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Abstract
Reasoning is a central capability of human in-
telligence. In recent years, with the advent of
large-scale datasets, pretrained large language
models have emerged with new capabilities,
including reasoning. However, these models
still struggle with long-term, complex reason-
ing tasks, such as playing chess. Based on the
observation that expert chess players employ a
dual approach combining long-term strategic
play with short-term tactical play along with
language explanation, we propose improving
the reasoning capability of large language mod-
els in chess by integrating annotated strategy
and tactic. Specifically, we collect a dataset
named MATE1, which consists of 1 million
chess positions with candidate moves annotated
by chess experts for strategy and tactics. We
finetune the LLaMA-3-8B model and compare
it against state-of-the-art commercial language
models in the task of selecting better chess
moves. Our experiments show that our models
perform better than GPT, Claude, and Gemini
models. We find that language explanations
can enhance the reasoning capability of large
language models.

1 Introduction

“Strategy without tactics is the slowest
route to victory. Tactics without strategy
is the noise before defeat.” —-Sun Tzu

Rational thought and deliberate cognition rely
heavily on reasoning, a core component of hu-
man intelligence(Garnham and Oakhill, 1994).
Given sufficient information, people can logically
progress through a sequence of steps. In the field of
artificial intelligence(Russell and Norvig, 2016), it
has been a persistent objective to study the reason-
ing capability, as it is essential for both problem-
solving and decision-making processes.

1https://mate-chess.github.io/
Correspondence to: Shu Wang<shuwang0712@ucla.edu>.
Yifan Hou is a four-time chess world champion.
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Figure 1: Strategy and Tactic (a)White E2 pawn moves
to E4, takes more space in the center, and exerts pressure
on black. Black will have a hard time struggling to
develop its pieces. (b)White E2 bishop moves to F3 and
pins the knight on C6. The black knight cannot move,
or the A8 rook behind the knight will be taken. White
will take black knight for free in the next move.

The past few years have seen large language
models exhibit extraordinary aptitude in the tasks
that require reasoning capability(Brown, 2020; Wei
et al., 2022; Kojima et al., 2022; Bubeck et al.,
2023). However, language models show significant
limitations in planning and reasoning for compli-
cated tasks(Xu et al., 2023; Dziri et al., 2024; Sri-
vastava et al., 2022; Wang et al., 2024b; Mirzadeh
et al., 2024). In this paper, we use chess as a testbed
to study how we can improve the reasoning capa-
bility of large language models for complex tasks.

Chess reasoning is challenging, requiring analyt-
ical calculation and intuitive insights. Good chess
players employ a dual approach, which includes
(i) Long-term Strategy: It relies on rapid, intuitive
thinking based on the pattern recognition of the
chess board. (ii) Short-term Tactic: It involves
slow, analytic calculations that typically consider
1-6 moves ahead, depending on the player’s skill
level. Figure 1 shows an example of strategy and
tactic. Notably, experienced players think out loud:
they develop strategic plans in clear language, and
they evaluate the afterward position in lucid words
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after calculating the precise moves of a tactic.
Drawing inspiration from the thinking approach

used by chess experts, we propose a method to en-
hance large language models’ chess-playing capa-
bilities by incorporating both strategy and tactic in
language annotation. We collect the MATE(Move
on strAtegy and Tactics datasEt), a dataset of
around 1 million chess positions, and annotate the
candidate moves for each position with long-term
strategy and short-term tactic. Then, we utilize the
MATE to finetune open source large language mod-
els. Finally, we evaluate the performance of our
models and compare them against state-of-the-art
large language models. Our models outperform the
best commercial language model by 24.2% when
both strategy and tactic are provided.

In summary, this work’s contributions are three-
fold:

• We collect a high-quality chess dataset. For
each position, the candidate moves are pro-
vided with a description of the strategy and
tactic information annotated by experienced
chess players, including world champion-level
experts.

• We find that language explanations can en-
hance the reasoning capability of large lan-
guage models.

