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Abstract—Computational notebooks are intended to prioritize
the needs of scientists, but little is known about how scientists
interact with notebooks, what requirements drive scientists’
software development processes, or what tactics scientists use to
meet their requirements. We conducted an observational study
of 20 scientists using Jupyter notebooks for their day-to-day
tasks, finding that scientists prioritize different quality attributes
depending on their goals. A qualitative analysis of their usage
shows (1) a collection of goals scientists pursue with Jupyter
notebooks, (2) a set of quality attributes that scientists value
when they write software, and (3) tactics that scientists leverage to
promote quality. In addition, we identify ways scientists incorpo-
rated Al tools into their notebook work. From our observations,
we derive design recommendations for improving computational
notebooks and future programming systems for scientists. Key
opportunities pertain to helping scientists create and manage
state, dependencies, and abstractions in their software, enabling
more effective reuse of clearly-defined components.

Index Terms—scientific computing, computational notebooks,
end-user software engineering

I. INTRODUCTION

Unlike traditional development environments, computa-
tional notebooks interleave program text with program out-
put in a linear flow of content. Notebooks divide programs
into cells, enabling users to execute cells and see output in
any order they choose. Computational notebooks, such as
Jupyter [1], have enabled thousands of users to create millions
of notebooks [2,3] to explore and communicate ideas in a form
interleaving code, output, prose, and sometimes multimedia.
These tools facilitate end-user software engineering [4,5]:
creation of critical software systems by people whose main
focus is completing tasks, not authoring software.

Despite the broad adoption of computational notebooks,
they only provide a thin layer over existing runtime environ-
ments. Code in cells can side-effect the environment, impeding
reproducibility when users execute cells out of order. Cells
provide no abstractions; they are not invokable, for example,
and their code shares a scope with surrounding code. Version
control is rarely used [6,7], even by notebook users who use
version control in their other work. Previous research [8] and
commercial implementation [9] exploring alternative designs
have not yet produced popular competitors.

Why do computational notebooks still serve the needs of
their users better than existing alternatives? We hypothesize
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that this is not merely a problem of challenges transitioning
from popular, well-documented tools; instead, we do not yet
understand enough about kow computational notebooks meet
their users’ needs. To lay a foundation for a new generation of
tools, we seek to understand notebook users’ non-functional
requirements—properties that notebook users value and how
they promote the properties they value—and design opportu-
nities that could lead to more effective notebook systems.

This paper focuses on scientific users of computational
notebooks, i.e., those who write scientific programming code
in notebooks. Prior work suggests that scientists struggle
with keeping effective work in notebooks and transition-
ing from notebooks to other general-purpose programming
tools; nonetheless, notebooks are widely popular among
scientists [7]. To understand how and why computational
notebooks benefit scientists—and identify opportunities for
improvement—we focus on three research questions:

RQ1 What goals do scientists pursue in notebooks?

RQ2 What non-functional requirements do scientific users of
computational notebooks prioritize?

RQ3 What tactics do scientists use to create notebooks that
meet their quality requirements while also facilitating
their scientific discovery process?

Past investigations have studied users of Jupyter notebooks,
focusing broadly on general data workers [6,10,11]. However,
like Ko et al. in their study of Java programming [12], we
wanted to understand the interaction-level techniques that
scientists use to create software that meets their requirements.
Therefore, we conducted an observational study of how indi-
vidual scientists use Jupyter notebooks to accomplish realistic
day-to-day tasks. In our IRB-approved study, we recruited 20
participants to let us watch them do their work. To understand
how software-related training affects use, we recruited both
computer scientists and non-computer scientists.

We first observed how each participant worked with Jupyter
notebooks using their own setup and workflow for up to 45
minutes. Then, because any limited observation period could
have resulted in unfinished work, we asked them to wrap up
the work for future continuation. Finally, we interviewed them
about their experience with Jupyter notebooks during the study
as well as overall perceptions.

Leveraging techniques from constructivist grounded the-
ory [13], we noted memos of each observation and coded
every notebook-related action as well as every notebook-
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related comment made by participants. In Sec. III, we present
eight quality attributes that our participants valued: clarity,
explorability, reusability, reproducibility, correctness, perfor-
mance, debuggability, and collaboration. We describe tactics,
such as implementing each task in one cell, that participants
used to promote quality. Additionally, we show how partici-
pants incorporated Al tools into notebook work in scientific
settings. Finally, we discuss design opportunities that are
revealed by this framing of computational notebook use.

Cell structure and out-of-order execution distinguish note-
books from other programming environments and promote
explorability, particularly for code that can be slow to run.
Unfortunately, they simultaneously inhibit aspects of correct-
ness and reproducibility, which scientists also value. However,
future notebook systems could empower users to choose their
tradeoffs more precisely by controlling scope, dependencies,
and in what cases cells are evaluated automatically.

While our work may not render a complete description of
how people use Jupyter notebooks in every possible way, our
findings are contextualized in realistic tasks and can inspire
future improvements to Jupyter notebooks and similar end-
user programming environments.

In summary, this paper’s key contributions are:

« Eight quality attributes that scientists value when creating
and maintaining notebooks from an an observational
study of 20 participants performing their own tasks;

o Tactics that scientists use to promote software quality in
Jupyter notebooks;

o Opportunities for improvement in notebook tools that
could promote quality in software written by scientists.

II. METHODS
A. Participants

We recruited participants from various disciplines via in-
stitutional mailing lists, messaging platforms, and snowball
sampling. Since we aimed to study users with different domain
expertise, programming experience, and software engineering
experience, we did not impose screening constraints other than
requiring (1) prior experience with Jupyter notebooks and
(2) the ability to demonstrate a realistic task to be done in
Jupyter notebooks during the study. We explicitly hoped to
recruit people with varying experience in software engineering,
so we recruited half of the participants from the computer
science discipline and the other half from other scientific
disciplines. We stopped recruiting participants after we had
achieved saturation, following standard practice [13]: After
each study, we compared field notes to existing observations
to construct theoretical categories and their properties; the last
four participants did not lead to new categories or properties.

B. Procedure

Each study session included two parts: a 60-minute obser-
vation and a 30-minute interview. We conducted the studies
in person and over Zoom, recording participants’ screens for
analysis. Two authors ran the studies and took turns to lead.
Participants received a $23 gift card after the study.

