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Abstract

We propose a minimalistic representational model for the head
direction (HD) system, a crucial component of spatial naviga-
tion in mammals. Our model leverages the symmetry of the
rotation group U(1) and the inherent circular geometry of the
head direction. We develop fully connected and convolutional
versions of the model, both aiming to learn a high-dimensional
representation of head direction that captures essential proper-
ties of HD cells. Our learning method results in representa-
tions that form a perfect 2D circle when projected onto their
principal components, reflecting the underlying geometry of
the problem. We also demonstrate that individual dimensions
of our learned representation exhibit Gaussian-like tuning pro-
files akin to biological HD cells. Our model achieves accu-
rate multi-step path integration, effectively updating its inter-
nal heading estimate over time. These results demonstrate that
simple symmetry-based constraints can yield biologically real-
istic HD representations, offering new insights into the compu-
tational principles underlying spatial navigation in mammals.

Introduction
Spatial navigation is a fundamental cognitive function shared
across many species, from insects to humans. A critical com-
ponent of this navigational system is the perception of direc-
tion, which allows animals to maintain a consistent represen-
tation of their orientation in the environment. In mammals,
this perception of direction is primarily mediated by the head
direction (HD) system, a network of neurons that collectively
encode the animal’s current head orientation relative to its en-
vironment (Taube et al., 1990a).

HD cells, discovered in the rat’s dorsal presubiculum
(Rank, 1984; Taube et al., 1990b), exhibit a remarkable prop-
erty: they fire maximally when the animal’s head faces a spe-
cific direction in the horizontal plane, regardless of location
or ongoing behavior. Each cell has a preferred direction, with
firing rates decreasing as the head turns away, typically fol-
lowing a Gaussian-like tuning curve (Blair et al., 1997). Dis-
tributed across interconnected brain regions (Taube, 2007),
these cells form a neural “compass” maintaining consistent
directional representation (Cullen, 2019). Intriguingly, the
HD system maintains direction representation even without
external sensory cues – a phenomenon known as path inte-
gration (McNaughton et al., 2006). This suggests that the
HD system functions as a neural integrator updating based
on self-motion cues. Theoretical and computational models
have proposed that the HD system functions as a continuous
attractor network, where the collective activity of HD cells
forms a stable “bump” of activity that can smoothly move to

represent different head directions (Zhang, 1996; Skaggs et
al., 1994). These models often represent the head direction
on a ring, reflecting the circular nature of directional space.

Despite significant progress in understanding the HD sys-
tem, many questions remain about how its properties emerge
from underlying neural circuits and how it interfaces with
other components of the brain’s spatial navigation system,
such as place cells and grid cells (Moser et al., 2008; Xu et
al., 2025; Zhao et al., 2025). In this paper, we propose a mini-
malistic representation model for the HD system that captures
its essential features while maintaining computational effi-
ciency and biological plausibility. Our approach is motivated
by recent advancements in direction representation learning
in high-dimensional spaces (Cueva et al., 2019; Mante et al.,
2013; Yang et al., 2019; Maheswaranathan et al., 2019). We
leverage the fact that head direction transformations form a
representation of the rotation group U(1), acting on a ring of
possible head direction representations. We present two ver-
sions of the model: a fully connected version and a convolu-
tional version. Both models aim to learn a high-dimensional
representation of head direction that exhibits key properties
observed in biological HD systems. We demonstrate that our
model can learn Gaussian-like tuning profiles for individual
cells and produce a representation that exhibits a clear circle
geometry when visualized with principal component analysis
(PCA). The learned model is capable of accurate path inte-
gration. These emergent properties closely match the charac-
teristics of biological HD systems, providing insights into the
computational principles that may underlie their function.

By explicitly incorporating the symmetry of the rotation
group and the circular geometry of head direction, our model
offers a framework for understanding how these fundamen-
tal principles may shape the neural representations in the HD
system. This approach not only captures key features of bi-
ological HD systems but also provides insights into the role
of symmetry and geometry in neural computations for spatial
navigation.

