
The Command Line GUIde:
Graphical Interfaces from Man Pages via AI

Saketh Ram Kasibatla*, Kiran Medleri Hiremath*, Raven Rothkopf, Sorin Lerner, Haijun Xia, Brian Hempel
{skasibatla, kmedlerihiremath, rrothkopf, lerner, haijunxia, bhempel}@ucsd.edu

University of California San Diego, La Jolla, CA, USA

Fig. 1: GUIDE automatically provides GUI interfaces for command line tools by translating man pages into specifications.

Abstract—Although birthed in the era of teletypes, the com-
mand line shell survived the graphical interface revolution of
the 1980’s and lives on in modern desktop operating systems.
The command line provides access to powerful functionality not
otherwise exposed on the computer, but requires users to recall
textual syntax and carefully scour documentation. In contrast,
graphical interfaces let users organically discover and invoke
possible actions through widgets and menus. To better expose
the power of the command line, we demonstrate a mechanism
for automatically creating graphical interfaces for command
line tools by translating their documentation (in the form of
man pages) into interface specifications via AI. Using these
specifications, our user-facing system, called GUIDE, presents
the command options to the user graphically. We evaluate the
generated interfaces on a corpus of commands to show to what
degree GUIDE offers thorough graphical interfaces for users’
real-world command line tasks.

I. INTRODUCTION

Since at least the dawn of time-sharing mainframes in the
early 1960’s [1], the command line interface (CLI) let users
run programs on a computer interactively: type out a command
on a keyboard (originally an electric typewriter) and, when
completed, see its result (typed back on the paper or shown
on an electric display). Although an interface conceived for
teletype machines in an era of glacial computing speeds,
the command line interface endured through the graphical
personal computer revolution of the 80’s and lives on in
modern desktop operating systems—Windows, MacOS, and
Linux all include a terminal shell.

*Equal contribution.

However, the command line is no longer considered the
normal way to operate a computer, as graphical user interfaces
(GUIs) have advantages over CLI apps [2], such as a reduction
in cognitive load by shifting from recognition to recall [3].
Nevertheless, programmers still use and write command line
tools, in part because CLI applications typically provide more
expressive power and because building an entire GUI for e.g.
a simple script is a non-trivial undertaking.

But even if writing non-GUI tools is easy for the pro-
grammer, using them is hard: one must already know the
command name, its flags, and its argument structure. Large
language models can help somewhat, lettings users write in
natural language [4], but AI chat interfaces do not directly
help users explore the breadth of all the options of what a
command can do. Discoverability of options, allowing users
to explore, and interactive tweaking, allowing users to quickly
change properties by clicking, are two key advantages of
graphical interfaces not provided by even an AI-augmented
command line. Can we “drag Unix into the 80’s” [5] by
providing graphical interfaces for command line tools? This
might provide the best of both worlds: the expressive range of
CLI tools along with the usability of graphical widgets.

Related Work
Several systems provide such graphical front-ends. Be-

spoke [6] automatically generates composable GUIs support-
ing a subset of a command’s options by observing user
demonstrations. This interaction model lets users flexibly
tweak options, but assumes they have the expertise to supply

Fig. 2: GUIDE interface, shown for a grep command.

a valid command to begin with, limiting its effectiveness
for novices. In the early 1990’s, Apple’s Commando [7]
showed graphical dialogs for common Unix commands. These
purpose-built GUIs streamlined CLI operations, but were not
easily adaptable to commands unsupported by the system.

Another approach is to provide more general-purpose GUIs.
PowerShell’s Show-Command is one such example [8]. Given
a structured specification, Show-Command generates a GUI
that constructs and executes any PowerShell command, includ-
ing user-defined ones. While Show-Command lowers the bar-
rier of entry for novice users, it relies on a structured, machine-
readable specification to generate GUIs. Many traditional Unix
tools are, however, documented only through natural language
man pages, which would need to be manually translated to a
more structured form in order to be used with such a system.

