
Atlas3D: Physically Constrained Self-Supporting
Text-to-3D for Simulation and Fabrication

Yunuo Chen1∗∗, Tianyi Xie1∗, Zeshun Zong1∗, Xuan Li1,
Feng Gao2†, Yin Yang3, Ying Nian Wu1, Chenfanfu Jiang1

1University of California, Los Angeles, 2 Amazon, 3 University of Utah
{yunuoch, tianyixie77, zeshunzong, xuanli1}@ucla.edu, fenggo@amazon.com,

yin.yang@utah.edu, ywu@stat.ucla.edu, cffjiang@ucla.edu

Abstract

Existing diffusion-based text-to-3D generation methods primarily focus on pro-
ducing visually realistic shapes and appearances, often neglecting the physical
constraints necessary for downstream tasks. Generated models frequently fail to
maintain balance when placed in physics-based simulations or 3D-printed. This
balance is crucial for satisfying user design intentions in interactive gaming, em-
bodied AI, and robotics, where stable models are needed for reliable interaction.
Additionally, stable models ensure that 3D-printed objects, such as figurines for
home decoration, can stand on their own without requiring additional support. To
fill this gap, we introduce Atlas3D, an automatic and easy-to-implement method
that enhances existing Score Distillation Sampling (SDS)-based text-to-3D tools.
Atlas3D ensures the generation of self-supporting 3D models that adhere to physi-
cal laws of stability under gravity, contact, and friction. Our approach combines a
novel differentiable simulation-based loss function with physically inspired regu-
larization, serving as either a refinement or a post-processing module for existing
frameworks. We verify Atlas3D’s efficacy through extensive generation tasks and
validate the resulting 3D models in both simulated and real-world environments.

1 Introduction

Generating high-quality 3D content is of great importance in modern visual computing. Realistic 3D
models are highly sought after in computer graphics, while robust real 3D assets are gaining attention
in training embodied AI. Nevertheless, the standability of 3D models – the ability to stand steadily
without additional support – is often neglected. Real-world man-made objects such as action figures,
toys, and furniture inherently possess some degree of geometric stability, allowing them to be safely
placed on the ground. Although one usually takes such standability for granted, existing generative
models fail to produce steady 3D assets due to their lack of physical perception; see Fig. 1.

Incorporating this stability expectation into 3D generation will significantly reduce the human effort
required for tasks such as sorting out unqualified meshes, post-processing geometries, or adding
external supports before actually using the 3D asset in any simulator or the real world. Furthermore,
creating physically plausible 3D content will enhance the fidelity of simulations and policy training
with these objects, potentially narrowing the sim-to-real gap and empowering embodied AI in robotic
tasks. Towards this goal, we develop a 3D generation framework that can produce high-quality
models adhering to basic physical laws, such as gravity, stability, and frictional contact.

Several attempts have been made to incorporate physical constraints into 3D generation. Yang et al.
utilized the spatial and physical sense of LLM to design floor plans and furniture arrangements [98].
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(a) w/ Atlas3D

(b) w/o Atlas3D 

Figure 1: Simulation in ABD [27]: (a) 3D models generated from our Atlas3D framework can stand
steadily on the ground; (b) those generated from existing methods tend to fall over.

PhyScene introduced physical guidance, such as collision and reachability constraints, to diffusion
models to generate furniture layouts [97]. However, both works primarily consider straightforward
spatial constraints, such as non-collision, and fail to incorporate more complex physics. Mezghanni
et al. proposed a GAN-based network to generate physically-aware geometries by training a neural
stability predictor using datasets labeled by Bullet [48]. Another GAN-based work by Wang et al.
employed CFD software to compute vehicle drag coefficients, guiding the generation of stream-
lined vehicle meshes [85]. Such indirect incorporation of physical simulations, however, results
in suboptimal efficiency and accuracy. Furthermore, due to the low expressibility of the backbone
latent representation, the versatility of the generated results is very limited compared to current
state-of-the-art diffusion-based models, as the results are typically confined to specific categories
(e.g., furniture and vehicles). Most recently, Ni et al. bridged differentiable physical simulation
with differentiable rendering to obtain virtual 3D reconstructions from real-world images that are
physically plausible in simulators. Their work primarily focused on simple four-leg-supported objects
such as tables and chairs [54]. Moreover, the evaluations of all aforementioned works are conducted
in virtual simulators, leaving their performance in the real world untested. This limitation hinders
potential downstream applications such as industrial manufacturing and robotic manipulation.

