
Latent Adaptive Planner for Dynamic Manipulation

Donghun Noh1♠, Deqian Kong1,2♠, Minglu Zhao1, Andrew Lizarraga1,
Jianwen Xie2, Ying Nian Wu1♣, Dennis Hong1♣

1UCLA 2Lambda, Inc.
♠Equal contribution ♣Equal advising

Abstract: We present the Latent Adaptive Planner (LAP), a trajectory-level
latent-variable policy for dynamic nonprehensile manipulation (e.g., box catch-
ing) that formulates planning as inference in a low-dimensional latent space and
is learned effectively from human demonstration videos. During execution, LAP
achieves real-time adaptation by maintaining a posterior over the latent plan and
performing variational replanning as new observations arrive. To bridge the em-
bodiment gap between humans and robots, we introduce a model-based propor-
tional mapping that regenerates accurate kinematic-dynamic joint states and object
positions from human demonstrations. Through challenging box catching exper-
iments with varying object properties, LAP demonstrates superior success rates,
trajectory smoothness, and energy efficiency by learning human-like compliant
motions and adaptive behaviors. Overall, LAP enables dynamic manipulation
with real-time adaptation and successfully transfer accross heterogeneous robot
platforms using the same human demonstration videos.

Keywords: Imitation Learning, Dynamic Nonprehensile Manipulation, Latent
Space Planning, Classical Variational Bayes, Test-time Adaptation

1 Introduction

Dynamic manipulation, which involves controlling objects through rapid contact changes and com-
plex physical interactions [1, 2], remains a fundamental challenge in robotics. While humans nat-
urally perform throwing, catching, and rapid transfers, robots remain confined to slow, conserva-
tive movements. Achieving true dynamic manipulation requires real-time consideration of diverse
physical properties of objects (mass, friction, elasticity) [3, 4], changes in contact states, and joint
torques [5, 6, 7], yet these dynamic characteristics are difficult to model analytically and vary sig-
nificantly across different objects [8, 9]. Recent advances like Tossingbot [10], FlingBot [11], and
Chi et al. [12] have shown progress in specific scenarios, yet predominantly rely on self-supervised
learning requiring thousands of robot trials. For this reason, this approach lacks scalability since ex-
ploration with heavier objects or mobile-based platforms like humanoids become unsafe and leads
to significant hardware damage upon failure. While simulation offers safer training, accurately mod-
eling dynamic manipulation physics remains challenging, limiting sim-to-real transfer.

Recently, imitation learning has shown promising results on static or quasi-static manipulation tasks.
However, recent approaches such as diffusion policy are limited by slow inference speeds that can-
not meet the real-time requirements of dynamic manipulation. Moreover, most datasets for policy
training consider only end-effector positions while overlooking critical dynamic elements such as
contact information, joint torques, and grasping forces [13, 14, 15]. While more accurate data can
be collected through teleoperation, this approach presents practical barriers including high imple-
mentation costs, logistical challenges for achieving scale and diversity, and technical difficulties in
capturing complete physical interaction data [16, 17, 18]. Additionally, demonstration-based learn-
ing approaches struggle with temporal consistency and trajectory smoothness when transferring
skills from human demonstrations to robotic systems [19]. Although recent generative modeling
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approaches such as sequence modeling [20] and diffusion models [13] have addressed some of these
challenges, they still exhibit limitations in handling the long-term dependencies and environmental
contingencies inherent in dynamic manipulation tasks [18].

In this work, we introduce Latent Adaptive Planner (LAP), which formulates planning as latent
space inference. Our approach addresses key challenges in visuomotor policy learning through a
principled variational replanning framework that maintains temporal consistency while efficiently
adapting to environmental changes. By leveraging a latent variable that functions as an abstract
plan, LAP enables more coherent long-horizon planning while maintaining the flexibility needed
for real-time adaptation. The system employs Bayesian updating in latent space to incrementally re-
fine plans as new observations become available, balancing computational efficiency with real-time
adaptability. Furthermore, by model-based proportional mapping to regenerate accurate kinematic-
dynamic joint states and object positions from human demonstration videos, our approach bridges
the gap between human motion and robotic execution, capturing the adaptive and energy-efficient
qualities inherent in human manipulation skills. Importantly, this regeneration methodology allows
us to create versatile datasets suitable for training diverse robotic platforms on the same manipula-
tion tasks without requiring direct robot data collection.

We demonstrate our approach through box catching, one of the most challenging reactive manipu-
lation tasks. Unlike controlled release scenarios such as throwing and fling, catching requires real-
time adaptation to unpredictable trajectories while managing objects without secure grasps [21, 22].
Boxes which have non-trivial weight and volumes tumble chaotically with asymmetric drag, forc-
ing robots to predict contact locations and orientations while coordinating dual-arm movements
with millisecond-scale precision and determining appropriate contact forces to absorb impact with-
out dropping the object [21, 23]. Through this task, we show that imitation learning can achieve
energy-efficient dynamic manipulation while bypassing the intractable formulations required by op-
timization methods, demonstrating the potential for broader dynamic manipulation challenges.