During the observational portion, participants worked on
tasks of their choosing (more in Sec. II-D) using Jupyter
notebooks. We prepared a backup task in case participants
did not have a task ready, but we never used it. We asked
participants to explain their tasks as they worked, in the style
of think-aloud. However, past observations of programmers
have shown that additional depth is needed [14], so while
working on the task, the experimenter asked questions as
needed about the subject’s workflow when using notebooks
and various aspects of the task. After about 45 minutes of
observation, we asked the participant to start wrapping up their
work to continue later. Most tasks can take many work sessions
to complete, and sessions can be hours long. To observe how
users initiated the cleanup process in the limited time span
of a study, we asked participants to spend up to 15 minutes
wrapping up their work so they could easily pick up from
where they left off; the 15-minute threshold was determined
via pilot studies, and no study participants needed all 15
minutes. In the cases where we observed no wrap-up activities,
we asked about participants’ usual practices.

We conducted a semi-structured interview afterward. Our
questions pertained to five topics: notebook reproducibility,
notebook understandability, the ability of the participant or col-
laborators to continue working on the notebook, the expected
longevity of the current notebook, and changes in workflow
when using computational notebooks compared to scripts.

C. Protocol Development Process

We started the study with one very open-ended question:
How do people use Jupyter notebooks for their day-to-day
tasks? Prior work on notebook use and pain points [11,15] mo-
tivated our initial interview topics. We used a qualitative anal-
ysis method with key techniques from constructivist grounded
theory [13], including open coding, theoretical coding, and
memo writing. Following the theoretical sampling approach,
we recruited participants in areas in which we lacked data, and
we refined the questions we asked participants per Charmaz’s
guidelines [13] based on emerging patterns to enable a deeper
understanding of topics for which we had not yet gathered
sufficient data; while this led to new questions asked in later
studies, our IRB advised us that new questions within the
subject matter of the study did not need further review.

After ten sessions, we analyzed the memos that we had
written and found that participants had varying attitudes to-
wards using Jupyter notebooks: some used ad hoc organiza-
tional techniques, caring little about readability and/or repro-
ducibility; others attended to organizing the content inside a
notebook, ensuring attributes such as modularity, readability,
and reproducibility. For example, P1 mentioned “notebooks
have no longevity;” do all notebook users hold the same
low expectations for the longevity of notebooks? Expectations
about longevity could have implications on how users prior-
itize readability and reproducibility. With these questions in
mind, starting the 11th session, we added additional questions
to our protocol asking participants about their expectations
for the notebook’s longevity. We also observed that most par-



ticipants conducted cleanup tasks such as adding Markdown
headings, leaving notes on to-dos both inside and outside the
notebook, and deleting empty cells in their last 15 minutes.
For participants who performed little notebook cleaning work
at the end of the study, we asked why they chose not to do the
cleaning work. We also asked about any cleaning work they
would do if they were to share the notebook with others.

After the 15th interview, interested in what users valued in
notebook work, we added questions about what they would
teach to a novice notebook user.

D. Task

Each participant worked on their own ongoing tasks during
the study. Prior to each study, we asked participants to bring
their own tasks that could be completed within the time-frame
of the study. Although the tasks required domain knowledge,
each participant chose tasks in their own field of expertise. As
a result, all of the challenges we observed were computational
rather than domain-specific. Most participants worked on a
single task during the observational session, but three subjects
(P8, P15, P20) completed their first task and started a second
one. We coded each of the task descriptions to categorize
them into seven different task types based on our observations:
analysis, visualization, refactoring, reproduction, development,
data cleaning, and notetaking. Reproduction tasks involved
taking existing data and an expected output and recreating
that output from the data in a new notebook. We saw 23
tasks across 20 participants. All except P20 did the tasks
in one notebook. To derive the approximate size of work
in each notebook, we counted the scrolling activities that
occurred during the study to approximate task size (defined
as “Scroll Size” in Table I) using the low-level action codes,
the derivation of which we describe in Sec. II-E. Table I shows
the complete task descriptions, their respective task types, and
the scroll sizes of their corresponding notebooks.

E. Data Analysis

We open-coded the study recordings, which resulted in two
subsets of low-level codes: (1) those pertaining to actions
conducted by the participant, and comments and preferences
they indicated during the observational portion, and (2) those
relating to the interview responses. The first two authors,
who also ran the studies, coded the observational components
of each study, and the third and fourth authors coded the
interviews after reviewing the coded observations and field
notes. While coding the observational components, the first
two authors also coded meta-observations, i.e., high-level ob-
servations they made about each participant’s behavior implied
by their actions or quotes. The four author-coders met weekly
to review the low-level codes until achieving agreement.

Finally, to further seek patterns among the low-level codes,
the first two authors conducted a second round of coding
upon codes of participant comments, preferences, and meta-
observations from the observational portion, and codes from
the interview portion. This round of coding is top-down as the
coders derive high-level codes implied by the low-level codes

under three categories: quality attributes of notebook content,
native notebook attributes related to the quality attributes, and
user tactics. We then created memos to relate the user tactics
to the quality attributes and the native notebook attributes,
following the grounded theory practice. We categorized the
tactics as either a direct use of notebook attributes or a
workaround for notebook limitations. We report the identified
quality attributes, and their associated notebook attributes and
user tactics in Sec. III-C. We also include the full list of codes
and a replication package in the paper supplement [16].

F. Limitations

While our starting question, how do people use Jupyter note-
books? is broad, our participants primarily work in academia
either as graduate students or as scientists. As a result, 16 of
the 23 tasks were part of ongoing research projects, limiting
generalizability to non-research settings. Also, the projects
we saw were of limited size; different techniques could be
used by those who work on very large codebases. Participants
brought in their own tasks, which might result in varying task
difficulties albeit improving external validity. A confirmatory
survey and member checking could help further validate the
findings, but the methods we used reveal the lived experiences
of our participants [17]. We met with each participant once,
so we were not able to see the notebooks they worked on
evolve over time. Furthermore, our participants were all part
of the same institution as the authors, limiting external validity.
Representativeness may also be limited given that 15 of the
20 participants are graduate students, although many scientists
who write code are graduate students [18]. Finally, five studies
were done in person instead of on Zoom, and the modality
differences could have affected participants’ performance.

Although the authors are computer scientists, researchers
with other perspectives—particularly with more domain
knowledge—could have had different understandings of the
work we observed, and our software engineering perspective
could have biased our interpretations of the efficacy of the
tactics used by our participants. In addition, our study could be
biased towards the fact that the participants prioritized Jupyter
notebooks over other tools (e.g., MATLAB, command line
tools) for computing in the observed contexts.

III. RESULTS

We identified three categories of goals that participants had
in their work, ranging from disposable exploration to artifact
construction (RQ1, Sec. III-B). Participants valued eight non-
functional requirements, which we describe using quality
attributes (RQ2, Sec. III-C). They promoted those quality
attributes using 18 tactics (RQ3, summarized in Table II). In
addition to our research questions, we report how participants
used Al-based tools in their notebook work (Sec. III-D).

