with the full ClientSession and
ServerSession messages. As the simulator still relies on these messages, we make
the final modifications to the simulator. First, we modify the server’s execution
to generate the dummy database upon receiving a successful StealPwdFile query
or a ServerSession query. We then modify the client’s code to no longer make its
first OPRF query and for the simulator to instead send a PRFEval message to
the environment without prompting. To finish the hybrids, we modify the partial
functionality to no longer prompt the simulator by sending StorePwdFile.

We present a complete proof of theorem 1 in the full version of our
paper. We additionally note, as a conjecture, that if the client leakage function
lC(pw, pw,) =“correct password” is replaced with the server’s leakage function
lS(pw, pw,) = pw, then we may achieve a more efficient protocol which no longer
requires the client to verify the server’s PIR response. This also means that the
PIR scheme would not need to have deterministic messages; however, this leak-
age function is no longer minimal in that it does not match what the honest
parties learn at the end of the protocol.

8 Concrete Instantiations & Efficiency

We now discuss concrete instantiations for the components of our protocol (PIR
scheme and aPAKE), and the resulting performance.
Choice of PIR Scheme. We consider two PIR schemes:
– Trivial PIR: The server sends the entire database to the client. Communi-

cation equals the size of the database.
– FHE-PIR: The client sends an FHE encryption of its query (tag) q to the

server. The server homomorphically evaluates P (q), where P is a polyno-
mial obtained by interpolating P (x) = DB[x]. Communication is the size of
one FHE-encrypted database element in each direction. Computation for the
server is O(|DB|) FHE operations.

Other PIR protocols between these extremes are possible. For example, it is
possible to exponentially reduce the multiplicative depth of the FHE circuit by
having the client send FHE encryptions of q, q2 , q4 , q8 , · · · instead of just an FHE
encryption of q. This variant trades a log |DB| factor increase in communication
for a significant reduction in FHE costs.

In our protocol, database items are symmetric-key encrypted ciphertexts,
where the plaintext contains a PRF key and a small integer. Pessimistically, we
consider each ciphertext to be 3κ bits, and we assume an additive overhead of
O(κ) to further encrypt the database item under FHE.
Round Complexity of safPAKE. Our OPRF protocol consists of two sequential
rounds, with the client speaking first. Each OPRF message is a single group ele-
ment. Afterwards, the rest of our protocol contains several sequential bottlenecks
that affect the total round complexity:

How to Tolerate Typos in Strong Asymmetric PAKE 637

– The client must obtain its OPRF output before making its PIR query. How-
ever, when using trivial-PIR, the client makes no query, so the server can just
send its trivial-PIR message together with its final OPRF message.

– The client must obtain its PIR output before sending its first aPAKE message.
However, if the server is first to speak in the aPAKE protocol, it may send
the first aPAKE message along with its PIR response. Hence, our protocol
favors aPAKE in which the server speaks first.

Overall, our protocol requires 2 + 2P + A − S rounds, where P = 1 for nontrivial
PIR (P = 0 otherwise), the aPAKE has A sequential rounds, and S = 1 if the
server speaks first in the aPAKE (S = 0 otherwise).

Among aPAKE protocols, the one of Hwang et al. [18] instantiated with
the PAKE protocol of McQuoid et al. [26] is best suited to our application. It
requires only one message from each party, and the server may be first to speak.
Its communication cost is 7κ bits more than bare Diffie-Hellman, and it requires
only one more exponentiation for the client than bare Diffie-Hellman.

Summary of safPAKE Costs. In Table 1 we show the concrete costs of our pro-
tocol when instantiated according to our recommendations here vs the näıve
safPAKE described previously instantiated with OPAQUE [22] and reusing the
OPRF stage. The reader should remember that the resultant protocol does not
actually securely UC-realize the FsafPAKE functionality as there are no guaran-
tees that the server uses the correct inputs. Importantly, when using a nontrivial
PIR, the communication cost of our protocol is independent of the number of
allowed password variants. When using a trivial PIR, communication is linear
in the number of password variants, but the server’s computation is constant.