While each of these systems does provide a GUI to construct
commands, they are unidirectional, and only support gener-
ating a text command from a GUI. Bidirectional interfaces
bridge the gap between graphical and textual programming
workflows [9]–[11] by letting users modify either the textual
or graphical representation, keeping the two in sync [12]–[14].

Large language models (LLMs) also hold potential for
automatically generating GUIs, especially in light of recent
improvements in LLM agents for software engineering [15]–
[19]. Existing approaches to generating GUIs using LLMs,
such as in Biscuit [20] and DynaVis [21], create widgets
based on user input. Because these systems are reactive, the
generated GUIs are small and focused: only options related to

the user’s interaction are exposed for manipulation. Limiting
displayed options can reduce cognitive load, presenting users
with a clear subset of options, but does so at the expense of
discoverability.

Our Approach: GUIs from Man Pages via AI
Instead, we aim for a maximal approach, to show an exhaus-

tive list of a command’s parameters. To support both extant
and new commands, we aim for automatic generation of GUIs
from natural language documentation, specifically, from the
man pages (manual pages) usually provided with a command.
We prompt an AI with a man page and have it output a
grammar describing valid flags and arguments, which is then
presented to the user in our graphical application called THE
COMMAND LINE GUIDE, hereafter GUIDE. GUIDE offers
the user a bidirectional interface for authoring a command:
the selected options in the GUI update live as they type a
command, and, in the reverse, interaction with the GUI edits
the command. This immediate bidirectionally contrasts with
e.g. PowerShell’s Show-Command, which is only a one-shot
generator. Specifically, we contribute:

• GUI inference: generating GUI specifications for com-
mand line utilities, given only a man page.

• GUIDE: a bidirectional GUI-and-text terminal application
for authoring and running commands.

Below, we introduce GUIDE through an example, detail
the GUI inference process, and then critically evaluate the
automatically-generated GUIs for 20 common commands.

II. COMMAND LINE GUIDE EXAMPLE

John, a novice command line user, is looking for pricing
information about an item for his business, but needs to search
multiple files at once.12 He knows he can likely do this with
command line tools, and he starts up GUIDE. GUIDE, shown
in Fig. 2, presents a terminal at left, a command editor in the
middle, and a file explorer at right.

File explorer. The file explorer 1 lets John click to navigate
to the directory with all his invoices. The terminal runs the
needed cd commands automatically.

AI command generation. GUIDE provides an AI prompt
box 2 for generating and editing commands, similar
to recent AI terminal apps [4]. John enters the prompt
“search all text files for "glass"”. The AI
produces the command grep "glass" *.txt, but when
John runs it there are no results!

Flag discoverability and selection. John wonders if grep
is misconfigured. GUIDE creates a graphical interface 3 for
editing the command without requiring John to look elsewhere
for documentation. The interface offers alternative command
forms (here hidden behind a disclosure triangle) as well as a
comprehensive list of supported flags for grep. This lets John
discover relevant flags. Scanning through them, he notices the
-i flag, labeled “ignore case”, and wonders if grep is case-
sensitive by default. John clicks -i to toggle the -i flag 4 ,
adding it to his command. Upon re-running, he now sees the
name of the item, “Aurora Glass Relay”, in two invoices. But,
he cannot see the items’ prices. grep only shows the lines
that match the search string, but the prices are on nearby lines.

Wondering if there is a way to show surrounding lines, John
enters “line” in the parameters search box 5 and sees an -A
flag labeled “show after context”. When he hovers his mouse
over the flag, a tooltip 6 says “Print NUM lines of trailing
context after matching lines”, which is what he wants. He
toggles -A on, and fills in its input box with 3.

Bidirectional editing. After running the command, he sees
3 is not enough lines to show the price. He could change
the number in the same input box, but GUIDE also supports
bidirectional editing: the draft command 7 is text-editable.
John changes the 3 to an 8 in the full command text, and the
GUI below updates to match automatically. Now when John
runs the command, the prices he wants are displayed.