• We discover that integrating the dual-mode
of strategy and tactic can improve the chess-
playing capability of language models.

2 Related Work

Chess has historically been esteemed as a challeng-
ing intellectual pursuit(Thrun, 1994). With all the
rules and the chess board provided, it is a pure
reasoning task without any uncertainty or random-
ness. In 1997, Deep Blue, created by IBM, de-
feated the chess world champion—Russian player
Garry Kasparov—in a match that astonished the
world. Modern chess engines such as Stockfish,
AlphaZero(Silver et al., 2017), Leela Chess Zero,
which integrate search algorithms, deep neural net-
works, and reinforcement learning, play signifi-
cantly better than the strongest human players. Re-
cent work(Ruoss et al., 2024) trains a transformer
model on millions of annotated chess games, en-
abling it to play precise and beautiful chess.

Though chess is a “solved problem” in the field
of artificial intelligence, many researchers used it
as a testbed to study the capabilities of language
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Figure 2: A data example in MATE-Strategy&Tactic.

models(Kamlish et al., 2019; Noever et al., 2020;
Toshniwal et al., 2022; DeLeo and Guven, 2022;
Alrdahi and Batista-Navarro, 2023). Large lan-
guage models have demonstrated remarkable ca-
pabilities across a diverse range of tasks(Li et al.,
2024; Wang et al., 2024a; Jiang et al., 2024), and
(Fauber, 2024) shows by instruction fine-tuning,
language models can learn how to move a pawn or a
piece legally. Feng et al. (2024) collects a dataset of
chess games and chess-related corpus, then trains
language models capable of effectively tracking
chess board states. Guo et al. (2024) consider large
language models as the action space pruner and the
value function approximator, boosting the Monte-
Carlo Tree Search algorithm for playing chess. Un-
like other works, our research focuses on whether
strategic and tactical explanations can guide lan-
guage models to find better moves.

3 MATE

We propose the MATE(Move on strAtegy and Tac-
tic datasEt) for exploring the reasoning capability
of large language models in chess. In chess, mate
is known as checkmate, which occurs when a king
is placed in check and has no legal moves to escape.
Checkmating the opponent wins the game.

We collect around 1 million chess positions from
the open source chess server – Lichess. The data
collection guidelines can be found in Appendix A.1.
The positions are either selected from chess games
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or chess puzzles. These specific board positions ask
players to play moves to achieve a particular goal,
such as checkmating or gaining a material advan-
tage. Analyzing these positions can be an efficient
method to enhance chess skills without commit-
ting to full games. We use the Forsyth-Edwards
Notation(FEN) format to describe the board posi-
tion. FEN is a notation in one line of text with only
ASCII characters(Appendix A.2).

For each position, we select multiple reasonable
moves and then annotate each move with language
explanations of long-term strategy and short-term
tactic by expert chess players. We use the Universal
Chess Interface(UCI) format to denote the move.
For a specific move, UCI encodes the start and end
squares of that pawn or piece.

For chess strategy annotation, we categorize the
future strategical plan into five kinds: (i) material
count, (ii) piece activity, (iii) pawn structure, (iv)
space, and (v) king safety. We ask chess experts,
including world champion-level players, to formu-
late the rules to determine the optimal strategy for
any position(Appendix A.3). For each strategic cat-
egory, there are approximately 20 distinct linguistic
expressions to describe the corresponding plan.

For chess tactic annotation, the multitude of cat-
egories is overwhelming(Appendix A.4): skewer,
pin, fork, x-ray, remove the defender, overload,
Greek gift, windmill, discovered attack, inflection,
etc. For simplicity, we list the sequence of moves
and provide a factual description of the resulting
position. Unlike search algorithms that explore
long tactical reasoning chains, our approach fo-
cuses on short-term calculations, limiting the move
sequence length. The move sequences are gener-
ated using the open source chess engine Stockfish.

We evaluate move quality using Stockfish, as-
signing a hidden score to each move. In our dataset,
we select two moves for each position whose differ-
ences in scores exceed a specified threshold. This
significant score gap clearly indicates one move is
superior to the other.