2 Related Works

Human Demonstration-based Robot Data Generation Those approaches that utilize human
videos offer greater scalability but face embodiment gaps between humans and robots. Some meth-
ods address this by requiring hybrid datasets with both human and robot demonstrations [24, 25].
Others extract action labels from videos through object tracking [26, 27, 28, 29] or inverse model-
ing techniques [30, 31, 32]. Cross-embodiment techniques like RoviAug [33] but when applied to
human-to-robot transfer [34], typically still require robot data.

Recent work has explored more efficient ways to leverage human demonstrations. Phantom [35]
enables zero-shot transfer of policies trained solely on human demonstrations to robot embodiments
through simple data editing techniques, eliminating the need for robot data collection. Similarly,
DROID [36] demonstrates that collecting diverse manipulation data across multiple environments
creates more robust policies capable of generalizing to new scenarios. DexMV [37] introduced
a particularly relevant approach by establishing a framework for learning dexterous manipulation
from human videos through demonstration translation techniques. This approach extracts 3D hand
and object poses from videos and maps human hand trajectories to robot joint torques via inverse dy-
namics, closely aligning with our method of processing video data to generate robot demonstrations.
Our specific data generation process, which involves human pose estimation, object pose extraction,
and robot-specific scaling and kinematic retargeting, is detailed in Section 3.1.

Imitation Learning and Latent Space Planning Imitation learning enables robots to acquire
skills by mimicking demonstrations, transforming complex control into supervised learning prob-
lems that map observations to actions [38], though traditional approaches like Behavior Cloning
struggle with distribution shift during deployment [39]. Recent approaches have reframed decision-
making as sequence modeling [20, 40] to capture temporal dependencies in state-action sequences.
Diffusion models offer an alternative paradigm for imitation learning, with Chi et al. [13] gener-
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ating multi-modal action distributions through iterative denoising processes and Janner et al. [41]
leveraging classifier-guided diffusion models.

Latent variable models address temporal consistency challenges by encoding trajectory-level infor-
mation that captures long-term dependencies. Yang et al. [42], Paster et al. [43] investigate Decision
Transformer’s overfitting to environment contingencies and propose latent variable solutions that en-
code trajectory-level information. Latent Plan Transformer [44] formulates planning as latent space
inference and decouples trajectory generation from return estimation, enabling more coherent long-
horizon planning. Earlier works [45, 46] propose VAE-based models [47] for temporally extended
policies, but lack the adaptive replanning capabilities central to our framework. Our work builds
upon these foundations but introduces classical variational Bayes learning [48, 49] for precise plan
inference and principled Bayesian updating in latent space, enabling efficient plan refinement as new
observations become available as detailed in Section 3.2.

3 Method

The Latent Adaptive Planner (LAP) presents a novel methodology for dynamic manipulation tasks,
addressing the inherent challenges in human demonstration learning and real-time environmen-
tal adaptation. Within this framework, effective data regeneration from human demonstrations is
achieved, and adaptive responses to dynamic environments in real-time are enabled. The integra-
tion of latent space representation with variational inference allows for precise mapping between
demonstration data and robot execution parameters while maintaining adaptability to unpredicted
environmental changes.

3.1 Robot Model-Based Data Regeneration from Human Demonstration Videos

A comprehensive framework is developed to regenerate robot training data from human demonstra-
tion videos, enabling the extraction of dynamic information without direct robot interaction. As
illustrated in Figure 1, the approach consists of three main components: scene state estimation,
object-robot proportional mapping, and kinematic-dynamic joint state reconstruction. This data
regeneration pipeline systematically transforms human demonstrations into robot execution param-
eters while preserving essential dynamic characteristics.

Scene State Estimation Scene state estimation is performed to extract spatial information from
video frames. This process involves detecting and tracking box objects to determine their posi-
tions and dimensions within the scene coordinate system. Additionally, human pose estimation is
conducted to track the demonstrator’s joint positions, providing the motion data necessary for the
subsequent mapping process.

Object-Robot Proportional Mapping To adapt the human demonstration environment to the
robot’s workspace, object-robot proportional mapping is implemented. This process transforms
detected objects’ positions and dimensions to the robot’s base coordinate frame:

Rpobj “ TR
S ¨ Spobj (1)

Rdobj “ s ¨ Sdobj (2)
where Rpobj represents the object position expressed in robot frame R, Spobj represents the object
position expressed in scene frame S, TR

S is the transformation matrix from scene frame to robot
frame, Rdobj and Sdobj denote the object dimensions expressed in the robot and scene frames
respectively, and s is the scaling factor determined by the ratio between the robot arm length obtained
from the robot model and the human arm length measured in pixels from the video.