Much of the computational cost comes from the client re-computing the PIR
database. This involves O(|DB|) PRF evaluations, each of which requires an
exponentiation. In Table 1 we list our costs in terms of exponentiations E, hash-
to-group operations H, and FHE multiplications F as these are our computa-
tional bottlenecks. Here, by n we mean the size of the typo-set Σpw—recall that
this should be constant across all passwords.

Table 1. Cost evaluation of our safPAKE protocol. The “näıve” protocol is the insecure
protocol described in Sect. 1.

Näıve + [21] Ours + Trivial PIR Ours + FHE PIR

C Cost 3n + 2E, 1H (n + 4)E, (n + 3)H (n + 4)E, (n + 3)H,
O(n)F

S Cost 3n + 1E 3E, 2H 3E, 2H, nF
Rounds 3 3 5

Communication (2n +2)G +(5n +2)κ (3n + 9)κ + 4G O(κ) + 4G + 9κ
S Storage (5n + 1)κ + 2nG (3n + 1)κ O(κ)n + (3n + 1)κ

638 I. McQuoid et al.

Typo Policies: Our protocol is suitable for typo policies with a small or moderate
number of allowable typos. Here we propose several such policies:

– Facebook’s policy: Facebook allows the client to enter either a case-reversed
password, a repeated first/last character password, or a case-reversed first
letter password so, including the correct password, Σpw = 5 total password
variants will be accepted 8.

– Keyboard-adjacent character substitutions: Suppose we allow at most
k characters of the length-l ≥ k password to be substituted for characters
that are adjacent on the keyboard, then Σpw =

∑

i≤k

(

l
i

)

7i total password
variants will be accepted.

– Consecutive characters transposed: Suppose we allow at most k pairs of
consecutive characters in the length-l ≥ k password to be transposed, then
Σpw =

∑

i≤k

(

l−1
i

)

total password variants will be accepted.
– Erroneous repeated or dropped characters: Suppose we allow at most

k characters in the length-l ≥ k password to be repeated or dropped, then
Σpw =

∑

i≤k

(

l
i

)

2i total password variants will be accepted.

If we consider the cost of implementing Facebook’s simple password-typo policy
using our scheme, instantiated with the trivial PIR and a 256-bit elliptic curve
group κ = 128, authentication would require 3 rounds, ((3·5+9)·128+4·256)/8 =
512 bytes of communication, 12 exponentiations, 10 hash-to-curve operations,
and 256 bytes of server storage.

9 Conclusion

Following in a line of study for fuzzy symmetric PAKE [13] and fuzzy asymmet-
ric PAKE [14,27], we present a functionality for fuzzy strong asymmetric PAKE
which affords the same strong guarantees of the saPAKE functionality from the
literature [21] while allowing for arbitrary measures of similarity. We addition-
ally provide a construction in the spirit of the aPAKE to saPAKE compiler
due to Jarecki, Krawczyk, and Xu [21] and tPAKE due to Pongmorrakot and
Chatterjee [27]. Our protocol realizing the FsafPAKE functionality for a com-
mon subclass of the similarity predicates considered by Erwig et al. [14] and
can be built from a variant of the 2-hash-Diffie-Hellman OPRF herein called 3-
hash-Diffie-Hellman, keyword private information retrieval, and existing aPAKE
protocols. Additionally, we provide an incidental protocol for strong asymmetric
normalization which we believe to be an independent interest for future study.

Our construction can achieve constant communication size in the size of
the server’s database, however has client computation equal to constructing the
server’s PIR database. For simple predicates such as first word capitalization
or first-second letter transposition, this is reasonable, but for biometric appli-
cations may be too expensive for deployment. We believe that reducing the

8 This count doesn’t hold for all passwords, but will hold for the majority of passwords.
e.g., the empty password will have Σpw = 1.