We create four sub-dataset based on the MATE:
(i) MATE-No-Explanation: given chess positions,
the candidate moves are provided without strategi-
cal nor tactical explanation; (ii) MATE-Strategy:
given chess positions, the candidate moves are
provided with strategical elaboration; (iii) MATE-
Tactic: given chess positions, candidate moves
are provided with tactical description; (iv) MATE-
Strategy&Tactic: given chess positions, candidate
moves are provided with both strategy and tactic,

MATE - Strategy & Tactic 
(10%)

MATE - Tactic (10%)MATE - Strategy (39.2%)

MATE - No - Explanation 
(40.8%)

(a)Material Count (6.5%)
Space (8.4%) Pawn Structure 

(3.6%)

Piece Activity
 (65.2%)

King Safety 
(16.3%)

(b)

1 Move 
(3.0%)

2 Moves 
(23.8%)

6 Moves 
(46.9%)

5 Moves 
(5.49%)

3 Moves (13.5%)
4 Moves 
(7.4%)

(c)

Figure 3: Dataset Summary (a)Distribution of samples
across the MATE subsets. (b)Distribution of strategy in
the MATE. (c)Distribution of tactic in the MATE.

a sample is shown in Figure 2. We investigate the
difficulty levels of positions for each sub-dataset
and find they are at similar levels.

Most positions in the MATE lend themselves
to long-term strategic planning. While many posi-
tions are generally not very sharp, meaning there
are no immediate opportunities to gain an advan-
tage through tactical play, we can still formulate
strategic plans for them. Consequently, we are
unable to identify short-term tactics for these po-
sitions. As a result, the MATE-Strategy subset
is significantly larger than both the MATE-tactic
and MATE-Strategy&Tactic subsets. We show the
summary of the MATE in Figure 3.

4 Experiments

4.1 Experiment Setup

We train our models using the pretrained Llama-
3-8B model(Dubey et al., 2024) as the foundation.
The models are finetuned with llamafactory(Zheng
et al., 2024), employing a cosine learning rate
scheduler with 3% warm-up steps. We set the maxi-
mum learning rate to 5×10−6. We use DeepSpeed
ZeRO Stage 3 (Rajbhandari et al., 2020) across
4×H100 GPUs. We train the models for 5 epochs.

We incorporate specific tokens in FEN format
to enhance the foundation model’s understanding
of chessboard positions. We add the <line> token
to separate each row of the board and the <color>
token to indicate which side is to move next. Our
experiments show no significant difference in per-
formance with or without these special tokens.

We train four models with MATE-No-
Explanation(MATE-N), MATE-Strategy(MATE-
S), MATE-Tactic(MATE-T), and MATE-
Strategy&Tactic(MATE-ST), respectively.

We compare our models with the following base-
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Model Zero-Shot Setting Few-Shot Setting

N S T ST N S T ST

gpt-4 53.1 54.6 60.0 60.0 54.7 58.9 57.7 68.1
gpt-4o 46.4 52.8 54.8 60.1 48.5 54.3 52.7 63.1

o1-mini 51.5 58.8 64.1 69.2 50.4 58.3 62.0 65.9
o1-preview* 56.4 65.4 77.2 76.6 59.0 65.4 76.2 78.6

claude-3.5-sonnet 49.6 54.9 56.9 54.9 51.9 63.7 59.9 66.1
claude-3-opus 48.3 54.5 53.7 57.3 51.0 55.8 53.2 60.2
gemini-1.5-pro 50.6 48.8 54.2 52.6 50.5 50.1 52.7 50.4

gemini-1.5-flash 46.1 50.8 54.2 52.9 49.7 48.2 53.8 55.6
Ours-no-explanation 63.5 – – – 64.7 – – –

Ours-strategy – 89.7 – – – 89.8 – –
Ours-tactic – – 94.6 – – – 94.5 –

Ours-strategy&tactic – – – 95.2 – – – 95.3

Table 1: Experimental results in terms of accuracy(%) on MATE. The best-performing score is highlighted in bold,
and the second-best is underlined. In the table, N stands for MATE-N, S stands for MATE-S, T stands for MATE-T,
and ST stands for MATE-ST.

lines:

• GPT: gpt-4-0613, gpt-4o-2024-08-06, o1-
preview-2024-09-12, o1-mini-2024-09-12;

• Claude: claude-3.5-sonnet, claude-3-opus;

• Gemini: gemini-1.5-pro, gemini-1.5-flash.