Since the pioneering work DreamFusion [58], Score Distillation Sampling (SDS) has demonstrated
efficacy in elevating 2D content to 3D, inspiring numerous follow-up studies [8; 35; 46; 69; 88; 109].
These advancements have enhanced both the versatility of generated content and the quality of
textures. However, none have addressed the crucial issue of physical stability. On the other hand,
traditional computational fabrication has concentrated on employing topology and shape optimization
to ensure that 3D printed objects can stand in a balanced state [59]. Directly integrating these methods
with 3D generative AI as a postprocessing module is suboptimal. Shape optimization disregards
the original input conditions of diffusion models, while topology optimization produces internal
structures that defy intuitive physics, rendering them unsuitable for training embodied AI systems
designed to emulate human-like reasoning about physical objects.

Observing this gap, we introduce Atlas3D, a generation pipeline that produces physically plausible,
self-supporting 3D models from text. Incorporating differentiable physics-based simulation into our
process, we generate models that are both simulation- and fabrication-ready. That is, they can be
directly utilized in physical simulators, or 3D-printed for real-world applications; see Fig. 1 and
Fig. 2. As our method is orthogonal to previous SDS-based techniques, which focus on non-physical
qualities, it can be seamlessly integrated into many existing generation frameworks, functioning either
as part of the refinement stage in a multi-stage method or as a post-processing step in a single-stage
method. We demonstrate the efficacy of Atlas3D by comparing the stability of our models with those
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produced by existing methods. Validation examples reveal that our generated models can be deployed
as virtual simulation assets. Their stability transfers directly to the real world, as evidenced by our
3D printed results, suggesting further applications in robot training.

2 Related Work

Diffusion-based 3D Generation Due to the abundance of information encoded in large image
latent diffusion models (LDMs) [65], extensive studies have used pre-trained LDMs to distill 3D
content. One approach is to fine-tune LDMs to support novel view synthesis, with a separate
multiview fusion step to produce 3D content [39; 68; 99; 38; 37; 89; 95; 42; 80; 25; 106; 41; 9; 83].
Another approach, which is more related to our paper, is using LDMs as likelihood discriminators. A
differentiable renderer is connected to a 3D representation, and the LDMs guide the optimization
of the representation parameters. [58] proposed Score Distillation Sampling (SDS). Efficiency
has been improved by coarse-to-fine strategies [35; 60; 79; 8] and timestep scheduling [18; 100].
3D priors are involved to improve multiview consistency [108; 66; 31; 1; 93; 36; 78]. Multiview
diffusions can also be used to evaluate SDS [69; 87; 105; 94]. Other researchers have explored SDS
variants or improvements [84; 77; 88; 24; 101; 16; 109; 96]. 3D LDMs that directly generate 3D
representations are also explored, such as compositional scenes [17; 57], point clouds [43; 81; 51],
SDFs [70; 107; 30], occupancy fields [15; 72; 45; 12] and NeRFs [3; 11; 52; 6; 55; 5; 75; 23].

Physics-aware 3D Generation Most existing 3D generative models focus only on geometry
or appearance modeling, with physics priors being underexplored. Time-independent physical
constraints, such as penetrations, can be directly defined by penalties [97; 17; 82; 40; 102]. For
time-dependent physical qualities, such as stability and comfort, data-driven quality checkers trained
with offline simulators can be applied [10; 48; 4]. Offline simulators can also be used as validators
to augment the training dataset [71] and update the design with reinforcement learning [85], and as
dynamics generators for generated 3D assets [91; 21; 62]. Another direction is to utilize differentiable
simulations, which have be widely used in tasks like robotic control [74; 19; 61; 34; 76] or inverse
problems [33; 20; 103; 53; 32; 73; 7; 104]. They can also be applied in 3D content generation to
define physics-based losses to aid per-instance generation [54; 92] or model training [47].

3 Background

3.1 Score Distillation Sampling

SDS-based methods are shown to be effective in distilling 3D models from 2D images. They utilize a
3D representation such as implicit density field, implicit Signed Distance Field (SDF), or tetrahedral
SDF [67], a differentiable renderer like NeRF [50], NeuS [86], or Nvdiffrast [26], and a pre-trained
text-to-image model such as Stable Diffusion [64] serving as diffusion guidance. The generation
process involves optimizing the parameters θ of the underlying 3D representation, where the 3D
shape is differentiably rendered to 2D images z = g(θ) and compared against the real distribution
from the diffusion model with text guidance y:

LSDS = Et,ϵ

[
w(t) ∥ϵ̂ϕ(zt, y, t)− ϵ∥2

]
, (1)

where zt is the noisy image at noise level t, w(t) is a weighting function, and ϵ̂ϕ is the predicted
noise. We refer readers to the Appendix for more technical details on SDS optimization.

3.2 Rigid Body Dynamics

To incorporate physics into our framework, we propose predicting the dynamics of the generated 3D
models using a differentiable simulator, where all objects are treated as rigid bodies. We follow the
conventions in [2] to define the dynamical states of the simulation.

