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Abstract

With the scale of Transformer-based vision models continuing to grow, finetun-
ing these large-scale pretrained models for new tasks has become increasingly
parameter-intensive. Visual prompt tuning is introduced as a parameter-efficient
finetuning (PEFT) method to this trend. Despite its successes, a notable research
challenge persists within almost all PEFT approaches: significant performance
degradation is observed when there is a substantial disparity between the datasets
used in pretraining and finetuning phases. To address this challenge, we draw
inspiration from human visual cognition, and propose the Visual Fourier Prompt
Tuning (VFPT) method as an effective and efficient solution for adapting large-
scale Transformer-based models. Our approach innovatively incorporates the Fast
Fourier Transform into prompt embeddings, seamlessly integrating both spatial and
frequency domain information. Apart from its inherent simplicity and intuitiveness,
VFPT exhibits superior performance across various tasks, offering a general solu-
tion to address the data disparity challenge. Empirical results demonstrate that our
approach outperforms several state-of-the-art baselines on two benchmarks, with
low parameter usage (e.g., 0.57% of model parameters on VTAB-1k) and notable
performance enhancements (e.g., 73.20% of mean accuracy on VTAB-1k). Our
code is avaliable at https://github.com/runtsang/VFPT.

1 Introduction

“Fourier’s theorem is not only one of the most beautiful results of modern analysis,
but it may be said to furnish an indispensable instrument in the treatment of
nearly every recondite question in modern physics.”

— Lord William Thomson Kelvin [1]

Prompt tuning [2, 3] is initially introduced for parameter-efficient adaptation of large foundation
models in natural language processing (NLP). As vision models continue to scale for enhanced
performance, visual prompt tuning [4] has been applied to various vision domains (e.g., image
classification [5], segmentation [6, 7], detection [8]), demonstrating superior performance and lower
parameter usage compared to other parameter-efficient fine-tuning (PEFT) methods. However, a
common challenge within the research community remains unaddressed: significant performance
degradation occurs when there is a substantial disparity between the data used in pretraining and
finetuning [9, 10]. This issue hinders the broader application of visual prompt tuning. Consequently,
a natural question arises: @ Can prompt tuning generalize across datasets with varying disparities?

As researchers commonly draw insights from human to replicate the principles in intelligent ma-
chines [11, 12, 13, 14], we consider to answer this question from the human visual cognition’s
perspective. While humans comprehend the world through past experiences/knowledge, it is essential
to generalize and adapt this understanding to new tasks efficiently and effectively. The robust and
rapid adaptability of human visual cognition thus arises from various domain analysis, capturing the
new patterns from different channels and perspectives [15, 16, 17].
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Interestingly, we find that the paradigm of visual prompt tuning is conceptually analogous to human
visual cognition. While the frozen large-scale vision model functions as accumulated knowledge, the
fast adaptation mechanism resembles visual prompt tuning, requiring the incorporation of diverse
domains of information (e.g., time, frequency) to achieve comprehensive understandings [18, 19, 20].
The Fast Fourier Transform (FFT) [18, 19, 20], renowned for its ability to convert signals from their
original domain (e.g., time or spatial) to the frequency domain and vice versa, serves as an ideal
tool for contributing informative insights in the frequency domain. By leveraging the capabilities of
FFT, visual prompts can naturally integrate both spatial and frequency domain information during
finetuning, thereby enabling the frozen vision model to achieve consistent and robust performance
across datasets with varying disparities. Consequently, our research question evolves into: @ How
can FFT be integrated into visual prompt tuning to emulate the human visual mechanism?

To this end, we employ a simple yet effective strategy that utilizes the Fourier operations to facilitate
visual prompt tuning (see Fig. 1(c)). By integrating frequency domain information into learnable
prompt embeddings, our approach elegantly assimilates data from both spatial and frequency domains,
simulating the human visual cognition. We name our approach Visual Fourier Prompt Tuning
(VFPT), which exhibits several compelling advantages: @ Simplicity. The intuitive application of
FFT in prompt tuning emulates the rapid processing capabilities of the human visual system, making
VFPT both elegant and straightforward to implement (see §2.1). @& Generality. By incorporating
frequency domain information, the search space for latent embeddings of prompts is naturally
expanded, resulting in advanced enhancement in performance across different datasets and tasks
with varying data disparities (see §4.2). The generality of our model is further illustrated through
our analysis of the optimization process, which enables smoother navigation towards local minima,
increasing flatness around them and exhibiting apparent convexity. @ Interpretability. To intuitively
demonstrate the advantages of Fourier components, we visually illustrate that the introduction of
Fourier transform in visual prompt tuning results in a markedly higher concentration of attention
scores within the Transformer’s input space, which correlates positively with enhancements in
performance (see §4.4). This observation, in turn, explains the effectiveness of our approach.

Comprehensive experiments are conducted to evaluate the performance of VFPT. In §2, we conduct a
literature review and discuss relevant works. Our approach is presented in §3, where we describe
how we simple yet effectively integrate FFT into visual prompt tuning. In §4.2, we present compelling
experimental results on various benchmarks, backbones, and different pretraining objectives, achieving
superior performance without complex engineering design. Specifically, our approach achieves an
average improvement of 7.63% in accuracy on VTAB-1k compared to full finetuning, and 3.77 %
compared to VPT [4]. In §4.4, we demonstrate that the FFT prompts significantly enhance the
activation of the frozen vision model. Additionally, we study the optimization process of prompt
tuning approaches, indicating that VFPT provides a more favorable optimization process. Finally, we
demonstrate the strong algorithmic generalization of our approach to the language domain, and show
additional visual explanations in the Appendix. We trust that this work provides valuable insights.

2 Related Work

2.1 Visual Parameter-efficient Finetuning

With the significant growth in the scale of vision models, especially following the emergence of
Vision Transformers [21, 22, 23, 24, 25], the development of PEFT methods under “pretrain-then-
finetune” paradigm becomes increasingly critical. Current methods under this paradigm can be
generally categorized into partial tuning [26, 27, 28], extra module (i.e., including reparameterization
approaches such as Low-Rank Adaptation (LoRA) [29]) [30, 31, 32, 33, 34, 10, 35, 36], and prompt
tuning [4, 37, 38, 39, 40, 41]. Partial tuning and extra module face several limitations that hinder their
application. @ Unsatisfactory performance: they generally cannot reach competitive performance
with regard to full finetuning [4, 26, 27, 28, 33, 10]; @ Model-oriented design: most research requires
to insert specific architecture/block design [31, 30, 32] during tuning, rendering them non-universal
solutions when considering different backbones. In contrast, prompt tuning [2], originally proposed
for language-domain [42, 43, 44, 45], provides a general and straightforward solution in vision with
powerful performance gains. It signals a new paradigm in PEFT in the field of computer vision.

Generally, prompt tuning introduces a sets of learnable parameters to the input sequence of backbone
models, updating only these parameters during the finetuning. Despite its apparent simplicity, the
paradigm of visual prompt tuning has demonstrated notable performance enhancements. Current



developments on visual prompt tuning primarily concentrate on engineering optimizations, such as
reducing parameter usage [5] and expanding applicability across diverse tasks [39, 46, 47, 48]. These
approaches often involve introducing additional constraints and functionalities to the foundational
design, which deviate from the principles of simplicity and elegance to the original concept of visual
prompt tuning. Our approach, in sharp contrast, endeavors to explore visual prompt tuning from
the perspective of human visual intelligence, while diligently maintaining the simplicity of prompt
tuning. It is also essential to emphasize that visual prompt tuning diverges markedly from visual
instruction tuning [49] (i.e., aiming at improving the model’s instruction following abilities).

2.2 Fast Fourier Transform in Vision

FFT is a powerful mathematical algorithm used to compute the Discrete Fourier Transform (DFT) and
its inverse [50, 51]. It is pivotal in information processing, allowing the detailed analysis of various
signals (e.g., image [52, 53, 54], radar [55, 56, 57]) for frequency determinations. In vision, FFT’s
ability to transform complex data in spatial domain into frequency domain makes it an invaluable tool
for abstracting critical features from noisy or high-dimensional datasets [58, 59]. This abstraction is
particularly beneficial as the identification of salient features are shown to have better generalization
ability across domains [60, 61, 62, 63], directly influences the performance [64, 65, 66, 67] of image
analysis and processing tasks. Current research on FFT in vision predominantly explores areas such
as conventional image processing [52, 68, 69, 70], image pre-processing for deep neural networks
(DNNs) [71, 72] and DNN architectural design [20, 66, 65, 73, 74, 75, 76].

Despite its profound utility and effectiveness, the integration of FFT within the paradigm of visual
prompt tuning remains largely underexplored. Recent work [77] adapts the pretrained multi-modal
network to the tasks under modality-incomplete segmentation scenarios via FFT prompt tuning. This
approach demonstrates the potential of FFT operations to handle missing modalities (i.e., substantial
disparity) effectively. However, it primarily focuses on task-specific optimization and design. The
extensive applicability and generality of FFT, especially in cross-dataset analysis, have yet to be
recognized or exploited. Another work [36] incorporates Fourier transform into the LoRA-based
approach. While the expressive Fourier basis facilitates the recovery of weight changes, it does not
fully integrate frequency domain information during finetuning, which remains orthogonal to our
approach. In this paper, we aim to broaden the scope of exploration and contribute to advancing
the field of Fourier-based research in vision. By studying the integration of FFT with visual prompt
tuning, we fully explore how to improve both the efficacy (see §3) and the adaptability of learning
models to diverse and challenging datasets (see §4). Furthermore, we present novel evidence
indicating that VFPT establishes strong correlations within the Transformer’s input space, aligning
with the performance enhancements (see §4.4). Overall, the generality of VFPT suggests a novel
understanding of the Fourier-based method in current machine learning applications.