In our experiment, we have the zero-shot setting
and the few-shot setting. In the zero-shot setting,
models are evaluated on their inherent reasoning
capabilities without any prior examples. In the few-
shot setting, a few examples are given to the models
before the test example. We evaluate models on
1000 samples in the individual test sets for each set-
ting. In each test sample, models score when they
output the optimal move from candidate moves.

4.2 Results
Our experimental results in Table 1 shows: (i)
MATE proves sufficiently complex to differentiate
among commercial LLMs. Our results demonstrate
that the o1-preview model leads in performance by
a substantial margin. (ii)Interestingly, prompting
strategies do not significantly impact performance
in our task. We observe no substantial improve-
ment in performance when adopting a few-shot
setting compared to a zero-shot setting. (iii)Our
models exhibit superior reasoning capabilities com-
pared to commercial models, as demonstrated by
their performance across various test sets.

Language enhances chess-reasoning in lan-
guage models. While some researchers argue

that language is not used for reasoning(Fedorenko
et al., 2024), our findings lead us to a contradictory
conclusion in chess. Our evaluations demonstrate
that performance improves for most LLMs we test
when provided with linguistic explanations. Using
o1-mini in the zero-shot setting as an example, its
performance improved by 14% on the MATE-S,
24% on the MATE-T, and 34% on the MATE-ST,
all compared to its baseline performance on the
MATE-N.

Integrating long-term strategy and short-
term tactics enhances language models’ chess-
playing ability. Most models demonstrate superior
performance in the MATE-ST subset compared to
other subsets. For instance, gpt-4o demonstrates
the following improvements in the MATE-ST zero-
shot setting: a 10% increase compared to MATE-T,
a 14% increase compared to MATE-S, and a 30%
improvement relative to MATE-N.

We conduct additional experiments to evaluate:
(1) model performance with multiple candidate
moves, (2) the quality of strategy explanations gen-
erated by both our trained models and commercial
models, and (3) the difficulty levels of chess po-
sitions across sub-datasets, assessed through both
human evaluation and language models’ evaluation.
The details of additional experiments can be found
in Appendix A.5, A.6, and A.7.

In future, the combination of long-term strategic
planning and short-term tactical decision-making
can be applied to strengthen language models’ rea-
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soning capabilities across various tasks.

5 Conclusion

We propose a method to enhance LLMs’ chess-
reasoning capabilities by incorporating strategy and
tactic annotations. We craft the MATE, train our
models and compare them against state-of-the-art
commercial language models. Our models outper-
form others in the chess-reasoning task. We find
language helps language models’ reasoning. We
demonstrate combining long-term intuition with
short-term analysis can be a promising direction
for exploration.
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Limitation

Although the idea of combining strategy and tac-
tics is prevalent in all games, we only study chess.
A comprehensive study of multiple game types
should demonstrate this approach’s effect better.

We use chess puzzles to test the models’ ability,
asking the model to choose between two plausible
moves. This is a common way for professional
players to exercise. However, the ideal scenario
would require running a complete game on the
chess engine to test a model’s full strength and
ability to carry out strategy and tactics.

Our dataset is annotated by chess experts. How-
ever, we acknowledge that potential biases may ex-
ist in determining appropriate strategies for various
positions and in evaluating post-tactical situations.
Furthermore, the limited number of chess experts
may only capture the thought processes of a subset
of all players.