Kinematic-Dynamic Joint State Reconstruction The robot’s kinematic and dynamic states are
reconstructed from the human demonstration. The joint positions are obtained through direct joint
position mapping between human and robot:

q “ fmappqhumanq (3)
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Figure 1: Robot Model-Based Data Regeneration Pipeline from Human Demonstration Videos. The
pipeline consists of three main stages: (1) Scene State Estimation, which detects and tracks box
objects and human pose from demonstration videos; (2) Object-Robot Proportional Mapping, which
scales object dimensions and positions relative to the robot base frame; and (3) Kinematic-Dynamic
Joint State Reconstruction, which maps human joint positions to robot configurations, differentiates
to obtain velocities and accelerations, and computes required joint torques through inverse dynamics
including external forces.

where q represents the robot joint positions and fmap is the mapping function that accounts for the
different kinematic structures between human and robot.

Joint velocities and accelerations are calculated by differentiating the joint positions with respect to
time using the video’s frame rate:

9q “
dq

dt
«

qt`∆t ´ qt

∆t
(4)

:q “
d2q

dt2
«

9qt`∆t ´ 9qt

∆t
(5)

where ∆t is the time interval between consecutive frames.

With the complete kinematic state (q, 9q, :q), inverse dynamics is employed to compute the required
joint torques for task execution:

τ “ Mpqq:q`Cpq, 9qq 9q`Gpqq ` JT pqqFext (6)

where Mpqq is the inertia matrix, Cpq, 9qq accounts for Coriolis and centrifugal effects, Gpqq repre-
sents gravitational forces, Jpqq is the Jacobian matrix, and Fext denotes external forces encountered
during interaction with objects. The inclusion of external forces is crucial for accurately modeling
tasks involving object manipulation and environmental contact.

This comprehensive data regeneration pipeline enables the transformation of human demonstrations
into robot execution data with full kinematic and dynamic information, facilitating more efficient
transfer of human skills to robotic systems.

3.2 Latent Adaptive Planner (LAP)

Our Latent Adaptive Planner (LAP) introduces a powerful framework for modeling and executing
complex dynamic manipulation tasks based on human demonstrations.
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Model Given a trajectory x “ tpot, atqu
T
t“1 consisting of observations and actions from demon-

strations, LAP defines a joint probability distribution:

pθpx, zq “ ppzqpθpx|zq (7)

where z P Rd is the latent plan vector, ppzq is the prior model, and pθpx|zq is the trajectory generator.
The prior model ppzq is an isotropic Gaussian z „ N p0, Idq.

The trajectory generator pθpx|zq is a conditional autoregressive model that produces actions based
on the current state, historical context, and the latent plan vector:

pθpx|zq “
T
ź

t“1

pθpxptq|xpt´Kq, ...,xpt´1q, zq (8)

where xptq “ pot, atq, and K is the context length. The observation ot includes box position,
contact state, and previous timestep joint positions, velocities, and torques (qt´1, 9qt´1, τt´1).
Action at consists of current timestep joint positions, velocities, and torques (qt, 9qt, τt). xp0q

is a special learnable token. θ is implemented using a causal Transformer model [50]. The la-
tent plan vector z controls each step of action generation through cross-attention mechanisms as
pθpat|ot´K:t´1, at´K:t´1, zq. The action is assumed to follow a unimodal Gaussian distribution
with fixed variance, i.e. at „ N pgθpot´K:t, at´K:t´1, zq, I|a|q.

Classical Variational Bayes Learning We employ classical variational Bayes (VB) [48, 49, 51,
52] to learn LAP. Instead of learning an inference network (as in VAEs [47]), we directly optimize
the latent plan vectors (local parameters in classical VB) for each trajectory using gradient descent.
This iterative instance-level optimization offers greater precision in plan inference and greater flexi-
bility that enables efficient adaptive (re)planning.

For each trajectory x, we approximate the posterior distribution by N pµ,σ2q, where µ is the pos-
terior mean vector and σ2 is the variance-covariance matrix, assumed to be diagonal for computa-
tional efficiency. These are local parameters specific to each trajectory, while θ are global parameters
shared by all samples. LAP can be learned by maximizing the evidence lower bound (ELBO),

Lpθ,µ,σq “ Eqpz|xqrlog pθpx|zqs ´DKLpqpz|xq}ppzqq, (9)

where z „ qpz|xq is sampled using reparameterization trick [47].

The training procedure alternates between the optimization of local and global parameters:

(a) For each trajectory txiu
N
i“1 in the mini-batch, optimize the corresponding local parameters

pµi,σiq to maximize Lpθ,µi,σiq with Tlocal steps of gradient descent (we set Tlocal “ 16
in experiments).

(b) Update the global parameters θ to maximize 1{N
řN

i“1 Lpθ,µi,σiq.