The kinematics of a rigid body are described by its mass M and body-space inertia tensor Ibody,
which remains constant. Assuming the center of mass of the body initially lies at the origin, the
physical state Ψ of the body at time t (not to be confused with the noise level in diffusion) in-
cludes position T(t) and orientation R(t) (spatial information), and its linear and angular mo-
mentum P(t) and L(t) (velocity information). The rigid body equations of motion are given by
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Figure 2: 3D-printed figurines created
with Atlas3D stand stably, while those
without Atlas3D have fallen down.

d

dt
Ψ(t) =

d

dt

T(t)
R(t)
P(t)
L(t)

 =

 v(t)
ω(t) ∗R(t)

F(t)
τ (t)

 , (2)

where F(t) and τ (t) are the total force and torque ex-
erted on the body, v(t) = P(t)

M is the linear veloc-
ity, ω(t) = I(t)−1L(t) is the angular velocity, I(t) =
R(t)IbodyR(t)T is the world-space inertia tensor, and ∗
denotes cross product of ω with the columns of R. The
physical state at a later time can be derived via time inte-
gration: Ψ(t) = Ψ(0) +

∫ t

0
dΨ
ds (s)ds, which can be solved by numerical methods. By optimizing

the physical states together with the SDS loss, we can jointly refine both the 3D geometry and the
physical attributes of the generated results.

4 Atlas3D Algorithm

We introduce Atlas3D, a plug-and-play algorithm for generating 3D models from text. Focusing on
man-made objects such as action figures and toys, which generally do not deform, Atlas3D treats
generated models as rigid bodies and incorporates physics-based guidance into the generation process.

4.1 Physics Incorporation

As mentioned in § 3.2, we predict the dynamic behavior of generated models by rigid body simulations.
While various explicit or implicit representations of 3D shapes can be chosen in a generation
network, we opt for triangular meshes in our framework as they facilitate frictional contact modeling
and simplify kinematics computation. Given a triangle surface mesh representation X(θ), where
θ is the implicit parameter, we integrate X into a rigid body represented by the dynamic state
Ψ(t) = [T(t),R(t),P(t),L(t)]T , where the world-space location x of any point X on the body is
x(t) = R(t)X+T(t). Assuming the 3D model is initially placed upright3 on the ground with the
bottom point touching the surface, we define standability as:

lim
t→∞

Ψ(t) = Ψ(0). (3)

Standability intuitively indicates an equilibrium state where all external forces acting on the object
are balanced, and the physical state remains unchanged over time. However, perfectly placing an
object straight on the ground without initial velocity is impractical in the real world. For example,
when manually placing a cube on a flat table, the bottom face is unlikely to be perfectly parallel to
the table surface. A stable 3D model should recover its initial state under mild perturbations, such as
minor shaking. This state is known as stable equilibrium. Motivated by this, we augment standability
with stable equilibrium Ψ̃(t) defined as

Ψ̃(t) = Ψ(0) + ϵ0 +

∫ t

0

dΨ

ds
(s)ds and lim

t→∞
Ψ̃(t) = Ψ(0), (4)

where ϵ0 represents mild perturbations to the initial physical state. We first describe how to incorporate
the standability criterion (Eq. 3) into the optimization process of 3D generation, and then explain
how to further augment it with stable equilibrium (Eq. 4). Additionally, we introduce geometry
regularization to enhance the smoothness of generated meshes.

4.1.1 Standability through Differentiable Simulation

We utilize a differentiable rigid-body simulator to obtain the physical state Ψ(t). Assuming that the
3D model will eventually reach its steady state, ∃T ∈ R large enough such that ∀t > T,Ψ(t) = Ψ(T ).
Let S denote a differentiable simulation function. We approximate Ψ(T ) via simulation:

Ψ(T ) = S(X(θ),Ψ(0), µ, T ). (5)
3We define the upright pose by setting the upward axis to coincide with the upward axis from the pre-trained

text-to-3D model, as the upright direction is semantics-driven and generative models inherently learn these
semantics from the training data.
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Here T is the simulation end time, µ captures material parameters such as density and friction
coefficient, as well as simulator parameters such as time step and damping. We adopt the semi-
implicit Euler time-integrator in Warp [44] for simulation.

Assuming the initial translation, rotation, and velocity are all zero, the difference between Ψ(T ) and
Ψ(0) arises only from discrepancies in spatial location, as the velocity at the final steady state is also
zero. Therefore, we propose a standability loss to penalize rotational deviation due to instability:

Lstand = ∥R(T )−R(0)∥22 = ∥R(T )− I∥22, (6)
where R ∈ R3×3 represents the rotation matrix. We disregard the translation T, as real-world
instability mostly leads to rotational deviation from the initial state, such as falling to one side, while
most translations, like falling due to gravity, are irrelevant to standability.