Our experiment only uses LLaMA-3-8B for fine-
tuning, so we don’t understand how the improve-
ment changes to model sizes and base model qual-
ity.
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A Appendix

A.1 Data Collection Guidelines

In order to represent the full characteristics of chess
games, our dataset adheres to the following collec-
tion guidelines:

(1)it covers all phases of a chess game, including
openning, middlegame, endgame;

(2)it involves different strategies and tactics;
(3)it origins from different levels of chess play-

ers’ games and different difficulty level of puzzles.

A.2 Chess Notation

FEN Forsyth-Edwards Notation, abbreviated as
FEN, is the standard method for describing chess
positions. This system was developed by Steven J.
Edwards, a computer programmer, who adapted an
earlier notation created by journalist David Forsyth.
Edwards’ modifications made the notation compat-
ible with chess software, enhancing its utility in the
digital age.

FEN encodes chess positions using the follow-
ing elements:(1) Piece positions: Capital letters for
white pieces, lowercase for black. Numbers indi-
cate empty squares. (2) Active color: w for white’s
turn, b for black’s. (3) Castling rights: K means
white kingside, Q means white queenside, k means
black kingside, q means black queenside. (4) En
passant target square: If a pawn has just moved
two squares, this is the square behind it. (5) Half-
move clock: Moves since the last pawn advance
or capture. (6) Fullmove number: The number of
completed turns in the game.

Board rows are separated by forward slashes /.
This compact notation allows for precise represen-
tation of any chess position, facilitating analysis
and game reconstruction.

6



UCI The Universal Chess Interface is an open
communication protocol that facilitates interaction
between chess engines and user interfaces. UCI
encodes chess moves using a four-character system
that represents the starting and ending coordinates
of a piece’s movement. Each move is denoted by a
combination of two letters and two digits, such as
"e2e4", which indicates moving a piece or a pawn
from square e2 to e4.

A.3 Chess Strategy

We elaborate on the details of each strategy, includ-
ing the criteria we use to identify them.

Material Count It is a fundamental strategy, par-
ticularly for beginners. While the game ultimately
aims for checkmate, having a material advantage
often influences the result more frequently. Each
piece is assigned a specific value, and understand-
ing these values helps players assess their position.
When other elements are relatively equal, prioritiz-
ing material acquisition can lead to a decisive ad-
vantage in the game. This strategy is most relevant
when there is an imbalance in material compari-
son and both kings are safe. It generally applies
to most types of positions, though king safety may
occasionally take precedence.

Piece Activity It is an advanced strategy, focuses
on the placement and effectiveness of pieces rather
than just their assigned value. In some situations,
players may have an equal material count, but the
effectiveness of their pieces can vary significantly.
Pieces positioned centrally are typically more pow-
erful, allowing for greater control and flexibility.
This strategy is especially relevant in dynamic po-
sitions where the mobility of pieces can lead to tac-
tical opportunities. Focus on piece activity when
there is a marked difference in piece positioning,
such as when some pieces occupy central squares
while others remain in the corners. This is espe-
cially crucial in dynamic positions, particularly
when one side is attacking.

Space Gaining a spatial advantage is closely re-
lated to piece activity and can greatly impact a
player’s effectiveness. When one side controls
more space on the board, their pieces can move
more freely and exert influence over critical areas.
This advantage can limit the opponent’s options
and create opportunities for attack. Space is a vi-
tal evaluation factor, particularly in positional play,
where controlling key squares can lead to long-term

advantages. Space advantage typically arises in the
opening and middlegame, especially when more
pawns are on the board, as this can enhance spatial
control.

Pawn Structure The configuration of pawns is
a unique and complex aspect of chess strategy.
With eight pawns per side, the formation can vary
widely, influencing both positional and dynamic
play. Strong pawn structures can create weaknesses
for the opponent, while poorly positioned pawns
can become liabilities. Understanding pawn dy-
namics is essential for developing long-term strate-
gies and can dictate the overall flow of the game.
Consider pawn structure when faced with clear is-
sues such as doubled or isolated pawns. Typical
positions arising from certain openings, like the
Sicilian or Ruy Lopez, should also prompt a focus
on pawn structure.