Model and Learning
General Framework
We represent head direction x ∈ [0,2π) in a continuous d-
dimensional vector v(x)∈Rd , which is regarded as responses
of putative HD cells and subjects to three constraints:

(1) Nonnegativity constraint: v(x)≥ 0, reflecting neurons’
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nonnegative firing rates.
(2) Unit norm constraint: |v(x)|2 = ∑

d
i=1 vi(x)2 = 1 corre-

sponds to a constant total activity of neurons regardless of
direction x (to be one without loss of generality). This im-
plies the direction x is only represented by spatial patterns of
neuronal responses rather than summed responses, which has
been widely used in neural coding (Pouget et al., 2003; Dayan
& Abbott, 2005).

(3) Transformation rule: v(x + dx) = F(v(x),dx), where
F is a function describing changes in the representation v(x)
from a change dx in direction. The set of transformations
{F(·,dx),∀dx} and the set of representations {v(x),∀x ∈
[0,2π)} together form a representation of the rotation symme-
try group U(1), so that F(v(x),0) = v(x), and F(v(x),dx1 +
dx2) = F(F(v(x),dx1),dx2). Here the addition in x+ dx is
mod 2π. The transformation rule defines a recurrent neural
network vt = F(vt−1,dxt) that enables path integration.

Model for local motion

For local motion dx, the first order Taylor expansion gives us

v(x+dx) = F(v(x),dx)

= F(v(x),0)+F ′(v(x),0)dx

= v(x)+ f (v(x))dx,
(1)

where f (v(x)) = F ′(v(x),0) is the derivative of F(v(x),dx)
with respect to dx evaluated at dx = 0. This first-order Taylor
expansion corresponds to the Lie algebra of the Lie group
formed by the transformations (F(v(x),dx),∀dx). For larger
motion dx, we can also use second-order Taylor expansion.

To parameterize f (v(x)), here we propose two models,
which are the fully connected version and the topographi-
cal convolutional version. Our goal is to demonstrate that
Gaussian-like head direction tuning profiles emerge regard-
less of the specific form of f (v(x)). Also, we keep both ver-
sions of the model as simple as possible, which presents the
minimalistic setting.

Fully Connected Version In the fully connected version,
we model local changes in direction as:

v(x+dx) = v(x)+Bv(x)dx, (2)

where B ∈ Rd×d is a learnable matrix, and dx ∈ [−b,b] for a
small b> 0. Here the matrix B enables every dimension of the
representation to interact with every other dimension. This
flexibility can capture complex, long-range dependencies in
the neural code, but it does not impose any specific spatial
structure on the arrangement of neurons.

Topographical Convolutional Version The topographical
convolutional version of our model explicitly leverages the
inherent circular structure of head direction by arranging neu-
rons vi on a ring. The local update is given by:

v(x+dx) = v(x)+B∗ v(x)dx, (3)

where B is a learnable convolutional operator, and the symbol
∗ denotes a one-dimensional convolution operation with peri-
odic boundary condition, and dx ∈ [−b,b] for a small b > 0.
The convolutional nature of B is expressed as:

(B∗ v(x))i =
k

∑
j=−k

B jv(i+ j) mod d(x), (4)

where B j are learnable weights of the convolutional kernel,
and k is the kernel size. For each neuron i, the output is com-
puted as a weighted sum of the activities of neurons in its
local neighborhood – specifically, the neurons at positions
i− k through i + k. The modulo operation modd ensures
that the indexing wraps around when i+ j falls outside the
range [0,d− 1], thereby preserving the circular structure of
the representation. This local, circular convolution effectively
captures the topological organization of head direction cells,
where each neuron’s activity is influenced predominantly by
its immediate neighbors.

Learning Method
Our model learns two sets of parameters:

(1) V : the representations v(x) for all x ∈ {k 2π

n ,k =
0, ...,n− 1}, where n is the number of grid points. We de-
note these v(x) collectively as V . For a general continuous
x, we express v(x) as a linear interpolation between the two
nearest grid points.