With a differentiable simulator, the standability loss can be backpropagated to mesh vertex coordinates
and then to the implicit parameter θ as dLstand

dθ = dLstand
dX

dX
dθ . In theory, any differentiable simulator is

compatible with our framework.

4.1.2 Stable Equilibrium

Figure 3: 2D illustration of stable equi-
librium and unstable equilibrium. (a)
A square is stable as a small perturba-
tion of ϕ increases in H(xcom);(b) An
upside-down triangle is unstable as tilt-
ing decreases H(xcom).

Although the standability loss directly penalizes the non-
standability of a 3D object, it can be slow to compute, es-
pecially when T is large and many time steps are required,
creating a huge computational graph. Consequently, both
the simulation itself and the backpropagation of gradi-
ents through the simulation trajectory are time-consuming.
Additionally, standability does not necessarily imply sta-
ble equilibrium, which is crucial for real-world 3D ob-
jects such as action figures and toys. Without this prop-
erty, an object remains unstable even if standability is
achieved, known as unstable equilibrium. Unstable equi-
librium means that when a disturbance force is applied,
the object moves away from its original position instead
of recovering. Fig. 3 visualizes the difference between
stable and unstable equilibrium. In the absence of per-
turbation, geometries like the upside-down triangle may
remain standable in a simulator but are clearly unstable in
the real world. Thus, we augment standability with stable
equilibrium (Eq. 4). One straightforward way to incorpo-
rate this property is to introduce initial perturbation ϵ0 into
the simulator. However, this would require many more
simulations with various perturbations and subsequent loss
backpropagation, which is extremely time-consuming.

Inspired by the concept of a potential well [13], we augment our optimization objective with a robust
and efficient stable equilibrium loss Lstable. Specifically, for an object to be robustly standable, it needs
to reside at a local minimum of potential energy—specifically, gravitational potential energy—so
that if perturbed, gravity will act as a restoring force that returns the object to its original state. For
a rigid body, gravitational potential energy is determined by the height of its center of mass. Thus,
for any object in a stable equilibrium state, the center of mass would rise if it is slightly perturbed.
This leads to our formulation of the stable equilibrium loss Lstable. Let xcom denote the position of the
center of mass of the underlying geometry and H(x) denote the distance of the point x to the ground,
assuming the object’s pivot point is at z = 0. The stable equilibrium loss is defined as:

Lstable := Ev∈R2,||v||=1

[
max{H(xcom(P

ϕ
vX))−H(xcom(X)), 0}

]
, (7)

where Pϕ
v represents the rotation of ϕ radian about axis [vT , 0]T . Mathematically, a local minimum

of gravitational potential energy is reached if ∃ϕ0 such that ∀ϕ ∈ (0, ϕ0),Lstable = 0. In practice, we
fix the perturbation scale ϕ and uniformly sample 20 perturbation directions v in xy-plane.

4.2 Additional Regularization

While standability loss Lstand and stable equilibrium loss Lstable provide a well-defined objective for
robust standing, they may lead to distorted optimized meshes due to the high-dimensional searching

5



[…] a standing rooster […]a broccoli […] front view of a snowboarding man

M
ag
ic
3
D

O
u
rs

Figure 4: Comparison with Magic3D [35] includes zoom-in views that highlight the detailed changes
in geometry. Our method enhances Magic3D with physics priors to generate self-supporting meshes.

space of implicit parameter θ without constraint. To constrain the optimization space and obtain
smooth meshes, we add a normal consistency term that favors smooth solutions:

Lnormal =
1

|T |
∑

(i,j)∈T

(1− ni · nj), (8)

where T is the set of the triangle pairs sharing a common pair with ni,nj being their normals
respectively. This term maximizes the cosine similarity between neighboring surface triangle normals,
leading to smoother meshes. Considering the bottom surfaces of most robust standing objects are flat,
we apply the Laplacian loss to a subset B of vertices with a height lower than a threshold hb:

Lb-lap =
1

|B|
∑
i∈B

∥δi∥2, (9)

where δi = (LV)i ∈ R3 calculates the differential coordinates of vertex i with L being the Laplacian
matrix of the mesh graph and V representing mesh vertices. Intuitively, this loss term attempts to
minimize the distance between vertex i and the average position of adjacent vertices.