King Safety Ensuring king safety is a critical
strategy throughout the game. A secure king al-
lows other strategies to be executed more effec-
tively, while a vulnerable king can lead to immedi-
ate threats and checkmate. Prioritizing king safety
not only protects against attacks but also enables
players to focus on their offensive strategies with
confidence. This strategy should always be consid-
ered alongside the others to maintain a balanced
approach to the game. Assess king safety when
the king is exposed, particularly without pawns
in front of it, and when the opponent’s pieces are
coordinated to attack, possibly leveraging tactical
combinations along open files.

A.4 Chess Tactic

Here we list several common tactics in chess:

Pin Pin tactics occur when an attacked piece can-
not move without exposing an even more valuable
piece (or target) behind it.

Fork A fork is a type of double attack whereby a
single piece makes multiple threats.

Battery In chess, a battery refers to lining up two
or more pieces on the same diagonal, rank or file.
Only queens, rooks and bishops can form a battery.
The rooks can form a battery on a rank or file whilst
the bishops can be part of a battery on a diagonal.
The queen, of course, can be part of a battery on a
rank, file or diagonal.
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X-Ray X-Ray refers to the ability of long-range
pieces to see “through” an enemy piece. This tacti-
cal idea is sometimes referred to as an x-ray attack,
but it can also be used as a defensive tactic.

Discovered Attack A discovered attack occurs
when moving a piece reveals a strong threat from a
piece hiding behind it. The power of a discovered
attack often lies in the fact that you can use it to set
up a double attack.

Windmill A windmill tactic can also be de-
scribed as a series of forced discovered attacks.
This tactic is also known as a see-saw, based on
how the front piece keeps returning to its previous
position.

Greek Gift The Greek Gift Sacrifice (also known
as the classical bishop sacrifice) is a specific case
of demolition of the pawn structure in front of the
enemy king. A key feature of the Greek Gift Sacri-
fice is the placement of the white bishop on d3, the
white knight on f3 and the white queen on d1, all
ready to join in the attack against black’s king

Double Attack A double attack is a situation
where one or more of your pieces make multiple
threats. A double attack performed by a single
piece is known as a fork.

A.5 Experiments on Multiple Candidate
Moves

Model Zero-Shot Setting

N S T ST

gpt-4 37.4 40.1 61.7 56.3
gpt-4o 38.5 40.2 43.2 49.5

o1-mini 25.0 35.0 65.0 60.1
o1-preview* 45.0 26.8 70.1 50.2

claude-3.5-sonnet 39.1 42.0 50.4 46.0
claude-3-opus 32.2 41.7 49.4 47.0
gemini-1.5-pro 30.9 41.5 38.1 40.5

gemini-1.5-flash 35.5 35.7 38.3 45.5
Ours 40.0 56.1 57.2 54.8

Table 2: Experimental results on 3 candidate moves.

Since our data collection pipeline is automatic,
we are able to add more reasonable candidate
moves for a chess board position to our dataset
conveniently. We conduct additional experiments
given chess positions with 3 candidate moves. We
sample 1000 positions from the test set of MATE

for our new test sets; for each position, we sample 3
candidate moves and then annotate them. We eval-
uate models on 1000 samples in the new test sets.
As we point out, prompting strategies do not sig-
nificantly impact performance in our chess task(in
Section 4.2), we use the zero-shot setting. We com-
bine the evaluation results of our four finetuned
models as ’Ours’ in the Table 2.

With increasing numbers of candidate moves, we
observe a decline in model performance. Notably,
models finetuned with strategy and tactical explana-
tions demonstrate greater robustness when adapting
to novel and more challenging tasks, compared to
models finetuned without such explanations.

A.6 Experiments on Generating Explanations

MATE-gpt MATE-claude MATE-ours

gpt – 48.6 51.0
claude 52.7 – 56.7
ours 74.7 75.6 –

Table 3: Evaluating models’ capability to generate
strategic explanations.

