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Abstract

Function learning forms the foundation of numer-
ous scientific and engineering tasks. While mod-
ern machine learning (ML) methods model com-
plex functions effectively, their escalating com-
plexity and computational demands pose chal-
lenges to efficient deployment. In contrast, nat-
ural dynamical systems exhibit remarkable com-
putational efficiency in representing and solving
complex functions. However, existing dynami-
cal system approaches are limited by low expres-
sivity and inefficient training. To this end, we
propose EADS, an Expressive and self-Adaptive
Dynamical System capable of accurately learning
a wide spectrum of functions with extraordinary
efficiency. Specifically, (1) drawing inspiration
from biological dynamical systems, we integrate
hierarchical architectures and heterogeneous dy-
namics into EADS, significantly enhancing its
capacity to represent complex functions. (2) We
propose an efficient on-device training method
that leverages intrinsic electrical signals to up-
date parameters, making EADS self-adaptive at
negligible cost. Experimental results across di-
verse domains demonstrate that EADS achieves
higher accuracy than existing works, while offer-
ing orders-of-magnitude speedups and energy ef-
ficiency over traditional neural network solutions
on GPUs for both inference and training, show-
casing its broader impact in overcoming computa-
tional bottlenecks across various fields.
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1. Introduction
Function learning is essential for modeling, analysis, and
prediction across a wide range of scientific and engineering
tasks. Modern ML methods, particularly neural networks
(NNs), have demonstrated exceptional capability in approxi-
mating complex functions by learning from data. Despite
their remarkable achievements, the computational demands
of ML models have soared due to the escalating model com-
plexity. Even on the most powerful GPU, training these
models remains prohibitively expensive, and the waning of
Moore’s Law exacerbates this challenge. As a result, the
quest for alternative, efficient computational paradigms has
become increasingly urgent.

Nature offers an elegant remedy to the growing computa-
tional burden of modern ML methods. Natural dynamical
systems exemplify how complex functions can be efficiently
modeled and solved through their intrinsic dynamical pro-
cesses. Specifically, consider how partial differential equa-
tions (PDEs) governing molecular dynamics and chemical
reactions are naturally solved by dynamical systems. Dy-
namical systems model them by representing their under-
lying data distributions as energy landscapes, where lower
energy states indicate higher probability. Driven by their
intrinsic nature (Second Law of Thermodynamics), dynami-
cal systems instinctively evolve to the lowest energy state at
equilibrium – a process called natural annealing – thereby
generating optimal solutions. Sharing a similar statistical
foundation with ML methods, this nature-powered approach
shows exceptional efficiency. Motivated by the potential,
this work investigates whether dynamical systems can be
leveraged to develop a machine learning paradigm that effec-
tively learns various functions with significantly improved
efficiency.

Although early theoretical work highlighted the promise of
dynamical systems for ML (Weinan, 2017; Li & Weinan,
2021; Weinan et al., 2022), practical progress has been hin-
dered by the absence of suitable hardware embodiments.
Fortunately, recent breakthroughs in programmable elec-
tronic dynamical systems (Afoakwa et al., 2021; Böhm et al.,
2022) have marked a turning point. Leveraging these elec-
tronic dynamical systems, prior studies have demonstrated
that the power of nature can be leveraged to tackle some
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simple learning problems with remarkable efficiency (Pan
et al., 2023; Wu et al., 2024; Böhm et al., 2022). However,
the applicability and broader impact of electronic dynam-
ical systems remain significantly limited due to two key
challenges: 1. Low Expressivity: Due to their initial hard-
ware design, existing dynamical systems are governed by
a quadratic energy function, resulting in low-rugosity en-
ergy landscapes with only linear interactions among nodes,
and hence limiting their capacity to represent complex func-
tions. 2. Inefficient Training: Existing approaches realize
inference on dynamical systems through on-device natural
annealing; however, the training process to construct the
desired energy landscape is still performed on digital pro-
cessors, resulting in high training costs. This decoupling
of training and inference deviates from the intelligence ob-
served in natural systems, preventing this emerging ML
paradigm from addressing the most pressing computational
challenge in ML development – extremely high training
costs. Therefore, substantial advancements are needed to
fully realize the potential of electronic dynamical systems.