Real-time AI Explanation. As John crafts his command,
GUIDE live updates an AI summary 8 of what the command
is expected to do. This helps John build confidence that the
command will do what he wants.

File drag-and-drop. John realizes his search includes an old
invoice that should be excluded. Instead of manually figuring
out the exact path to exclude, John toggles on the --exclude
flag and simply drags and drops 9 the unwanted file into the

1Mythical invoices for the example are AI-generated (OpenAI gpt-4.1).
2Example video: https://zenodo.org/records/16749005/files/demo.mp4 [22]

flag’s text box, which fills in the text box with the file name.
The command is updated with the proper exclusion syntax.
John re-runs the command and inspects the output for the
latest price he paid for Aurora Glass Relays.

Recap. GUIde streamlines the construction of terminal com-
mands with GUI conveniences. A file explorer lets users
navigate the filesystem and drag-n-drop files into command
arguments. GUIDE lists command flags in a graphical inter-
face, facilitating discoverability, and simplifying flag selection
by offering search and quick click-to-toggle to add and remove
flags. Editing is bidirectional when users want to text-edit
the full command rather than use the GUI. And real-time AI
explanations increase user confidence in their command.

III. IMPLEMENTATION

GUIDE’s interfaces are generated based on command-
specific grammars that describe valid commands. Although
developers could write these grammars by hand, we aim to
generate GUIs automatically. We prompt an LLM with a
command’s man page to generate the grammars. Surprisingly,
although most commands are simple, we found that naı̈vely
prompting LLMs produced unusable grammars with many
errors. Below we discuss the more involved prompting and
repair process we devised to produce usable grammars, with
additional details in a technical supplement [22].

Generating GUIDE-lines from man pages
The goal is to produce what we call a “GUIDE-line”, a

context-free grammar (in Ohm [23]) with extra annotations to
support GUI rendering. Rules in the grammar can be option-
ally annotated as representing either a flag or an argument:

• A flag is an optional chunk, e.g. -a or --num=10, that
can be toggled on/off in the generated GUI. Whether flags
require one, two, or no leading dashes is not hard-coded
into GUIDE, it is based on the grammar structure.

• An argument is a chunk for user input, rendered as
an input box in the GUI, e.g. the three boxes in
cut -d , -f 2 file.csv are arguments. Note
that -d , and -f 2 are arguments nested inside flags.

We use a large language model3 (LLM) to generate GUIDE-
lines using the process outlined in Figure 3. First, we prompt
an LLM to generate a test suite containing valid invocations of
a command based on its man page. We then use the test suite
and man page to generate a draft GUIDE-line. Finally, we use
LLM agents to correct syntactic errors, lint the GUIDE-line,
and to fix failing test cases.

Test Suite Generation
To make a test suite, we ask the LLM to generate 10

valid invocations of a command, then to generate a further
10 tests asking it to improve the variety of test cases along
several dimensions, including the syntax used to pass argu-
ments, the number of arguments, and use of variables in
arguments. Each of the 20 test cases consists of the text

3claude-3-7-sonnet-20250219 temperature 1 with thinking tokens

https://zenodo.org/records/16749005/files/demo.mp4

generate tests

repair Ohm syntax

lint and repair failing tests

generate GUIDE-line

all tests pass

or

best after 5 retries

not all passing

(max 5 retries)

man page

Test Suite

Draft GUIDE-line

(annotated grammar)

Final GUIDE-line

(annotated grammar)

cannot repair syntax

or

passing 0 tests

(max 5 retries)

Fig. 3: Automatically creating a GUIDE-line from a man page.

to parse (e.g. “ls -lah”) and flags that are expected (e.g.
“-l”, “-a”, and “-h”). For a test to pass, the grammar must
parse the command successfully and the parse tree produced
must contain nodes for each of the expected flags. The latter
condition causes a test to fail if the GUIDE-line contains
overly permissive rules that consume more than one flag.