Detailed algorithms can be found in Appendix E. This learning procedure also shares the similar
intuition of fast-slow learning discussed in [52] with fast learning of local parameters and slower
updates of global parameters. This approach allows our model to efficiently learn an adaptive policy
specific to manipulation scenarios while maintaining general knowledge about dynamics and control
strategies across various tasks.

Variational Replanning for Test-time Adaptation We propose the variational replanning method
that implements a principled Bayesian updating in the latent space, realizing the concept of planning
as latent space inference [44], which significantly improves the model efficiency and stability.

With a learned LAP and initial observation o1 during test time, we first sample z „

ppz|o1q9ppzqppx0:1|zq using Tlocal steps of gradient descent as the initial plan. As new obser-
vations become available, we aim to adaptively update the latent plan z within the Bayesian frame-
work. With replanning horizon ∆, new observations xt`1:t`∆, and previously inferred posterior
qpz|x0:tq “ N pµt,σ

2
t q, we update our belief through Bayesian updating:

qpz|x0:t`∆q “ N pµt`∆,σ
2
t`∆q9qpz|x0:tqppxt`1:t`∆|x0:t, zq (10)

5



Specifically, we use classical VB to optimize the local parameters µt`∆ and σt`∆ as:

µt`∆,σt`∆ “ argmax
µ,σ

Eqt`∆rlog pθpxt`1:t`∆|x0:t, zqs ´DKLpqt`∆}qtq, (11)

where we define qt`∆ fi qpz|x0:t`∆q and qt fi qpz|x0:tq for notational simplicity. This amortized
computation enables efficient replanning with just Tlocal “ 1 gradient step rather than the 16 steps
required for initial planning.

The essence of our approach is treating the previously inferred distribution qpz|x0:tq as the prior
belief and updating it with a small number of gradient steps to obtain qpz|x0:t`∆q. As t `∆ Ñ T
approaches the full trajectory length, the variational posterior N pµt`∆,σ

2
t`∆q converges to the

posterior distribution of N pµT ,σ
2
T q that would be inferred given the complete trajectory. This es-

tablishes theoretical consistency between our incremental replanning approach and the optimal plan
that would be determined with complete information. Detailed algorithms can be found in Ap-
pendix E. The integrated pipeline can be found in Figure 2.

Discussion LAP with variational replanning offers a principled middle ground between tradi-
tional planning paradigms. Open-loop planning (z „ ppz|o1q inferred once) provides computa-
tional efficiency but suffers from error accumulation over time. Closed-loop planning (resampling
z „ ppz|x0:tq at each step) allows adaptation but at a high computational cost. Our approach incre-
mentally updates the latent plan through Bayesian inference, treating previous distributions as prior
beliefs. This maintains the adaptive benefits of closed-loop planning while preserving computational
efficiency, essentially performing online learning of the latent plan as new observations arrive.

Meanwhile, the objective in Equation (11) performs a KL-regularized proximal step around qtpzq: it
increases the likelihood of the newly observed segment while staying close to qt. Its optimizer is the
exponential-tilting update in Equation (10), i.e., qt reweighted by the new-segment likelihood. With
q constrained to Gaussians, our single VB step implements a projected version of this tilt, acting as
a small “trust-region” move in latent space that yields stable, real-time adaptation.

4 Experimental Results

We evaluate our LAP on a nonprehensile dynamic manipulation task of box catching, comparing
its performance against several baseline methods including rule-based planning, behavior cloning,
and Diffusion Policy approaches. This task represents a challenging example of nonprehensile dy-
namic manipulation, where the robot must initially interact with and control objects without stable
grasping, using the dynamics of the arm movement to stabilize and then secure the incoming object.

4.1 Experimental Setup

Task Description Box catching constitutes the primary focus of this study, a challenging nonpre-
hensile dynamic manipulation task where the robotic system must intercept, temporarily control,
and securely grasp boxes of varying sizes, weights, and shapes handed or tossed by human opera-
tors. This task requires real-time trajectory adaptation, impact anticipation, and force modulation as
the robot first manages dynamics using arm surfaces before transitioning to a stable grasp.

Hardware Setup To evaluate generalizability, experiments were conducted on two distinct robot
platforms with different sizes and arm configurations. The experimental procedure involved data
regeneration processes tailored to each robot’s specific characteristics, followed by training and val-
idation phases. Both platforms were equipped with a ZED2 stereo camera that continuously tracks
object position and trajectory through real-time segmentation algorithms. Human demonstrators in-
troduced variability by throwing boxes with diverse velocities, heights, and release angles, ensuring
comprehensive training and testing conditions. Detailed specifications of the robotic platforms are
provided in the Appendix B.
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Figure 2: System Architecture for LAP Framework. The diagram illustrates our perception-
planning-control pipeline. Camera input undergoes segmentation for object detection, providing
box states to the Latent Adaptive Planner (LAP). LAP operates on a dual-rate hierarchy, performing
updating of latent plan at 30Hz while generating motion commands at 100Hz. Reference joint posi-
tions, velocities, and torques from LAP are refined by Model Predictive Control before execution at
the motor level. Joint states and contact state are fed back to the LAP for replanning. This architec-
ture ensures smooth execution of dynamic nonprehensile manipulation tasks while respecting robot
dynamics and physical constraints, enabling real-time adaptation to environmental changes.