A. Farticipants

We recruited 20 participants (11 identifying as male, 9
as female). Seven had prior work experience in software
engineering, one had formal training in software engineering,



six self-reported some familiarity with software engineering,
and six reported none. Half of the participants (11) were
from computing-relevant domains (10 in Computer Science,
one in Data Science) and nine from non-computing-relevant
domains across Biology (three), Social Sciences (three), and
Earth Sciences (four), where P6 had experience in both Social
Sciences and Earth Sciences. Table I displays the participants’
backgrounds along with the tasks they worked on.

B. Goals for Using Jupyter Notebooks

11 codes pertained to the kinds of goals that participants
had in their work. For example, some participants described
focusing on scientific findings, whereas others focused on
presenting their work to others. We also identified 15 codes
relevant to ensuring the clarity of a notebook. These codes
include five categories: removing redundant code and cells,
taking notes (as comments or Markdown), refactoring code
(e.g., renaming variables), inserting empty cells to separate
sections, and reformatting or editing code for code and/or
output readability. We also noticed varying expectations for
notebook longevity—i.e., whether to revisit the notebook after
the task demonstrated in the study is done—within the first ten
participants, and we started asking about the expectations for
notebook longevity explicitly since P11.

Combining these observations, we found that each task fit
into one of three categories: disposable exploration, findings,
and artifact. Disposable exploration refers to exploratory
work that will be discarded immediately after the outcome
is achieved. We consider a notebook used for disposable
exploration if it does not have any expected longevity. An
artifact details the process and outcome of problem solving
and/or scientific discovery in a clear, descriptive, and poten-
tially reproducible way. We consider a notebook to be an
artifact if the task where it is used is a cleanup task, or it
has expected longevity and its author showed three or more
kinds of the clarity-related actions (i.e., more than half of the
five available kinds, to demonstrate sufficient effort in ensuring
clarity from multiple aspects). Finally, a findings notebook
documents the process and outcome of problem solving and/or
scientific discovery but not necessarily in a structured way—its
main purpose is to expose information to the notebook author
for them to decide on next steps of work. Although a findings
notebook has some expected longevity, its author used less
than half of the possible kinds of clarity-related actions.

Out of 20 participants, we have 21 notebooks; P20 worked
on two notebooks during the study, which we denote as
P20A and P20B as necessary. We found four notebooks for
disposable exploration, nine for findings, and eight for artifact.
The first two authors compared the results with each individual
study and field notes and agreed upon the categorization.
While only P20 worked on more than one notebook during
the observations, several participants (P3, P5, P11) shared the
context of their notebook work via multiple notebooks prior
to the observation or during the post-observation interview.

C. Software Quality Attributes

Participants valued eight quality attributes: clarity, repro-
ducibility, explorability, debuggability, reusability, correctness,
performance, and collaboration. We detail each quality at-
tribute, how notebooks promoted inhibited quality, and user
tactics that promoted quality (results summarized in Table II).

Clarity. 17 participants described tactics that they used to
improve the clarity and presentability of their notebooks. Ten
of our participants planned to present their work to their
colleagues using their notebooks, so they took extra care to
ensure that the notebook was readable and could even be edited
and recomputed on the fly. Others, including P17, P18, P19,
and P20 reported that they often refer back to code written
in previous notebooks and needed to be able to understand
and potentially reuse code from them. P17 described reusing
code from notebooks dating back to 2018 and said he would
continue writing new code in the notebook in the future.

Seven of our participants highlighted that they appreciated
the ability to interleave Markdown notes with their code.
P10 said that these notetaking abilities in notebooks make it
easier for others to understand the code in notebooks, and P20
stressed that “the markdown function is extremely important
to [her]” when writing exploratory code. For some users like
P1, too many notes can have the opposite effect and hinder
clarity. Instead, he wrote high-level to-dos elsewhere. P7 had
a similar strategy and explained that she writes notes in a
separate notetaking software because it was better at tracking
history compared to notes inside the notebook. The Markdown
capabilities of notebooks also allow users to create sections
in their notebooks by creating headings for certain groups of
cells, which both P1, P2, and P20 used. Alternatively, P9, P16,
and P19 split up their notebooks using multiple empty cells to
segregate tested code from exploratory code and to separate
different paths of exploration.

Over half of the participants used the flexibility of the cell
structure to organize content for clarity. They adopted the
heuristic of “one task per cell” to keep relevant lines of code
together while maintaining the ability to see the outputs of
intermediate computations; however, P1 noted that there was
a tension between wanting to group related code and wanting
to break apart and inspect inside a cell: “On one hand, I want
the flexibility to be able to look inside a cell and really get
into its pieces. But, on the other hand, I also want to be able
to flip it over and be like, okay, I've iterated on some kind of
structure, and I have this modular building block.”

This form of content organization aids the reuse of code
across notebooks since notebook code cannot be exported and
must be reused via copy/paste. However, copy-pasting code
can impede readability when unnecessary or redundant code
is added to a notebook. P18 found some vestigial code copied
from another notebook and noted “sometimes I’ll copy and
paste old code into here and then I'll just forget to delete it.”

The flat, cell-based structure increased the participants’
cognitive load as inspection code and outputs interleaved. P16
remarked that “once there are too many things [...] happening



TABLE I
PARTICIPANT BACKGROUNDS AND TASKS.
IN “FIELD”, “COMP”=COMPUTING, “BI10”=BIOLOGY, “SOC”=SOCIAL SCIENCES, AND “EARTH”=EARTH SCIENCES.
“&” IN TASK TYPE DENOTES MORE THAN ONE TASK DONE IN THE STUDY.
EACH PARTICIPANT WORKED ON ONE NOTEBOOK EXCEPT P20, AS “;” DENOTES DATA FOR SEPARATE NOTEBOOKS IN GOALS AND SCROLL SIZE.
IN GOALS, “A” REPRESENTS artifact, “F” REPRESENTS findings, AND “DE” REPRESENTS disposable exploration.

