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Abstract

This paper focuses on the newly emerged research topic, i.e.,
whether the complex decision-making logic of a DNN can
be mathematically summarized into a few simple logics. Be-
yond the explanation of a static DNN, in this paper, we hope
to show that the seemingly complex learning dynamics of a
DNN can be faithfully represented as the change of a few
primitive interaction patterns encoded by the DNN. There-
fore, we redefine the interaction of principal feature com-
ponents in intermediate-layer features, which enables us to
concisely summarize the highly complex dynamics of inter-
actions throughout the learning of the DNN. The mathemati-
cal faithfulness of the new interaction is experimentally ver-
ified. From the perspective of learning efficiency, we find
that the interactions naturally belong to five groups (reli-
able, withdrawn, forgotten, betraying, and fluctuating inter-
actions), each representing a distinct type of dynamics of an
interaction being learned and/or being forgotten. This pro-
vides deep insights into the learning process of a DNN.

1 Introduction
In the field of interpretable artificial intelligence, one of the
fundamental objectives of a theory system is to let the seem-
ingly extremely complex decision-making logic of a deep
neural network (DNN) be faithfully explained as a small set
of simple logics. Unlike other explanation methods (Elhage
et al. 2021; Meng et al. 2022; Zhao et al. 2022; Park et al.
2022; Olsson et al. 2022; Fel et al. 2023), this is a newly
emerging mathematical problem in recent years, because it
aims to answer whether the essential logic of a DNN is sim-
ple enough to be explained to human beings, i.e., the exis-
tence of human-understandable explanation for a DNN.

Towards this problem, an interaction-based theory system
has been built up recently, containing about 20 papers (sur-
veyed by Ren et al. (2024)). Typically, Ren et al. (2023a); Li
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and Zhang (2023) discovered and Ren et al. (2024) proved1

that we can always use the numerical utility of a few sym-
bolic interactions between input variables to accurately ex-
plain all subtle changes of network outputs under a massive
number of input variations. It is also found (Zhou et al. 2024)
that the complexity of interactions could explain the gener-
alization power of DNNs.

Beyond the above explanation of a static (trained) DNN,
in this paper, we hope to explore whether the entire learn-
ing dynamics of a DNN, which is believed to be much more
complex than a static DNN, can also be concisely explained
as symbolic interactions. The explanation of the complex
learning dynamics is mentioned by several previous stud-
ies (Zhou et al. 2024; Li and Zhang 2023; Ren et al. 2024;
Chen et al. 2024; Cheng et al. 2024), and they all considered
this as the last piece of the puzzle of the interaction-based
explanation system, and also one of the biggest challenges
that has hampered the field for years.

The challenges of explaining learning dynamics come
from the high-dimensional changes in network parameters,
which are complex and even chaotic. However, we hope
• to summarize the highly complex learning dynamics of a
DNN into the dynamics of a few interactions;
• to explain the learning efficiency of a DNN, i.e., answer-
ing how many interactions are learned from the beginning of
the training and how many interactions are discarded later;
• to clarify whether the DNN learns all primitive patterns
simultaneously.

Originally, the interaction metric was used to quantify the
non-linear relationship encoded by a DNN. For example,
Figure 1(b) shows a DNN implicitly encodes an interaction
between two eye patches and a nose patch, and this inter-
action makes a numerical utility on the classification score
of cat. Masking any one among three patches will invalidate
this interaction and remove its utility from the output score.

However, in this study, we hope to use a few salient inter-
actions (interactions with large interaction effects) to explain
even more complex learning dynamics. Thus, how to reduce

1Sparsity of interactions is proven by Ren et al. (2024) under
three common conditions for smooth inference on masked samples.
Please see Appendix C for details.
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Figure 1: (a) We construct a logical model to mimic the
DNN’s outputs on randomly masked inputs. (b) The output
of the logical model is the sum of all interaction utilities in
the input encoded by the DNN.

the complexity of the explanation and concisely summarize
dynamics is the key point of this study.