Figure 3: Impact-aware retreat trajectory for box catching motion learned with the Latent Adaptive
Planner (LAP). The left panel shows a human demonstration where the subject absorbs impact by
yielding their arm along the trajectory of the incoming box before returning to the nominal pose. The
right panel shows the robot reproducing this compliant motion using LAP. The red curves indicate
the impact-aware retreat trajectory that minimizes energy consumption during dynamic interaction.

Baselines We evaluated LAP against several baselines: (1) Model-based planner that determines
optimal end-effector positions and arm configurations based on box dimensions and positions, using
the inverse dynamics for superior tracking performance; (2) Transformer-based Behavior Cloning
(BC) using a 3-layer decoder transformer (8 attention heads, batch size 12, hidden size 64, learning
rate 2e-4, trained for 2500 epochs); (3) Diffusion Policy implemented with a 1D UNet architecture
using 100 denoising steps based on the original repository [13]. Our LAP uses identical architecture
and hyper-parameters as BC with an additional cross-attention layer, where the number of z is 16,
each with dimension 64, with Tlocal “ 16 for plan optimization. All learning-based methods were
trained on the same dataset regenerated from human demonstrations.

4.2 Results and Analysis

Our experiments demonstrate that LAP consistently outperforms the baselines in all metrics and box
types on both robot platforms. Table 1 summarizes the quantitative results for Robot A and Robot B,
respectively. Figure 3 visualizes the impact-aware retreat trajectory for the the box catching motion
learned by LAP using Robot B.

Model-based Planning The model-based approach achieved the highest success rate among all
methods examined, however, this performance came at a significant energy cost due to its consis-
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Table 1: Performance comparison of different methods on Robot A and B with various box types.
Only trials where boxes were thrown within the reachable workspace of the fixed-base robots with-
out excessive rotation were included in the success evaluation.

Robot Method Success (count) Energy (J) Success (count) Energy (J) Success (count) Energy (J)
Box A (66×16.5×14cm, 453g) Box B (61×30.5×30.5cm, 777g) Box C (67.1×38.2×23cm, 660g)

Robot A

Model-based 30{30 74.99 30{30 57.31 30{30 70.46

BC 26{30 31.39 28{30 38.50 26{30 37.40

Diffusion 20{30 42.53 21{30 45.21 21{30 44.86

LAP (Ours) 29{30 11.47 29{30 12.12 30{30 11.41

Box A (66×16.5×14cm, 453g) Box D (48.3×22.9×24.8cm, 362g) Box E (49.5×12.7×23.5cm, 365g)

Robot B

Model-based 30{30 33.12 30{30 33.17 30{30 26.09

BC 27{30 15.82 28{30 15.40 30{30 13.78

Diffusion 24{30 21.32 22{30 20.73 23{30 19.95

LAP (Ours) 30{30 7.14 30{30 6.64 30{30 6.86

tent application of high torque values for ensuring secure grasps. This conservative control strat-
egy, while effective for task completion, proved suboptimal from an efficiency perspective. The
implementation utilized an inverse-dynamic controller to enhance tracking performance and re-
sponse time. The impedance control implementation offered inherent advantages in energy effi-
ciency through its mass-spring-damper system, which naturally produces compliant motions when
receiving impact forces. However, this approach presented substantial adaptability challenges, re-
quiring manual gain tuning for variations in box weight and impact force, a significant limitation in
dynamic environments.

Learning-based Methods Behavioral Cloning (BC) and Diffusion-based methods demonstrated
some capacity to capture human-like manipulation behaviors, but exhibited lower success rates and
less stable action outputs compared to other approaches. While integration with Model Predictive
Control (MPC) improved motion smoothness, these methods still failed to achieve optimal perfor-
mance across the evaluation metrics.

LAP Performance LAP balanced high success rates with superior energy efficiency compared
to other policy-based methods. This performance can be attributed to two key factors: efficient
replanning capabilities and effective encoding of contact dynamics and human-like retreat motions
in the latent variable space during training. By learning to implement retreat motions through motion
planning rather than relying solely on control-based implementations, LAP achieved a balanced
performance profile. Though not matching the perfect success rates of the model-based approach
with MPC, LAP demonstrated significantly improved energy efficiency through learned human-like
motions that effectively absorbed impact forces and minimized overall energy consumption.