1D Gender  Occupation Field SE Experience  Task Description Task Type Goals Scroll Size

P1 M PhD Student [Comp]CS Work Refactoring a data analysis  Refactoring A 33
notebook

P2 F PhD Student [Comp]CS Work Algorithm & data comparison  Analysis F 61

P3 M PhD Student [Comp]CS Training Data visualization Visualization A 65

P4 M PhD Student [Comp]CS Knowledge Exploratory data analysis Analysis F 11

P5 M PhD Student [Bio]Bioinformatics ~ Knowledge Exploratory algorithm analysis ~ Analysis F 50

P6 F Data Analyst [Soc]Economics &  Knowledge Refactoring a data analysis  Refactoring A 16

& Researcher  [Earth]Oceanography notebook

P7 F PhD Student [Soc]Neuroscience Knowledge Reproducing an existing note-  Reproduction DE 17
book

P8 M MS Student [Comp]CS Work Data cleaning & developing a  Data Cleaning & F 47
machine learning model Development

P9 M Scientist [Earth]Geoscience None Reproducing data visualiza-  Reproduction F 12
tions

PI0O M Scientist [Bio]Microbiology None Migrating a script to a note-  Refactoring A 71
book for documentation

P11 F PhD Student [Earth]Oceanography None Data visualization homework  Visualization A 35
assignment

P12 M PhD Student [Comp]CS Work Code cleanup Refactoring F 24

P13 F Lab Assistant ~ [Soc]Psychology None Data visualization Visualization DE 13

P14 F PhD Student [Comp]CS None Algorithm implementation Development F 9

P15 F PhD Student [Earth]Geoscience Knowledge Data analysis & visualization Analysis & F 21

Visualization

PI6 M PhD Student [Comp]CS Work Analysis of machine learning  Analysis A 32
models

P17 M PhD Student [Comp]CS ‘Work Data analysis Analysis A 13

P18 F PhD Student [Comp]CS Work Testing different ~machine  Analysis F 35
learning models

PI9 M Undergraduate  [Comp]DS Knowledge Drafting a  programming  Development DE 30
assignment

P20 F PhD Student [Bio]Bioinformatics ~ None Annotating a notebook &  Notetaking & DE;A 3;5
reproducing visualizations ~ Reproduction

(two notebooks)

in a notebook it becomes hard to follow.” To manage infor-
mation load, P14 would reuse cells for multiple inspections,
and both P13 and P16 would delete inspection code to reduce
visual clutter. P16 also preserved inspection code in comments
for later use to avoid retaining the inspection output.

Five of our participants (P12, P16, P17, P18, P20) reported
that they create new notebooks to explore new ideas, debug,
and clean up code, which required copy and pasting code from
notebooks. P17 explained that he sometimes creates a new
notebook and copies over his code cell-by-cell to debug; P2
completed the study using a notebook she created exclusively
for debugging. P5 inspected a dataset in an existing, cleaned-
up notebook instead of in his current notebook.

Two participants wrote code in functions to explicitly pro-
mote clarity in their notebook. P18 explained that she abstracts
code into functions to help her focus on relevant information
while reading through her notebook. P14 explained in her
interview that “at the end it’s nice to have a bunch of functions
when the code is cleaned,” but like P1, she preferred to lose
the clarity of functions when developing to ease debugging.

Takeaway 1: Users put effort into ensuring notebook
clarity and often use Markdown cells in Jupyter. Whereas
typical software engineers rely on abstraction and structure
to make code understandable, notebooks’ flat structure does
not provide these capabilities and often hinders clarity.

Reusability. Traditionally, software engineers leverage mod-
ularity and abstraction to promote reusability [19], since ab-
stractions can be reused across contexts without understanding
modules’ implementation details. In contrast, Jupyter’s flat
namespace and single scope for all cells both facilitated
reuse (by avoiding the need to pass parameters or change
representations) and inhibited reuse (by enabling bugs caused
by variables having meanings that pertain to irrelevant parts
of the program). Participants reported writing functions when
code would otherwise be duplicated, but P3 and P11 preferred
to duplicate code unless it would result in more than several
copies; P11 explained that repetitive code can be easier to read
than non-repetitive code that invokes functions.

Jupyter’s single scope caused problems for P12, who copied



TABLE I

SUMMARY OF HOW NOTEBOOKS AFFECT QUALITY ATTRIBUTES AND TACTICS PARTICIPANTS USED TO IMPROVE QUALITY

Attribute Ways notebooks inhibit Ways notebooks promote Tactics used to promote
Clarity Flat, cell-based structure of notebooks makes it ~ Markdown notetaking Abstraction; sectioning; maintaining one
difficult to organize information task per cell; creating new notebooks
Reusability Single scope results in accidental variable reuse  Single scope avoids need for parameter ~ Al-based explanations of unfamiliar code
passing
Reproducibility ~ Out of order cell execution; no built-in package  Broad usage of Jupyter enables viewing ~ Virtual environments; re-running from
management and running others’ notebooks the top; readability and cleanliness; stor-
ing notebooks alongside data
Explorability Lack of support for output comparison across Cell structure-based interactions and  Writing intermediate outputs to disk; ex-
runs; information overload; manual cell execu-  code-ouptut correspondences ploring new ideas in fresh, short note-
tion and state management; inability to inspect books; merging cells with state depen-
in the middle of a cell or in the middle of a loop dencies
Correctness Error-prone manual state management Cell-by-cell execution allows users to  Cell-based risk management; restart and
check the validity of each line run all; enforcing linear execution
Performance Error-prone manual state management Caching data; saving outputs; cell-by-  Reusing data; sectioning
cell execution
Debuggability Out of order cell execution; single scope when  Cell-based structure promotes small in-  Restart and run all; avoid debugging
debugging inside a function; difficulty with nav-  spection, code-output correspondence,  within function definitions; notetaking
igating to relevant buggy cells; inability to in-  and rapid edit-run cycles
spect in the middle of a cell; enforced kernel
restart with changes in dependencies
Collaboration Limited compatibility with file diffing utilities Broad usage of one notebook tool — Sectioning

(Jupyter) makes collaboration easier

and pasted code within a notebook but forgot to update
a variable, which was still bound due to its previous use.
Fortunately, after seeing plot emitted by a cell, P12 debugged
and fixed the problem. Later, P12 encountered another instance
of the same problem, but did not notice the bug.

Because of mutation, code reuse within a notebook even for
the same purpose is unsafe. Participants often invoked Pandas
functions that, for example, renamed columns, so code that
is correct before the renaming operation would be incorrect
afterward. P1 became unsure which lines of code would
change the structure of a dataframe, restarting evaluation to
be sure: “okay, let’s start from the top.”

Some participants wanted to reuse code between notebooks
and Python scripts. For example, P10 adapted code from a
standalone script for use in Jupyter. However, Jupyter couldn’t
invoke the script’s main function. P10 refactored the code to
use variables instead of command-line arguments. P7 worked
with example code that reflected this same pattern: it included
a function called mainfunction.

Some participants wanted to reuse unfamiliar code from
other contexts, which required understanding the code to be
reused—at least to some extent. P7 relied on ChatGPT to
explain unfamiliar code from an example that she wanted
to reuse, even though the code included various comments.
But these tools were not integrated into Jupyter, so P7 had
to copy and paste the code into another window, leaving
ChatGPT without the code’s surrounding context. P7’s query
to ChatGPT was only the source code followed by explain,
missing a possible opportunity to ask a more specific question.

P16 described converting notebook code to scripts, which
execute outside Jupyter; this process is facilitated by the fact
that Jupyter provides only a thin interface on top of Python.