(2) B: the update matrix or convolution kernel B.
We define a loss function to train B and v by minimizing

the prediction error of local changes:

L(V,B) = Ex,dx
[
|v(x+dx)−F(v(x),dx)|2

]
(5)

This loss function comes from Equation 1 and focuses on
the accuracy of single-step updates. This one-step loss func-
tion can eliminate the need for backpropagation through time,
which significantly simplifies the learning process and re-
duces computational complexity.

The above loss function can be minimized by projected
gradient descent, i.e., after a gradient descent step or a step
of Adam optimizer (Kingma & Ba, 2014), we set all negative
elements in each v(x) to 0, and then normalize each v(x) to
have norm 1. Expectation Ex,dx can be approximated by uni-
formly sampling x from [0,2π) and dx from interval [−b,b].

Model training
We use Adam optimizer (Kingma & Ba, 2014) to minimize
the loss function. The algorithm proceeds as in Algorithm 1.

To achieve a continuous representation, we define v(x) at
discrete points xk = k 2π

n for k = 0,1, . . . ,n−1, and use linear
interpolation for intermediate values:

v(x) = (1−w)v(x⌊k⌋)+wv(x⌈k⌉), (6)

where k = n
2π

x, w = k−⌊k⌋, and ⌊·⌋, ⌈·⌉ denote floor and
ceiling functions respectively.



Algorithm 1 Learning Head Direction Representation
Input: Number of directions n, dimension d, learning
rate η, number of iterations T
Output: Learned representations v(xk) and transition
function F
Initialize v(xk) for xk = k 2π

n ,k = 0,1, . . . ,n−1
Initialize B (matrix or convolutional kernel)

1: for t← 1 to T do
2: Sample a batch of (x,dx) pairs
3: Compute the loss L for the batch
4: Update v(xk) and B using gradients of L and learning

rate η

5: for k← 0 to n−1 do
6: v(xk)←max(v(xk),0) ▷ Enforce non-negativity
7: v(xk)← project(v(xk)) ▷ Project onto unit sphere
8: end for
9: end for

10: return v(x) and B

For larger local motion range b (specifically, b = 20 2π

n in
our experiments), we employ a second-order model to capture
higher-order dynamics:

v(x+dx) = v(x)+B1v(x)dx+B2v(x)dx2, (7)

where C ∈ Rd×d is another learnable matrix. This second-
order term allows the model to better account for changes
over larger directional steps.

More specifically in our training process, we use n = 100
discrete directions. The model was trained for 200,000
epochs with a batch size of 256, using an Adam optimizer
(Kingma & Ba, 2014) with an initial learning rate of 4e− 5.
A learning rate scheduler (ReduceLROnPlateau) is employed
with a factor of 0.8 and patience of 5000 epochs to adapt the
learning rate during training. For the convolutional model,
we use a kernel size of 3. An example training loss curve can
be found in Figure 1, which shows a stable training process.
The model can be trained on a single NVIDIA A6000 GPU
in around 5 minutes.

Experiments and Results
We conduct a series of experiments to evaluate the perfor-
mance and properties of our model across various configura-
tions. We explore dimensions d ∈ {10,20,50,100} and local
range b∈ {m 2π

n ,m = 2,5,10,20} for both the fully connected
and convolutional versions of the model. Here we fix n = 100
in all experiments.

Ring Structure in PCA Plot
We apply Principal Component Analysis (PCA) to the learned
representations v(x) across all directions as in Figure 2. The
PCA plot of the first two principal components reveal a clear
ring structure. This emergent property demonstrates that our
model has learned a continuous, circular representation of

Figure 1: Training loss of an example fully-connected model
with dimension d = 20. We train the model for 200,000
epochs where it converges.