5 Conclusion

We introduced the Latent Adaptive Planner (LAP), a trajectory-level latent-variable policy that treats
planning as inference and is learned from human demonstration videos via a robot-model-based
data regeneration pipeline. During execution , LAP performs variational replanning by updating a
posterior over the latent plan as new observations arrive, yielding real-time adaptation in dynamic
scenes. This test-time adaptation behaves like a small trust-region move in latent space, providing
stability without solving a full optimization at every step.

Our experiments demonstrate LAP’s effectiveness across different manipulation scenarios and val-
idate its transferability to diverse robot configurations. By regenerating appropriate training data
from the same human demonstration videos for each platform, LAP successfully adapts to distinct
kinematic and dynamic properties of different robots. This cross-platform success confirms that
the combination of data regeneration and latent planning provides a robust framework for dynamic
manipulation tasks regardless of robot embodiment, opening promising directions for scalable vi-
suomotor learning from human demonstrations.

8



Limitations

While our Latent Adaptive Planner demonstrates strong performance on dynamic manipulation
tasks, several limitations remain and point to clear directions for future work.

Contact Modeling Our current approach employs a simplified binary contact representation and
approximates contact locations at the wrist position. This simplification limits our ability to model
the rich dynamics of multi-point contact interactions with varying force distributions, a critical as-
pect of dexterous manipulation where contact can occur across the entire arm surface with varying
force distributions.

Kinematic Constraints To facilitate human-to-robot mapping, we restricted our demonstration
analysis to three primary degrees of freedom (shoulder, elbow, and wrist pitch), excluding the full
seven-DOF capability of human arms. This constraint, combined with our fixed-base manipulator
assumption, prevents the system from leveraging whole-body coordination strategies that humans
naturally employ during dynamic tasks, such as weight shifting and torso movements that contribute
significantly to task performance and energy efficiency.

Perception Limitations Our reliance on 2D pose estimation from monocular video introduces
fundamental constraints in spatial reasoning. The lack of depth information limits our ability to
accurately reconstruct 3D trajectories and handle occlusions during dynamic movements, potentially
affecting the fidelity of learned manipulation strategies in tasks requiring precise spatial awareness.

Prior Model Limitations From a generative modeling perspective, LAP employs a simple la-
tent prior that may under-represent complex, multi-modal expert behaviors. More structured prior
models, such as energy-based models [53, 54, 55, 56], diffusion models [57], and other expressive
families [58, 59], could provide richer representations of the latent space, enabling more nuanced
planning capabilities and better generalization to novel scenarios.

Future Work We aim to incorporate continuous contact models with multi-point force estimation,
strengthen 3D perception for accurate spatial reasoning, extend to mobile platforms with whole-
body coordination, and explore more expressive latent priors. These advances will be important
for approaching human-level dexterity while maintaining the real-time performance required for
dynamic manipulation.
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A Model Predictive Control (MPC)

Dynamic Model Predictive Control (MPC) provides an effective framework for safely tracking joint-
space references q̂k, 9̂qk, τ̂k generated by learning policies. When implemented, this approach signif-
icantly mitigates the inherently noisy characteristics of learning-based control policies while main-
taining high tracking performance. By incorporating the robot’s dynamics and physical constraints
into the optimization problem, the controller ensures smooth and secure motions even when the
underlying learning policy produces potentially suboptimal commands.

The formulated cost function penalizes deviations between desired and actual joint states while si-
multaneously limiting control effort, allowing the robot to operate efficiently within specified joint
position, velocity, and torque limits. This balance between precise reference tracking and constraint
satisfaction ultimately leads to more natural robot movements, enhancing the overall execution qual-
ity of learned behaviors while preventing excessive energy consumption and vibrational behaviors
that might otherwise occur with direct policy execution.

QP Formulation Define the robot state at time step k as

xk “

„

qk

9qk

ȷ

,

where qk and 9qk represent the joint angles and joint velocities, respectively. Let uk be the control
input (torque). Over a prediction horizon of length Np, the following cost function is minimized:

i`Np
ÿ

k“i

”

pq̂k ´ qkq
T Qq pq̂k ´ qkq ` p 9̂qk ´ 9qkq

T Q 9q p 9̂qk ´ 9qkq ` uT
k Qu uk

ı

,

subject to the robot dynamics and constraints. The linearized (or identified) system model is given
by

xk`1 “ Ak xk `Bk uk ` rk,

where Ak, Bk, and rk approximate the robot’s dynamics around a nominal operating point. The
following constraints are imposed to ensure feasibility and safety:

umin ď uk ď umax,

qmin ď qk ď qmax,

9qmin ď 9qk ď 9qmax,

:qmin ď :qk ď :qmax,

q0 “ qcurrent, 9q0 “ 9qcurrent,

where qmin,qmax, 9qmin, 9qmax, and so forth denote predefined joint and actuator limits. Collecting
the state and input variables into a decision vector

zk “

„

xk

uk

ȷ

,

the QP can be expressed in a compact form as

min
tzku

i`Np
k“i

i`Np
ÿ

k“i

`

zTkWk zk ` 2wT
k zk

˘

,

subject to xk`1 “ Ak xk `Bk uk ` rk,

umin ď uk ď umax,

qmin ď qk ď qmax,

9qmin ď 9qk ď 9qmax,

:qmin ď :qk ď :qmax,

q0 “ qcurrent, 9q0 “ 9qcurrent.