How to Tolerate Typos in Strong Asymmetric PAKE 639

computational burden for the client is possible and may pave the path to strong
asymmetric biometric authentication. We leave this as an interesting line for
future work.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 278–307. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 10

2. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries
in the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13092, pp. 311–341. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92078-4 11

3. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 711–741. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 24

4. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

5. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryp-
tology 16(3), 185–215 (2003)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

7. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: Den-
ning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93,
pp. 244–250. ACM Press (1993)

8. Bootle, J., Faller, S., Hesse, J., Hostáková, K., Ottenhues, J.: Generalized fuzzy
password-authenticated key exchange from error correcting codes. In: Guo, J.,
Steinfeld, R. (eds.) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT
2023. LNCS, vol. 14445, pp. 110–142. Springer, Singapore (2023). https://doi.org/
10.1007/978-981-99-8742-9 4

9. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

10. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 798–825. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 26

11. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/978-981-99-8742-9_4
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24

640 I. McQuoid et al.

12. Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASSWORD
tYPOS and how to correct them securely. In: 2016 IEEE Symposium on Security
and Privacy, pp. 799–818. IEEE Computer Society Press (2016)

13. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78372-7 13

14. Erwig, A., Hesse, J., Orlt, M., Riahi, S.: Fuzzy asymmetric password-authenticated
key exchange. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12492, pp. 761–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64834-3 26

15. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

16. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24

17. Herzberg, A.: Public-key infrastructure (PKI) (2022). https://
uconn-my.sharepoint.com/:p:/g/personal/amir herzberg uconn edu1/
EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk

18. Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 485–504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 26

19. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45608-8 13

20. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D., Miyaji,
A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 39–58. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61204-1 3

21. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

22. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: An asymmetric PAKE protocol secure
against pre-computation attacks. Cryptology ePrint Archive, Report 2018/163
(2018)

23. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

24. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 293–310. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 18

25. Kaufman, C., Perlman, R.J.: PDM: A new strong password-based protocol. In:
Wallach, D.S. (ed.) USENIX Security 2001. USENIX Association (2001)

https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://uconn-my.sharepoint.com/:p:/g/personal/amir_herzberg_uconn_edu1/EX99yfXIWrtNqPo84-auJA4B-ZMLr4JHWZ-Zg83hvIv40w?e=fhOdGk
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18
https://doi.org/10.1007/978-3-642-19571-6_18

How to Tolerate Typos in Strong Asymmetric PAKE 641

26. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N OT
from programmable-once public functions. In: Ligatti, J., Ou, X., Katz, J., Vigna,
G. (eds.) ACM CCS 2020, pp. 425–442. ACM Press (2020)

27. Pongmorrakot, T., Chatterjee, R.: tPAKE: typo-tolerant password-authenticated
key exchange. In: Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2020. LNCS,
vol. 12586, pp. 3–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
66626-2 1

28. Protalinski, E.: Facebook passwords are not case sensitive (2011). https://www.
zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/

29. Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part II, volume 13276 of LNCS, pp. 127–156. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-07085-3 5

30. Shoup, V.: Security analysis of SPAKE2 +. In: Pass, R., Pietrzak, K. (eds.) TCC
2020. LNCS, vol. 12552, pp. 31–60. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64381-2 2

https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-030-66626-2_1
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://www.zdnet.com/article/facebook-passwords-are-not-case-sensitive-update/
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2
https://doi.org/10.1007/978-3-030-64381-2_2

	How to Tolerate Typos in Strong Asymmetric PAKE
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 (Keyword) PIR
	2.2 Authenticated Encryption

	3 Oblivious PRF
	3.1 The Functionality
	3.2 The 3-Hash Diffie-Hellman Protocol

	4 Security Model
	4.1 Leakage Function
	4.2 Functionality

	5 Protocol Overview
	5.1 Similarity Predicates

	6 A Strong Asymmetric Fuzzy PAKE Protocol
	7 Security Analysis
	7.1 Simulator

	8 Concrete Instantiations & Efficiency
	9 Conclusion
	References