3 Methodology

In this section, we introduce VFPT, a novel visual prompt tuning approach for effective and general
large-scale transformer-based model finetuning. We first define the problem and notations of visual
prompt tuning and FFT in §3.1. The integration of Fourier-based visual prompt tuning is presented in
§3.2. The overall framework is shown in Fig. 1(c), where we compare our model with original VPT.

3.1 Preliminary

Visual Prompt Tuning. Given a pretrained Transformer model T with N layers, the objective of
prompt tuning in vision is to finetune a model T into a new task with only a few set of d-dimensional
embedding vectors, i.e., prompts, in the input space after patch Emb layer. These learnable prompts
are defined as P = { P!, P2,... PN}, where P represents the learnable visual prompts in the 7,
encoder layer. Formally, the encoder layers with prompts are defined as:

Z'=L,(P', E)

. _ 1
Z'=L;P', Z"7Y i=23,...,N W

where the embeddings of the input image patches E are initialized with frozen Emb projection, and
Z' is the contextual embeddings computed by the i;;, encoder layer. The colors B and W indicate
trainable and frozen parameters, respectively. Here, trainable prompts only accounts for a small
proportion of the total parameters (e.g., 1.14% on VTAB-1k [78] in VPT [4]).
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Fast Fourier Transform. The FFT is a powerful algorithm for computing the Discrete Fourier
Transform (DFT), which transforms a finite sequence of equally-spaced function samples into a
same-length discrete-time Fourier transform sequence. Specifically, given a sequence {x,,} where n
is a member of the interval n € [0, N — 1], the DFT is defined as:

N-1
Fl@)=Xp = ane 8" 0<k<N-1. &)
n=0

For a finite sequence of equally-spaced samples {z,, }, the DFT generates a same-length sequence
of equally-spaced samples { X}, }. This transform is denoted as F. The initial DFT is in complexity
O(n?). For acceleration, we use Cooley-Tukey FFT algorithm [79] following common practice [80]
(i.e., complexity O(nlogn)). FFT serves as a powerful tool for domain transition. Consequently, we
explore the integration of the FFT operation within PEFT methods, particularly in prompt tuning.

3.2 Visual Fourier Prompt Tuning

Visual prompt tuning is particularly useful under the pretrain-then-finetune paradigm. However,
it suffers a significant performance reduction when substantial disparities exist between pretrain
and finetune datasets. The reason is that during finetuning on new data, the image distribution may
deviate markedly from the examples used in pretraining the backbone model [9]. Existing prompt
tuning [4, 5], focusing predominantly on spatial information, can only harness the shared information
embedded within the pretrained backbone, limiting their capacity to adapt effectively to novel tasks.
Thus, it is crucial to strengthen the ability to capture distinguishing feature from finetuning data.

To this end, we introduce VFPT, an intuitive yet powerful method with advanced performance and
generality. Compared to VPT (see Fig. 1(a)), our model (see Fig. 1(c)) transforms partial prompts
from spatial domain to frequency domain via 2D FFT (see §3.1) to consider both the spatial and
frequency domain information. Formally, for each learnable visual prompts in the ¢;; encoder layer
PieP={P' P2, ... PN}, wehave P'={pt pi, ... p% }. We select m partial prompts as visual
Fourier prompts at each layer, where 0 < m < M. Further, « = m/M represents the fraction of
Fourier participation, where zero indicates all prompts are original visual prompts, and one implies
all prompts are given after FFT. We apply a 2D FFT on « visual prompt embedding input with
respect to both sequence (i.e., Fyq) and hidden dimensions (i.e., ;). Note that the operations
Feq(Fn(x)) and Fy(Fyeq(x)) are mathematically equivalent due to the commutative property of the
two one-dimensional FFTs [80]. Here, ® indicates Fourier operations.

P = B (Fu (A [phoph - ]) v

To maintain the pretrained structure’s consistency, we only alter the prompt embeddings, and thus
retain only the real component (i.e., &) from the output. This design does not require any adjustments
to accommodate complex numbers in the self-attention module, ensuring that the remaining elements



of the model remain unchanged. Consequently, the overall integrated prompts P? in the 44, encoder
layer are formed by the concatenation between the visual Fourier prompts and visual prompts as:

Pt =[Py, Phsrs P ] - “

Our elegant design of VFPT enjoys a few appealing characteristics:

* Simplicity: VFPT only requires several lines of code based on the implementation of the visual
prompt tuning. Its intuitive integration of information between spatial and frequency domains
brings nearly free performance efficacy. The low complexity of FFT (i.e., O(nlogn)) leads to an
overall marginal reduction during the training schedule.(i.e., 2.8% on VTAB-1k [78]). In sharp
contrast, current endeavors in visual prompt tuning mainly emphasize augmenting architectural
complexity for superior performance [5, 81, 42], undermining the inherent simplicity of prompt
tuning and introducing significant training overhead (e.g., [81] learns 2D prompt token map for
densely image relationship construction, [5] incorporates additional self-attention K-V prompts).

* Generality: The frequency and spatial analysis of imagery inputs can be mutually complemen-
tary, leading to a more comprehensive feature understanding from distinct perspectives (e.g., the
frequency domain allows for the distraction and decomposition of luminance and noise to a con-
siderable degree [82], while the spatial domain excels in capturing intricate object details). By
incorporating learnable prompts from both domains, VFPT demonstrates enhanced prompt learning
capabilities, which makes it superior to finetune across diverse tasks (see §4.2). The empirical
findings of flatness and convexity of VFPT further strength our claim.

o Interpretability: In visual prompt tuning, a notable challenge arises concerning the interpretability
of learnable prompts. Unlike in NLP, where tokens explicitly represent these prompts, visual
prompts have historically lacked a clear and explainable representation. In order to intuitively
perceive the function of visual prompts, we offer a possible way to understand why prompts play
an important role in fine-tuning a new task through the visualization of attention maps. Moreover,
we can also observe a better and stronger global feature learning pattern through introducing visual
Fourier prompts, showing how Fourier prompts work. More discussion will be elaborated in §4.4.

4 Experiment
4.1 Experiment Setup

Datasets. Following common practice [5, 4, 81, 83], our experiments are carried out on two image
classification benchmarks. VTAB-1k [78] collects 19 benchmarked Visual Task Adaptation, separated
into three groups: (1) Natural includes natural images captured by standard cameras, (2) Specialized
consists of images taken by specialized equipment, and (3) Structured considers tasks considering
geometric comprehension (i.e., counting, distance), which has substantial dataset disparities (i.e., tasks
in Natural and Specialized are closely related to image classification and thus have low disparities,
while tasks in Structured are regarded as distinct from image classification) when comparing to
the pretrained dataset [9] (i.e., ImageNet21K [84]). Each task of VTAB-1k contains 1000 training
examples with the 800/200 split for train/val set. FGVC contains 5 benchmarked Fine-Grained
Visual Classification, including CUB-200-2011 [85], NABirds [86], Oxford Flowers [87], Stanford
Dogs [88] and Stanford Cars [89]. The training set is split into 90% train and 10% val.
Baselines. For consistency, we follow [4, 5] and compare VFPT with other widely applied parameter-
efficient fine-tuning methods. Results of two vision transformer architectures, Vision transformer [23]
(ViT) and Swin transformer [24] (Swin), on image classification are discussed in §4.2. We also apply
VFPT on two self-supervised objectives: MAE [90] and MoCo v3 [26].

Training. Following [4, 5], we conduct grid search to find the best tuning hyperparameters, learning
rate (i.e., [50, 25, 10, 5, 2.5, 1, 0.5, 0.25, 0.1, 0.05]), and weight decay (i.e., [0.01, 0.001, 0.0001,
0.0]) on val set. Notably, VFPT does not require specific-designed large learning rate in [4]. The
learning rate is scheduled by a cosine decay policy and trained for 100 epochs.

Reproducibility. VFPT is implemented in Pytorch [91]. Experiments are conducted on NVIDIA
A100-40GB GPUs. To guarantee reproducibility, our full implementation will be publicly released.

4.2 Main Results

In this section, we demonstrate the effectiveness of VFPT from two key perspectives: & Supe-
rior Performance: Our model demonstrates significant performance improvements across diverse
datasets, including challenging tasks with large disparities in data, thus showcasing its generalizability.