Notably, numerous high-profile scientific studies (Wills
et al., 2005; Friston, 2010; Inagaki et al., 2019) suggest that
the brain also functions as a dynamical system, performing
inference and training in a collocated manner. Inspired by
the brain – a highly efficient and powerful dynamical system
– we propose enhancing the electronic dynamical system in
two ways: (1) improving the system’s expressivity through
hierarchical architectures and heterogeneous dynamics; (2)
enabling on-device self-training to fully leverage its ex-
traordinary computational power. Specifically, to enhance
expressivity, we improve the dynamical system with a hier-
archical structure and heterogeneous dynamics, facilitating
progressive information refinement through distinct pro-
cessing stages. To enable efficient on-device training, we
propose a learning method that allows the dynamical system
to leverage its intrinsic electrical signals to self-construct
its energy landscape, align with target distributions, and
achieve instant training at negligible cost.

To this end, this work introduces EADS, a nature-powered
ML paradigm that leverages the computational power of
dynamical systems for accurate and efficient function learn-
ing. By expanding the applicability of dynamical systems to
encompass functions from diverse domains, e.g. real-world
problems, PDEs in scientific computing, and ML kernels,
EADS holds the potential to overcome persistent computa-
tional bottlenecks and drive advancements across various
fields. The overview of EADS is shown in Figure 1, and the
contributions of this paper are summarized as:

• We propose EADS, an expressive and self-adaptive
dynamical system capable of accurately and efficiently
learning functions across diverse domains.

• We introduce hierarchical structures and heterogeneous

Figure 1. The overview of EADS.

dynamics to enhance the dynamical system’s capacity
to represent complex functions.

• We propose an efficient on-device training method that
enables the dynamical system to train its parameters
using internal electrical signals at negligible cost.

• Experimental results demonstrate that EADS accu-
rately learns various functions, achieving orders of
magnitude speedups (∼ 103×) and energy efficiency
(∼ 105×) over A100 GPUs.

2. Preliminaries and Related Work
This section provides some preliminaries of ML through the
lens of dynamical systems, including both theoretical devel-
opments and recent advances with hardware embodiments.
Subsequently, we review related work that uses dynami-
cal systems to address various tasks, from combinatorial
optimization to advanced ML applications.

2.1. Preliminaries

ML via Dynamical Systems. The potential of dynami-
cal systems in ML was highlighted by (Weinan, 2017; Li &
Weinan, 2021; Weinan et al., 2022), demonstrating their abil-
ity to model complex, high-dimensional nonlinear functions
through continuous transformations. These works highlight
that deep NNs succeed by composing simple functions to
approximate complex ones, while dynamical systems ex-
tend this compositional approach to an infinitesimal limit.
Compared to deep NNs, dynamical systems offer several ad-
vantages: (1) greater flexibility in imposing constraints and
incorporating domain-specific structures, facilitating more
transparent theoretical analysis than purely discrete-layer
architectures; and (2) easier integration of ML techniques
with physical models, enabling seamless interaction with
real-world physical processes. Despite these promising
theoretical advancements, practical adoption of dynamical
systems in ML has been limited by the lack of suitable
hardware embodiments.

Fortunately, recent advancements in programmable elec-
tronic dynamical systems have revived interest in this field.
Originally conceived as physical embodiments of the binary
Ising model for solving binary combinatorial optimization
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problems, these systems have since expanded to tackle bi-
nary learning tasks (Pan et al., 2023; Liu et al., 2023). (Wu
et al., 2024) later extended the binary Ising model to support
real-valued nodes, enabling real-valued graph learning tasks.
This extension results in the following energy function (also
referred as Hamiltonian):

Hrv = −
N∑
i̸=j

Jijxixj +
N∑
i=1

hix
2
i , xi, xj ∈ R. (1)

Here, Jij represents the interaction strength between nodes
xi and xj , while hi denotes the self-reaction strength of xi

to external influences. Assuming a Boltzmann distribution
prv = e−βHrv/Z, where the partition function Z serves as
a normalization constant that ensures that the probabilities
sum up to one, the energy landscape is mapped to a probabil-
ity distribution, with the lowest energy state corresponding
to the highest probability state. The system’s dynamics are
designed as:

dxi

dt
= −∂Hrv

∂xi
=

N∑
j ̸=i

(Jij + Jji)xj − 2hixi, (2)

which guarantees the spontaneous energy decrease of the
system:

dHrv

dt
=

N∑
i=1

(
∂Hrv

∂xi

dxi

dt

)
= −

N∑
i=1

(
∂Hrv

∂xi

)2

≤ 0.

(3)
When applied to graph learning tasks, a subset of nodes
is fixed to input values, while others, serving as output
nodes, are randomly initialized and evolve according to
the designed dynamics. Given a well-trained Hamiltonian
that accurately captures the correlation between inputs and
outputs, the spontaneous energy decrease makes the system
instantly anneal to desired solutions.