Takeaway 2: Jupyter’s lack of abstraction promotes fre-
quent copy/paste. The flat namespace and single global
scope makes copy/paste convenient but error-prone.

Reproducibility. Reproducibility concerns the ability for the
developer or others to reproduce the same notebook output in
the future. Reproducibility is important in replicating scientific
analyses and extending prior work with new analytic tech-
niques. Unfortunately, reproducibility can be a real problem
for notebook users. P17 recounted a situation in dealing
with a non-reproducible notebook: “I simply created a blank
notebook and copied section by section, because I think this
section would run [...] if it does run, then I move on to the
next section, and that does identify the problem.”

Because notebooks permit out-of-order cell execution, re-
executing notebooks in order can produce different results
than users first observe. At the end of each session, we asked
participants to re-run their notebooks in order. P2 and P9 were
unable to reproduce their earlier work this way, suggesting
that out-of-order execution is a real threat to validity. Some
participants (e.g., P3) were careful to write code in order of
dependencies, but this process was manual. P6 and P8 used
“restart and run all” to make sure their notebooks would run
in order; P17 complained about how out of order execution
threatens reproducibility. P16 cited mutation and order of
execution when explaining why he kept imports at the top.

P1, who had a computing background, used a package
manager, Poetry, to create virtual environments for note-
books, enabling specification of dependencies. In contrast,
most participants did not appear to be concerned with library
versioning, which could threaten reproducibility.

Nine participants considered reproducibility to include read-



ability and cleanliness, since readers might need to understand
the code to reproduce the analyses. Matters of readability are
discussed under the Clarity heading in this section.

Takeaway 3: Scientists value reproducibility, but out-of-
order execution and lack of package management hinder it.

Explorability. Exploratory programming is about prototyping
ideas and iterating on implementations through code without
pre-defined specifications or goals [20]. Regardless of their
goals, our participants valued explorability; indeed, explo-
rations are prevalent in programming, and even the process
of creating an artifact involves exploration. Jupyter includes
features that promote exploration: cell-based interactions, fa-
cilitating exploration through small inspection (P8, P11, P17),
nonlinear execution (P20B), and interleaving code and output
for correspondence and quick comparison (P12, P17).

Participants often needed to compare outputs between dif-
ferent versions of their code, but Jupyter did not facilitate this:
every time they re-ran a cell, the old output was overwritten.
To work around this problem, P1 saved output outside of the
notebook for comparison: “I [would] have code blocks output
their result to a file or [... ] save it somewhere [... ] and then
I'll copy paste that result into like a constant in the code block
[for comparison]. P8 chose another approach, leveraging out-
of-order cell execution: putting various implementations of an
algorithm in different cells enabled comparing the outputs.

Notebooks truncate cell output if it is too long, even though
the output could include important information that is easily
missed. P9, for example, missed a message indicating an
installation failure because it was buried in a long output,
instead believing that installation had succeeded. This caused
persistent failures when he ran other cells that used functions
in that package. Long outputs can also cause difficulties
when testing out multiple new ideas by reducing clarity.
As a workaround, P12 and P16 started fresh notebooks for
exploring new ideas to avoid a notebook getting long due to
too many inspection cells and outputs, “just [making] a new
notebook [...] if something gets messy” (P12).

Jupyter requires users to manually rerun a cell after it has
been edited, but users sometimes forgot to do so, leading
to unexpected output and changes to the global state. These
changes made it difficult to assess the validity of exploratory
code. For example, P2 changed the input file she was using to a
truncated version in order to do more explorations. However,
she forgot to rerun this edited cell and operated under the
impression that she was working with the truncated files. This
caused her to both waste extra time waiting for the runs to
finish and created an extra bug for her to solve, distracting
her from her original task. P8 tried to avoid such hiccups by
packaging exploratory code into a function with exploratory
parameters as the arguments and putting a call to that function
in the same cell, so that he could repeatedly call the function
with different parameter values to explore outputs.

Finally, similar to how they used markdown notes and
annotations to keep notebook content clear, participants used

notetaking to facilitate explorations so that they could freely
explore without getting lost. This way, P20 said, “I [could]
know that [which] is the the newest exploration [...] and these
are all the file paths [...] that I wanted to use [for it].”
Jupyter’s limitation of only showing values of expressions
that are at the ends of cells frustrated P13, who expected to
inspect an expression in the middle of a cell without using the
print function. Likewise, the promise of expression-based
interactivity enabled by the cell structure breaks with loops:
P4 could not inspect expressions within a loop unless printing
them out and was forced to rerun the whole loop, as opposed
to individual iterations, to gain any feedback on code change.

Takeaway 4: Cell-by-cell execution can help users iterate
in straight-line code, but the cell model has difficulty
scaling to more complex workflows.

Correctness. In traditional software engineering, systematic
testing is used to evaluate the correctness of code. In con-
trast, our participants found it difficult to concisely describe
expected results. P17 notes that “it’s not like you can write unit
tests to see if things are correct, sometimes you can tell by the
data. If the data distribution doesn’t look right, then [I] realize
maybe I should have done it differently.” Lack of functional
decomposition makes it difficult to write unit tests: only five
out of 20 participants wrote new functions. In addition to
inspecting output manually, participants adopted notebook-
related strategies to leverage the notebook environment and
mitigate its risks, including cell-based risk management (de-
scribed below), enforcing linear execution, and restarting and
rerunning notebooks for ensuring the correctness of their code.

In cell-based risk management, used by four participants
(P1, P2, P8, P17), users manage the risks presented by new
code by writing in separate cells, which they later combine.
For example, P8 created a new cell to remap a categorical
column of a dataframe to numerical values. He checked that
his code worked as expected by inspecting the datatype of the
column. As he needed to do the same for three other columns,
he created a new cell and wrote similar code for all three
remappings in the same cell and ran the cell without additional
inspection. When asked why he chose not to inspect, he said
“I did my proof of concept for the first thing... I know it’s
going to work because it worked for one of them.”

Because Jupyter requires users to manually manage state,
some participants took time to ensure that they had the correct
mental model of their notebook’s execution. When trying to
understand a collaborator’s notebook, which involved a lot
of variable mutation, P1 said “I get nervous about this stuff
because I don’t know if I've reset the state. So, my way of
handling that is just restart and run it from the top.” P6, a
newcomer to notebooks and programming, runs each of her
cells again whenever she makes a major change in her code to
ensure that there are no new errors. Others (P2, P3, P8, P12,
P17) enforced linear execution in their notebooks.

Restarting and running all notebook cells is not always
desirable, especially when working with large data. P4 said,



“the nice thing about Jupyter [...] is like just loading the data
and not having to load it every single time when I run a script.”
Restarting and running all the cells to ensure correctness in this
case would counteract the performance benefits of notebooks.