Table 1: Image classification accuracy for ViT-Base/16 [23] pretrained on supervised ImageNet-21k.
Following [4, 5], we report the average test accuracy (three runs) on FGVC [4] and VTAB-1k [78]
benchmarks, and “Number of Wins” in [-] compared to full fine-tuning (Full) [92]. » denotes the
method with highest “Number of Wins”” compared to Full. We further report “Number of Wins to
VPT” in {-}. “Tuned/Total” is the average percentage of tuned parameters required by 24 tasks.
“Scope” indicates the tuning scope of each method. “Additional parameters” is the existence of
parameters in addition to the pretrained backbone and linear head. Bold and Underline indicate the
best and the second best results. VFPT outperforms full fine-tuning in 22 of 24 instances with fewer
trainable parameters and beats VPT in 23 of 24 cases with lower parameters. 1 denotes methods using
soft filtered prompts to reduce the parameter usage in learnable visual prompts, requiring specialized
devices to facilitate acceleration. Per-task results are available in Appendix. Same for Table 2 and 3.
VTAB-1k [78] [19]

Scope Extra

ViT-Base/16 [23] H Tuned/ FGVC [4] [5]
(85.8M) Total | Input Backbone | params Natural [7] ~ Specialized [4] Structured [8] Mean Total
Full [92] 100.00% v 88.54% 75.88% 83.36% 47.64% 65.57%
Linear [92] 0.08% 79.32% [0] 68.93% [1] 77.16% [1] 26.84% [0] 52.94%
Partial-1 [93] 8.34% 82.63% [0] 69.44% [2] 78.53% [0] 34.17% [0] 56.52%
MLP-3 [94] 1.44% v 79.80% [0] 67.80% [2] 72.83% [0] 30.62% [0] 53.21%
Sidetune [31] 10.08% v v 78.35% [0] 58.21% [0] 68.12% [0] 23.41% [0] 45.65%
Bias [30] 0.80% ' 88.41% [3] 73.30% [3] 78.25% [0] 44.09% (2] 62.05%
Adapter [32] 1.02% v v 85.46% [1] 70.67% [4] 77.80% [0] 33.09% [0] 62.41%
LoRA [35] — v v 89.46% [3] 78.26% [5] 83.78% [2] 56.20% [7] 72.25%
AdaptFormer [95] — v v — 80.56% (6] 84.88% [4] 58.83% [7] 72.32%
ARCay [96] — v v 89.12% [4] 80.41% [7] 85.55% [3] 58.38% [8] 72.32%
VPT-S 4] 0.16% v v 84.62% [1] 76.81% [4] 79.66% [0] 46.98% [4] 64.85%
VPT-D [4] 0.73% v v 89.11% [4] 78.48% [6] 82.43% [2] 54.98% [8] 69.43%
EXPRES [97] — v v — 79.69% (6] 84.03% [3] 54.99% (8] 70.20%
+ E2VPT [51 0.39% v ' v 89.22% [4] 80.01% [6] 84.43% [3] 57.39% [8] 71.42%
» Ours 0.66% v v 89.24% [4] {4} | 81.35% [6] {7} 84.93%[4] {4} 60.19% [8] {8} 73.20%

Q Fourier Contribution: We observe that Fourier components play a critical role in VFPT, where
tasks with larger data disparities tend to favor higher percentages of Fourier components.

Definition of disparity. Following [9], Table 2: Image classification accuracy for Swin-
we use the Fréchet Inception Distance Base [24] pretrained on supervised ImageNet-21k.

(FID) [99, 100] to measure the disparity Swin-Base [24] Tuned/ VTAB-1K [78] [19]
betWCen the datasets used iIl pretraining (86.7M) H Total Natural [7] Specialized [4] ~ Structured [8]
. . . Full O8] [[100.00% 79.10% 36.21% 59.65%
(i.e., ImageNet) and funetuning (i.e., down- Linear O8] || 006%|  73.52% 5] 80.77% 0] 33.52% [0]
stream tasks). Average FID scores of each Partial-1 [93]|| 14.58% 73.11% [4] 81.70% [0] 34.96% [0]
; . MLP-3 94] || 242%|  73.56%[5 75.21% [0 35.69% [0
group are reported in Fig. 2, where the Bias [30] 0.29% 74.19% 2 80.14% [0 42.42% [0
; i VPT 7 0.25%|  76.78% [6 83.33% [0 51.85% [0
N atural group hag low disparities due to + E2VPT [ ES] 021%|  8331%[6]  84.95%[2]  57.35% [3]
its close relationship to ImageNet21K [84] » Ours 0.27%|84.53% [7] (5} 86.15% [2] {4} 58.21% [3] {6}

and the Specialized and Structured groups
(i.e., orientation prediction task) are considered distinct from image classification. The dataset
description of VTAB-1k is covered in §4.1 (FGVC is excluded due to lack of categorization).

& Superior Performance. In order to have a comprehensive understanding on generality, we examine
VFPT on ViT-Base/16 [23], Swin-Base [24], and two self-supervised objectives, following common
practice [4, 5]. We also report the individual per-task results for Table 1, 2 and 3 in Appendix.
VFPT on ViT. We report the average accuracy score on VTAB-1k and FGVC benchmarks across
four diverse task groups for three runs in Table 1, where fifteen protocols under pretrain-then-finetune
paradigm are considered. Specifically, Full [92] updates both backbone and classification head;
Linear [92], Parital-1 [93] (top layer), and MLP-3 [94] (3 MLP layers) are partial tuning approaches;
Sidetune [31], Bias [30], Adapter [32], LoRA [35], AdaptFormer [95] and ARC, [96] are extra
module methods which add new trainable parameters to backbone for adaptation; VPT-S [4], VPT-
D [4], EXPRES [97] and E2VPT [5] are concurrent visual prompt tuning approaches. Consequently,
we have several key observations. First, VFPT is able to outperform the full fine-tuning method in
22 out of 24 tasks. For example, our model achieves 0.13% improvement on FGVC and 5.21%
improvements on VTAB-1k Structured, respectively. The empirical results show the effectiveness
of VFPT. Second, VFPT tunes only 0.66% of the overall parameters in the backbone, establishing
it as a competitive method within the PEFT approaches. Third, while VPT struggles to capture the
image information when having significant dataset disparity, VFPT achieves notable performance
improvements by integrating both spatial and frequency information (see §3.2) without additional
architectural modifications. (i.e., 60.19% vs. 54.98% on VTAB-1k Structured).

VFPT on Hierarchical Transformer. We further extend VFPT to a hierarchical transformer —
Swin-Base [24] for architectural generalization. The MSA layer of Swin is employed in local shifted
windows, and patch embeddings are merged at deeper layers. For consistency, we follow the same
settings from ViT to apply and prepend Fourier prompts ahead of the visual prompts. The results on



Table 3: Image classification accuracy for different pretrained objectives — MAE [90] and MoCo
v3 [26] with ViT-Base [23] as backbone. x denotes the rerun results that calibrate the VPT [4]

Pretrained objectives MAE [90] MoCo v3 [26]
— Tuned/ VTAB-1K [78] [19] Tuned/ VTAB-IK [78] [19]
> Total Natural [7]  Specialized [4] Structured [8] Total Natural [7]  Specialized [4] Structured [8]
Full [92] 100.00% 59.31% 79.68% 53.82% 100.00% 71.95% 84.72% 51.98%
Linear [92] 0.04% 18.87% [0] 53.72% [0] 23.70% [0] 0.04% 67.46% [4] 81.08% [0] 30.33% [0]
Partial-1 [93] 8.30% 58.44% (5] 78.28% [1] 47.64%|1] 8.30% 72.31% (5] 84.58% (2] 47.89% [1]
Bias 307 0.16% 54.55% [1] 75.68% [1] 47.70% [0] 0.16% 72.89% [3] 81.14% [0] 53.43% [4]
Adapter [32] 0.87% 54.90% [3 75.19% [1 38.98% [0 1.12% 74.19% [4 82.66% [1 47.69% [2
VPT-S [4] 0.05% 39.96% [1 69.65% [0 27.50% [0 0.06% 67.34% [3 82.26% [0 37.55% [0
VPT-D [4] *0.31% 36.02% [0 60.61% [1 26.57% [0 *0.22% 70.27% (4 83.04% [0 42.38% [0
GPT [101] 0.05% 47.61% [2] 76.86% [1] 36.80% [1] 0.06% 74.84% [4] 83.38% [1] 49.10% [3]
» Ours 0.38% | 53.59% [6] {6} 77.75% [1] {3} 36.15% [1] {6} 0.22% | 77.47% (5] {7} 85.76% [3] {4} 58.74% [6] {8}
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Figure 2: Image classification accuracy of various Fourier percentages of VTAB-1k [78] for
ViT-Base/16 [23]. For better illustration, we randomly select 3 datasets in each group of VTAB-1k.
The “Average FID Score of Each Group” is reported in <->. Our conclusion aligns with 16 of 19
cases. The cross framed by the square indicates the best percentage for each downstream task. Those
datasets with only three Fourier percentage reports are due to the prompt length limits.

the ImageNet-21k supervised pretrained Swin-Base [24] are reported in Table 2. It can be seen that
VFPT consistently outperforms all the other parameter-efficient methods on three VTAB-1k groups.
VFPT on Different Pretraining Objectives. In Table 3, we report the experimental results on two
self-supervised objectives: MAE [90] and MoCo v3 [26]. While VPT yields inconclusive results,
VFPT has the highest “Number of Wins” compared to full fine-tuning among PEFT methods (i.e., 8
of 19 instances under MAE, and 14 of 19 instances under MoCo v3, respectively). Our method also
outperforms VPT by a large margin (e.g., 53.59% vs. 36.02% under MAE on VTAB-1k Natural).