4.3 Method Overview

With the physically-inspired loss terms derived above, we now describe how to incorporate them
into the text-to-3D framework. SDS-based methods and their variants start optimization with a
random initialization of the implicit parameters, which initially have no knowledge of the model’s
geometry. Adding physical constraints at this early stage would be ineffective. Therefore, we propose
a two-stage training strategy: the coarse stage and the refine stage. In the coarse stage, we generate a
rough shape of the model using a text prompt. We can adopt any SDS-based generation framework as
our baseline model, offering various choices of implicit representation and differentiable renderers. In
the refine stage, we optimize the geometry with our physical constraints included. For this, we use a
tetrahedral SDF representation [67] and employ Deep Marching Tetrahedra (DmTet) to differentiably
convert the coarse geometry from implicit density or SDF as necessary. We utilize Nvdiffrast [26] as
the differentiable renderer and Stable Diffusion v2.1 [64] for guidance. We propose the following
loss function for the joint optimization of texture, geometry, and stability:

L = λSDSLSDS + λstandLstand + λstableLstable + λnormalLnormal + λb-lapLb-lap (10)
In practice, we observe that adding standability loss once every 10 iterations is sufficient to ensure a
significant reduction in loss without notably increasing computational overhead.

5 Experiments

In this section, we devise comprehensive experiments (both virtual and real-world) to demonstrate
the efficacy of our method. We use a series of text prompts to generate 3D models that we expect to
be self-supporting, and compare the generated results with baseline models. Our models are verified
by simulation for stability and then fabricated using a 3D printer for real-world testing. We refer
readers to the Appendix for more details about implementation, training, and experiment setup.
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Figure 5: Atlas3D is also compatible with MVDream [69], enhancing it with stable standability.

5.1 Simulation Verification

Qualitative Comparison Using the same text prompts, we compare our generated models with
previous methods. The quality of the results is assessed by their stability, which is verified by a
forward simulation: we simulate the generated models in an upright initial position close to the
ground for a sufficiently long time and record whether they fall. Using Magic3D [35] as the baseline
model, we visualize the initial state and a later state in Fig. 4. Our generated meshes remain stable
throughout the simulation, while the baseline models fail under the same conditions due to a lack of
consideration for physics.

We highlight the main changes in mesh topology that enable the models to stand (see Fig. 4).
These changes include modifications to both the overall shape and specific local geometries. More
specifically, our physical adjustments alter the contact surface to gain more support from the ground
and shift the center of mass to be slightly lower and more centered above the contact surface. These
macroscopic and microscopic optimizations jointly increase the support to the models, thus ensuring
their stability. Note that our method slightly modifies the texture of the generated results as we are
jointly optimizing our physical adjustments with the SDS loss.

Since we do not assume a specific baseline model in the first stage, we can vary the model used
in the coarse stage to generate versatile, physically-aware 3D meshes based on different existing
SDS generation models. We use MVDream [69] as another baseline model and compare the results
side-by-side with ours in Fig. 5. Our method improves the geometry of the mesh and ensures stability
in simulation. The quality of the texture and the main part of the shape is determined by the underlying
model used in the coarse stage, while we focus on improving the physical stability in the refinement
stage. More qualitative comparisons with previous methods are provided in the Appendix.

Ablation Study We perform ablation studies to demonstrate the necessity of our proposed losses.
It can be observed in Fig. 6(b), that without standability loss Lstand, the model fails to stand. While
the model can still stand without stable equilibrium loss Lstable, as demonstrated in Fig. 6(c), it is less
stable under perturbation (see next section for details). The geometry regularization loss term Lb-lap
helps smooth the geometry and avoid spiky artifacts on the surface as shown in Fig. 6(d). Additionally,
we show that applying mesh regularization as a post-processing step, rather than integrating it with
SDS loss in a joint optimization, can degrade text alignment as this neglects the semantics during the
deformation process (see Fig. 6(e)).

(e) w/o SDS (d) w/o b-lap (b) w/o stand(a) Ours (c) w/o stable

Figure 6: Ablation study of each loss term.
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Table 1: Comparison of success rate under perturbation (goose).

Perturbation Angle θmax 0 0.01 0.02 0.04 0.08
w/ stability loss 1 1 0.99 0.69 0.4

w/o stability loss 1 0.97 0.71 0.62 0.23

Perturbation Angle (rad)

Su
cc

es
s R

at
e

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20

ultraman astronaut-horse goose
mannequin snowboarding

Figure 7: Success rate of models stand-
ing under perturbation.

Stability under Perturbation In the real world, placing
an object on the ground always involves some noise, as both
human and robot manipulation have imprecision in angles
and directions. Hence, the standability of an object under
small perturbations is crucial for improving the success rate
of such tasks.