Physical Embodiment of Dynamical Systems. This dy-
namical system is physically realized using programmable
electronic components, such as resistors and capacitors, as
illustrated in Figure 2. The key idea behind this embodiment
is to precisely and efficiently realize the node dynamics us-
ing electronic components. In this design, each node xi is
implemented as a nanoscale capacitor within a node unit
(Ni), with its voltage representing the node value. Each ca-
pacitor is coupled with a resistor of resistance Ri = 1/(2hi),
forming a resistive current within the node unit, realizing
the term 2hixi in the node dynamics. Additionally, capaci-
tors from different node units (Ni and Nj) are structurally
connected via a programmable resistor in the coupling unit
(CUij), with resistance Rij = 1/Jij . This configuration
effectively incorporates the term

∑N
j ̸=i (Jij + Jji)xj in the

node dynamics, implementing a resistively coupled capaci-
tor network.
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Figure 2. The backbone electronic dynamical system.

Offline Training of Dynamical Systems. Training a dy-
namical system involves optimizing the parameters J and
h in the Hamiltonian Hrv to construct an energy landscape
that reflects the target data distribution. Previous works
have trained the model using computationally expensive
traditional statistical methods executed on digital proces-
sors, mainly GPUs. Specifically, the training process begins
by estimating the node values using methods such as con-
ditional likelihood maximization (Wu et al., 2024). The
discrepancies between the estimations and the ground truths
are evaluated using metrics such as Mean Absolute Error
(MAE). These metrics serve as loss functions to update the
model parameters, thereby reconstructing the energy land-
scape to align with the data distribution. During inference,
the well-trained parameters are mapped onto the circuit,
then natural annealing drives the system toward the lowest
energy state, enabling it to find the solution with the highest
probability for the target problem.

2.2. Related Work

Dynamical systems have gained significant attention as an
efficient computing paradigm, particularly for solving opti-
mization problems. The Ising machine, one of the earliest
hardware implementations leveraging dynamical systems,
embodies the Ising model originally developed for ferromag-
netism in statistical physics. Ising machines have demon-
strated breakthrough efficiency in solving numerous binary
optimization problems, with results published in promi-
nent scientific journals (Böhm et al., 2019; Mohseni et al.,
2022; Lo et al., 2023). For instance, researchers have em-
ployed Ising machines to address satisfiability (SAT) prob-
lems (Sharma et al., 2023a;b; Sun et al., 2025), as well as
MAX-CUT and graph coloring problems (Liu et al., 2025b;
Wang & Roychowdhury, 2019; Böhm et al., 2019).

Recognizing their potential, researchers have explored dy-
namical systems in ML applications such as unsupervised
NN training (Böhm et al., 2022), graph learning (Pan et al.,
2023), and collaborative filtering (Liu et al., 2023). While
these studies provide valuable insights into leveraging dy-
namical systems for ML tasks, their scope and applicability
are limited by the binary nature of Ising machine nodes,
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hindering progress in more complex, real-valued scenar-
ios. Although recent work (Wu et al., 2024) introduced a
real-valued Ising machine to accelerate inference in graph
learning problems, its contributions are constrained by two
key limitations. First, while the proposed Hamiltonian sup-
ports real-valued nodes, it only accounts for linear interac-
tions, limiting its ability to capture the intrinsic nonlinearity
present in many complex problems. Second, their approach
utilizes the power of dynamical systems exclusively dur-
ing the inference phase, leaving the computationally in-
tensive training process unaddressed. Although some sim-
ple on-device training methods have been developed (Liu
et al., 2025a), they fall short when tackling complex models.
These limitations, which significantly constrain the broader
impact of dynamical systems, will be addressed in this work.

3. Methodology
The pursuit of powerful and highly efficient computing sys-
tems has been profoundly influenced by the extraordinary
capabilities of biological systems, particularly the human
brain. By contrasting the brain’s remarkable capabilities
with existing physically embodied dynamical systems, two
fundamental limitations emerge: (1) insufficient expres-
sivity and (2) inefficient training. This section introduces
solutions to overcome these limitations. In particular, Sec-
tion 3.1 introduces a hierarchical, heterogeneous dynamical
system to boost expressivity, and Section 3.2 presents an
on-device, instant training algorithm that endows the system
with real-time self-adaptability.

3.1. Expressivity Enhancement

Existing dynamical systems with physical embodiments,
while promising, exhibit several limitations when compared
to the brain. (1) Flat Structure. Unlike the brain’s hierar-
chical organization, which processes information through
multiple layers of increasing abstraction, existing dynamical
systems maintain a flat structure. (2) Homogeneous Dynam-
ics. In contrast to the brain’s rich repertoire of nonlinear
processing mechanisms, where different regions exhibit di-
verse dynamics, current dynamical systems rely on uniform
dynamics, characterized by linear interactions among nodes.
These constraints limit their ability to model intricate, non-
linear functions.

