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Abstract

Particles are extensively utilised in
the foundry industry for various
applications. The size and distribution
of sand particles are critical for
determining their packing fraction in
sand moulds. Additionally, particles
are incorporated into metals to
produce metal matrix composites,
where particle size influences the
particle-matrix interfacial area.
Traditional sieve shakers measure
powder particle size but provide only
a discrete distribution based on the
sieve sizes used. For a comprehensive
and continuous measurement of
particle size distribution, imaging
methods are employed to analyse
particle images, allowing for the
capture and measurement of
individual particle sizes. This study
focuses on applying image processing
techniques to enhance the quality

of particle micrographs and develop
a reliable particle size measurement
method.

Introduction

The foundry industry is modernising
by adopting advanced tools

and technologies to enhance
casting quality. Ongoing efforts

aim to increase automation and
computerisation. Modelling and
simulation techniques have proven
beneficial in developing process
parameters, designing efficient
moulds, and estimating the quality
of cast parts. Furthermore, machine
learning is being explored for
advancements in various domains,
including mould design and process
development!™. Imaging techniques
are integral to the casting industry,
with optical and electron microscopes,
optical and thermal cameras, and
CT scanners providing essential
information about raw materials,
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processes, and finished castings.
This work leverages image analysis
methods for the assessment of
powder particle sizes.

Integrating sensors and imaging
technologies enables scientific
analysis of various types of powder
particles. Powders are widely utilised
in the foundry for adding ingredients
or creating porous beds for infiltration.
Particulate composites are also
prevalent®®3, Figure 1 illustrates two
common particle types: (a) fly ash
cenospheres sourced from thermal
power plant ash and (b) high-quality
engineered glass hollow particles.

Fly ash particles are irregularly

shaped with structural defects,

while glass particles are produced
through controlled processes and are
predominantly spherical and defect-
free. Both types of particles, with
diameters ranging from 10 to 250 pm,
are extensively used in cast composite
materials® > . Numerous studies
highlight the impact of particle size on
the properties of composite materials.

The packing factor of powder
particles is influenced by multiple
parameters, the most critical of

which is particle size distribution®.
Accurately measuring particle size and
distribution is essential for developing
processing parameters during casting.
Various methods for measuring
powder particle size are available,
including imaging and diffraction-
based techniques. Imaging methods
have increasingly incorporated
machine learning approaches!.. For
these machine learning techniques to
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Fig 1: (a) Fly ash particles obtained from thermal power plants and (b) engineered hollow glass particles

be effective, the images must undergo
processing, and models must be
trained. Established image processing
methods exist that do not require
extensive training while still effectively
measuring powder particles.

Image analysis approaches
for particle size
measurement

Two primary approaches are
employed to measure the diameter
of powders in images. The first
involves measuring labelled regions
achieved through segmentation,
which allows for individual particle
measurements but requires
resolving the complex task of image
segmentation. The second approach
applies filters to the image, where
the response varies according to the
spatial structures present, yielding

statistical measurements on a per-
area basis instead of per particle. The
following discussion demonstrates the
application of established techniques
for each approach using a sample
image of glass particles to measure
their diameter and size distribution.
These methodologies are applicable
to metal particles or any other
material type.

Watershed segmentation

Watershed segmentation is a

widely utilised technique in image
processing for effective partitioning
of objects within an image®. This
method is particularly advantageous
when dealing with images containing
touching or overlapping objects. The
analogy of "watershed" refers to the
operational principles akin to natural
water distribution into distinct basins

within a topographical landscape. By
transforming the input image so that
pixel values represent the likelihood
of boundary presence, the Watershed
Algorithm floods the image from local
minima to create boundaries where
adjacent floods converge.

The implementation of the
Watershed Algorithm for microscopic
image segmentation follows the
methodology presented in

Ref [9], which aims to reduce over-
segmentation when analysing
Ti-6Al-4V microstructures. A Hitachi
S3400N scanning electron microscope
captures the raw images of glass
particles (shown in Fig 2(a)), which
are processed using the HED network
discussed previously. These particles
are commonly used in metal and
polymer matrix composites'®'2, The
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Fig 2: Illustration of pre-processing of raw image for effective watershed segmentation: (a) raw image, (b) output image after forward
passing the raw image into the HED network, (c) denoised image. The numbers on x and y axes corresponds pixels
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Fig 3: lllustration of images in watershed algorithm: (a) marker image, (b) watershed segmented image. The numbers on x and y axes

corresponds pixels

outcomes of the HED method are
displayed in Fig 2(b). Morphological
opening ™ is employed to eliminate
noise from the glass particles, utilising
a rectangular-shaped structuring
element of dimensions (1,3). To further
minimise noise, a median filter with a
square kernel size of (7, 7) is applied.
The algorithm subsequently dilates
the denoised image using a kernel size
of (5, 5), aiding in the filling of broken
boundaries of the glass particles. Final
binary thresholding is performed with
a threshold value of 100, resulting in
the inverted image shown in Fig 2(c).

The Watershed implementation from
Ref [9] employs the image's gradient
magnitude as the topographic
function, computing a set of markers
based on the distance transform
while suppressing its least significant
local maxima. Here, this approach is
modified to utilise the HED instead
of the distance transform, thereby
improving segmentation accuracy.
Each particle is identified based

on detected edges with a single
marker, as shown in Fig 3(a), while
changes in grayscale intensity
delineate boundaries between

these markers, illustrated in Fig 3(b).
This segmentation enables precise
measurement of each particle.