Q Fourier Contribution. We conducted experiments to understand the impact of Fourier components
by varying the percentages of Fourier prompts in VFPT. As shown in Fig. 2, we observed distinct
preferences across the VTAB-1k benchmark, which comprises three groups with varying data
disparities (see §4.1). Specifically, the Natural group, which has a data distribution similar to
the pretrained task (low disparity), shows peak performance when half of the visual prompts are
transformed into Fourier prompts, as indicated by the accuracy curves in Fig. 2(a). This suggests
that transfer learning is less challenging in this group. Conversely, for the Specialized and Structured
groups, which have data distributions significantly different from the pretrained task (high disparity),
the accuracy curves in Fig. 2(b-c) demonstrate that higher classification performance is achieved
with an increased percentage of Fourier components. These observations are consistent with our
expectations, demonstrating the effectiveness of Fourier prompts in VFPT, especially for tasks with
large data disparities. In other words, our approach can be viewed as a generalization of VPT, where
the Fourier components learn effective representations from the frequency domain that complement
the knowledge from the spatial domain.

4.3 Study of Optimization

In this section, we investigate why VFPT achieves better performance and generalization across
various tasks from an optimization perspective. Previous works [102] demonstrate that land-
scape geometry significantly impacts model generalization, so we visualize the loss landscape to



understand the enhanced generality of VFPT. ‘)
Specifically, in Fig. 3(a), we randomly select i
two parameter directions for the study, as ran-
domness in directions does not significantly af-
fect the results [102]. There are two key obser-

vations supporting the enhanced generality of A o
VFPT. i) Flatness: VFPT provides g larger con- ’ : F — | -
nected region around the local minimum [103] & oo 5. e
(e.g., x in the yellow square, where the larger = &Yy — ol
blue area in VFPT offers more optimization w ’ % “a = i I“‘
choices) and a smoother edge of the loss land- (2) Loss Landscape (b) Ratio Map of Hessian

scape for mitigating chaotic landscapes (e.g.,®

in the green square, where the bumpy contour in Figure 3: V.isualization of loss landscape and the ratio
VPT is sensitive to loss variations, resulting in  ™aP of Hessian [102].

worse generality). This indicates that VFPT achieves a flatter minimizer, which consistently correlates
with lower test error [102]. ii) Convexity: As eigenvalues of the Hessian directly assess the convexity
of a loss function, we compute both the maximum and minimum eigenvalues of the Hessian and
map their ratios. As shown in Fig. 3(b), a higher prevalence of near-zero negative eigenvalues (in
deep blue) in VFPT suggests the presence of more convex regions (25.0% vs. 20.0%) for model
optimization. This finding indicates that the incorporation of the Fourier transform in visual prompt
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2D attention map), indicating that these prompts

have a substantial impact on the frozen embed-
dings during the finetuning stage.
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prompts. We further observe a notably higher  gjoyre 4: Study of interpretability. (a) The 3D
concentration in global attention scores when .3 21 attention map in VPT and VFPT on a ran-
integrating visual Fourier prompts. Specifically, domly selected sample. The colors =, ® and ® indi-
the global attention scores indicate that VFPT o prompt and patch tokens, respectively.
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Transformer’s input space [4] (see Fig. 4(a)). I tha¢ red regions correspond to a high score for the

contrast, VPT lacks this correlation, suggesting  c|ags. We present more visualization results in §54
that it does not adequately consider or integrate

extensive information from the frozen backbone. Moreover, we find a positive relationship between
strong associations and performance gains quantitatively (see §4.2) and qualitatively (see Fig. 4(b)) in
VFPT, suggesting that the integration of visual Fourier prompts encourage clear foreground (i.e., tree
with high frequency component) - background (i.e., sky with low frequency component) separation.
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Table 5: A set of ablative studies on VTAB-1k [78] Natural and Specialized benchmarks in three runs. “Prompt
Location” is the placement of the visual Fourier prompts relative to original visual prompts. “Prompt Depth”
indicates the layer we use visual Fourier prompts. “Transform Type” is the method we use to transform prompts
and input images. “Fourier/Transform Dimension” indicates the dimension we apply using specific transform
method. Per-task results are available in Appendix. Same for Table 4.

Fourier Dimension VTAB-1k [78] [19] Prompt VTAB-1k [78] [19] Prompt VTAB-1k [78] [19]
Sequence Hidden | Natural [7] Specialized [4] ~ Location | Natural [7] Specialized [4] Depth | Natural[7] Specialized 4]
% 80.88% 83.57% A 81.02% 83.80% 1357911 8048%  83.73%

) ) : . 1-6 80.79% 84.34%
v | s074%  8387% R | 7862%  8247% 1o | s 8399
v v 81.35% 84.93% P 81.35% 84.93 % 1-12 81.35% 84.93%

(a) Fourier Prompt Dimension

(b) Fourier Prompt Location

(c) Fourier Prompt Depth

In summary, our findings provide significant insights into the interpretability of prompt tuning,
revealing that for both VPT and VFPT, a considerable portion of attention is directed towards the
learnable prompts. Further, VFPT exhibit enhanced global feature learning capabilities compared to
VPT by interfacing effectively with frozen embeddings, thereby enabling precise capture of distinctive
features across diverse downstream tasks. This observation corroborates our findings in §4.2.

4.5 Ablation Study

We ablate VFPT’s key components on Table 4: Ablative studies of transform type on VTAB-
VTAB-1k [78] Natural and Specialized. 1k [78] Natural and Specialized benchmarks in three
More studies are provided in §S2.5. runs. Per-task results are available in Appendix.

Transform Type. We ablate on other trans-

. . . Transform Type Transform Dimension VTAB-1k [78] [19]

form method instead to certify the impact (Domain) Sequence Hidden |Natural [7) Specialized [4]
of Fourier transform in Table 4, where FLL (S) v 80.98% 84.02%
. . . LLL (S) v 80.54% 82.64%
the Fixed Linear Layer (l.e., FLL) and the FFT (F) + FDA (F) [71] v v 80.90% 84.03%
Learnable Linear Layer (i.e., LLL) are con- FET (F) v v 81.35% 84.93%

sidered. Compared with FFT, a fixed non-parameter Fourier domain transform in sequence and
hidden dimension, the FLL operation considers only a fixed spatial domain transform in hidden
dimension; the LLL further unfixes the transformation to enable gradient updates. As seen, both FLL
and LLL show inferior performance to FFT. We further consider the impact of current Fourier domain
adaption approach [71], which maps a source image to a target “style” without altering semantic
content. However, no significant improvement can be observed.

Fourier Prompt Dimension. A fundamental distinction between VFPT and other methods is the
incorporation of FFT into visual prompts. In our standard implementation, we utilize 2D FFTs across
both sequence length and hidden dimensions. Here, we explore the impact of each dimension’s
transformation individually. As shown in Table 5(a), the separate Fourier transformations along each
dimension appear to have similar contributions (i.e., 80.88% vs. 80.74% in Natural). However, the
combined application of transformations across both dimensions (i.e., 2D FFTs) demonstrates a
synergistic effect, yielding significant improvement in performance.

Fourier Prompt Location. In Table 5(b), three prompt locations are considered for VFPT, which are
“Prepend” (i.e., P), “Append” (i.e., A), and “Random” (i.e., R). Specifically, P and A prepend visual
Fourier prompts before or after visual prompts, and R randomly selects the position for visual Fourier
prompts in each layer. As seen, both P and A show competitive results, validating the robustness of
VFPT w.r.t. prompt locations. In alignment with the findings in [5, 4], we choose P as our baseline
method in all experiments since it reaches superior results (i.e., 81.35% vs 81.02% in Natural).
Fourier Prompt Depth. Table 5(c) presents the performance of VFPT based on the specific layer
at which visual Fourier prompts are employed. The results suggest that employment on separate
layers also yields a accuracy improvement compared with VPT. Further application of visual Fourier
prompts across all layers fosters the best overall performance.

5 Conclusion

We present Visual Fourier Prompt Tuning (VFPT), a simple yet powerful parameter-efficient vi-
sual prompt tuning approach that draws insights from human visual cognition. It has merits in: i)
integrating spatial and frequency domain information through an intuitive yet effective design; ii)
demonstrating generality across datasets with varying disparities while ensuring powerful perfor-
mance; and iii) thoroughly investigating the associations between learnable prompts and frozen
embeddings to elucidate this generality. As a whole, we conclude that the outcomes elucidated in this
paper impart essential understandings and necessitate further exploration within this realm.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our NeurIPS 2024 submis-
sion: Visual Fourier Prompt Tuning, organized as follows:

* §S1 provides per-task results on VTAB-1k and FGVC image classification benchmarks with
confidence analysis, where the overall results have been provided in the main paper.

» §S2 provides per-task results on ablation study, where the overall results have been provided in
the main paper. Further study of sensitivity of Fourier prompt percentages and prompt lengths is
included in §S2.5.

» §S3 provides per-task results on Fourier percentage, where partial results have been provided in
the main paper.

* §S4 presents more details and results of visualization of attention maps.

* §S4 presents more details and results of visualization of loss landscapes.