Brain-Inspired Enhancements. To address these limita-
tions, we propose two key enhancements inspired by the
architecture and functionality of the brain: (1) a hierarchical
structure and (2) heterogeneous dynamics. Our enhanced
system implements a multi-stage processing pipeline in-
spired by the brain’s information processing mechanisms.

The enhanced system initiates with a projection that trans-
forms inputs into an abstract hidden space, modeled by the

following dynamics:

dhi

dt
=

N∑
j=1

Pijxj − rihi, (4)

where xj ∈ RN represents input nodes, hi ∈ RH denotes
hidden nodes, and Pij ∈ RH×N represents the projection
weights, analogous to dendritic integration in biological
neurons. The term ri denotes the self-reaction strength of
the hidden node hi.

Once the hidden nodes have stabilized, they further evolve
through internal coupling, reflecting the dense local connec-
tivity observed in cortical circuits:

dhi

dt
= σ

(
H∑

k=1

Jikhk

)
, (5)

where Jik ∈ RH×H represents inter-node interaction
weights, and σ is a hardware friendly nonlinear function,
such as ReLU. This nonlinear function can be efficiently
implemented using diodes to regulate current flow, thereby
maintaining hardware simplicity while enabling nonlinear
processing capabilities.

Finally, the processed hidden states are mapped to the output
space through:

dym
dt

=
H∑
i=1

Qimhi − rmym, (6)

where ym ∈ RM represents output nodes, Qim ∈ RH×M is
the output projection weight matrix, and rm denotes output
self-reaction strength. This hierarchical pipeline yields sig-
nificantly enriched expressive power, enabling more sophis-
ticated computations than traditional flat and homogeneous
dynamical systems, as demonstrated in Section 4.

Physical Embodiment of Enhanced Dynamical Systems.
The physical implementation of the enhanced dynamical sys-
tem builds upon the foundational design shown in Figure 2.
Following the same design strategy, node values are mapped
to capacitor voltages, enabling the natural realization of
continuous-time dynamics. Each capacitor is coupled with a
resistor of resistance ri or rm, forming the resistive current
within the node unit. The parameters P,J,Q are config-
ured as conductances of programmable resistors, thereby
implementing the system dynamics as electrical currents.
Specifically, the terms

∑N
j=1 Pijxj , σ

(∑H
k=1 Jikhk

)
, and∑H

i=1 Qimhi are mapped as the flow-in currents into the re-
spective node units. The terms rihi and rmym are mapped
as internal currents within each node unit. The design of
input nodes xj and output nodes ym remains consistent with
the original architecture, while the hidden nodes hi have
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Figure 3. The key components of the enhanced dynamical system with on-device training support.

been extended to incorporate the newly introduced dynam-
ics, as illustrated in the “Improved design of hi” section
of Figure 3, where the added components are highlighted
in yellow. As shown, two switches control the dynamics
of each hidden node: when the black switch is closed, the
circuit realizes the input-to-hidden dynamics described by
Eq. 4; when the yellow switch is closed, it implements
the inter-hidden dynamics of Eq. 5. The nonlinear func-
tion is implemented by integrating diodes that restrict the
flow-in current into each node, enabling effective hardware
implementation of the nonlinearity.

3.2. Instant On-Device Training

Despite these enhancements, the system’s advantages re-
main limited without efficient training support, as training
is the most computationally intensive process. Therefore, to
extend the extraordinary computational power of dynamical
systems to the training process, we propose an efficient on-
device training method, EC-Train. This novel approach uti-
lizes the intrinsic electrical signals of the dynamical system
as feedback for on-device parameter adjustment, enabling
self-adaptation to the target data distribution. This signifi-
cantly reduces training costs, achieving orders-of-magnitude
improvements in efficiency over conventional offline train-
ing on digital processors.