Figure 2: 2D and 3D PCA visualization of learned head di-
rection representations. Colors represent the discrete head di-
rection indices from 0 to n, corresponding to angles from 0° to
360°. Both PCA plots reveal a clear ring structure, indicating
that our model has learned a continuous, circular representa-
tion of head direction

head direction, mirroring both the topology of the actual di-
rection space and the attractor dynamics observed in bio-
logical HD systems. The ring in our PCA plots confirms
that even in a high-dimensional firing-rate space, the dom-
inant latent structure reflects a one-dimensional continuum.
In other words, small changes in head orientation correspond
to smooth movement around the circular manifold, consistent
with the view that the HD system operates as a rotationally
invariant attractor (Zhang, 1996).

Moreover, this ring-like organization is consistent across
both model versions, tested dimensions, and local ranges.
This result underscores that our high-dimensional representa-
tion effectively captures the underlying one-dimensional na-
ture of head direction while providing computational advan-
tages, validating our model’s ability to capture essential fea-
tures of biological head direction systems despite its mini-
malistic design.

Gaussian-like Tuning Profiles
A defining feature of biological head direction (HD) cells is
their unimodal tuning to a specific orientation, resulting in



bell-shaped firing curves around a preferred angle (Taube et
al., 1990b; Taube, 1995; Blair & Sharp, 1996; McNaughton et
al., 2006). In our trained model, we observe a strikingly sim-
ilar phenomenon: each dimension (or “cell”) in the learned
representation v(x) shows a maximal response at a particular
head direction and exhibits a smooth, approximately Gaus-
sian drop-off for orientations deviating from that preferred
angle.

This emergence of Gaussian-like tuning is critical for a sta-
ble and unambiguous directional code. First, it ensures that
each cell encodes a unique portion of directional space, dis-
tributing orientations across the population (Blair & Sharp,
1996; Taube, 2007). Second, Gaussian tuning curves support
stable attractor dynamics: small deviations in the system’s
activity are naturally pulled back toward the peak direction,
mirroring the continuous attractor models that have been pro-
posed to underlie HD cell ensembles (Skaggs et al., 1994;
Zhang, 1996). Third, the unimodal shape of these tuning
curves facilitates robust decoding; a small set of maximally
responding cells can reliably indicate the current heading,
even under noisy or partial input conditions (McNaughton et
al., 2006).

Figure 3 highlights four example neurons from our convo-
lutional model with d = 20, each displaying a clear Gaussian-
like profile centered on a different preferred direction. To
confirm that this behavior holds consistently across the entire
network, we further provide the tuning curves of all 100 neu-
rons in our model with d = 100 in Figure 4. Every dimension
in this high-dimensional representation preserves the same
unimodal structure, indicating that fundamental symmetry
and geometric constraints in the learning process produce
stable, biologically realistic firing patterns. These findings
closely align with experimental observations of unimodal HD
cell tuning in rodents and other mammals.

Path integration

Path integration is a core function of biological head direc-
tion (HD) systems, enabling animals to track their heading
in the absence of salient external cues by internally summing
small changes in orientation (Etienne & Jeffery, 2004; Va-
lerio & Taube, 2012; McNaughton et al., 2006). In neural
terms, it can be seen as sequentially updating an internal rep-
resentation of direction so that each incremental movement is
reflected in the collective firing of HD cells. From a compu-
tational standpoint, this corresponds to repeatedly applying a
learned update function to a latent state encoding the current
heading (Gao et al., 2021; Xu et al., 2023a,b, 2025).

To evaluate our model’s ability to perform path integration,
we begin by assigning an initial head direction x0 ∈ [0,2π)
and obtaining its latent representation v0 = v(x0). We then ap-
ply a sequence of directional shifts (dx1,dx2, . . . ,dxn). Given
our direction representation function v(x) ∈ Rd and the up-
date function F(v,dx), we track the changes in the direction
representation by updating the representation for each step t

Figure 3: Tuning curves of a sample of neurons from our
convolutional model with d = 20. This figure, presented as a
complement to Figure 4, displays a random selection of neu-
rons to highlight their Gaussian-like tuning profiles. The x-
axis spans the full 360° range of head directions, with each
curve centered on its neuron’s preferred direction (indicated
by the red dotted line) to illustrate the circular nature of the
representation. The green dotted line marks the direction in-
dex 0.