» §S6 discusses our potential extension to language tasks.

* §S7 further analyze the complexity of our approach.

* §S8 shows related asset license and consent to our work.

* §S9 claims reproducibility of our approach.

§S10 discusses the social impact of our research.

§S11 adds more discussions, and points out potential directions of our future work.

S1 Per-task Results on VTAB-1k and FGVC

S1.1 Per-task Results on ViT-Base

To provide comprehensive results from the paper, we report the average per-task test accuracy (i.e., 3
runs, 24 tasks) on VTAB-1k [78] Natural, Specialized and Structured, respectively (see Table S1,
S2 and S3). We also report per-task FGVC [4] results (5 tasks) in Table S4. VPT-SHALLOW [4] is
also included for completeness (i.e., VPT-SHALLOW only introduces 1-st layer visual prompts). In
conclusion, VFPT shows consistently better performance in various downstream tasks.

Table S1: VTAB-1k [78] Natural per-task results for ViT-Base/16 [23] pretrained on supervised
ImageNet-21k. Consistent to our paper, “Number of Wins” in [-] compared to full fine-tuning [92].
“Tuned/Total” is the percentage of tuned parameters in each task, along with the average results of
those percentages in each group. The highest accuracy among all approaches except FULL are shown
in bold. { denotes method using soft filtered prompts to reduce the parameter usage in learnable visual
prompts, requiring specialized devices to facilitate acceleration. All results are averaged in three
runs with different initialization seeds. Same for Table S2-S21. We also report standard deviation
error bars for our main results (Table S1, S2, S3 and S4) by calculating each task respectively and
averaging across them. Other tables show similar trends on standard deviation error bars.

ViT-Base/16 [23] VTAB-1k [78] Natural [7]

(85.8M) H CIFAR-100  Caltech101 DTD Flowers102 Pets SVHN Sun397 Wiz
FULL [92] 689 87.7 643 972 869 874 383 75.88
LINEAR [92] 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.93 1]
PARTIAL-1 [93] 66.8 85.9 62.5 973 855 376 50.6 69.44 [2]
MLP-2 [94] 632 84.8 60.5 97.6 85.9 34.1 47.8 67.70 [2]
MLP-3 [94] 63.8 84.7 62.3 974 84.7 325 492 67.80 [2]
MLP-5 [94] 593 84.4 59.9 96.1 84.4 30.9 46.8 65.98 [1]
MLP-9 [94] 53.1 80.5 53.9 95.1 82.6 244 437 61.90 [1]
SIDETUNE [31] 60.7 60.8 536 955 66.7 349 353 5821 (0]
BIAS [30] 72.8 87.0 59.2 975 853 59.9 514 73.30 [3]
ADAPTER-256 [32] 74.1 86.1 63.2 97.7 87.0 34.6 50.8 70.50 [4]
ADAPTER-64 [32] 742 85.8 62.7 97.6 872 363 50.9 70.65 [4]
ADAPTER-8 [32] 742 85.7 62.7 97.8 87.2 36.4 50.7 70.67 [4]
VPT-SHALLOW [4] 717 869 626 975 873 745 512 7631 [4]
- Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17
VPT-DEEP [4] 78.8 920.8 65.8 98.0 88.3 78.1 49.6 78.48 [6]
- Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 0.54 0.41 0.23
 E2VPT [5] 78.6 89.4 67.8 98.2 88.5 853 523 80.01 [6]
- Tuned / Total (%) 0.22 0.19 0.12 0.11 0.05 0.24 043 0.19
OURS 80.7 £ (0.15) 91.4 £ (0.11) 69.4 £ (0.27) 99.3 & (0.05) 90.3 & (0.29) 85.6 & (0.95) 52.7 £ (0.47) | 81.35 £ (0.33) [6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 0.41 0.21
- Fourier Percentage (%) 70.0 50.0 30.0 50.0 50.0 20.0 50.0 45.7
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Table S2: VTAB-1k [78] Specialized per-task results for ViT-Base/16 [23] pretrained on supervised
ImageNet-21k.

ViT-Base/16 [23] ‘ VTAB-1k [78] Specialized (4) Mean
(85.8M) Patch Camelyon  EuroSAT Resisc45  Retinopathy
FULL [92] 79.7 95.7 842 739 83.36
LINEAR [92] 78.5 875 68.6 74.0 77.16 [1]
PARTIAL-1 [93] 78.6 89.8 72.5 733 78.53 [0]
MLP-2 [94] 743 88.8 67.1 73.2 75.86 (0]
MLP-3 [94] 77.0 88.0 70.2 56.1 72.83 [0]
MLP-5 [94] 73.7 87.2 64.8 71.5 74.31 (0]
MLP-9 [94] 78.5 83.0 60.2 723 73.49 [0]
SIDETUNE [31] 585 87.7 65.2 61.0 68.12 0]
BIAS [30] 78.7 91.6 72.9 69.8 78.25 [0]
ADAPTER-256 [32] 76.3 88.0 73.1 70.5 76.98 [0]
ADAPTER-64 [32] 76.3 87.5 73.7 70.9 77.10 [0]
ADAPTER-8 [32] 76.9 89.2 73.5 71.6 77.80 [0]
VPT-SHALLOW [4] 782 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 81.8 96.1 83.4 68.4 82.43[2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57
T E2VPT [5] 82.5 96.8 84.8 73.6 84.43 [3]
- Tuned / Total (%) 0.20 0.29 0.12 0.07 0.17
OURS 83.5+ (0.09) 96.5 +(0.06) 84.4 +(0.36) 75.4 + (0.05) 84.93 + (0.14)[4]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
- Fourier Percentage (%) 100.0 30.0 100.0 100.0 82.5

Table S3: VTAB-1k [78] Structured per-task results for ViT-Base/16 [23] pretrained on supervised
ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Structured [8]
(85.8M) Clevr/ C]evr/ DMLab KITI‘I/ dSpri}es/ d_Sprite§/ sz?l']NORB/ SmaIINQRB/ Mean
count distance distance location orientation azimuth elevation
FULL [92] 563 58.6 417 65.5 575 46.7 25.7 29.1 47.64
LINEAR [92] 343 30.6 332 554 12,5 20.0 9.6 19.2 26.84 [0]
PARTIAL-1 [93] 415 343 339 61.0 31.3 328 16.3 224 34.17 [0]
MLP-2 [94] 452 31.6 31.8 55.7 309 24.6 16.6 233 32.47 (0]
MLP-3 [94] 47.8 328 32.3 58.1 129 21.2 15.2 24.8 30.62 [0]
MLP-5 [94] 50.8 323 31.5 56.4 7.5 20.8 14.4 20.4 29.23 (0]
MLP-9 [94] 475 27.9 289 54.0 6.2 17.7 10.8 16.2 26.15 [0]
SIDETUNE [31] 27.6 22,6 31.3 51.7 8.2 14.4 9.8 21.8 23.41[0]
BIAS [30] 61.5 55.6 324 55.9 66.6 40.0 15.7 25.1 44.09 [2]
ADAPTER-256 [32] 45.7 374 312 532 30.3 254 13.8 22.1 32.39 [0]
ADAPTER-64 (32] 429 39.9 30.4 54.5 319 25.6 135 214 32.51 (0]
ADAPTER-8 [32] 452 41.8 31.1 56.4 30.4 24.6 13.2 22.0 33.09 [0]
VPT-SHALLOW [4] 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98 [4]
- Tuned / Total (%) 0.10 0.18 0.09 0.09 0.10 0.10 0.19 0.19 0.13
VPT-DEEP [4] 68.5 60.0 46.5 72.8 73.6 47.9 329 37.8 54.98 [8]
- Tuned / Total (%) 0.54 2.11 1.07 0.54 0.12 0.55 2.12 2.11 1.14
1 E2VPT [5] 71.7 61.2 479 75.8 80.8 48.1 31.7 41.9 57.39 [8]
- Tuned / Total (%) 0.34 0.65 0.44 0.36 0.10 0.38 1.14 0.66 0.51
OURS 75.8 £ (0.94) 63.2 £ (0.51) 48.3 £ (0.93) 79.3 £ (0.38) 81.5 & (1.06) 56.0 + (0.51) 34.1 + (1.05) 43.4 £ (0.42)|60.19 £ (0.72)[8]
- Tuned / Total (%) 0.54 2.11 0.11 0.71 0.12 0.55 1.91 2.11 1.02
- Fourier Percentage (%) 100.0 100.0 70.0 50.0 100.0 70.0 100.0 70.0 825

Table S4: FGVC [4] per-task results for ViT-Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] FGVC [4] [5]