On-Device Instant Training Approach. According to
fundamental physical principles (Kirchhoff’s current law),
each output node ym stabilizes when its flow-in current
Iinm =

∑H
i=1 Qimhi balances its internal resistor current

IRm = rmym. When ym is clamped to its ground truth value,
the difference between Iinm and IRm provides a direct measure
of error. Consequently, the on-device training process of EC-
Train aims to minimize the difference between Iinm − IRm for
all output nodes when their values (voltages) set to ground
truth values. In this way, the loss function of EC-Train can
be formulated as:

L =
1

M

M∑
i=1

(Iinm − IRm)2, (7)

The gradient with respect to each output node ym emerges
naturally from the dynamical system:

δm =
∂L

∂ym
=

2

M
(Iinm − IRm). (8)

The error signals δm serve as natural feedback signals for
parameter optimization. Specifically, the gradients with
respect to Qim are then computed as: ∆Qim = δm · hi.
Since output nodes ym are clamped to their ground truth
values during training, rm essentially acts as a scaling factor
for the ground truth signal. To achieve an efficient hardware
implementation, we make rm = 1, thereby streamlining
both the training and inference processes.

However, for the inter-hidden-node coupling weights Jik,
we face a unique challenge: unlike output nodes, we lack
ground truth values for hidden states hi. To address this, we
employ the Adjoint Sensitivity Method (Pontryagin, 2018),
a powerful technique from optimal control theory that en-
ables gradient computation through an auxiliary dynamical
system. This approach is particularly suitable as it: (1) elim-
inates the need for ground truth hidden states, (2) maintains
mathematical rigor while being hardware-realizable. For-
mally, we introduce an adjoint node ai = ∂L/∂hi for each
hidden node hi, with initial value being

∑
m Qimδm and

dynamics governed by:

dai
dt

= −
H∑

k=1

JikIkak. (9)

Here, Ik is a boolean indicator defined as:

Ik = σ′

(
H∑
i=1

Jikhi > 0

)
= I

(
H∑
i=1

Jikhi > 0

)
. (10)

The gradient with respect to coupling weights Jik is then
computed through a dynamical process:

∂L

∂Jik
= −

∫ 0

T

akIkhidt, (11)

which involves the evolution of ak and hi from T backward
to 0 to accumulate the updates.

For the parameters Pij and ri involved in the input-to-
hidden projection stage, the stabilization of the hidden state
hi follows Kirchhoff’s current law. Specifically, hi reaches
a steady state when its incoming current Iini =

∑N
j=1 Pijxj
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is balanced by the current through its internal resistor,
IRi = rihi. Given that each input xj is clamped to its
ground-truth value, the equilibrium condition implies a
stable hidden state value of hi =

∑N
j=1 Pijxj , assuming

ri = 1 without loss of generality, as it functions as a scaling
factor. The error signal propagated from the inter-hidden
stage is denoted as δi = ai|t=0. Consequently, the gradi-
ent with respect to the projection weight Pij is denoted as
∆Pij = δi · xj . Detailed derivations are provided in the
Appendix.

Physical Embodiment of EC-Train. The proposed training
approach introduces simple yet effective hardware modifi-
cations that enable self-training through electrical current
feedback. As shown in Figure 3 (highlighted in red), we in-
troduce additional feedback signal paths for each parameter.
These feedback paths allow the electronic dynamical system
to propagate signals to the coupling units, facilitating instan-
taneous parameter adjustments through the rapid charging
or discharging of programmable resistors. Specifically, for
parameters Pij , Jik, access to their unmodified values is
crucial for computing the adjoint nodes. To achieve this, we
incorporate additional capacitors (highlighted as red “=” in
Figure 3) — one dedicated to receiving feedback signals
for parameter updates and another to preserve the original
values required for adjoint and hidden node calculations.
This dual-capacitor configuration ensures accurate gradient
computation while enabling efficient, high-speed on-device
learning, reinforcing the system’s capability for real-time
adaptation. The hardware implementation of the newly-
introduced adjoint nodes ai is encoded as a node unit, as
depicted in the “ai” section of Figure 3. With EC-Train,
the system performs continuous updates within each natu-
ral annealing cycle, rapidly reshaping the energy landscape
to achieve instant convergence at “electron speed,” with
negligible cost compared to traditional training on digital
processors. The EC-Train training process is as follows:

1. Initialization: The capacitor voltages representing in-
puts and outputs are set to their ground truth values,
while the trainable parameters are randomly initialized.

2. Natural Annealing: The system undergoes a natural
annealing and generates the electrical current Iinm −IRm,
which serves as the feedback signal to adjust the system
parameters.

3. Parameter Adjustment: The trainable parameters are
updated based on the feedback signal.

4. Continuous and Iterative Training: The update of train-
able parameters results in a new electrical current Iinm
to the node units ym, updating the feedback signal
Iinm − IRm, and instantaneously initiating a new training
iteration. This iterative process continues across the
training set until convergence is reached.

4. Evaluation
As a pioneering effort demonstrating the significant potential
of physically embodied dynamical systems, we first evaluate
the performance of EADS in graph learning tasks that it is
originally designed for, showing the performance of EADS
in learning complex functions in real-word problems. Then,
we show its potential on other tasks, including PDE solving
in scientific computing and approximating important kernels
in Large Language Models (LLMs).