To mimic this uncertainty in our framework, we evaluate the
stability of our generated models under a small initial rota-
tion. With a given precision ϕmax, we rotate the generated
mesh at random angles ϕy, ϕx ∈ (−ϕmax, ϕmax) in both
the y and x axes, respectively (with the z axis being the up
direction). The mesh is then placed close to the ground and
tested in a simulation to see if it can still stand. We choose
13 different values of the maximum perturbation angle ϕmax

and perform 100 random tests with each angle on 6 of our
generated models. We report the success rate in Fig. 7. We
define a successful test as: after a sufficiently long time pe-
riod, the maximum height of the model stays within 3% of
the initial maximum height.

Due to the presence of physical constraints, our generated models can withstand small initial pertur-
bations, while the baseline models fail to stand when placed straight up (without rotation), let alone
with perturbations. Furthermore, introducing the stable equilibrium loss consistently increases the
success rate of standing under different scales of perturbations, as shown in Table. 1.

w/ Atlas3D w/o Atlas3D

Figure 8: Standability evaluation on
uneven surfaces.

Standability on Different Platforms Our pipeline can
be generalized to learn standability on various platforms,
not just flat ground, by incorporating them as boundary
conditions in the simulator. To demonstrate this, we use
a 10-degree inclined plane and a sphere, then train our 3D
model separately to stand still on each. Modeling frictional
contact is crucial for achieving stability in such scenarios.
As shown in Figure Fig. 8, our optimized mesh stands stably
on both the incline and the sphere with the help of static
friction, whereas the baseline model fails as expected.

Simulator Cross-validation While we base our method
on a differentiable rigid-body simulator with a semi-implicit
Euler time-integrator, our pipeline is compatible with any
other physics-based simulator as the backbone, with dif-
ferentiability required for the training stage. To verify the
reliability of models generated with our simulator, we in-
clude an external simulator in the testing stage to verify the
correctness of the simulated dynamics. We choose the Incre-
mental Potential Contact (IPC) method [27; 29], which has
been proven accurate for frictional contact. We validate the
correctness of every single generated model and visualize
the simulation results in Fig. 1.
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Figure 10: Standability test using a robotic arm. More results are shown in the Appendix.

0.00

0.25

0.50

0.75

1.00

1.25
w/o Atlas3D w/ Atlas3D

Figure 9: TRD results from 107 prompts
using the Magic3D baseline and our
method.

Quantitative Evaluation We examine the versatility of
our method. We randomly select 150 prompts from [58]
and manually exclude 43 prompts deemed unfeasible (for
instance, it does not make sense to require “a swan and its
cygnets swimming in a pond” to be standable), leaving a
total of 107 prompts. We use the two-stage Magic3D [35]
as the baseline model and compare our optimized mesh
with the results from the refine stage of the baseline under
the same settings (e.g., iterations, loss weights).

To evaluate the standability of the baseline method and our
method, we run the rigid body simulation in Warp with
simulation end time T = 2.0 at which almost all objects
have reached the steady state. We propose Time-Averaged
Rotation Deviation Loss (TRD) defined as

TRD =
1

T

∫ T

0

||R(t)ẑ−R(0)ẑ||2dt (11)

to assess the standability, as a representation of the average tilting of the upward direction ẑ (of
the object) over time. We approximate the integral (Eq. 11) with discrete quadrature ∆t = 0.02.
Results are plotted in Fig. 9 4. The mean TRD score is reduced by more than six times compared
with the baseline method. As shown in Table. 2, we calculate the average CLIP score [63] of 107
generated shapes for both our proposed method and baseline. Furthermore, Elo (GPT-4o) [90] scores
are presented. Both metrics illustrate that our method not only implements physics-based stability
but also maintains the fidelity of the generated 3D shapes in terms of content alignment and overall
shape quality. More details are provided in the Appendix.

5.2 Real-world Validation

Table 2: Quantitative Evaluation
Metrics Ours Magic3D

TRD ↓ 0.060 0.389
CLIP ↑ 25.356 25.781

Elo (GPT-4o) ↑ 970.774 1029.226

One major advantage of incorporating physics-based sim-
ulation into the optimization pipeline is that it bridges the
gap between the generated model and the real world. Our
method ensures the direct usability of the model for fabri-
cation, with success primarily dependent on the accuracy
of both the simulator and the manufacturing machine.

3D Printing and User Studies We test the readiness
of our generated meshes for real-world application by producing eight figures using a 3D-printing
device (Zortrax M200 with Z-ABS filament material). For reference, we also print the corresponding
baseline meshes generated without physical constraints. Our physically constrained figures can
steadily support themselves when gently placed on an even surface, while the baseline figures either
fail to stand at all, or require extensive adjustments and fall easily with little perturbation (see Fig. 2).

We conduct user studies with these printed figures to assess their stability under different types of
human manipulation. Ten users were asked to place the figures upright on a table, with five trials for
each figure, resulting in a total of 800 trials. Fabricated figures generated from the baseline has a
success rate of 7%, while figures generated from our method has an overall success rate of 92.25%.

