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Automated Particle Size Measurement 
in Foundry Applications : A Study of 
Imaging Techniques

Abstract

Particles are extensively utilised in 
the foundry industry for various 
applications. The size and distribution 
of sand particles are critical for 
determining their packing fraction in 
sand moulds. Additionally, particles 
are incorporated into metals to 
produce metal matrix composites, 
where particle size influences the 
particle-matrix interfacial area. 
Traditional sieve shakers measure 
powder particle size but provide only 
a discrete distribution based on the 
sieve sizes used. For a comprehensive 
and continuous measurement of 
particle size distribution, imaging 
methods are employed to analyse 
particle images, allowing for the 
capture and measurement of 
individual particle sizes. This study 
focuses on applying image processing 
techniques to enhance the quality 
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of particle micrographs and develop 
a reliable particle size measurement 
method.

Introduction

The foundry industry is modernising 
by adopting advanced tools 
and technologies to enhance 
casting quality. Ongoing efforts 
aim to increase automation and 
computerisation. Modelling and 
simulation techniques have proven 
beneficial in developing process 
parameters, designing efficient 
moulds, and estimating the quality 
of cast parts. Furthermore, machine 
learning is being explored for 
advancements in various domains, 
including mould design and process 
development[1]. Imaging techniques 
are integral to the casting industry, 
with optical and electron microscopes, 
optical and thermal cameras, and 
CT scanners providing essential 
information about raw materials, 

processes, and finished castings. 
This work leverages image analysis 
methods for the assessment of 
powder particle sizes.

Integrating sensors and imaging 
technologies enables scientific 
analysis of various types of powder 
particles. Powders are widely utilised 
in the foundry for adding ingredients 
or creating porous beds for infiltration. 
Particulate composites are also 
prevalent[2, 3]. Figure 1 illustrates two 
common particle types: (a) fly ash 
cenospheres sourced from thermal 
power plant ash and (b) high-quality 
engineered glass hollow particles. 
Fly ash particles are irregularly 
shaped with structural defects, 
while glass particles are produced 
through controlled processes and are 
predominantly spherical and defect-
free. Both types of particles, with 
diameters ranging from 10 to 250 μm, 
are extensively used in cast composite 
materials[4, 5] . Numerous studies 
highlight the impact of particle size on 
the properties of composite materials.

The packing factor of powder 
particles is influenced by multiple 
parameters, the most critical of 
which is particle size distribution[6]. 
Accurately measuring particle size and 
distribution is essential for developing 
processing parameters during casting. 
Various methods for measuring 
powder particle size are available, 
including imaging and diffraction-
based techniques. Imaging methods 
have increasingly incorporated 
machine learning approaches[7]. For 
these machine learning techniques to 
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be effective, the images must undergo 
processing, and models must be 
trained. Established image processing 
methods exist that do not require 
extensive training while still effectively 
measuring powder particles.

Image analysis approaches 
for particle size 
measurement

Two primary approaches are 
employed to measure the diameter 
of powders in images. The first 
involves measuring labelled regions 
achieved through segmentation, 
which allows for individual particle 
measurements but requires 
resolving the complex task of image 
segmentation. The second approach 
applies filters to the image, where 
the response varies according to the 
spatial structures present, yielding 

Fig 1: (a) Fly ash particles obtained from thermal power plants and (b) engineered hollow glass particles

Fig 2: Illustration of pre-processing of raw image for effective watershed segmentation: (a) raw image, (b) output image after forward 
passing the raw image into the HED network, (c) denoised image. The numbers on x and y axes corresponds pixels

(a) (b)

statistical measurements on a per-
area basis instead of per particle. The 
following discussion demonstrates the 
application of established techniques 
for each approach using a sample 
image of glass particles to measure 
their diameter and size distribution. 
These methodologies are applicable 
to metal particles or any other 
material type.