Experimental Platforms. We conduct our experiments us-
ing an NVIDIA A100 40GB SXM GPU for non-dynamical
system based baselines, measuring total training time, infer-
ence latency per sample, accuracy, and energy consumption.
For dynamical system based approaches, we build upon
the original hardware embodiment BRIM (Afoakwa et al.,
2021), using a custom CUDA-based Finite Element Anal-
ysis (FEA) software simulator to assess the training time,
inference latency, and accuracy. Since the dynamical sys-
tem based baseline NP-GL (Wu et al., 2024) only achieves
inference on dynamical systems, its training time is still
measured using the A100 GPU.

4.1. Graph Learning

Datasets and Baselines. For complex function learning in
real-world problems, we evaluate the performance of EADS
in spatial-temporal prediction tasks including six real-world
datasets from four applications. (1) Traffic flow prediction
with two datasets PEMS04 and PEM08 (Chen et al., 2001).
(2) Air quality prediction including PM2.5 and PM10 (Kong
et al., 2021). (3) Taxi demand prediction (NYC Taxi): pre-
dicting the hourly number of taxi trips (New York City Taxi
and Limousine Commission, 2024). (4) Pandemic progres-
sion prediction (Texas COVID): predicting the daily number
of new cases (Centers for Disease Control and Prevention,
2024). We compare EADS with SOTA spatial-temporal
prediction baselines, including Graph WaveNet (Wu et al.,
2019), MTGNN (Wu et al., 2020), DDGCRN (Weng et al.,
2023), MegaCRN (Jiang et al., 2023), and the dynamical
system based method NP-GL (Wu et al., 2024). The number
of hidden nodes in EADS is set to 128, and baselines are
implemented following the experimental setups detailed in
their respective original papers.

Experimental Results. We report the test MAE of baselines
and EADS in Table 1, where lower values indicate better
performance. The results show that EADS outperforms all
baselines across all datasets, achieving an average MAE
reduction of 24.39%. Notably, EADS reduces MAE by up
to 21.60% compared to the best baseline on the Texas Covid
dataset. Furthermore, when compared to the dynamical
system based baseline NP-GL, EADS achieves an average
MAE reduction of 8.97% across all datasets, highlighting
the improved system expressivity.
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Table 1. Spatial-temporal prediction performance in MAE (best results in bold). EADS consistently outperforms all baselines.

Dataset PEMS04 PEMS08 PM2.5 PM10 NYC Taxi Texas Covid

Graph WaveNet 20.84 15.77 1.82 1.95 10.22 82.96
MTGNN 19.96 15.15 1.83 1.99 7.08 84.17

DDGCRN 18.97 14.64 1.71 1.88 3.06 23.94
MegaCRN 17.65 13.70 1.65 1.74 6.08 83.73

NP-GL 17.07 13.51 1.62 1.73 3.03 22.04
EADS 16.92 13.43 1.53 1.62 2.46 17.28
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Figure 4. Training time and inference latency for spatial-temporal prediction. EADS shows higher efficiency than GPU-based baselines.

Additionally, Figure 4 presents the training time and in-
ference latency of EADS compared to the baselines, where
EADS exhibits remarkable computational efficiency. Specif-
ically, EADS delivers an average training speedup of 356×
compared to NP-GL. Across all baselines, EADS achieves
an average training speedup of approximately 300×, and
an inference speedup of around 1000× compared to the
baselines executed on GPUs, highlighting its significant
potential for real-time applications.

4.2. PDE Solving

Datasets and Baselines. Following (Li et al., 2020a), we
evaluate our method on the Burgers’ equation and the Darcy
Flow equation. The datasets are generated following the
same procedure as in (Li et al., 2020a), ensuring consistency
in benchmarking. The data is collected on grids of varying
resolutions: 16 × 16, 32 × 32, and 64 × 64. The model
is trained to learn the mapping from the initial condition
(or coefficient) to the solution at a specific time under the
same resolution. Each dataset consists of 1000 training
instances and 200 testing instances for each resolution. We
compare our method against several established benchmarks,
including both neural network-based and operator-learning
methods: NN (Li et al., 2020a), FCN (Zhu & Zabaras,
2018), GNO (Li et al., 2020b), FNO (Li et al., 2020a), and
the dynamical system based method NP-GL (Wu et al.,
2024). The number of hidden nodes in EADS is set to 128,
and baselines are implemented following the experimental
setups detailed in their respective original papers.