Takeaway S: Traditional software testing methods are
difficult to incorporate in notebooks, so users mitigate risk
through inspection and cell-by-cell execution.

Performance. Some participants praised notebooks for facil-
itating working with large datasets. P4 talked about how his
dataset takes 2-3 minutes to load, but using Jupyter allows him
to just load it once and run his computations as many times
as he needs. P2 explained, “the point of the Jupyter Notebook
is that I have [computations] saved so I can use them later.”

Participants promoted performance in their notebook work
by limiting the number of times they loaded data and ran un-
necessary computations. Out-of-order execution and splitting
up cells allow both reusing loaded data and running the code
efficiently. P11 preferred to complete multiple tasks in the
same notebook and created sections to separate them. To run
the code for a single task, she would run the first notebook
cell containing all the import statements she needed, and skip
to only the cells in the relevant section.

Initially, P2 wrote code following the “one task per cell”
principle. However when debugging code that took a long time
to run, she split up her cells based on how often she needed
to recompute certain lines and how long they took to run.
Cycles of editing and rerunning the split up cells caused some
confusion about the current state of the notebook and whether
certain cells had been ran after changes. Ultimately, P2 had
to rerun each of the expensive computations again in order to
confirm that she was working with the most up-to-date outputs.
This tactic that was intended to aid performance ended up
hindering it when used in the context of debugging.

Takeaway 6: Notebooks benefit data-heavy tasks by en-
abling partial execution of programs, but users must care-
fully manage state to leverage this feature.

Debuggability. Debuggability refers to the ability to determine
the cause of a bug. All tasks but cleanup tasks P6 and P20A
involved some debugging. The cell-based model enabled users
to see output of small portions of the program, making the
edit-run cycle much faster than in traditional IDEs. Cells
enabled participants to compare and connect code to output
(P12), run cells out of order (P2, P8, P13), and isolate
code for debugging errors (P9, P19). However, out-of-order
execution, single global scope, difficulty in finding relevant
cells, requiring reloading when dependencies are changed, and
expression-based inspection having to be at the end of a cell
all interfered with participants’ ability to debug efficiently.
Out-of-order execution in notebooks required the user to
manually rerun cells that had been edited (and all other cells
that depended on them). For example, P15 had written a
for loop that was supposed to update values in rows of a

Pandas data frame. Unfortunately, P15 neglected to index into
the frame, accidentally rewriting the entire column in every
iteration. The first iteration ran with some output, but the
second iteration failed due to the unexpected change in the
entire column. Confused, P15 decided to rerun the cell to
replicate the error, only to see the for loop fail immediately
during the first iteration: it was now operating on data that
had been mutated in the previous (failed) run. 15 minutes into
the situation, the participant sought help from the interviewer,
who explained that P15 had to reload the data frame, resolve
the bug in the loop, then rerun the cell with the loop to finally
see the expected output. Neglecting an index may be common
in dynamically-typed languages, but a scripting setting would
not have produced the output that misled the participant across
runs as every run executes the entire script, not just snippets of
code. Like P1 pointed out, one must resolve some debugging
scenarios in Jupyter notebooks by restarting the kernel and
rerunning all cells to enforce the script-like execution linearity.
The single global scope in notebooks also makes debugging
and inspecting local variables in a function hard (P3, P10). For
example, P10 considered returning local variables he wanted to
inspect from a function to use the expression-based inspection
in a cell. Instead, P14 simply avoids debugging inside a
function. When processing large files inside a function, the
edit-run-inspect cycles can take a long time. By moving code
out of a function, she could see intermediate output without
having to stop, add print statements, and rerun the code.
Compared to an IDE for scripts, where one could easily
go to the definition of a function or simply a specific line
of code to localize the bug, notebooks provided no easy way
to navigate to relevant cells (P3, P9, P12). In particular, P9
could not locate the cell he just ran after he scrolled through
the notebook to read other cells while waiting for the execution
to complete. As such, participants spent a lot of time scrolling
through the notebook: in fact, scrolling was the most prevalent
action across all studies, with 603 coded instances out of 4195
total action instances (14.3%). To complement the lack of
navigation aid in notebooks, participants (P14, P16) took more
notes in the notebook to facilitate cell navigation in debugging:
“If you leave notes [...] then if something doesn’t work, at least
I can go back and look at my notes, [...] start with the things
that looked weird intermediately, and go from there” (P14).
Notebooks required restarting the kernel for changes in the
dependencies to take effect, which severely slowed down the
edit-run debugging cycles for P7 when some of the debugging-
related code changes occurred in an imported module.
Jupyter shows the value of the last expression in each cell.
P13 wanted to inspect arbitrary expressions in cells without
inserting print statements. Enabling easy inspection of all
values could further promote debuggability.

Takeaway 7: Cell structure helps isolate errors, but out-of-
order execution and single scope impedes debugging be-
cause debugging work can mutate state needed elsewhere.

Collaboration. Collaboration is an important part of the sci-



entific process. As students and researchers, our participants
needed to ensure that their work could be understood by
others, and when needed, could be collaboratively written.
Two of the twenty participants planned to co-author their
notebooks with their colleagues (P6, P14), but many planned
to share and iterate on their notebook work with the input
of others (P1, P3, P5, P10, P11, P12, P16, P17). However,
Jupyter does not natively provide many tools for facilitating
collaboration on the same notebook, so users rely on ad hoc
methods such as splitting a notebook into separate sections
and storing the notebook on a shared drive. Version control
systems have limited benefit because they do not integrate
nicely with notebook cells. This also affected our participants’
willingness to collaborate with others on notebooks. P8 said
that he collaborates with others when working with Python
scripts, but chooses not to collaborate with others because of
the difficulty of resolving editing conflicts in notebooks. To
avoid messy conflicts, P20 elaborated in interview that she
had once split a notebook into two sections by adding empty
cells in the middle, and she and her collaborator worked on
the cells on opposite sides of the divide.

Takeaway 8: Scientists often work together, but a lack of
version control integration or other collaboration tools for
notebooks makes collaboration difficult.

D. Use of Al tools

11 participants used Al-generated code during their respec-
tive studies. Three (P1, P2, P5) used GitHub Copilot [21],
which was integrated into their notebook environment (i.e.,
VS Code). Nine participants (P5, P7, P9, P10, P13, P15, P17,
P19, P20) used ChatGPT for help when writing notebook code,
and two (P12, P16) mentioned using it in the past.