Draft GUIDE-line Generation
We prompt the LLM to write an annotated Ohm [23]

grammar, providing (1) the man page, (2) the generated test
suite, (3) three few-shot [24] examples detailing ideal output
for the ln, mdfind, and nl commands (showing various top-
level forms, flag formats, and formats shared among multiple
flags), and (4) several pre-written grammar rules to parse
numbers, string literals, embedded commands, flags, etc. This
produces a draft GUIDE-line.

Repair with LLM Agents
Draft GUIDE-lines often have errors which make them

unusable as-is. We use LLM agents [15]–[19] to repair them.
An LLM agent is a prompt that is run in a loop. At each
step, the LLM is provided the current GUIDE-line and error
messages, and then performs actions to debug the issue or edit
the GUIDE-line. The loop terminates after a maximum number
of iterations, exiting early if the agent achieves its goal. Each
agent is allowed to perform a subset of the following actions:

• replace(diff) edits the GUIDE-line, applying the
diff to the first matching search string, as in other software
development agents [15], [19].

• read() returns the current GUIDE-line and error mes-
sage. This helps the agent see the current file state instead
of guessing it from the diffs it applied.

• parse(example, ruleName) attempts to parse the
string example under the grammar’s ruleName in the
current GUIDE-line. This lets an agent debug a problem
or test if the problem is fixed.

• finish() marks the task as complete and exits the
loop, allowing the agent to decide when it is done.

We run three agents in series. First, the syntax repair agent
fixes syntax errors (i.e. invalid Ohm grammars) using read
and replace. It is given troubleshooting instructions with
suggestions about how to fix common syntax errors. The agent
may perform up to 10 actions. If the agent cannot produce a
valid grammar, or the grammar it produces passes zero test
cases, we regenerate the GUIDE-line (maximum of 5 retries).

Next, the linter agent repairs sequencing errors. These arise
because parsing expression grammars [25], like Ohm, parse
alternations (i.e. or-clauses) greedily, always taking the first
matching rule. Thus, longer rules must precede their prefixes
to be matched (e.g. --print0 must precede --print). The
linter is instructed to identify and fix sequencing errors, using
the parse action to test rules and replace to fix them. It
may perform up to 10 actions or finish early.

Finally, the test case repair agent fixes failing tests. As with
the linter agent, it uses parse and replace to debug and
fix errors (up to 30 actions). It is run once for each failing test
case, and is directed to fix the test and instances of the same
issue in other parts of the GUIDE-line. After each run, the
edited GUIDE-line is tested against the full test suite, replacing
the previous version if it has strictly fewer failing tests.

If less than 20 of the test cases pass, the entire process
above starts over with generating new test cases (maximum
of 5 retries). Except for unusually complicated commands, no
retries are necessary and the above process produces a GUIDE-
line that can parse all 20 test cases.

Bidirectional UI from a GUIDE-line
When making the GUIDE-line, the LLM annotates which

grammar rules represent flags and arguments. Flag annotations
include an identifier (to indicate that e.g. -h and --help are
the same), a short description (displayed in the main UI), and
a longer description (displayed in the tooltip). An argument
annotation simply marks a rule as an argument, i.e. something
to be replaced with a text box. The UI displays the grammar
rule name as a placeholder in the text box.

To generate the GUI structure, GUIDE walks the hierarchy
of grammar rules, flattening productions into a two level
hierarchy: top-level alternatives representing different forms of
a command (hidden behind a disclosure triangle in Fig. 2 3),
and a set of flags for those alternatives, with equivalent flags
grouped together (e.g. -V and --version). This conversion
from GUIDE-line to GUI is done purely symbolically, without
any prompting of an LLM or user intervention.

In the generated GUI, on user interaction the current GUI
state is serialized to generate the textual command. To provide
bidirectional editing, when the user edits the textual command,
GUIDE parses it with the grammar and matches the parse tree
nodes with the GUI elements to update the GUI state.