Figure 4: Full tuning curves with d = 100. We present all
100 head direction cells, and all tuning curves have Gaussian-
like tuning profiles.



according to

vt = F(vt−1,dxt), t = 1, ...,n (8)

This procedure ensures that vt accumulates the integrated ef-
fects of all prior increments, thus approximating the final
heading after ∑

t
i=1 dxi. After obtaining the final representa-

tion vn, we decode the corresponding direction xn by maxi-
mizing the inner product between vn and v(x) over all possible
direction x:

xn = arg max
x∈[0,2π)

⟨vn,v(x)⟩. (9)

In the decoding phase, we leverage the property that vn
has the highest similarity with v(x) at the true final direc-
tion. Such a simple yet effective decoding strategy reflects
a population-vector-like scheme often used in neural coding
research (Georgopoulos et al., 1986).

To systematically assess performance, path integration is
evaluated using two local range scenarios: b = 2π

n radians,
and b = m 2π

n radians, where m represents the multiple of the
basic angular step size used during training. In both cases,
the motion of each step dxt is sampled uniformly from the
range [−b,b], thus varying the magnitude of each incremental
rotation. We compare performance both with and without a
re-encoding step:

1. Without re-encoding: the model simply applies vt =
F(vt−1,dxt) over multiple steps, causing any representa-
tional errors to accumulate.

2. With re-encoding: we append an extra decode-then-re-
encode procedure at each step. After each step, we first
decode v → x̂ to the 1D head direction angle via x̂ =
argmaxx′∈[0,2π)⟨v,v(x′)⟩, and then encode vt← v(x̂) back to
the neuron space intermittently. Since our model is trained
in a 1-step manner, this approach aids in rectifying the er-
rors accumulated in the neural space throughout the trans-
formation by resetting the state to a “clean” representation.

Table 1 presents the average angular difference (in radians)
between the true and estimated directions after multiple steps
of path integration. Results are shown for various dimensions
d and multiples m, and are separated into the two local range
conditions. The columns labeled “local range = 2π

n error” re-
port accuracy when each step is sampled from the unit angu-
lar step range 2π

n , whereas those labeled “local range = m 2π

n
error” show results when each increment is sampled from the
range as large as what was used during training. The model
maintains low error under both conditions and, importantly,
exhibits robust performance at larger step sizes m 2π

n . Notably,
despite being trained with a one-step predictive loss function,
our model demonstrates remarkable accuracy in multi-step
path integration tasks.

Figure 5 further shows the effectiveness of re-encoding by
comparing the accumulated error over 20 steps in both con-
ditions. The curve without re-encoding shows a gradual in-
crease in error, whereas the error with re-encoding remains

Figure 5: Accumulated path integration error over trajec-
tories of 20 steps with and without re-encoding. We take the
model with d = 50, m = 5 as an example, i.e., each step dx
is sampled from [−5 2π

n ,5 2π

n ]. Shaded regions indicate stan-
dard error across 100 trials. When re-encoding is disabled,
we notice an accumulation of path integration error, whereas
the re-encoded path remains error-free.

Figure 6: Trajectory comparison over an extended trajec-
tory of 50 steps. We take the model with d = 50, m = 5 as
an example. The true path (solid black) is overlaid with two
estimated paths: one with re-encoding (blue dashed) and one
without (red dashed). The re-encoded trajectory aligns per-
fectly with the true path, while the non-re-encoded estimate
gradually deviates.

low, highlighting the benefit of intermittently snapping the
network state back to a “clean” representation. Figure 6 pro-
vides an additional view of a 50-step trajectory, in which the
re-encoded estimate (blue dashed line) remains essentially in-
distinguishable from the true path (black solid line), while the
non-re-encoded estimate (red dashed line) slowly diverges as
cumulative errors accumulate. These results indicate that our
minimalistic representation model not only learns smooth, lo-
cal transformations but also preserves directional accuracy
over many updates, generalizing effectively from local up-
dates to global navigation.