Therefore, we redefine interactions on feature compo-
nents in intermediate layers to obtain concise interactions
for explanation. We consider the top-ranked principal fea-
ture components as basic “input variables” for interactions.
Experiments have shown that the newly defined interaction
enables us to use much sparser interactions between much
fewer (less than 10) principal feature components to explain
most information of a DNN’s learning dynamics (see Fig-
ure 2 and Figure 3) without losing explanation fidelity.

Surprisingly, we find that all interactions naturally belong
to the following five categories in terms of learning effi-
ciency. (1) Reliable interactions are stably learned through-
out the entire training process of the DNN. (2) Withdrawn
interactions are learned in early epochs and then discarded
in later epochs. (3) Forgotten interactions are initially salient
but gradually forgotten in the following epochs. (4) Betray-
ing interactions are learned to represent a certain classifi-
cation utility (toward a specific category) in early epochs,
but later shifted to an opposite classification utility in later
epochs. (5) Fluctuating interactions keep fluctuating during
the training of the DNN. In conclusion, we can consider reli-
able and forgotten interactions as efficiently learned knowl-
edge, while betraying and withdrawn interactions reflect the
trial-and-error process during learning.

Although interactions have encoded mixed semantics, the
decomposition of the complex learning dynamics of DNNs
into a few concise interactions still provides a new perspec-
tive to understanding the learning behavior of a DNN.

Contributions of this study are as follows. (1) We rede-
fine interactions, which enable us to concisely summarize
the highly complex learning dynamics of a DNN into the
change of a few interactions. (2) We find that all interactions
naturally belong to five types, which reflect the DNN’s dis-
tinctive learning behavior of different inference patterns. (3)
Various experiments have verified the mathematical faithful-
ness of the interaction-based explanation.

2 Primitive Interactions in DNNs
Preliminary: Interactions
In this section, let us introduce the interaction, as well as
a set of properties of interactions (Li and Zhang 2023; Ren

et al. 2023a, 2024), as mathematical guarantees for the faith-
fulness of interaction-based explanation.

Defintion of AND-OR interactions. Given a trained
DNN v, let x ∈ Rn denote an input sample with n input
variables (e.g., an image with n image patches and a sen-
tence with n words), indexed by N = {1, 2, . . . , n}. The
DNN’s output is denoted by v(x) ∈ R. For example, in
multi-category classification, v(x) is usually defined as the
following confidence score (Deng et al. 2022).

v(x) = p(y = y∗|x)/(1− p(y = y∗|x)) (1)

where y∗ denotes the ground-truth label of the input x.
Given the trained model v(·) and a set S ⊆ N(S ̸= ∅) of
input variables, numerical utilities of the AND interaction
Iand(S|x) and the OR interaction Ior(S|x) between these
variables can be computed as follows.

Iand(S|x) =
∑

L⊆S
(−1)|S|−|L|vand(xL),

Ior(S|x) = −
∑

L⊆S
(−1)|S|−|L|vor(xN\L)

(2)

where vand(xL) = 0.5v(xL)+γL and vor(xL) = 0.5v(xL)−
γL represent the output component for AND interactions
and the output component for OR interactions, respectively.
xL denotes a masked input sample, in which the variables in
N \ L are masked.2 Then, vand(xL) ∈ R denotes the output
on the masked input. γL is a learnable parameter to decom-
pose v(xL) into vand(xL) and vor(xL).

In this way, the computation of vand(xL) and
vor(xL) is implemented by learning the parameter γL
via a LASSO-like sparisity loss for interactions, i.e.,
min{γL}

∑
S⊆N,S ̸=∅[|Iand(S|x)|+ |Ior(S|x)|].