(85.8M) H CUB-200-2011  NAbirds  Oxford Flowers Stanford Dogs Stanford Cars Wileain
FULL [92] 373 827 938 894 345 88.54
LINEAR [92] 853 759 97.9 86.2 513 79.32 [0]
PARTIAL-1 [93] 85.6 77.8 98.2 85.5 66.2 82.63 [0]
MLP-2 [94] 85.7 772 98.2 85.4 54.9 80.28 [0]
MLP-3 [94] 85.1 773 97.9 84.9 53.8 79.80 [0]
MLP-5 [94] 842 76.7 97.6 84.8 50.2 78.71 [0]
MLP-9 [94] 83.2 76.0 96.2 83.7 47.6 77.31 [0]
SIDETUNE [31] 347 758 96.9 358 186 7835 [0]
BIAS [30] 88.4 84.2 98.8 91.2 79.4 88.41 [3]
ADAPTER-256 [32] 872 84.3 98.5 89.9 68.6 85.70 [2]
ADAPTER-64 [32] 87.1 84.3 98.5 89.8 68.6 85.67 [2]
ADAPTER-8 [32] 87.3 84.3 98.4 88.8 68.4 85.46 [1]
VPT-SHALLOW [4] 36.7 788 984 90.7 687 84,62 [1]
- Tuned / Total (%) 0.31 0.54 0.23 0.20 0.26 031
VPT-DEEP [4] 88.5 84.2 99.0 90.2 83.6 89.11 [4]
- Tuned / Total (%) 0.29 1.02 0.14 1.17 227 0.98
+ E2VPT [5] 89.1 84.6 99.1 90.5 82.8 89.22 [4]
- Tuned / Total (%) 0.32 0.65 0.15 0.88 127 0.65
Ours 887 £ (0.02) 845 £ (0.01) 99.1 £ (0.01) 90.4 £ (0.13) 83.6 = (0.04) | 89.24 = (0.04) [4]
- Tuned / Total (%) 0.29 1.02 0.15 1.17 227 0.98
- Fourier Percentage (%) 50.0 50.0 30.0 50.0 0.0 36.0
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S1.2 Per-task Results on Swin-Base

Table S5: VTAB-1k [78] Natural per-task results for Swin-Base [24] pretrained on supervised
ImageNet-21k. Specially, the highest accuracy is shown in bold. Same for Table S6 and S7

Swin-Base [24] VTAB-1k [78] Natural (7) Mean
(86.7M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397
FULL [92] 72.2 88.0 71.2 98.3 89.5 894 450 79.10
VPT-SHALLOW [4] 71.7 86.9 62.6 97.5 87.3 745 51.2 |76.81 [4]
- Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17
VPT-DEEP [4] 79.6 90.8 78.0 99.5 914 464 51.7 |78.78 [6]
- Tuned / Total (%) 0.13 0.13 0.07 0.13 0.06 070 048 0.28
1 E2VPT [5] 82.9 92.4 78.5 99.6 914 822 56.2 |83.31[6]
- Tuned / Total (%) 0.27 0.15 0.08 0.15 0.07 044 049 0.24
OURS 83.9 93.0 71.9 99.6 914 89.5 56.4 |84.53[7]
- Tuned / Total (%) 0.15 0.15 0.13 0.15 0.07 0.70  0.49 0.26
- Fourier Percentage (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table S6: VTAB-1k [78] Specialized per-task results for Swin-Base [24] pretrained on supervised

ImageNet-21k.

Swin-Base [24] VTAB-1k [78] Specialized [4] Mean
(86.7M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 86.6 96.9 87.7 73.6 86.21
VPT-SHALLOW [4] 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 80.1 96.2 85.0 72.0 83.33 [0]
- Tuned / Total (%) 0.07 0.13 0.19 0.02 0.10
+ E2VPT [5] 83.8 97.2 84.8 74.0 84.95 [2]
- Tuned / Total (%) 0.09 0.04 0.20 0.03 0.09
OURS 86.3 97.3 86.9 74.1 86.15 [2]
- Tuned / Total (%) 0.07 0.15 0.19 0.03 0.11
- Fourier Percentage (%) 100.0 100.0 50.0 100.0 87.5

Table S7: VTAB-1k [78] Structured per-task results for Swin-Base [24] pretrained on supervised

ImageNet-21k.

Swin-Base [24] VTAB-1k [78] Structured [8]
(86.7M) Clevr/ _Clevr/ DMLab KITTI/ dSpriFes/ d‘Spriteis/ Smal_lN ORB/ SmallNQRB/ Mean
count distance distance location orientation azimuth elevation

FULL [92] 75.7 59.8 54.6 78.6 79.4 53.6 34.6 40.9 59.65

VPT-SHALLOW [4] 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98 [4]
- Tuned / Total (%) 0.10  0.18 0.09 0.09 0.10 0.10 0.19 0.19 0.13

VPT-DEEP [4] 67.6 59.4 50.1 61.3 744 50.6 25.7 25.7 51.85[0]
- Tuned / Total (%) 0.70  0.70 0.14 0.69 0.15 0.09 0.16 0.02 0.38

1 E2VPT [5] 740 612 49.5 81.0 80.3 50.7 27.9 342 57.351[3]
- Tuned / Total (%) 0.70 043 0.14 0.51 0.17 0.17 0.16 0.04 0.29

OURS 74.9 61.5 50.0 80.5 82.7 50.6 29.9 35.6 58.21 [3]
- Tuned / Total (%) 0.70  0.70 0.15 0.92 0.16 0.09 0.16 0.04 0.36
- Fourier Percentage (%) || 100.0  50.0 100.0 100.0 100.0 100.0 100.0 50.0 87.5

S1.3 Per-task Results on MAE and MoCo v3

Table S8: VTAB-1k [78] Natural per-task results for ViT-Base/16 [23] pretrained on MAE [90].
Since VPT [4] have considerably lower performance, we do not list the per-task results for simplicity.
We instead compare our method to full fine-tuning, and the highest accuracy is shown in bold. We
post the “Number of Wins” in [] to full fine-tuning (FULL) [92]. Same for Table S9-S13.

ViT-Base/16 [23] VTAB-I1k [78] Natural [7] Mean
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397
FULL [92] 24.6 84.2 56.9 727 744 86.6 15.8 59.31
OURS 36.0 87.7 58.0 74.3 76.3 19.6  23.3 |53.59 [6]
- Tuned / Total (%) 0.13 0.11 0.06 0.11 0.06 1.07 038 0.28
- Fourier Percentage (%) 100.0 50.0 50.0 100.0 50.0 100.0 100.0 75.6
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Table S9: VTAB-1Kk [78] Specialized per-task results for ViT-Base/16 [23] pretrained on MAE [90].

ViT-Base/16 [23] VTAB- 1k [78] Specialized [4]

(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy| MC2%
FULL [92] 313 94.0 2.3 70.6 79.68
OURS 76.9 913 69.2 73.6  |77.75(1]
- Tuned / Total (%) 0.06 0.03 0.13 0.54 0.17
- Fourier Percentage (%) 50.0 100.0 50.0 50.0 62.5

Table S10: VTAB-1k [78] Strcutured per-task results for ViT-Base/16 [23] pretrained on MAE [90].

ViT-Base/16 [23] VTAB-1k [78] Structured [8]
(85.8M) Clevr/ Clevr/ DMLab KITTI/ dSpn.tcs/ d_Sprltés/ Smal_lNORB/ SmallNQRB/ Mean
count distance distance location orientation azimuth elevation
FULL [92] 67.0 59.8 45.2 75.3 725 47.5 30.2 33.0 53.82
OURS 47.6 453 40.7 80.7 13.7 34.6 9.3 17.3 36.15[1]
- Tuned / Total (%) 0.03 2.11 0.03 0.20 2.12 0.04 0.04 0.12 0.58
- Fourier Percentage (%) || 50.0  100.0 100.0 50.0 50.0 50.0 100.0 50.0 68.8

Table S11: VTAB-1k [78] Natural per-task results for ViT-Base/16 [23] pretrained on MOCO [26].

ViT-Base/16 [23] VTAB-1k [78] Natural [7] Mean
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397
FULL [92] 57.6 91.0 64.6 91.6 799 898 20.1 71.95
OURS 73.6 90.5 70.5 92.4 883 847 423 |7747]5]
- Tuned / Total (%) 0.20 1.15 0.06 0.11 0.14 0.06 046 0.31
- Fourier Percentage (%) 50.0 100.0 50.0 50.0 100.0 100.0  50.0 71.4

Table S12: VTAB-1k [78] Specialized per-task results for ViT-Base/16 [23] pretrained on
MOCO [26].

ViT-Base/16 [23] ‘ VTAB-1k [78] Specialized [4] Mean
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 85.1 96.4 83.1 74.2 84.72
OURS 86.7 95.7 85.2 75.5 85.76 [3]
- Tuned / Total (%) 0.11 0.03 0.15 0.06 0.09
- Fourier Percentage (%) 100.0 100.0 50.0 50.0 75.0

Table S13: VTAB-1k [78] Structured per-task results for ViT-Base/16 [23] pretrained on
MOCO [26].