Command # Recreatable # Examples Parse Rate

sudo 10 176 100.0%
xargs 9 849 100.0%
echo 10 344 98.6%
ssh 10 113 98.2%
mkdir 10 82 97.6%
cut 10 189 97.4%
tr 10 117 97.4%
ls 10 107 96.3%
wc 10 27 96.3%
grep 8 611 95.7%
dirname 10 64 95.3%
cat 10 183 95.1%
tee 10 81 93.8%
sort 10 188 90.4%
split 8 78 85.9%
find 0 5162 81.7%
rsync 8 125 80.8%
uniq 10 22 77.4%
tail 7 65 64.6% (96.9%)
head 10 70 52.9% (97.1%)

Mean 9.0 89.8%
Total 8653

TABLE I: Evaluation metrics for 20 common commands.
Parse rates in (parens) are for manually repaired GUIDE-lines.

IV. EVALUATION

To evaluate the automatically-generated GUIDE-lines and
their UIs, we tested each GUIDE-line on two metrics—
parseability, which tests the grammar itself; and recreatability,
which tests the whether the generated UI is sufficient to invoke
a desired command. For our corpus, we use the NL2Bash [26]
dataset, which contains bash commands scraped from various
online sources. We generated GUIDE-lines for the 20 most
commonly occurring commands in NL2Bash listed in Table I
(after splitting pipes into separate commands; we also removed
I/O redirects and environment variables). We used man pages
from GNU coreutils for applicable commands, and use man
pages from Ubuntu 22.04.5 LTS for the remaining commands
(grep, rsync, ssh, sudo, and xargs).

Parseability. A test command is parseable if the GUIDE-line
parses it successfully. “Parse Rate” in Table I is the percentage
of parseable invocations. We deduplicate repeated invocations.

Most GUIDE-lines had a parse rate of over 90%. However,
6 commands fell below this mark. head and tail used
flags not noted in their man pages. Both support a numerical
flag (e.g. -8) to specify the number of lines to show. As
this flag is well-known, it merits being manually added to
the GUIDE-lines. Doing so brings their parse rates above
90%. find’s grammatical structure is highly complex, as
it allows for writing nested expressions and boolean logic
with its flags. The LLM struggled with rsync’s exceptionally
long man page. split’s GUIDE-line had mistakes relating
to 2 specific flags, accidentally requiring --lines to take
a numerical argument when it could also take a variable,
and --filter mistakenly consumes all flags came after it.
uniq’s 5 failing examples contained uncommon shorthands
and argument-passing formats not described in its man page.

Recreatability. We consider an invocation recreatable if an
equivalent command can be reproduced solely by interacting
with the GUI (Fig. 2 3), without typing anything in the
full command text box (Fig. 2 7) other than the command
name to pull up the appropriate GUI. For each command, we
randomly sampled 10 parsable invocations and clicked flags
and filled in arguments to re-create an equivalent invocation.
“# Recreatable” in Table I shows the number of successes.

Most simple commands are recreatable. Some commands
like rsync -rvv are not supported, as the UI only supports
using a flag once. The LLM-generated grammar for tail
conflated flags and positional arguments, which was fine for
parsing but confused the GUI generator so the user could
not supply both flags and a file name argument in the same
invocation. The worst GUI was for find: its complex query
syntax was represented by a grammar which the GUI generator
interpreted as over 1000 top-level command forms, resulting
in an unusable UI.

V. DISCUSSION

GUIDE works well for ordinary, simple commands. By
using arbitrary grammars, we support, e.g., the user typing
ls -lah and these short flags correctly toggling the -l,
-a, and -h flags in the GUI. Nevertheless, GUIDE currently
fails for commands that cross some threshold of complexity,
such as find which embeds its own query language. Further
exploration is needed to determine what level of complexity
leads to the kinds of breakdowns we observed.