Understanding AND-OR interactions via the
universal-matching property of interactions. Each
AND interaction Iand(S|x) represents a non-linear rela-
tionship between variables in S, i.e., the co-appearance of
all variables in S will add a utility Iand(S|x) to the model
output. On the other hand, each OR interaction Ior(S|x)
represents the OR relationship encoded by the model. The
appearance of any variables in S will add Ior(S|x) to the
output score. Figure 1(b) shows an example of an AND
interaction Iand(S|x) of a face in the surrogate model.
Iand(S|x) is triggered only when x1, x2, x3 all appear in the
input image. In comparison, an OR interaction Ior(S|x) is
triggered when any input variable in S appears.

According to Theorem 2.1, we construct a surrogate log-
ical model based on all AND-OR interactions. Given each
masked input xS , the surrogate model first identifies a set
of interactions triggered by xS based on the AND-OR logic
rule. Then, utilities of all these interactions are summed up
as the output h(xS). Theorem 2.1 proves that no matter
how the input is randomly masked, the model output on the
masked sample can always be approximated by the surro-
gate model based on utilities of a few interactions.

2People usually mask input variables in N \ L using baseline
values {bi} (also called reference values) (Ancona, Öztireli, and
Gross 2019; Covert, Lundberg, and Lee 2020) to replace the origi-
nal values in these input variables, i.e., setting xi = bi if i ∈ N \L.
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Figure 2: Significance (eigenvalue λi) of feature components in a descending order. The plot on the top-right side of each
subfigure zooms in the range of 1st−100th eigenvalues for better visualization.

Theorem 2.1 (Universal-approximation property of inter-
actions, proved in Appendix E). Given an input sample x,
let Ωsalient denote the set of salient interactions. We consider
interactions w.r.t. |Iand(S|x)| ≥ τ or |Ior(S|x)| ≥ τ as
salient interactions. We construct the surrogate model
h(·) to use AND-OR interactions extracted from the DNN
v(xS) for inference, h(xS) =

∑
L⊆N,L ̸=∅ Iand(L|x) ·

1(xS triggers the AND relation L) +
∑

L⊆N,L ̸=∅ Ior(L|x) ·
1(xS triggers the OR relation L) + v(x∅) =∑

L⊆S,L ̸=∅ Iand(L|x) +
∑

L∩S ̸=∅ Ior(L|x) + v(x∅) ≈∑
L⊆S,L ̸=∅,L∈Ωsalient

Iand(L|x) +
∑

L∩S ̸=∅,L∈Ωsalient
Ior(L|x)

+v(x∅). v(x∅) is a constant that represents the model
output when all input variables are masked. No matter how
we arbitrarily mask the variables in x to obtain the masked
inputs xS w.r.t. a random subset S ⊆ N , the surrogate
model h(xS) can always mimic the DNN output v(xS) on
the masked input xS , i.e., ∀S ⊆ N,h(xS) = v(xS).

Sparsity property of salient interactions. Let us enumer-
ate all 2n subsets S ⊆ N and compute their interaction
utilities. Ren et al. (2024) have proven1 that DNNs usually
encode very sparse salient interactions, i.e., the number of
salient interactions is O(nδ) (δ ∈ [1.9, 2.2] empirically),
which is extremely sparse w.r.t. all 2n subsets.

Generalization property. Li and Zhang (2023) have dis-
covered the generalization ability of interactions. That is,
people can extract a common set of interactions from dif-
ferent (but similar) inputs or different models, and these in-
teractions are discriminative for classification.

The above sparsity, universal approximation, and gener-
alization properties of interactions ensure that the interac-
tions can be considered as primitive inference patterns for
the model inference.

Primitive Interactions on Features
Although we usually extract a few interactions from a fixed
DNN, tracking the dynamics of interactions in all interme-
diate DNNs through the entire training process may signif-
icantly complicate the explanation. This is because DNNs
trained after different epochs may generate fully different
interactions. Therefore, the first challenge is to redefine the
interaction to simplify the explanation, and meanwhile, the
newly defined interaction should be powerful enough to
faithfully reflect major changes in all training epochs.