We conduct experiments to evaluate models’ ca-
pability of generating strategy explanations. We
fintune our models using the pretrained llama-3-8B
model as the foundation model. The training set
and the test set are modified from MATE: for each
sample, the input takes the chess board position
and move, the output is the strategy explanation or
tactic explanation. During training, we employ a
cosine learning rate scheduler with 3% warm-up
steps. The maximum learning rate is 5× 10−6. We
train the model over 8×H100 GPU for 10 epochs.

We modify the test set for measuring models’
strategy generation. To measure our model’s gener-
ated explanations, we sample 1000 positions with
candidate moves, instead of following our data an-
otaion process, we use our model to generate strat-
egy explanations for the test set MATE-ours. Sim-
ilarly, for the same 1000 positions and candidate
moves, we use gpt-4o to generate strategy expla-
nation for the test set MATE-gpt. We craft test
set MATE-claude using claude-3.5-sonnet. We test
gpt-4o, claude-3.5-sonnet, and our model’s chess
playing by choosing the right move given a position
and two candidate moves in the test set MATE-ours,
MATE-gpt, MATE-claude respecitively. The exper-
iments results are shown in Table 3.

Based on the performance across these test sets,

8



we find that our model’s strategy generation are bet-
ter compared with gpt-4o claude-3.5-sonnet. The
experiments demonstrate the our model’s intrisic
reasoning capability outperform those commercial
models in chess.

A.7 Difficulty Levels of Sub-Datasets
Our MATE consists of 4 sub-datasets: MATE-N,
MATE-S, MATE-T, and MATE-ST. We conduct
two experiments to study the difficulty levels of
chess board positions across all these sub-datasets
through both human and automatic assessment.

Model N S T ST

gpt-4o 46.4 47.4 46.0 46.5
claude-3.5-sonnet 49.6 51.2 50.2 48.6

Table 4: Experimental results in terms of accuracy(%)
on 1000 board positions selected from MATE-N, MATE-
S, MATE-T, MATE-ST.

We first conduct an experiment with chess play-
ers. From each sub-dataset, we randomly select
50 samples, retaining only the board position and
candidate moves while omitting any strategy or tac-
tical information. Players are then asked to rate
the difficulty of these samples. The results indi-
cate that human players perceive the positions and
candidate moves in all four sub-datasets to be of
similar difficulty levels.

For our second experiment, we employ state-
of-the-art commercial large language models to
assess the difficulty levels of the sub-datasets. We
randomly selected 1000 samples from each sub-
dataset, preserving only the board position and can-
didate moves while excluding any strategic or tac-
tical information. The language models were then
prompted to determine the optimal move for each
position. We utilized gpt-4o and claude-3.5-sonnet
for this experiment. The results, presented in Table
2, indicate that these language models performed
similarly across the samples selected from all sub-
datasets, suggesting the same difficulty levels of
these sub-datasets.

A.8 Case Study
We pick a sample case with both strategy and tactic
annotated, and show the responses from three lan-
guage models. See Figure4, Figure5, and Figure6.
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Figure 4: Case Study:Claude 3.5 Sonnet.
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Figure 5: Case Study:o1-preview.

11



������

������

������������������������������������������
����������������
�	
�������������������������
��
�������������������������
�����	�����


����������	
������
�������������������
������
�
����
��������������������
��������������
�
��
����������������������� ����­��� ��� ���������	�������������
��������
����������

����������������
�������
����������������������

��������
���������������������
���
����
��������������� �����������
��������	����������
�����������
������������
������

������� ������������
������������������������

������������
������������
���
����
����� �������������������������

�����������������������

���������������� ���
�������������������
��������
������

�
�
������
������
������������������
�����
��
���������
�����������������
	�
���
���������
�������������������
����
���
���������
�����
�����������

�������
������	�
����
�����������
�

������������
���������������
�����������������	
����������� ���

Figure 6: Case Study:gpt-4.
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