4Results are ranked by TRD scores of the baseline approach.
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Itemized results are provided in the Appendix. Our method significantly increases the physical
stability of the models under varying human efforts.

Validation with a Robot Arm To showcase the compatibility of our framework with robotic
applications, we test our fabricated figures with a teleoperated LewanSoul LeArm robot arm outfitted
with a two-finger parallel gripper (see Fig. 10). The gripper is set to initially grasp a figure above the
ground. It slowly moves downward, and is then gently released to place the figure on the ground.
Four trials were performed for each figure, yielding 64 trials in total. For the baseline method, 6.25%
trials resulted in successful standing figures, while ours has a success rate of 90.6%. Experimental
data are provided in the Appendix and supplemental video.

6 Conclusion

We present Atlas3D, a physically constrained SDS-based framework that generates self-supporting
3D models from text prompts. Our framework can learn standability through a differentiable physics-
based simulator and other physics-inspired loss functions. The generated 3D models can be directly
imported into a physics simulator and are ready to be manufactured and deployed in the real world.
Our method has wide potential for generation tasks, as it can be easily integrated into many existing
pipelines and improve the physical plausibility of their generated results.

Limitations and Future Work Our physical adjustments are optimized over all mesh vertices,
resulting in a large degree of freedom in optimization. This may lead to undesired distorted meshes
[49]. Future works may consider adding a latent embedding or skeleton rigging to limit the variety
of mesh deformation. Our framework focuses on SDS-based methods as a backbone. It would be
interesting to further generalize our physical constraints to other non-SDS or non-diffusion based
methods [22; 49; 28]. Finally, we only consider text-to-3D tasks in this work. An exciting extension
is to generalize our work to image-to-3D tasks [60; 39].
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A Appendix

A.1 Score Distillation Sampling

Score Distillation Sampling (SDS) has proven to be an effective method for distilling 3D models
from 2D images. SDS-based methods leverage a combination of 3D representations, differentiable
rendering, and pre-trained text-to-image diffusion models to optimize 3D shapes with high fidelity
and realism.

The generation process in SDS methods involves optimizing the parameters θ of the 3D representation.
At each iteration, the 3D geometry is differentiably rendered into a 2D image z = g(θ). This image
is then compared with the distribution of real images as modeled by the diffusion model. More
specifically, the input image z is first noised with a random noise ϵ at a specified noise level t. The
diffusion model then predicts the noise ϵ̂ϕ with text guidance y, and this prediction is compared with
ϵ, resulting in the following loss:

LSDS = Et,ϵ

[
w(t) ∥ϵ̂ϕ(zt, y, t)− ϵ∥2

]
, (12)

where w(t) is a weighting function modulating the influence of different noise levels. The expectation
is taken over the noise level t and noise term ϵ, ensuring that the generated 3D shape aligns with the
text-guided distribution of images.

The gradient with respect to the optimization parameter θ is then backpropagated as follows:

∇LSDS(z = g(θ)) = Et,ϵ

[
w(t) (ϵ̂ϕ(zt, y, t)− ϵ)

∂z

∂θ

]
, (13)

where the U-Net Jacobian term ∂ϵ̂ϕ
∂zt

is omitted for efficient optimization.

For further technical details on SDS optimization, we refer readers to [58; 35; 46].

A.2 Implementation and Training Details

We implement our pipeline in PyTorch with Adam optimizer. For differentiable simulation, we adopt
the semi-implicit Euler simulator in Warp [44], where gradients of physical states are computed
via auto-differentiation and backpropagated to the parameters of 3D representations [44; 56]. We
use a two-stage training strategy and leave the choice of the first stage open for various SDS-based
methods as baselines. For a two-stage baseline method, we implement our physics-inspired losses as
submodules that can be seamlessly integrated into the refinement stage. For a one-stage method, our
approach can be used as a standalone refinement stage to improve the physical quality of the baseline.
For baseline methods that are not publicly available, we use the reimplementation from threestudio
[14].

We train our models using a single NVIDIA RTX 3090 GPU. During our refinement stage, we
implement a skipping strategy, incorporating standability loss only once every 10 iterations. In our
quantitative evaluation of a batch of prompts, we observed an average refinement time of 36 minutes
for each training step, with a default setting of 5,000 iterations.

For the rigid body simulator in Warp, we set dt = 10−3s. Contact stiffness and damping are set to
103 and 2.0; friction coefficient is set to 0.5; stiffness of friction force is set to 103. Density of the 3D
objects is set to 103.