Therefore, instead of taking raw pixels/words/3D points
as input variables, we redefine interactions on principal fea-
ture components shared by all intermediate DNNs. Let us

Model Dataset Using raw f (k) Using
∑10

i=1 fi + f̄

MLP-5 income 0.92 0.94
MLP-5 TV news 0.86 0.85
MLP-8 income 0.95 0.90
ResNet MNIST 1.00 1.00
ResNet CIFAR-10 0.89 0.89
VGG MNIST 1.00 1.00
VGG CIFAR-10 0.98 0.97

Table 1: Classification accuracy when using the raw feature
and using the top 10 feature components.

train a DNN, and collect the DNN trained after K differ-
ent checkpoints (epochs). Given an input sample, we extract
the feature from a certain intermediate layer of the DNNs
at these K checkpoints, denoted by f (1), f (2), . . . , f (K) ∈
Rm. Subsequently, we conduct principal component analy-
sis (PCA) on the K features to compute the top r principal
directions (eigenvectors) q1, q2, . . . , qr ∈ Rm correspond-
ing to the largest r eigenvalues. In this way, we extract fea-
ture components along the top r principal directions, so as
to use these feature components as basic “input variables”
to define interactions. Specifically, for the intermediate-layer
feature f (k) extracted after k epochs, we decompose the fea-
ture f (k) into the following (r + 2) feature components.

f (k) =
∑

i∈Nfeature
fi + f̄ + ϵ (3)

where Nfeature = {1, 2, . . . , r} denotes the indices of top
r principal feature components. fi = qiq

T
i (f

(k) − f̄) ∈
Rm represents the i-th principal feature component. f̄ =∑K

k=1 f
(k)/K denotes the average feature during the learn-

ing process. ϵ=f (k)−f̄−
∑

i∈Nfeature
fi represents the overall

effect of the remaining m− r feature components in f (k).
In this way, if we consider f̄ + ϵ as a constant back-

ground, we can regard the r feature components in f (k)

as the variables involved in interactions. I.e., each interac-
tion S ⊆ Nfeature represents the collaborative relationship be-
tween feature components in S. Here, because f (k) can be
extracted from any epoch, we ignore the superscript (k).
Then, for a subset L ⊆ Nfeature, fL represents the masked
feature when we mask feature components in Nfeature \ L,3

i.e.,fL =
∑

i∈L fi +
∑

i∈Nfeature,i/∈L bi + f̄ . We use bi
def
=

3Given that the components in ϵ in Eq. (3) are usually very small
(see Figure 2), we ignore these components.
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qiq
T
i (f |E[x]−f̄) to represent the masked state (or namely the

baseline value) of the i-th feature component. f |E[x] denotes
the feature when the average value E[x] of all input samples
in the training set is fed to the model. bi represents the i-
th feature component in the feature f |E[x]. The mean value
over different samples is a widely-used setting for baseline
values (Dabkowski and Gal 2017), which alleviates the out-
of-the-distribution problem in practice.

The DNN output v(x) can be regarded as a function of the
feature f , i.e., v(x) = g(f), where g(·) denotes subsequent
layers upon the feature f . g(fL) denotes the DNN output
on the masked feature. Thus, we can directly use Eq. (2)
to compute interactions Iand(S|f) and Ior(S|f) on feature
components by replacing v(xL) with g(fL).

Computational cost of interactions between feature
components. Compared to interactions on raw input vari-
ables, interactions on feature components present a much
smaller computational cost. For the input x ∈ Rn, the com-
putational cost of interactions on the n input variables in x
is 2n. When we define interactions on top r feature com-
ponents (r ≪ n in most cases), the computational cost of
interactions is reduced to 2r, which is much less than 2n.