Experimental Results. The performance of EADS and
the baseline methods on the selected PDEs is summarized

in Table 2. The results indicate that EADS consistently
achieves a lower test MAE compared to NN, FCN, GNO,
and NP-GL in all the resolutions and PDEs evaluated. No-
tably, EADS also exhibits marginally better accuracy than
FNO, underscoring its effectiveness even against advanced
operator-learning methods. Additionally, we assess the com-
putational efficiency of each model by visualizing their train-
ing times and inference latencies across the datasets, as de-
picted in Figure 5. EADS showcases exceptional training
and inference efficiency compared to methods implemented
on GPUs. Specifically, EADS achieves an average train-
ing speedup of 1142× and an inference speedup of 1270×,
highlighting its extraordinary computational performance.

Table 2. Test MAE for PDE solving. EADS achieves superior
accuracy compared to baselines.

Methods Burgers

S1=256 S2=1024 S3=4096

NN 1.26× 10−3 1.32× 10−3 1.69× 10−3

FCN 1.37× 10−4 1.35× 10−4 1.76× 10−4

GNO 6.95× 10−5 6.97× 10−5 7.42× 10−5

FNO 1.41× 10−5 1.42× 10−5 1.53× 10−5

NP-GL 1.59× 10−4 1.57× 10−4 1.83× 10−4

EADS 1.32× 10−5 1.46× 10−5 1.51× 10−5

Methods Darcy Flow

S1=16×16 S2=32×32 S3=64×64

NN 8.48× 10−6 8.30× 10−6 3.86× 10−5

FCN 5.83× 10−6 6.14× 10−6 3.77× 10−5

GNO 5.71× 10−6 5.62× 10−6 1.26× 10−5

FNO 4.72× 10−6 3.36× 10−6 1.03× 10−5

NP-GL 6.51× 10−6 6.72× 10−6 3.65× 10−5

EADS 4.31× 10−6 3.17× 10−6 1.12× 10−5
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Figure 5. Training time and inference latency for PDE solving. EADS is markedly more efficient than GPU-based baselines.

4.3. LLMs

Experimental Setups. To evaluate the capability of EADS
in learning complex functions embedded within advanced
ML kernels, we conducted experiments in the context of
LLMs. Specifically, we utilize the GPT-2 small (Wolf,
2019), which consists of 12 transformer decoders, each
containing a causal self-attention kernel. For each attention
kernel, we construct a training dataset by extracting input-
output pairs from GPT-2’s forward pass on the LAMBADA
dataset (Paperno et al., 2016), capturing the function per-
formed by the kernel. We then train a separate EADS for
each of the 12 attention kernels to assess EADS’s ability to
replicate the underlying complex transformations. During
evaluation, we replace one attention kernel in GPT-2 with
its corresponding trained EADS while keeping all other
GPT-2 components unchanged. The performance of the
modified GPT-2 is evaluated using test perplexity (PPL) on
the LAMBADA dataset, where lower values indicate better
performance. For comparison, we also report results us-
ing NP-GL (Wu et al., 2024), the current SOTA dynamical
system baseline, to provide a reference benchmark.

Experimental Results. As shown in Table 3, EADS demon-
strates remarkable consistency and robustness across all ker-

Table 3. Test perplexity (PPL) on LAMBADA.
Decoders 1 2 3 4 5 6

GPT2 35.13 35.13 35.13 35.13 35.13 35.13
NP-GL 37.79 37.90 38.17 38.33 38.41 38.48
EADS 36.67 36.77 36.86 36.83 36.95 36.94

Decoders 7 8 9 10 11 12

GPT2 35.13 35.13 35.13 35.13 35.13 35.13
NP-GL 38.41 38.38 38.72 38.31 38.79 38.77
EADS 36.75 36.93 36.96 36.87 36.94 37.08
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Figure 6. Training time and inference latency on LAMBADA.

nel positions, with minimal performance degradation rang-
ing from 1.54 to 1.95 PPL points compared to the original
GPT-2. This stability strongly suggests that EADS success-
fully captures and replicates the complex transformations
encoded within each decoder block. Notably, EADS sub-
stantially outperforms NP-GL across all positions, reducing
perplexity by approximately 1.49 PPL points on average.
Furthermore, as illustrated in Figure 6, EADS achieves a re-
markable training speedup of ∼ 800× compared to NP-GL
on GPUs. For inference latency, EADS delivers a speedup
of approximately 80× over GPT-2 on GPUs, underscor-
ing its potential as a viable approach for enhancing LLM
efficiency without compromising performance.