The participants using Copilot largely used it as an au-
tocomplete tool to accelerate their productivity [22] since it
was “a good time saver,” (P2). In 18 of the 21 instances
of Copilot usage, Copilot would complete their line of code,
and 12 instances were accepted without changes. Two were
considered unhelpful after reading and were deleted, and three
were accepted and edited. P1 also used Copilot to explore
solutions by prompting it in the comments to create a plot in a
new cell. Once he ran the cell, he saw that the axes labels were
unreadable. He tried to fix this issue by prompting Copilot to
fix the code, but when unsuccessful, moved on.

Table III shows 14 instances ChatGPT usage, 11 of which
had a participant successfully integrate ChatGPT-generated
code into their notebook. To validate the Al-generated code,
each of these participants first read over the code, and all
but one (P5) copied and ran the code inside their notebook
to determine if it met their needs. However, this strategy did
not always succeed: P9 could not download the dependencies
needed to run the generated code. In addition, P7 relied on
ChatGPT twice to explain code from the notebook, but noted
“I don’t know this code well enough to tell if ChatGPT
is giving me something wrong.” All but one ChatGPT user

TABLE III
USAGE OF CHATGPT

ChatGPT Usage Scenario Participants Success Rate
Explaining code P7 2/2
Fixing errors P13, P17 2/2
Generating visualization code P9, P13 3/3

Using unfamiliar libraries
Other programming tasks

Ps, P9, P15, P19 1/5
P10, P13, P20 3/4

worked in a non-computer science field, which highlights the
important role of Al tools for scientists in programming.
The exploratory nature of notebooks eases validating Al-
generated code because, as P12 puts it, “if it gives me code
that might be wrong, I can just try it.” Still, for those with less
coding expertise, it may take them more effort to integrate the
code into notebook before validation by execution is possible.

Takeaway 9: Scientists rely on Al-based tools even though
they are not integrated into their environments, but some-
times lack the programming knowledge to understand or
incorporate Al-based suggestions successfully.

IV. DISCUSSION AND FUTURE WORK

Identifying quality attributes that scientists value exposes
opportunities to build theory and deepen our understanding
of prior work, which focused on data workers more gener-
ally. First, our study provides a framework for understanding
notebook use and challenges in scientific settings through the
lens of quality attributes and identifies tactics scientists use
to promote the reported quality attributes. This could enable
theory-building opportunities; data collection could focus on
the root causes of priorities and motivations, which would en-
able a stronger theoretical perspective. For example, our study
identified conflicting quality attributes for certain goals and
contexts (e.g., clarity could conflict with debuggability when
a notebook aims to show more intermediate computations),
and in-depth data collection could better explain how scientists
navigated quality attributes in conflict. Second, with a specific
focus on scientific users, while our study reveals notebook
usage goals and pain points similar to prior results (of data
workers) [6,11,23,24], we found that priorities for notebook
quality attributes depended on context and goals (rather than
a general prioritization of exploration over explanation).

We noted highlights in the current design of notebooks that
supported scientific work and its associated quality attributes.
Support for dividing code into cells that can be executed in
any order and share an execution environment is the hallmark
of the computational notebook paradigm. As we observed,
this promotes explorability, which our participants prized.
Combined with the support for Markdown-based headings and
explanations, which promotes clarity, computational notebooks
focus on exactly the quality attributes most valued by our
participants. Support for easily seeing output also promotes



correctness and debuggability, and out-of-order execution fa-
cilitates work with very expensive analyses (performance).
Our participants were less concerned with reproducibility and
reusability, which are weaknesses of computational notebooks.

How, then, could future tools for scientists do better? Key
design opportunities pertain to reusability and reproducibility,
which are inhibited by out-of-order execution, the global scope
for all cells, and lack of built-in package management. Here,
we believe an opportunity lies in enabling more separation
between the cells. Cells could have their own scopes, with
explicit control over which variables are imported from and
exported to global scope. This could enable a kind of reactivity,
similar to spreadsheets or Observable [9], in which cells are
automatically re-evaluated when their inputs change.

Similar to that shown in other work [15], we observed a
spectrum from exploratory work to explanatory work. Systems
need to support work that spans this spectrum over time,
but these are sometimes in conflict: out-of-order execution,
which promotes explorability, inhibits reproducibility; also,
single scope promotes explorability but inhibits some aspects
of reusability. Also, some tactics promote some quality at-
tributes at the expense of others, leading to refactoring needs
when goals change. For example, a very exploratory notebook
might include a large number of short cells to enable quick
edit/debug cycles; as the notebook becomes more explanation-
oriented, we found that participants were more likely to com-
bine related code into larger cells. Future notebook tools could
provide refactoring tools that make transitioning between goals
more convenient, when users are ready—and even enable
backward transitions. Existing tools enable splitting cells,
which helps, but documentation can increase viscosity [25];
tools that track a tighter relationship between code and docu-
mentation and between different regions of code could make
it easier to revise mature code. In our study, we repeatedly
observed participants starting over with fresh notebooks when
they needed to make these kinds of transitions, creating a mess
of different files with unclear histories and necessitating re-
work to construct each new version.

Modular notebooks. Notebooks have a linear structure: a
sequence of code cells, interspersed with Markdown cells. The
result is that notebooks hide dependencies, inhibiting modu-
larity [25]: code cells can rely on variables that were bound
or whose values were mutated in other cells in the notebook.
Then, reusing a cell requires first identifying its dependencies.
Tools could help find required code [26], but it could be more
effective to promote modularity. Dependencies between cells
could be restricted; lexical and semantic dependencies could
be made explicit (adding annotations of preconditions and
postconditions on cells [27]). Gradual approaches could pro-
mote formal abstraction mechanisms: refactoring tools could
make it easy to extract cells as functions, and notebooks could
adapt tools like Projection Boxes to enable live exploration
of function behavior [28] (which Engraft [29] has attempted).
Another axis of modularity concerns data: code that reads from
files or Internet data sources can be buried in notebooks, again

hiding dependencies. Notebook environments and languages
could improve modularity by making these dependencies,
including requirements regarding file formats, explicit.

When executing a notebook, users can choose to run all
cells, a single cell, or all cells up to a point. But this inhibits
explorability because executing all of these cells can be very
expensive. Alternatively, running just one cell is risky because
the environment does not track which cells need to be re-run
after recent changes. Modularity could enable analyses that let
users explore more safely and efficiently.

Organizing large notebooks. Cells in notebooks are in a
fixed, scrollable view, making it difficult to see portions of
the notebook that pertain to specific tasks. Other tools that
facilitate data analysis are more flexible. Spreadsheets include
multiple sheets, enabling users to divide analyses into sections.
LabVIEW [30], a graphical programming environment that tar-
gets scientists and engineers, breaks projects into separate files
and libraries. Although Jupyter notebooks can call functions
in other notebooks via the $run command, doing so pollutes
the namespace with all of the referenced functions. Future
computational notebooks could be more flexible, allowing
users to organize their cells according to their content.