ViT-Base/16 [23] VTAB-1k [78] Structured [8]
(85.8M) Clevr/ Clevr/ DMLab KITTI/ dSpn.tes/ dSprltgs/ Smal'lNORB/ SmallNQRB/ Mean
count distance distance location orientation azimuth elevation
FULL [92] 55.2 56.9 44.6 77.9 63.8 49.0 31.5 36.9 51.98
OURS 76.3 63.0 46.1 82.2 85.3 474 23.8 45.8 58.74 [6]
- Tuned / Total (%) 0.06 1.07 0.06 0.23 0.12 0.07 0.07 0.06 0.22
- Fourier Percentage (%) || 50.0 50.0 50.0 50.03 50.0 50.0 100.0 50.0 56.3
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S2 Per-task Results on Ablation Study

S2.1 Per-task Results of Transform Type on VTAB-1k Natural and Specialized

Table S14: Transform type per-task results on VTAB-1k [78] Natural for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1K [78] Natural [7] .
(85.8M) CIFAR-100 Caltech101 DTD Flowersl102 Pets SVHN Sun397
FULL [92] 57.6 91.0 646 OI.6 790 898 201 | 7195
VPT-SHALLOW [4] 777 869 626 975 873 745 512 |76814]
- Tuned / Total (%) 0.18 0.10 004 027 008 019 036 | 0.17
VPT-DEEP [4] 78.8 90.83) 658  98.0 883 78.1 49.6 |78.48[6]
- Tuned / Total (%) 0.20 020 015 010 004 054 041 0.23
OURS-FLL 0.8 917 705 985 894 833 527 |80.9816]
- Tuned / Total (%) 0.20 031 020 011 006 012 04l 0.21
OURS-LLL 79.5 915  70.1 985  89.6 820 52.6 |80.54[6]
- Tuned / Total (%) 0.20 031 020 0.1 006 0.12 041 0.21
OURS-FFT + FDA [71] 80.7 914 694 985 899 836 527 |80.90 (6]
- Tuned / Total (%) 0.20 031 020 011 006 012 041 0.21
OURS-FFT (default) 80.7 914 694 993 903 856 527 |81.35(6]
- Tuned / Total (%) 0.20 031 020 0.1 006 012 041 0.21

Table S15: Transform type per-task results on VTAB-1k [78] Specialized for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Specialized [4] Mean
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 85.1 96.4 83.1 74.3 84.72
VPT-SHALLOW [4] 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 81.8 96.1 83.4 68.4 82.43 2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57
OURS-FLL 83.3 95.2 83.5 74.1 84.02 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-LLL 71.3 95.5 82.7 75.0 82.64 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-FFT + FDA [71] 83.2 95.1 82.4 754 84.03 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-FFT (default) 83.5 96.5 84.4 75.4 84.93 [4]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33

S2.2 Per-task Results of Fourier Prompt Depth on VTAB-1k Natural and Specialized

Table S16: Fourier prompt depth per-task results on VTAB-1k [78] Natural for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB- 1k [78] Namural [7] N
(85.8M) CIFAR-100 Caltech10l DTD Flowers102 Pets SVHN Sun397
FULL [92] 57.6 910 646 916 799 898 291 | 71.95
VPT-SHALLOW [4] 777 869 626 975 8§73 745 512 |7681[4]
~Tuned / Total (%) 0.18 0.10 004 027 008 0.19 036 | 0.17
VPT-DEEP [4] 78.8 90.8(3) 658  98.0 883 78.1 49.6 |78.4816]
- Tuned / Total (%) 0.20 020 015 010 004 054 041 0.23
OURS (13579 11) 80.0 91.6 684 985 895 827 527 |80.48I6]
- Tuned / Total (%) 0.20 031 020 011 006 0.12 041 0.21
OURS (1-6) 80.8 91.8 695 985 894 835 52.0 |80.79[6]
- Tuned / Total (%) 0.20 031 020 0.1 006 0.2 041 0.21
OURS (7-12) 80.3 91.1 700 986 894 836 527 [80.83[6]
- Tuned / Total (%) 0.20 031 020 0.1 006 0.2 041 0.21
OURS (1-12 (default)) 80.7 914 694 993 903 85.6 527 |81.35[6]
- Tuned / Total (%) 0.20 031 020 011 006 0.12 041 0.21
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Table S17: Fourier prompt depth per-task results on VTAB-1k [78] Specialized for ViT-
Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Specialized [4] Mean
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 85.1 96.4 83.1 74.3 84.72
VPT-SHALLOW [4] 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 81.8 96.1 83.4 68.4 82.43 2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57
OURS (1357911) 82.9 95.2 81.8 75.1 83.73 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS (1-6) 84.0 95.0 83.6 74.7 84.34 3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS (7-12) 83.3 95.4 82.4 74.1 83.93 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS (1-12 (default)) 83.5 96.5 84.4 754 84.93 [4]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33

S2.3 Per-task Results of Fourier Prompt Location on VTAB-1k Natural and Specialized

Table S18: Fourier prompt location per-task results on VTAB-1k [78] Natural for ViT-
Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Natural [7] Mean
(85.8M) CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397
FULL [92] 57.6 91.0 64.6 91.6 79.9 89.8 29.1 71.95
VPT-SHALLOW [4] 1.7 86.9 62.6 97.5 87.3 745 51.2 |76.81[4]
- Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 036 0.17
VPT-DEEP [4] 78.8 90.8(3) 65.8 98.0 88.3 78.1 49.6 |78.48 (6]
- Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 054 041 0.23
OURS-Append 81.0 924 72.2 98.4 86.7 856  50.8 |81.02]6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 041 0.21
OURS-Random 81.9 91.8 66.0 98.3 89.2 71.7 515 |78.62[6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 006 0.12 041 0.21
OURS-Prepend (default) 80.7 91.4 69.4 99.3 90.3 85.6 52.7 |81.35(6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 041 0.21

Table S19: Fourier prompt location per-task results on VTAB-1k [78] Specialized for ViT-
Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Specialized [4] Mean
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 85.1 96.4 83.1 74.3 84.72
VPT-SHALLOW [4] 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 81.8 96.1 83.4 68.4 82.43 [2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57
OURS-Append 83.2 95.1 81.5 75.4 83.80 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-Random 83.2 95.1 76.2 75.4 82.47 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-Prepend (default) 83.5 96.5 84.4 75.4 84.93 [4]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
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S2.4 Per-task Results of Fourier Prompt Dimension on VTAB-1k Natural and Specialized

Table S20: Fourier prompt dimension per-task results on VTAB-1k [78] Natural for ViT-
Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Natural [7] Mean
(85.8M) CIFAR-100 Caltech1l01 DTD Flowers102 Pets SVHN Sun397
FULL [92] 57.6 91.0 64.6 91.6 79.9 89.8 29.1 71.95
VPT-SHALLOW [4] 7.7 86.9 62.6 97.5 87.3 745 51.2 |76.81[4]
- Tuned / Total (%) 0.18 0.10 0.04 0.27 0.08 0.19 0.36 0.17
VPT-DEEP [4] 78.8 90.8(3) 65.8 98.0 88.3 78.1 49.6 |78.48 [6]
- Tuned / Total (%) 0.20 0.20 0.15 0.10 0.04 0.54 041 0.23
OURS-Sequence length 79.8 91.6 70.3 98.5 89.6 84.0 52.3 |80.88 [6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 041 0.21
OURS-Hidden 80.5 91.5 69.9 98.5 89.5 83.5 51.9 |80.74 [6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 041 0.21
OURS-Both (default) 80.7 91.4 69.4 99.3 90.3 85.6 52.7 |81.35[6]
- Tuned / Total (%) 0.20 0.31 0.20 0.11 0.06 0.12 041 0.21

Table S21: Fourier prompt dimension per-task results on VTAB-1k [78] Specialized for ViT-
Base/16 [23] pretrained on supervised ImageNet-21k.

ViT-Base/16 [23] VTAB-1k [78] Specialized [4] Mean
(85.8M) Patch Camelyon EuroSAT Resisc45 Retinopathy
FULL [92] 85.1 96.4 83.1 74.3 84.72
VPT-SHALLOW [4] 78.2 92.0 75.6 72.9 79.66 [0]
- Tuned / Total (%) 0.01 0.05 0.09 0.01 0.04
VPT-DEEP [4] 81.8 96.1 83.4 68.4 82.43 [2]
- Tuned / Total (%) 1.06 1.07 0.15 0.02 0.57
OURS-Sequence length 81.5 95.3 825 75.0 83.57 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-Hidden 833 94.7 82.8 74.6 83.87 [3]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33
OURS-Both (default) 83.5 96.5 84.4 75.4 84.93 [4]
- Tuned / Total (%) 1.06 0.12 0.11 0.03 0.33

S2.5 Sensitivity of Fourier Prompt Percentages and Prompt Lengths
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Figure S1: Sensitivity of visual Fourier prompt percentages and its prompt lengths on VTAB-1k [78] DTD.



S3 Per-task Results on Fourier Percentage

Table S22: Fourier percentage per-task results on VTAB-1k [78] Natural for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k. The highest accuracy among all Fourier percentages are
shown in bold.Same for Table S23 and S24

Fourier VTAB-1k [78] Natural [7]
Percentage (%) || CIFAR-100 Caltech101 DTD Flowers102 Pets SVHN Sun397
0 78.8 90.8 65.8 97.9 88.4 764 49.6
30 79.7 91.4 69.4 — — 831 51.3
50 80.3 91.4 68.5 99.3 90.3 843 527
70 80.7 91.3 66.6 — — 840 521
100 80.6 91.0 67.8 98.3 872 785 523

Table S23: Fourier percentage per-task results on VTAB-1k [78] Specialized for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k.

Fourier VTAB-1k [78] Specialized (4)
Percentage (%) || Patch Camelyon EuroSAT Resisc45 Retinopathy
0 82.0 96.1 83.4 68.0
30 82.6 95.3 84.3 —
50 82.4 96.1 83.6 74.6
70 83.2 96.2 83.2 —
100 83.3 96.3 83.1 75.4

Table S24: Fourier percentage per-task results on VTAB-1Kk [78] Structured for ViT-Base/16 [23]
pretrained on supervised ImageNet-21k.