Experimental settings. We trained a 5-layer MLP (Ren
et al. 2023b) (namely MLP-5) and an 8-layer MLP (Ren
et al. 2023b) (namely MLP-8) on three datasets (Dua and
Graff 2017), including the census income (namely income),
TV News channel commercial detection (namely TV news),
and bike sharing (namely bike) datasets. We also fol-
lowed (Li and Zhang 2023) to train a CNN and a three-layer
unidirectional LSTM on the SST-2 dataset (Socher et al.
2013). Besides, we trained VGG-11 (Simonyan and Zis-
serman 2014) and ResNet-18/20 (He et al. 2016) (namely

RN-18/20) on the MNIST (LeCun et al. 1998), CIFAR-
10 (Krizhevsky 2012), and Tiny ImageNet (Le and Yang
2015) datasets, and trained PointNet (Charles et al. 2017)
on the ShapeNet (Yi et al. 2016) dataset. For each neural
network, we analyzed features extracted from the (roughly)
half depth, which well balanced the informativeness of the
feature and the conciseness of the explanation. Please see
Appendix F for the detailed experimental settings.

Justification of using principal feature components:
how many principal feature components are needed as
input variables? We conducted two experiments. In the
first experiment, we verified that the used top-ranked feature
components represented most signals in f . For each DNN,
we fed an input sample x to the DNNs trained after K dif-
ferent epochs, and extracted K feature vectors f (1), . . . , f (K)

from these DNNs. Using the feature vectors collected from
different samples at K different epochs, we conducted PCA
to compute eigenvalues in Figure 2. We found that in most
DNNs, the top 10 eigenvalues were significantly larger than
the rest. The long-tail components with very tiny eigenval-
ues did not reflect essential signals for the task. Therefore,
we set r = 10 in all experiments.

In the second experiment, we compared the classification
accuracy of using the entire feature f with the classifica-
tion accuracy of using the top 10 components of the feature
f̄ +

∑10
i=1 fi. To this end, we masked other feature compo-

nents in ϵ to obtain f ′ =
∑10

i=1 fi + f̄ , according to Eq. (3),
and fed f ′ back to the network for inference. We conducted
experiments on four datasets, including the census, commer-
cial, MNIST, and CIFAR-10 datasets. For each dataset, we
randomly sample 100 samples and evaluate the classifica-
tion accuracy of the network based on the original feature
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Figure 5: Faithfulness of the explanation. The histograms
show the approximation error ∆gα(fS) when using the sum
of interactions to match the ground truth g(fS). Using less
than α = 60 interactions can well approximate the network
outputs on almost masked inputs xS .

f . Table 1 shows that using the top 10 feature components
did not significantly change the classification accuracy. In
other words, the top 10 feature components had already rep-
resented most of the knowledge learned by the model.

Sparsity of Interactions Theorem 2.1 shows that the net-
work output on an input sample can always be explained
by a small set of interactions, no matter how we randomly
mask the input sample. Then the principle of Occam’s Razor
suggests that we can consider such interactions as primitive
inference patterns encoded by the DNN. However, the proof
of the sparsity (Ren et al. 2024) of interaction is conducted
under three assumed common conditions1, which are diffi-
cult to examine in real DNNs. Besides, unlike (Ren et al.
2024), we use OR interactions. Therefore, we need to verify
the sparsity of interactions on feature components.

We compared the sparsity of interactions on feature com-
ponents with the sparsity of interactions on raw input vari-
ables. To extract interactions on raw input variables, we
followed Ren et al. (2023b) to divide each input image in
the MNIST and CIFAR-10 datasets into 7 × 7 and 8 × 8
patches, respectively. Then, we randomly sampled twelve
image patches as input variables to compute interactions.
For the ShapeNet dataset, we took the manually annotated
parts provided by Li and Zhang (2023) as input variables. To
compute interactions on feature components, we followed
Appendix F to extract principal feature components. For
simplicity, we concatenated strength |Iand(S|x)| of 2r AND
interactions and strength |Ior(S|x)| of 2r OR interactions to
construct a 2r+1-dimensional vector I . The strength was
further normalized by I ← I/maxi Ii. Figure 3 shows the
curve of relative interaction strength sorted in descending
order, which was averaged over different input samples. Us-
ing principal feature components could significantly en-
hance the sparsity of interactions.