Parallel evaluation. Some cells can take a long time to
run. When those cells are executing, no other cells can be
evaluated. This restriction relates to notebooks’ inability to
analyze dependencies: from the environment’s perspective, any
cell can produce state that is needed for any other cell. But
in general, this is not the case, and restricting progress in
an unrelated part of the notebook inhibits exploration. A few
notebook improvements have adopted dataflow analysis to
report or indicate dependencies across cells [31,32]. Based
on these works, we could identify non-dependent cells to
parallelize their evaluation to address this problem.

Caching partial results. Cells can include some very expen-
sive lines of code, whereas other lines of code are very cheap.
Better analysis of dependencies in notebooks [31,32] could
enable caching partial results, promoting exploration.

Packaging dependencies. Notebooks often depend on installed
packages and data files. Current notebooks do not support
specifying dependencies and their versions in metadata. Al-
though users can work around this via virtual environments,
notebooks could make this easier with explicit support. Like-
wise, users must manually bundle input data with notebooks,
something that automated support could help with.

Better Al Integration. Our study shows how scientists used
Al assistants in notebook work. Our findings align with prior
evidence of Al use in IDEs [22,33] and further unveil the need
for built-in AI support in notebook environments, which prior
work has proposed for general notebook use [34]. Specific to
scientists, future Al integrations in notebooks should empha-
size supporting the validation of Al-generated code [33] (i.e.,
checking if the generated code matches one’s intent) while
taking into account their programming and domain expertise.



V. RELATED WORK

Since Knuth’s proposal [35], numerous literate program-
ming environments have enabled end-users to incorporate
more storytelling [3] into their code [3,9,36]-[39]. Jupyter
notebooks allow quickly prototyping ideas through cells and
interleaving narratives with code, helping document scientific
discoveries and analyses [3]. Indeed, among the long line
of computing environments scientists use [3,9,30,37]-[42],
Jupyter notebooks [3,39] have become very popular [7].

Corpus Studies. With millions of public Jupyter notebooks on
GitHub [3], multiple corpus studies [2,10,15,43]-[45] gained
insights into the usage patterns in Jupyter notebooks via such
data. These studies identified the tension between exploration
and explanation in constructing and sharing notebooks [15],
their lack of reproducibility [2], and the lack of good coding
practices in notebooks [44]. Building upon prior results, recent
work proposed a linear regression model to predict the level
of exploration vs. explanation in a notebook [45], developed a
taxonomy of bugs in notebooks [10], and analyzed refactoring
behavior across the evolution of notebooks [43].

These studies show that while notebooks can evolve from
exploration-focused to explanation-oriented by introducing
more clarity [45], and notebook users do attempt debug-
ging [10] and refactoring [43], notebook code may be of low
quality according to traditional metrics, such as presence of
unused module imports [2,44]. These quality metrics, however,
may be less relevant for scientists than the higher-level quality
attributes that we identified. In addition, these studies analyze
notebooks on GitHub, which might miss some insights since
scientists often choose not to publish notebooks on GitHub
except for sharing [7]. Our study revealed notebook-specific
quality attributes that scientists valued, tactics they performed
to promote quality, and the difficulty in achieving quality goals
without support for modularity, scoping, and refactoring—a
cost they had to bear to optimize exploration.

Studies with Humans. While corpus studies derive notebook
usage patterns through notebook artifacts, interviews, obser-
vational studies, and surveys seek the answer directly from
notebook users (mainly data scientists). Wang et al. [46]
conducted the first observational study where pairs of data
scientists collaborated in a notebook task, focusing on collab-
oration patterns but not the low-level notebook-related actions.

Four prior works, although targeting general data workers
as opposed to scientsts, are particularly relevant to ours.
Through interviews and surveys, Kery et al. [6] found that
data scientists prioritized exploration over explanation, and
this prioritization often backfired when revisiting work later;
in contrast, we found that scientists’ priorities depend on
context and goals. For example, P17 carefully documented
exploratory code with Markdown notes, expecting to revisit
his code years later, even though documentation could inhibit
exploration later by increasing modification costs. As Subra-
manian et al. [23] found from screen recordings of nine data
workers performing their own tasks, our study showed that
scientists used notebooks for both experimentation and results

sharing; additionally, while this work showed that notebooks
could easily become disorganized, most scientists in our study
valued clarity in notebooks. Our participants adopted tactics
to promote clarity in their notebooks, but these same tactics
often inhibited other quality attributes they valued (e.g., avoid-
ing debugging within function definitions, which maintained
clarity but limited debuggability). Chattopadhyay et al. [11]
conducted observations, interviews, and surveys with industrial
data scientists and engineers, revealing nine pain points when
using notebooks. Although their study population differs from
ours, our participants encountered similar issues, including
a lack of built-in (AI) code assistance tools and difficulty
refactoring code, hitting all pain points except data security; in
addition, our work surfaced tactics scientists adopted to work
around the pain points (e.g., P20 split a notebook into two
sections to address limitations in collaborative work). Finally,
in addition to conducting two corpus studies, Rule et al. [15]
interviewed 15 academic data analysts who felt that although
messes built up easily, notebook clarity was unnecessary
unless for sharing; in contrast, we found clarity to be a
top quality attribute that scientists cared about, even without
sharing or collaboration, with four participants explicitly using
tactics to promote notebook clarity in non-collaborative work,
such as adding documentation and writing modular code.

Notebook Improvements and Novel Systems. Driven by
the existing challenges with Jupyter notebooks, researchers
have reviewed the design of computational notebooks [8]
and proposed analysis techniques [31,47], novel notebook
systems [9,29,48], and Jupyter extensions [26,31,32,49]-[51]
to improve the notebook quality and user experience. Some
systems incorporate informal version control into notebooks
to help users explore and compare code alternatives [49]-[51].
Some tackle the error-prone manual state management issue
in Jupyter by reporting unsafe notebook executions that lead
to out-of-sync data dependencies [31] or allowing dataflow
execution across cells [9,32,48]. Other systems aim to reduce
the potential clutter created during the exploration process by
providing more live feedback [29] and cleaning up redundant
code with program slicing [26]. Our study complements these
systems by proposing design opportunities for future improve-
ments to Jupyter notebooks grounded in observational data.

VI. CONCLUSION

Scientists value eight different quality attributes in their
work and use 18 tactics to promote those quality attributes. The
cell model in computational notebooks promotes key quality
attributes, such as explorability, that scientists value, partly
explaining their dominance among scientists. Although the
model also inhibits other valued quality attributes, such as
reproducibility, future changes to the notebook model could
enable scientists to meet their quality goals and navigate the
spectrum from exploration to explanation more effectively.
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