Watershed segmentation

Watershed segmentation is a 
widely utilised technique in image 
processing for effective partitioning 
of objects within an image[8]. This 
method is particularly advantageous 
when dealing with images containing 
touching or overlapping objects. The 
analogy of "watershed" refers to the 
operational principles akin to natural 
water distribution into distinct basins 

within a topographical landscape. By 
transforming the input image so that 
pixel values represent the likelihood 
of boundary presence, the Watershed 
Algorithm floods the image from local 
minima to create boundaries where 
adjacent floods converge.

The implementation of the 
Watershed Algorithm for microscopic 
image segmentation follows the 
methodology presented in  
Ref [9], which aims to reduce over-
segmentation when analysing 
Ti-6Al-4V microstructures. A Hitachi 
S3400N scanning electron microscope 
captures the raw images of glass 
particles (shown in Fig 2(a)), which 
are processed using the HED network 
discussed previously. These particles 
are commonly used in metal and 
polymer matrix composites [10-12]. The 
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Fig 3: Illustration of images in watershed algorithm: (a) marker image, (b) watershed segmented image. The numbers on x and y axes 
corresponds pixels

outcomes of the HED method are 
displayed in Fig 2(b). Morphological 
opening [13] is employed to eliminate 
noise from the glass particles, utilising 
a rectangular-shaped structuring 
element of dimensions (1,3). To further 
minimise noise, a median filter with a 
square kernel size of (7, 7) is applied. 
The algorithm subsequently dilates 
the denoised image using a kernel size 
of (5, 5), aiding in the filling of broken 
boundaries of the glass particles. Final 
binary thresholding is performed with 
a threshold value of 100, resulting in 
the inverted image shown in Fig 2(c).

The Watershed implementation from 
Ref [9] employs the image's gradient 
magnitude as the topographic 
function, computing a set of markers 
based on the distance transform 
while suppressing its least significant 
local maxima. Here, this approach is 
modified to utilise the HED instead 
of the distance transform, thereby 
improving segmentation accuracy. 
Each particle is identified based 
on detected edges with a single 
marker, as shown in Fig 3(a), while 
changes in grayscale intensity 
delineate boundaries between 
these markers, illustrated in Fig 3(b). 
This segmentation enables precise 
measurement of each particle.

Feature Length Orientation 
Space (FLOS)

Measurements of spatial structures 
in images can be obtained without 
segmentation using mathematical 
morphology techniques[14]. The 
impact of a morphological operator 
on an image depends on the size and 
shape of a predefined structuring 
element related to the image's spatial 
structures. Granulometric methods 
repeatedly apply these techniques 

with incrementally larger structuring 
elements, recording variations in 
output. One successful method 
in microstructural analysis is the 
Feature Length Orientation Space 
(FLOS)[14] . This technique fits linear 
elements of varying lengths and 
orientations to the image and records 
the response in the FLOS, allowing 
computation of various properties 
of the spatial structures, such as 
width, length, and globularity. The 
FLOS technique can be applied to a 

Fig 4: Illustration of FLOS technique on powder particles. The numbers on x and y axes 
corresponds pixels
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greyscale image formatted so that 
the foreground is bright, with width 
measurements approximating grain 
size due to the spherical nature of the 
objects. The FLOS technique reports 
spatial structure sizes on a per-pixel 
basis, assigning each pixel a value 
corresponding to the estimated 
property of the object it belongs to. 
This information can be visualised 
using colour maps, as shown in Fig 4, 
where larger particles are indicated in 
deep shade, highlighting them as the 
largest structures in the image.