Examining Faithfulness of Interactions In this section,
we conducted two experiments to use interactions to mimic
the entire model output g(f), so as to evaluate the faithful-

ness of the interaction-based explanation. In the first experi-
ment, we measured the matching error when we used salient
interactions to match the model output. We followed Ap-
pendix F to extract AND-OR interactions. Let Ωα denote
the set of α salient interactions with the highest values of
|Iand/or(S|f)|. We computed the matching error Ex|∆g(f)|=
Ef [|g(f) − ĝα(f)|], w.r.t. ĝα(f)= g(f∅) +

∑
S∈Ωα

Iand(S|f) +∑
S∈Ωα

Ior(S|f). We used different numbers α of salient in-
teractions to compute the corresponding matching errors.
Furthermore, we computed the least number α̂ of interac-
tions that were required to cover 90% of the network output
g(f), i.e., α̂ = minα s.t. (|g(f) − ĝα(f)|)/|g(f)| ≤ 0.1. Fig-
ure 4 reports the average matching error over different sam-
ples and the average ratio of the minimum interaction num-
ber (Ef [α̂/2

r+1]). The network outputs were usually well
matched by only using less than 10% salient interactions.

The second experiment demonstrated that the sum of a
few interactions could well approximate various network
outputs on randomly masked features {g(fS)}S . Specif-
ically, we used different numbers (α ∈ {20, 40, 60}) of
salient interactions to approximate the model outputs on
2n masked features of an input sample. Then, for each
masked feature fS , we computed ∆gα(fS) = g(fS)− ĝα(fS)
as the approximation error on fS , where ĝα(fS) = g(f∅) +∑

L∈Ωα,∅̸=L⊆S Iand(L|f) +
∑

L∈Ωα,L∩S ̸=∅ Ior(L|f). Figure 5
shows network outputs on all 2n masked features of an in-
put sample in ascending order and the approximation errors.
For visualization, we averaged the approximation error over
50 neighboring masked features for smoothing. The results
show that a small number (usually less than 60) of interac-
tions could well approximate the varying network outputs
on different masked features.

3 Emergence of Primitive Interactions
Emergence of Interactions During Training
Five types of interactions. In this section, we analyze a
DNN’s learning efficiency based on its learning dynamics
of interactions during the learning process.

For an interaction pattern S, let ∇tI(S|x, θt) =
∂I(S|x,θt)

∂t denote the slope of the interaction curve at the
t epoch. We observe the phenomena w.r.t. the values of
I(S|x, θt) and ∇tI(S|x, θt) in Table 2, and categorize them
into five groups. Specifically, we categorize the curves of
numerical utilities of different salient interactions S into the
following five types, which reflect distinctive behaviors of a
DNN learning different types of primitive inference patterns.
Please see Figure 6 for the curve of Iand/or(S|x) across dif-
ferent epochs for each salient interaction S.
(a) Figure 6 (a) shows interactions belonging to the first
group. The strength of these interactions increases through-
out the learning process in a relatively stable manner. Thus,
we consider such interactions to be stably learned by the
DNN, and we call them reliable interactions.
(b) In the second group, utilities of interactions in Figure 6
(b) are usually close to zero in the beginning. Then, the
strength of their utility first increases and then decreases,
sometimes decreasing to almost zero. These interactions are
referred to as withdrawn interactions.
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(a) reliable
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(b) withdrawn
      interactions

(c) forgotten
      interactions

(d) betraying
      interactions

(e) fluctuating
      interactions

Figure 6: Curves of the utility of interactions during the learning of DNNs. These interactions can be categorized into five
groups. Please refer to Appendix I for results on more samples.