14



The matrices Wk and vectors wk encapsulate the quadratic and linear terms derived from expanding
the cost function and incorporating the linearized dynamics. Solving this QP at each time step
allows the robot to effectively track the learning policy’s references q̂k, 9̂qk while honoring physical
constraints and preserving safe operation.

B Robot Configurations

B.1 Actuators

Table 2: Specifications of Different Actuator Models

Specification Koala BEAR Koala BEAR Muscle Panda BEAR Panda BEAR Plus
Dimensions (mm) 63.5 ˆ 62 ˆ 37 75 ˆ 67 ˆ 37.5 113 ˆ 113 ˆ 49.7 113 ˆ 113 ˆ 49.7

Weight (g) 250 285 650 925
Peak Torque (15 sec) 4.2 Nm 8 Nm 16.8 Nm 33 Nm
Peak Torque (1.5 sec) 10.5 Nm 20 Nm 33.5 Nm 67 Nm

Table 3: Actuator Configuration for Robot A

Joint Actuator Model
Body Panda BEAR Plus
Shoulder Pitch Panda BEAR Plus
Shoulder Yaw Panda BEAR
Elbow Pitch Panda BEAR Plus
Wrist Pitch Koala BEAR
Wrist Roll Koala BEAR

Table 4: Actuator Configuration for Robot B

Joint Actuator Model
Body Koala BEAR Muscle
Shoulder Pitch Koala BEAR Muscle
Shoulder Yaw Koala BEAR Muscle
Elbow Pitch Koala BEAR Muscle
Wrist Pitch Koala BEAR Muscle
Wrist Roll Koala BEAR Muscle

B.2 Robot A

Table 5: Robot A Configuration

Joint Frame Coordination Coordinate (m) Joint Limit (rad)
Body Yaw z-axis rotation (0.0, 0.0, 1.1276) r´1.57, 1.57s

Shoulder Yaw z-axis rotation (0.0, ˘0.21, 0.117) r´2.27, 2.27s

Shoulder Pitch y-axis rotation (0.0, ˘0.15, 0.0) r´1.57, 1.57s

Elbow Pitch y-axis rotation (0.0, 0.4, 0.0) r´1.57, 2.53s

Wrist Pitch y-axis rotation (0.0, 0.375, 0.0) r´2.44, 2.44s

Wrist Roll x-axis rotation (0.01925, 0.0, 0.0) r´1.57, 1.57s
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Figure 4: Coordinate system of Robot A

B.3 Robot B

Table 6: Robot B Configuration

Joint Frame Coordination Coordinate (m) Joint Limit (rad)
Body Yaw z-axis rotation (0.0, 0.0, 1.1327) r´1.57, 1.57s

Shoulder Pitch y-axis rotation (0.0, ˘0.19475, 0.0) r´1.57, 1.57s

Shoulder Roll x-axis rotation (0.0, 0.0, 0.0) r´1.57, 0.25s

Elbow Yaw z-axis rotation (0.0, 0.0, 0.0) r´0.79, 1.57s

Elbow Pitch y-axis rotation (0.02, 0.0, -0.27585) r´0.3, 2.9s

Wrist Pitch y-axis rotation (0.23226, 0.019701, 0.0) r´1.15, 2.2s

Figure 5: Coordinate system of Robot B
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C 2D Human Pose Estimation

For 2D human pose estimation, we utilized the OpenMMLab library. In the detection
phase, we used the RTMDet-M model (rtmdet m 8xb32-100e coco-obj365-person-235e8209.pth).
Following detection, we utilized HRNet-W48 (hrnet w48 coco wholebody 384x288 dark-
f5726563 20200918.pth) for precise keypoint estimation. The HRNet architecture maintains high-
resolution representations throughout the network, enabling accurate localization of body joints.
This specific model was trained on the COCO-WholeBody dataset with a 384×288 input resolution
and incorporates the DARK pose estimation technique for sub-pixel accuracy. The combination of
these models provided reliable human pose tracking that was essential for evaluating the physical
interaction capabilities of our robotic systems.

D Box Pose Estimation

For real-time object detection in our system, we implemented YOLOv8. We created a custom
dataset specifically tailored to our application environment, with all annotations performed using
the Computer Vision Annotation Tool (CVAT). This approach enabled precise labeling of objects of
interest while maintaining consistency across the training dataset. The segmentation model achieves
an impressive inference rate of 100 Hz, allowing our system to process visual information at real-
time speeds necessary for responsive robotic interaction. This high-frequency detection capability
proved essential for tracking dynamic objects in the environment and facilitating accurate decision-
making in our experimental scenarios.