In our experiments, we use the following default weights for the loss terms: {λSDS = 1, λnormal =
104, λstand = 105, λstable = 105, λb-lap = 107}. For some examples, we tune these weights within
the following ranges: {λstand = 105 ∼ 5× 105, λstable = 105 ∼ 5× 105, λb-lap = 106 ∼ 107}. Our
heuristic intuition is to keep the SDS and physical loss terms roughly on the same scale. For the
regularization terms, we scale them to around 1/1000 to 1/100 of the SDS and physical loss terms.
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A.3 Comparison with Post-processing Methods

While directly post-processing 3D generated models is a straightforward and effective approach to
achieving physical stability, it may result in undesirable outcomes such as misalignment with the text
prompt, as it overlooks semantics.

One simple post-processing method is to cut the mesh by a flat plane slightly higher than the lowest
vertex. However, this method will fail when the projection of the center of mass lies outside the
contact region, as shown in Fig. 11. Additionally, determining the cutting height is another parameter
that must be manually set or optimized, and this may also degrade the overall appearance.

Ours  z = 0.05  z = 0.10  z = 0.20 z = 0.15

Figure 11: Comparison with cutting the mesh by a flat plane at height z.

Another post-processing method, make-it-stand [59], offers an effective way to relocate the center
of mass to achieve standability. However, it assumes that the supporting surface is fixed during
optimization, which can lead to distorted results due to the imperfect quality of text-to-3D generated
models. We provide two examples in Fig. 12. For the goose example generated by Magic3D, one leg
is shorter than the other. Make-it-stand only treats one foot as the supporting surface and ignores
the other due to its post-processing nature, whereas our joint-optimization pipeline enables stable
standing with two legs on the ground. A similar issue also happens to the kangaroo example. More
importantly, the text alignment degrades as semantics are overlooked during optimization. In contrast,
our proposed joint optimization method preserves the text alignment and dynamically adjusts the
center of mass as well as the supporting surface configuration.

Ours OursMake-it-Stand Make-it-Stand

Figure 12: Comparison with make-it-stand.5

In Fig. 6(e) in the main text, we also apply our proposed losses in a post-processing manner. Similarly,
while it is able to optimize the 3D models to make it standable, the text alignment is compromised.
Overall, compared to the post-processing method, joint optimization is a more robust way which
better balances text alignment and physical constraints.

5Although the output mesh of make-it-stand has the same resolution as the input mesh, the ordering of
vertices and surfaces are shuffled in their implementation. As a result, we are unable to re-attach the original
textures onto the output mesh. We are therefore unable to run metrics like CLIP in the paper to compare text
alignment. Nevertheless, it should be visually clear that our results do have better text alignment.
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A.4 Additional Results

A.4.1 Qualitative Comparison with Magic3D Baseline

[…] a 

standing 
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Ours Magic3D

[…] a 
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jumping 
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[…] a 

mannequin
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standing 
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[…] a 

standing 
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Figure 13: More comparison with Magic3D baseline
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Figure 14: More comparison with Magic3D baseline
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Figure 15: More comparison with Magic3D baseline
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A.4.2 Qualitative Comparison with MVDream Baseline

A detective 

Conan

Ours MVDream

A standing 

kid

Mickey 

Mouse, […]

Figure 16: More comparison with MVDream baseline

A.4.3 Mesh Topology Change

We provide a zoomed-in view of the local mesh topology change in Fig. 17 to demonstrate how our
method optimizes the object’s geometry to make it standable.

w/ Atlas3D w/o Atlas3D

Figure 17: Local mesh topology change

A.4.4 Quantitative Comparison with Magic3D Baseline

The results of the quantitative experiments are shown in 2. For CLIP score calculation, we specifically
employ openai/clip-vit-large-patch14-336 as the check point of CLIP model. We rendered images
from various angles (0-360 degree, 3 degree as the interval). For Elo (GPT-4o) benchmark, we
made use of the newly released GPT-4o model instead of the one in [90] due to capacity limitation.
Additionally, we reduce the number of views to 6 because of token length limitation.
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A.5 Real-world Experiments

A.5.1 Robot Manipulation Results6

Figure 18: Robot manipulation experiment

We record our robot manipulation experiment in Fig. 18 and summarize quantitative results in
Table. 3.

6We define as upward pose for the kangaroo figure as its tail touching the ground, as a real kangaroo does.
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Table 3: Number of successes in robotic trials.

Figure Broccoli Egg Horse Kangaroo Konan Mannequin Snowboarding Ultraman

Baseline 0 0 1 0 0 0 0 1
Ours 3 4 3 4 4 4 3 4

A.5.2 User Study Results

We report the detailed results of our user studies in Table. 4.

Table 4: Number of successes in user studies.

Figure Broccoli Egg Horse Kangaroo Konan Mannequin Snowboarding Ultraman

Baseline 0 0 8 4 6 2 1 7
Ours 44 46 40 48 47 50 45 49
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