Table 1: Path integration results. m represents the multi-
ple of the unit angular step size ( 2π

n ) used for training and
evaluation in the larger range scenario. Errors are reported as
the average angular difference in radians over all steps in a
sequence of length 20. Results are shown for two local mo-
tion range scenarios, b = 2π

n and b = m 2π

n . In both settings,
location motions dx are uniformly sampled from the range
[−b,b]. We train models with m = 2,5,10 using the first-
order transformation as in Equation 2 and Equation 3 and
models with m = 20 using second-order formulations as in
Equation 7.

Architecture d m local range = 2π

n error (radians) local range = m 2π

n error (radians)

without re-encoding with re-encoding without re-encoding with re-encoding

Fully-connected

100 2 0.000 0.000 0.069 0.000
100 5 0.007 0.000 0.765 0.010
100 10 0.044 0.000 1.069 0.232
100 20 0.356 0.000 1.362 0.179

50 2 0.000 0.000 0.028 0.000
50 5 0.000 0.000 0.036 0.000
50 10 0.008 0.000 0.872 0.167
50 20 0.363 0.000 0.149 0.182

20 2 0.000 0.000 0.008 0.000
20 5 0.001 0.000 0.024 0.009
20 10 0.079 0.000 0.188 0.153
20 20 0.385 0.000 0.186 0.154

10 2 0.196 0.000 0.044 0.000
10 5 0.000 0.000 0.047 0.014
10 10 0.000 0.000 1.287 0.563
10 20 0.000 0.000 0.897 0.338

Convolutional

100 2 0.000 0.000 0.110 0.000
100 5 0.002 0.000 0.832 0.000
100 10 0.056 0.000 1.252 0.184
100 20 0.035 0.000 1.322 0.107

50 2 0.000 0.000 0.070 0.000
50 5 0.001 0.000 0.293 0.000
50 10 0.008 0.000 0.866 0.167
50 20 0.360 0.000 1.239 0.180

20 2 0.000 0.000 0.088 0.000
20 5 0.000 0.000 0.239 0.000
20 10 0.105 0.000 0.883 0.287
20 20 0.035 0.000 0.144 0.180

10 2 0.000 0.000 0.065 0.000
10 5 0.002 0.000 0.125 0.014
10 10 0.005 0.000 0.323 0.028
10 20 0.003 0.000 0.225 0.096

Discussion
The experimental results demonstrate that our minimalistic
model captures key properties of biological HD systems. The
emergence of Gaussian-like tuning profiles for individual di-
mensions of our representation closely resembles the behav-
ior of biological HD cells, suggesting that such tuning prop-
erties may arise naturally from fundamental computational
principles. The clear ring structure in the PCA plot indicates
that our model has learned a continuous attractor representa-
tion of head direction, consistent with theoretical models of
the HD system.

While head direction is inherently one-dimensional, our
model learns a high-dimensional representation, potentially
providing computational advantages such as increased ro-
bustness to noise and easier integration with other neural sys-
tems. Both versions of our model use local update rules that
could be implemented by neural circuits, with the convolu-
tional version bearing a particularly close resemblance to the
anatomical organization of HD cells. The success of both ver-
sions suggests that capturing HD system properties depends
more on the overall computational framework than specific
architectural details, though the convolutional version may

offer advantages in parameter efficiency and biological inter-
pretation.

Our model bridges the gap between detailed biophysical
models and more abstract computational approaches. By ex-
plicitly incorporating the rotational symmetry of U(1) and
the circular geometry of head direction, our approach offers
valuable insights into how these fundamental principles shape
neural representations for spatial navigation. In doing so, we
aim to contribute to a deeper understanding of the neural basis
of spatial navigation and potentially inspire new approaches
in both neuroscience and artificial intelligence.

Conclusion
We present a minimalistic representation model for the head
direction system that captures essential features of biological
HD systems while maintaining computational efficiency. Our
model demonstrates that key properties of HD cells, such as
Gaussian-like tuning and a ring structure, can emerge from a
simple learning framework based on representing and updat-
ing directions in a high-dimensional space.
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