Group Phenomenon

reliable ∀t ∈ T, I(S|x, θt) · ∇tI(S|x, θt) ≥ 0

withdrawn ∃tmid s.t. when t < tmid, I(S|x, θt) · ∇tI(S|x, θt) ≥ 0
when t > tmid, I(S|x, θt) · ∇tI(S|x, θt) ≤ 0

forgotten ∀t ∈ T, I(S|x, θt) · ∇tI(S|x, θt) ≤ 0

betraying ∃tmid s.t. ∀t1 < tmid, ∀t2 > tmid, I(S|x, θt1) · I(S|x, θt2) ≤ 0

fluctuating I(S|x, θt) and ∇tI(S|x, θt) oscillate around zero

Table 2: Categorization of five groups of interactions.

(c) As Figure 6 (c) shows, the initial utility of interactions
in the third group is non-ignorable. However, the strength
of these interactions keeps decreasing to zero. These inter-
actions are gradually forgotten by the DNN. We call them
forgotten interactions.
(d) Figure 6 (d) shows interactions in the fourth group. The
interactions experience a gradual shift towards an interaction
utility that is opposite to their initial utility. These interac-
tions are called betraying interactions.
(e) For interactions in the fifth group, Figure 6 (e) has fluc-
tuating interactive utilities throughout the learning process,
thereby being called fluctuating interactions.

Different types of interactions reflect primitive inference
patterns of different learning efficiency. (1) We can consider
reliable interactions and forgotten interactions as stably and
efficiently learned knowledge. (2) Some Betraying interac-
tions and withdrawn interactions reflect the trial-and-error
process during learning, while some are caused by a bad
initialization of weights. (3) Fluctuating interactions corre-
spond to the noise knowledge.

In particular, the goal of (Shwartz-Ziv and Tishby 2017)
is quite similar to ours,i.e., understanding the learning and
forgetting of information throughout the training of a DNN.
Shwartz-Ziv and Tishby (2017) discovers that the DNN usu-
ally first extracts information and then compresses informa-
tion. In our study, we discover the existence of withdrawn
interactions, which precisely explains what information is

first learned and subsequently forgotten.
In addition, we have conducted an experiment on a toy

dataset to demonstrate that interactions can successfully re-
veal betraying features learned during training of the DNN.
Please refer to Appendix I for the experimental results.

The number and complexity order of interactions
in each group help to understand the performance
of DNNs. For each DNN and each sample, we se-
lected 100 interactions whose maximum interaction strength
(maxt |Iand(S|x, θt)| and maxt |Ior(S|x, θt)|) throughout the
training process were ranked in top 100 among all inter-
actions. Then, we counted the number of interactions be-
longing to each group among these 100 salient interactions.
Table 3 reports the average number of interactions in each
group over different samples. We found that compared to
VGG-11, RN-20 learned more reliable and forgotten interac-
tions, while having fewer betraying and fluctuating interac-
tions. This might be because the residual connections in RN-
20 made the features more stable. Besides, we also noticed
that the DNNs trained on the MNIST dataset usually en-
coded more reliable interactions and less betraying and fluc-
tuating interactions than the DNNs trained on the CIFAR-10
and Tiny ImageNet datasets. This result indicated that the
dynamics of interactions also provided a new perspective to
analyze the difficulty of training a DNN on a dataset.

We further studied the complexity (order) of interactions.
Let the order of an interaction S be referred to as the number
of variables in S, order(S) = |S|. Zhou et al. (2024) have
found that compared to high-order interactions, low-order
interactions extracted from training samples are more likely
to generalize to (appear in) testing samples. Since the net-
work output is the sum of all interactions, we can use the
ratio of low-order interactions and high-order interactions
to explain the generalization power of the DNN. Thus, We
explored the order of interactions in each group. Figure 7 re-
ports the average number of interactions of each order over
different samples in each group. We found that the distri-
bution of interactions over different orders was similar in
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Figure 7: The number and complexity order of interactions of each order in each group.