Fourier VTAB-1k [78] Structured [8]
Percentage (%) Clevr/ Clevr/ DMLab I_(ITTI/ dSprl_tes/ dSpntgs/ Smal}NORB/ SmallNQRB/
count distance distance location orientation  azimuth elevation
0 685 60.0 465 72.8 73.6 47.3 29.3 40.2
30 73.7 612  46.7 76.8 74.7 46.1 24.6 42.0
50 73.5  62.1 47.1 79.3 74.5 47.9 30.6 41.9
70 743 627 48.3 79.0 79.7 56.0 30.8 43.4
100 758 632 475 77.1 81.5 47.9 34.1 42.0
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S4 Visualization of Attention Map
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Figure S2: (a) More visualization results of 2D attention map on VTAB-1K [78] (b) Correspond-
ing 3D attention maps. Figures are best viewed by zooming in. (c) More visual inspection of VPT
and VFPT using GradCAM [104]. Consistent to our paper, the red regions correspond to high score
for class. From left to right are input image after standard data augmentation, GradCAM results for
VPT and GradCAM results for VFPT. Figure best viewed in color.

In this section, we present more details and results of visualization of attention maps to support our
findings in §4.4. All samples selected from VTAB-1k [78] have the same prompt length (i.e., 10
prompts) with one class token and 196 input patches.

In Fig.S2(a), we can first observe a significant attention distribution in learnable prompts and then
a notably higher concentration in global attention scores when integrating visual Fourier prompts,
showing consistency with our paper.

In Fig.S2(b), we present more visualization inspection results for VPT and VFPT using Grad-
CAM [104]. Overall, we present additional visual evidence to support the notion that the integration
of visual Fourier prompts encourage clear foreground-background separation.

23



S5 Visualization of Loss Landscape
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Figure S5: Loss landscape on VTAB-1k [78] Structured.
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S6 Extension to Language Tasks

While ViT-Base/16 [23] is structurally similar to BERT [107], we follow [5, 108] and naturally test
the efficiency of the VFPT on natural language understanding (NLU) tasks. Specifically, we include
BERT-Large [107] for evaluation, and compare full fine-tuning (FULL) [2], Prompt Tuning [2],
P-Tuning v2 [108] and E2VPT [5] on SuperGlue [107] dataset: a collection of text classification tasks
to test the general language understanding ability. The tasks include natural language inference (RTE
and CB), coreference resolution (WSC), sentence completion (COPA), word sense disambiguation
(WiC), and question answering (MultiRC (Fla), ReCoRD (F1) and BoolQ). In Table S25, we show
that VFPT outperforms FULL and Prompt Tuning and show competitive results to P-Tuning v2 [108].
Considering VFPT is designed for visual-related tasks, and text understanding tasks might not need
fruitful frequency domain information, these results are impressive and suggest future work for a
general solution across modalities under the pretrain-then-finetune paradigm.

Table S25: Per-task results for SuperGLUE development set [109] with a pretrained BERT-
Large [107]. See §S6.

BERT-Large [107] SuperGLUE [107] [8] Mean
(335M) BoolQ CB COPA MultiRC (Fla) ReCoRD (F1) RTE WiC WSC

FULL [2] 7777 946 69.0 70.5 70.6 70.4 749 68.3 [74.50
Prompt Tuning [2]|| 67.2 80.4 55.0 59.6 442 53.5 63.0 64.4 |60.91
P-Tuning v2 [108] || 73.1 94.6 73.0 70.6 72.8 78.3 75.1 68.3 |75.73
E2VPT [5] 744 804 77.0 65.8 71.9 78.7 743 67.3 |73.73
OURS 748 812 78.1 67.8 72.9 77.2 75.3 68.4 |74.46

S7 Extension of Complexity Analysis

Table S26: Complexity analysis of fourier percentage settings on CIFAR-100 benchmark. The
percentages in the results indicate the rate of improvement compared to VPT.

Fourier Percentage (%) || Maximum Memory Consumption (GB) Training Average Batch Time (s) Inference Average Batch Time (s)

VPT (0%) 1.8210 0.1140 0.0499
VEPT (30%) 1.8210 (0%) 0.1169 (+2.54%) 0.0505 (+1.20%)
VEPT (50%) 1.8210 (0%) 0.1155 (+1.32%) 0.0502 (+0.60%)
VEPT (70%) 1.8210 (0%) 0.1150 (+0.88%) 0.0500 (+0.20%)

VEPT (100%) 1.8210 (0%) 0.1150 (+0.88%) 0.0501 (+0.40%)

We have provided a detailed comparison of our computational results in this section. More specifically,
we experimented with different Fourier percentage settings (i.e.., the alpha rate) on the CIFAR-100
benchmark and reported their maximum memory consumption, average training batch time, and
average inference batch time. All settings were tested with the same batch size and prompt length.
The experiments were conducted on NVIDIA A100-40GB GPUs.

As illustrated in Table S26, no significant increase in maximum memory consumption at the MB level
is observed across different Fourier percentage settings. However, we do observe a slight increase in
average batch time during both training and inference, on the order of 10~2 and 10~%, respectively.
This suggests that a lower Fourier percentage incurs a higher computational burden. This effect is
likely attributable to suboptimal parallel acceleration and the implementation inefficiencies associated
with prompts that have partial Fourier transformation. We will investigate this further in future
research.

S8 Asset License and Consent

The majority of VPT [4] is licensed under CC-BY-NC 4.0. Portions of [4] are available under
separate licenses: google-research/task_adaptation and huggingface/transformers are licensed under
Apache-2.0; Swin-Transformer [24] and ViT-pytorch [23] are licensed under MIT; and MoCo-v3 [26]
and MAE [90] are licensed under CC BY 4.0.

All the datasets included in our study are publicly available (VTAB-1K, FGVC), and all the models
are publicly available. We would like to state that the contents in the dataset do NOT represent our
views or opinions.
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S9 Reproducibility

VFPT is implemented in Pytorch [91]. Experiments are conducted on NVIDIA A100-40GB GPUs. To
guarantee reproducibility, our full implementation shall be publicly released upon paper acceptance.
For training schedule, the superior low-complexity of FFT (i.e., O(nlogn)) allows for efficient
training of visual Fourier prompts with only a slight decrease in training speed (i.e., 2.8% on
VTAB-1k [78] compared to VPT).

S10 Social Impact and Limitations

This study presents VFPT, demonstrating significant and generalizable performance enhancements
over state-of-the-art baselines across two benchmarks. The incorporation of the FFT contributes these
advantages without necessitating architecture-specific designs or incurring substantial computational
overhead under pretrain-then-finetune paradigm for large-scale models (see §3). Our approach enjoys
advanced model accuracy, and is valuable in real-world computational-sensitive applications, e.g.,
training machine learning models on edge devices. Moreover, VFPT advances significantly towards
achieving generality across datasets, demonstrating substantial performance improvements even when
faced with large dataset disparities (see §4). This progress is crucial for the continuous development
of PEFT across a wider spectrum of applications.

For potential limitations, drawing inspirations from human visual cognition, our method incorporates
spatial and frequency information, which brings an additional hyper-parameter — Fourier percentage
(i.e., o in §3.2). However, in practical applications, we observe in §4.2 that dataset disparity (i.e.,
low disparity tasks prefer small « value, and vice versa) serves as a guideline for selecting an
appropriate Fourier percentage. Nonetheless, we argue that the implementation of an automatic
Fourier percentage search can further augment efficiency.

S11 Discussion and Future Work

In §2, we review PEFT methods and the application of the fast Fourier transform in vision. Notably,
a recent study [36] in NLP incorporates Fourier transform as a viable PEFT approach, which
warrants discussion. Specifically, it learns a set of spectral coefficients of Fourier basis using a
LoRA-based approach and then applies the inverse discrete Fourier transform to the spectral matrix,
yielding its spatial-domain counterpart as the updated weight change. Although the Fourier basis’s
orthogonal and expressive advantages reduce the need for extensive parameter fine-tuning, the inverse
transform applied to the spectral matrix discards frequency information, ultimately considering only
traditional spatial domain features. The parameter-efficient use of the Fourier transform in this study
is orthogonal to our method, where both spatial and frequency domain information are integrated
(see §3) for enhanced generality (see §4.2) and interpretability (see §4.4).

Despite VFPT systemic effectiveness and simplicity, it also comes with new challenges and unveils
some intriguing questions. For example, the balance between spatial and frequency information is
presently dictated by task-specific, manually set percentages (see §4.2). Introducing a small network
within the VFPT framework to autonomously search for optimal combinations might enhance training
efficiency and facilitate additional performance improvements. Another essential future direction
deserving of further investigation is the integration of visual information from both the spatial and
frequency domains. In §4.5, we demonstrate through ablation studies that integration at the pre-
processing stage may not yield satisfactory performance. Consequently, we outline several alternative
integration approaches in Table 4, demonstrating that VFPT holds the most advantageous position
under the prompt tuning paradigm. Nonetheless, the applicability of this integration to other PEFT
methods requires further investigation.
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