E Latent Adaptive Planner Algorithms

In this section, we provide detailed algorithms for the Latent Adaptive Planner (LAP) framework.
We describe both the training procedure and the variational replanning methodology used during
inference.

E.1 Classical Variational Bayes Learning of LAP

Algorithm 1 outlines the training procedure for our Latent Adaptive Planner using Classical Varia-
tional Bayes. This approach optimizes both local parameters (latent plans for individual trajectories)
and global parameters (shared decoder model) in an alternating fashion.

Algorithm 1 LAP: Classical Variational Bayes Learning
Require: Trajectory dataset D “ txiu

N
i“1, where xi “ tpoit, a

i
tqu

T
t“1

Ensure: Trained model parameters θ
1: Initialize global parameters θ randomly
2: repeat
3: Sample a mini-batch of trajectories txiu

B
i“1 from D

4: for each xi in the mini-batch do
5: Initialize local parameters pµi,σiq randomly
6: for j “ 1 to Tlocal do
7: Sample zi „ N pµi,σ

2
i q using reparameterization trick

8: Compute ELBO: Lpθ,µi,σiq “ Eqpz|xiqrlog pθpxi|zqs ´DKLpqpz|xiq}ppzqq
9: Update pµi,σiq with gradient ascent on Lpθ,µi,σiq

10: end for
11: end for
12: Sample zi „ N pµi,σ

2
i q for each trajectory in mini-batch

13: Update θ with batch gradient ascent on 1
B

řB
i“1 Lpθ,µi,σiq

14: until convergence
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Algorithm 2 LAP: Variational Replanning
Require: Trained model parameters θ, replanning horizon ∆, initial observation o1
Ensure: Robot actions tatuTt“1

1: // Initial planning
2: Initialize µ0 and σ0 randomly
3: for j “ 1 to Tlocal do
4: Sample z „ N pµ0,σ

2
0q using reparameterization trick

5: Compute objective: L0 “ log pθpx0:1|zq ´DKLpN pµ0,σ
2
0q}ppzqq

6: Update pµ0,σ0q with gradient ascent on L0

7: end for
8: Sample z0 „ N pµ0,σ

2
0q

9: Generate and execute action a1 „ pθpa1|o1, z0q
10: t Ð 1
11: // Adaptive replanning loop
12: while task not complete do
13: Observe ot`1

14: if t mod ∆ “ 0 then
15: // Variational replanning
16: Set µt Ð µt´∆, σt Ð σt´∆

17: for j “ 1 to Treplan do
18: Sample z „ N pµt,σ

2
t q using reparameterization trick

19: Compute objective:
Lt “ log pθpxt´∆`1:t`1|x0:t´∆, zq ´DKLpN pµt,σ

2
t q}N pµt´∆,σ

2
t´∆qq

20: Update pµt,σtq with gradient ascent on Lt

21: end for
22: Sample zt „ N pµt,σ

2
t q

23: end if
24: Generate action at`1 „ pθpat`1|x0:t`1, ztq
25: Execute action at`1

26: t Ð t` 1
27: end while

The key insight of this algorithm is the alternating optimization between local and global parameters.
For each trajectory, we first optimize the latent plan distribution parameters pµi,σiq using Tlocal steps
of gradient ascent (typically 16 steps in our implementation). After optimizing all local parameters
in the mini-batch, we then perform a single update of the global parameters θ based on the average
ELBO across the mini-batch.

E.2 Variational Replanning Algorithm

Algorithm 2 presents our variational replanning approach, which enables efficient adaptation during
test time as new observations become available. This approach uses Bayesian updating in the latent
space, treating previous distributions as prior beliefs.

The variational replanning algorithm has two key phases. First, we perform initial planning to
establish our initial belief about the latent plan. Then, during task execution, we periodically update
our belief through Bayesian updating every ∆ timesteps.

A crucial aspect of this approach is that we treat the previously inferred distribution N pµt´∆,σ
2
t´∆q

as a prior for the current update, as shown in the KL-divergence term of the objective function. This
enables efficient adaptation while maintaining temporal consistency in the latent plan.

In practice, we set Treplan “ 1 for computational efficiency, which is sufficient for incremental
updates given that we’re starting from a previously optimized distribution. This stands in contrast to
the more expensive initial planning phase that uses Tlocal “ 16 steps.

18



E.3 Implementation Details

For the variational inference optimization, we use AdamW optimizer with a learning rate of 1e-3
for optimizing local parameters and 2e-4 for global parameters. The latent dimension is set to 64,
and we found that diagonal covariance matrices provide a good balance between expressiveness and
computational efficiency.

The replanning horizon ∆ is a tunable parameter that trades off computational cost against adapt-
ability. In our experiments, we found ∆ “ 10 to provide good results, allowing the system to adapt
to changing conditions while maintaining real-time performance.
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