Model Dataset reliable interactions withdrawn interactions forgotten interactions betraying interactions fluctuating interactions

VGG-11 CIFAR-10 28.4 26.4 6.0 26.6 12.6
RN-20 CIFAR-10 33.4 26.2 16.6 17.8 6.0

VGG-11 MNIST 44.2 21.4 5.8 20.8 7.8
RN-20 MNIST 49.6 18.2 18.0 12.6 1.6

RN-18 Tiny ImageNet 4.0 39.0 20.4 20.4 16.2

CNN SST-2 33.6 14.4 0.4 12.8 38.8

Table 3: Average number of salient interactions within each group.

Resnet sign 
normed

(a) RN-20 on CIFAR-10 (b) VGG-11 on MNIST (c) PointNet on ShapeNet

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
Input Salient interactions Input Salient interactions Input Salient interactions

Figure 8: Visualization of salient interactions. Please see Appendix H for more results.

different models. Besides, we found that high-order inter-
actions were usually fluctuating and withdrawn interactions,
because high-order interactions usually represented complex
and unstable features.

In addition, Appendix J showed that DNNs tended to use
high-order interactions to classify abnormal samples (e.g.,
samples with noisy labels) than normal samples.

What Does an Interaction Represent?
As a supplement to the mathematical explanation of the
learning dynamics, we also visualize the primitive interac-
tions in this subsection, although interactions toward mathe-
matically concise explanation are not equivalent to semanti-
cally meaningful concepts.

We first visualize the attribution map of each top-ranked
feature component fi. Considering the distinctive properties
of different tasks, we apply the projected influence attribu-
tion, the gradient-based attribution (Simonyan and Zisser-
man 2014), and the Shapley value (Shapley 1953) to esti-
mate the attribution of input data (image data, the 3D point
cloud data, and the language data) to each feature compo-
nent fi, respectively. Figure ?? shows examples of attribu-
tion maps of feature components, where the red color in-
dicates that the corresponding regions in the input have a
positive attribution to the principal feature component, while
the blue color indicates a negative attribution. For the point

cloud data, we use RGB color channels to visualize the
three-dimensional attributions. Please see Appendix H for
details of the visualization techniques and results.

Then, for each interaction S ⊆ Nfeature with a consider-
able utility Iand/or(S|x), Figure 8 visualizes the attribution
map of the interaction, which simply sums up the attribution
maps of its compositional feature components {fi}i∈S .

4 Conclusion and Discussions
In this study, we have proposed a method to simplify and
summarize a DNN’s highly complex learning dynamics into
the change of a few interaction primitives. We have ex-
tended the interaction defined on raw input variables by (Ren
et al. 2023a; Li and Zhang 2023; Zhou et al. 2023), and
have newly defined interactions on principal feature com-
ponents. This extension greatly boosts the sparsity/simplic-
ity of the interaction-based explanation of a DNN, which
provides a new perspective to understand mechanical fac-
tors for learning efficiency. The mathematical faithfulness
of the new interaction is experimentally verified. We have
found that the dynamics of all salient interactions naturally
belong to five groups, i.e., reliable, withdrawn, forgotten, be-
traying, and fluctuating interactions, which provide new in-
sights, e.g., explaining how reliable inference patterns are
gradually learned, how redundant patterns are first learned
and later discarded, and how a DNN learns noisy patterns.

20189



Acknowledgments
This work is partially supported by the National Science and
Technology Major Project (2021ZD0111602), the National
Nature Science Foundation of China (92370115, 62276165).
Jie Ren is supported by Wu Wen Jun Honorary Doctoral
Scholarship, AI Institute, Shanghai Jiao Tong University.

References
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