Feature Length Orientation
Space (FLOS)

Measurements of spatial structures

in images can be obtained without
segmentation using mathematical
morphology techniques™. The
impact of a morphological operator
on an image depends on the size and
shape of a predefined structuring
element related to the image's spatial
structures. Granulometric methods
repeatedly apply these techniques

with incrementally larger structuring
elements, recording variations in
output. One successful method

in microstructural analysis is the
Feature Length Orientation Space
(FLOS)"  This technique fits linear
elements of varying lengths and
orientations to the image and records
the response in the FLOS, allowing
computation of various properties
of the spatial structures, such as
width, length, and globularity. The
FLOS technique can be applied to a
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Fig 4: Illustration of FLOS technique on powder particles. The numbers on x and y axes

corresponds pixels
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Fig 5: Histogram plots using watershed and FLOS technique. (a) watershed histogram, (b) FLOS histogram

greyscale image formatted so that
the foreground is bright, with width
measurements approximating grain
size due to the spherical nature of the
objects. The FLOS technique reports
spatial structure sizes on a per-pixel
basis, assigning each pixel a value
corresponding to the estimated
property of the object it belongs to.
This information can be visualised
using colour maps, as shown in Fig 4,
where larger particles are indicated in
deep shade, highlighting them as the
largest structures in the image.

Results for particle size
measurement

The pixel-to-micron ratio obtained
from the scale in the raw image is

6; thus, 600 pixels correspond to

100 microns, as indicated by the
scale bar. The results from both the
watershed and FLOS techniques are
presented in histogram format in Fig
5. The watershed method yielded a
mean grain size of 20.68 um, while
the FLOS method provided a mean
width of 24.24 um. The comparability
of results from both approaches is
encouraging. Each method measures
a range of additional properties
beyond grain size, enabling the
filtration of measurements according
to the expected properties of the

microstructure (thereby avoiding
erroneous measurements of
improbable size and shape). However,
specific data refinements were not
employed to prevent overfitting,
further reinforcing the reliability

of the relative agreement. Both
methods also yield visualisations that
confirm the reliability of the results,
with segmentation shown in Fig

3 indicating boundaries in correct
locations and Fig 4 displaying a colour
map accurately depicting the largest
particles' locations.

The measured mean particle sizes
from the two methods are: Watershed
=20.68 um and FLOS = 24.24 ym.
These size measurements can

be refined by further tuning the
processes based on a larger set of
images. The examples presented in
this study demonstrate the feasibility
of conducting analyses using

image processing methods, which
can be implemented in computer
programmes for automated and rapid
analysis of particle samples.

Table-1 shows the differences
between Watershed Segmentation
and Feature Length Orientation Space
(FLOS) techniques.

Summary of differences

Segmentation vs measurement:
Watershed segmentation isolates
individual objects, while FLOS
provides statistical measurements
across the image.

Approach: Watershed relies on
topographic analogy for boundary
detection; FLOS uses morphological
techniques to analyse shapes.

Output Type: Watershed yields
distinct segmented regions, whereas
FLOS produces continuous data
reflecting the properties of the
structures within the image.

Both methods can complement
each other in image analysis, with
watershed segmentation offering
precise object delineation and FLOS
providing broader statistical insights.

Conclusions

In conclusion, this paper presents
innovative imaging methods for
particle size measurement that
offer significant advancements over
traditional sieve analysis used in
the foundry industry. By employing
techniques such as watershed
segmentation and Feature Length
Orientation Space (FLOS), the study
enables continuous and automated
analysis of particle size distribution,

INDIAN FOUNDRY JOURNAL | VOL 70 [ ISSUE 11 | NOV 2024 m



TECHNICAL PAPER

Table-1: Differences between Watershed Segmentation and Feature Length

Orientation Space (FLOS) techniques

Watershed
Segmentation

Feature Length

Orientation Space (FLOS)

1 | Purpose

Primarily used for
segmenting objects
within an image,
particularly when
they are touching or
overlapping.

Focuses on analysing
3-D structures

without requiring full
segmentation, providing
statistical measures of
features in the image.

2 | Methodology

It treats the image like
a topographical surface
where pixel intensities
represent elevation.

It identifies local
minima (like basins)
and simulates flooding
from these points to
create boundaries
where adjacent floods
meet. The result is a
segmented image
where each object

(eg, particles) is
isolated for individual
measurement.

It applies morphological
operations using
structuring elements

of varying sizes and
orientations to extract
features from the image.
The technique fits linear
elements to the spatial
structures and records
responses in a feature
space, which captures
properties such as width,
length, and orientation.

3 | Output

Produces labelled
regions corresponding
to distinct objects in
the image, allowing for
precise measurements
of individual particles.

Produces statistical
information about the
particles, such as their
size and shape, without
creating distinct labelled
segments. It generates a

per-pixel response that
reflects the characteristics
of the structures.

enhancing efficiency and accuracy.
The successful application of these
methods to glass particles, along
with their potential applicability to
various materials, demonstrates their
versatility. The comparative analysis
of both approaches yields reliable
results, reinforcing the effectiveness of
imaging techniques in characterising
powder particles. Furthermore, these
advancements lay the groundwork
for future integration with machine
learning, promising even greater
improvements in the precision

and automation of particle size

measurement processes. Overall, this
work highlights a crucial step towards
modernising practices in the foundry
industry, facilitating better quality
control and process optimisation.
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