4.4. Power and Energy Efficiency

EADS operates with ultra-low power consumption, requir-
ing approximately 1.8W for training and 352mW for infer-
ence. For a reasonable reference, we assume the average
power for the A100 used in this work is 250W. In terms of
overall energy consumption, taking into account the excep-
tional speedups achieved in training and inference across
the three selected applications, EADS achieves more than
105 greater energy efficiency compared to A100 GPUs.

5. Conclusion
Modern ML methods have demonstrated exceptional capa-
bility in approximating various functions, yet their increas-
ing complexity and substantial computational costs pose
significant challenges to sustainable development. In con-
trast, nature effortlessly models complex functions through
dynamical systems. Inspired by this, we introduce EADS, a
nature-inspired ML paradigm that leverages an expressive
and self-adaptive dynamical system to learn various func-
tions with unprecedented efficiency. Experiments across
functions from diverse domains show that EADS achieves
higher accuracy than existing works, while offering orders-
of-magnitude improvements in speed and energy efficiency
over traditional GPU-based NN solutions for both inference
and training. These results highlight its broad impact on
overcoming the computational bottlenecks across various
critical fields.
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A. Appendix
Below, we present the detailed mathematical derivations of the proposed EC-Train method. The proposed EC-Train approach
aims to minimize the difference between Iinm − IRm after clamping the output nodes to their ground truth values. In this way,
the EC-Train loss function can be formulated as:

L =
1

M

M∑
i=1

(Iinm − IRm)2. (12)

Applying the chain rule, the gradient with respect to each output node ym emerges naturally from the dynamical system:

δm =
∂L

∂ym
=

2

M
(Iinm − IRm). (13)

The gradient with respect to Qim is then computed as (rm = 1):

∂L

∂Qim
=

∂L

∂ym

∂ym
∂Qim

= δmhi. (14)

For the inter-hidden-node coupling weight Jik that encoded in the following dynamical process:

dhi

dt
= σ

(
H∑

k=1

Jikhk

)
, (15)

where Jik ∈ RH×H represents inter-node interaction weight and σ(x) is a nonlinear function defined as:

σ(x) =

{
x, x > 0,

0, x ≤ 0.
(16)

Since their final states (h1(T ), h2(T ), . . . , hH(T )) determines the output node values, we have:

∂L

∂hi(T )
=
∑
m

Qimδm (17)

To compute parameter gradients, following the adjoint sensitivity method, we introduce the adjoint node ai, satisfying:

dai
dt

= −
H∑

k=1

ak
∂fk
∂hi

, (18)

where

fk = σ

(
H∑
i=1

Jikhi

)
. (19)

By taking the partial derivative, we obtain:

∂fk
∂hi

= σ′

(
H∑
i=1

Jikhi

)
Jik, (20)

where σ′(x) is the derivative of σ(x), given by:

σ′(x) =

{
1, x > 0,

0, x ≤ 0.
(21)

Consequently, the adjoint node evolves as:

dai
dt

= −
H∑

k=1

akσ
′

(
H∑
i=1

Jikhi

)
Jik = −

n∑
k=1

akIkJik. (22)
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with the initial value:
ai(T ) =

∂L

∂hi(T )
=
∑
m

Qimδm. (23)

Here, Ik is a boolean indicator defined as:

Ik = σ′

(
H∑
i=1

Jikhi > 0

)
= I

(
H∑
i=1

Jikhi > 0

)
. (24)

Using the adjoint nodes, the gradient of L with respect to Jki is computed as:

∂L

∂Jik
= −

∫ 0

T

ak
∂fk
∂Jik

= −
∫ 0

T

akσ
′

(
H∑
i=1

Jikhi

)
hidt = −

∫ 0

T

akIkhidt. (25)

For the input-to-hidden dynamical process:
dhi

dt
=

N∑
j=1

Pijxj − rihi, (26)

where hi are the dynamical nodes, xj are fixed inputs, Pij is the parameter. The loss function L depends on the final state of
hi(T ), which also serves as the initial state of the dynamical process in Eq. 15. According to Kirchhoff’s current law, hi

reaches a steady state when its incoming current Iini =
∑N

j=1 Pijxj is balanced by the current through its internal resistor,
IRi = rihi. Given that each input xj is clamped to its ground-truth value, the equilibrium condition implies a stable hidden
state value of

hi =

N∑
j=1

Pijxj , (27)

assuming ri = 1 without loss of generality, as it functions as a scaling factor. The error signal propagated from the
inter-hidden stage is denoted as δi = ai|t=0. Consequently, the gradient with respect to the projection weight Pij is given
by ∆Pij = δi · xj .

12