Results for particle size 
measurement 

The pixel-to-micron ratio obtained 
from the scale in the raw image is 
6; thus, 600 pixels correspond to 
100 microns, as indicated by the 
scale bar. The results from both the 
watershed and FLOS techniques are 
presented in histogram format in Fig 
5.  The watershed method yielded a 
mean grain size of 20.68 μm, while 
the FLOS method provided a mean 
width of 24.24 μm. The comparability 
of results from both approaches is 
encouraging. Each method measures 
a range of additional properties 
beyond grain size, enabling the 
filtration of measurements according 
to the expected properties of the 

Fig 5: Histogram plots using watershed and FLOS technique. (a) watershed histogram, (b) FLOS histogram

microstructure (thereby avoiding 
erroneous measurements of 
improbable size and shape). However, 
specific data refinements were not 
employed to prevent overfitting, 
further reinforcing the reliability 
of the relative agreement. Both 
methods also yield visualisations that 
confirm the reliability of the results, 
with segmentation shown in Fig 
3 indicating boundaries in correct 
locations and Fig 4 displaying a colour 
map accurately depicting the largest 
particles' locations.

The measured mean particle sizes 
from the two methods are: Watershed 
= 20.68 μm and FLOS = 24.24 μm. 
These size measurements can 
be refined by further tuning the 
processes based on a larger set of 
images. The examples presented in 
this study demonstrate the feasibility 
of conducting analyses using 
image processing methods, which 
can be implemented in computer 
programmes for automated and rapid 
analysis of particle samples.

Table-1 shows the differences 
between Watershed Segmentation 
and Feature Length Orientation Space 
(FLOS) techniques.

Summary of differences

Segmentation vs measurement: 

Watershed segmentation isolates 
individual objects, while FLOS 
provides statistical measurements 
across the image.

Approach: Watershed relies on 
topographic analogy for boundary 
detection; FLOS uses morphological 
techniques to analyse shapes.

Output Type: Watershed yields 
distinct segmented regions, whereas 
FLOS produces continuous data 
reflecting the properties of the 
structures within the image.

Both methods can complement 
each other in image analysis, with 
watershed segmentation offering 
precise object delineation and FLOS 
providing broader statistical insights.

Conclusions

In conclusion, this paper presents 
innovative imaging methods for 
particle size measurement that 
offer significant advancements over 
traditional sieve analysis used in 
the foundry industry. By employing 
techniques such as watershed 
segmentation and Feature Length 
Orientation Space (FLOS), the study 
enables continuous and automated 
analysis of particle size distribution, 
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Table-1: Differences between Watershed Segmentation and Feature Length 

Orientation Space (FLOS) techniques

Watershed 

Segmentation

Feature Length 

Orientation Space (FLOS)

1 Purpose Primarily used for 
segmenting objects 
within an image, 
particularly when 
they are touching or 
overlapping.

Focuses on analysing 
3-D structures 
without requiring full 
segmentation, providing 
statistical measures of 
features in the image.

2  Methodology It treats the image like 
a topographical surface 
where pixel intensities 
represent elevation. 
It identifies local 
minima (like basins) 
and simulates flooding 
from these points to 
create boundaries 
where adjacent floods 
meet. The result is a 
segmented image 
where each object 
(eg, particles) is 
isolated for individual 
measurement.

 It applies morphological 
operations using 
structuring elements 
of varying sizes and 
orientations to extract 
features from the image. 
The technique fits linear 
elements to the spatial 
structures and records 
responses in a feature 
space, which captures 
properties such as width, 
length, and orientation.

3 Output Produces labelled 
regions corresponding 
to distinct objects in 
the image, allowing for 
precise measurements 
of individual particles.

Produces statistical 
information about the 
particles, such as their 
size and shape, without 
creating distinct labelled 
segments. It generates a 
per-pixel response that 
reflects the characteristics 
of the structures.

enhancing efficiency and accuracy. 
The successful application of these 
methods to glass particles, along 
with their potential applicability to 
various materials, demonstrates their 
versatility. The comparative analysis 
of both approaches yields reliable 
results, reinforcing the effectiveness of 
imaging techniques in characterising 
powder particles. Furthermore, these 
advancements lay the groundwork 
for future integration with machine 
learning, promising even greater 
improvements in the precision 
and automation of particle size 

measurement processes. Overall, this 
work highlights a crucial step towards 
modernising practices in the foundry 
industry, facilitating better quality 
control and process optimisation.
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