Using arbitrary grammars highlighted to us that the gener-
ated GUI is some level of flattening along a continuum. At one
extreme, each GUI element would correspond precisely to one
grammar rule, supporting the full grammar but requiring the
user to navigate a dizzyingly deep nesting of widgets to find
the desired options. At the other extreme, the grammar might
be fully concretized into all of its (infinitely many!) possible
string productions and the user picks from a (infinitely long!)
flat list of possible commands. We chose some midpoint on
that continuum and found that, while supporting conventional
command structures, our midpoint did not scale to e.g. find.

One strategy for improvement may be to incorporate an ad-
ditional feedback loop in the generation process: an automatic
evaluation of the grammar-generated GUI. Our automatic
feedback only looked at test case parse rate, which can work
against a nice UI: writing a grammar to support odd edge cases
and redundant (but allowed) command forms complicates the
grammar, adding rules that lead to extraneous GUI elements.

In conclusion, we can generate GUIs from documenta-
tion (man pages) with LLMs, using annotated context-free
grammars as the link between text and graphical interface,
suggesting the possibility of generating GUIs for other ad-
hoc structured text, such as configuration languages, industry-
specific data formats, and other bespoke formats.

—

See the companion supplement [22] for a video demo, source code, and further
details on AI grammar generation and GUI generation from a grammar.

ACKNOWLEDGMENTS

This work was supported by U.S. National Science Founda-
tion Grants No. 2432644 (Direct Manipulation for Everyday
Programming) and No. 2107397 (Human-Centric Program
Synthesis).

REFERENCES

[1] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An Experimental
Time-sharing System,” in Proceedings of the 1962 spring joint computer
conference, AFIPS 1962 (Spring), San Francisco, California, USA, May
1-3, 1962, 1962, https://doi.org/10.1145/1460833.1460871.

[2] E. L. Hutchins, J. D. Hollan, and D. A. Norman, “Direct Manipulation
Interfaces,” Hum. Comput. Interact., vol. 1, no. 4, pp. 311–338, 1985,
https://doi.org/10.1207/s15327051hci0104 2.

[3] J. Neilsen, Heuristic Evaluation. USA: John Wiley & Sons, Inc., 1994.
[4] “The intelligent terminal,” https://www.warp.dev/.
[5] S. Kell, “Dragging unix into the 1980s (and beyond?) - liveness

and source-level reflection,” Curry On!, 2019. [Online]. Available:
https://www.youtube.com/live/nwrCestQTaw

[6] P. Vaithilingam and P. J. Guo, “Bespoke: Interactively Synthesizing
Custom GUIs From Command-Line Applications By Demonstration,”
in Symposium on User Interface Software and Technology (UIST), 2019,
https://doi.org/10.1145/3332165.3347944.

[7] A. Rosen, J. Pittelkau, and The MacUser Labs Staff, “The Best of UNIX
and the Mac: A/UX 2.0,” MacUser, January 1991, https://archive.org/
details/MacUser9101January1991/page/n119/mode/2up.

[8] Microsoft, “Show-command,” 2024. [Online]. Avail-
able: https://learn.microsoft.com/en-us/powershell/module/microsoft.
powershell.utility/show-command

[9] B. Shneiderman, “Direct manipulation: A step beyond programming
languages,” Computer, vol. 16, no. 08, pp. 57–69, 1983.

[10] M. Read and C. Marlin, “Generating direct manipulation program editors
within the multiview programming environment,” in Joint proceedings
of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development
(Viewpoints’ 96) on SIGSOFT’96 workshops, 1996, pp. 232–236.

[11] S. P. Reiss, “Graphical program development with pecan program
development systems,” ACM SIGSOFT Software Engineering Notes,
vol. 9, no. 3, pp. 30–41, 1984.

[12] B. Hempel, J. Lubin, and R. Chugh, “Sketch-n-Sketch: Output-Directed
Programming for SVG,” in Symposium on User Interface Software and
Technology (UIST), 2019.

[13] R. Schreiber, R. Krahn, D. H. Ingalls, and R. Hirschfeld, Transmorphic:
Mapping direct manipulation to source code transformations. Univer-
sitätsverlag Potsdam, 2017, vol. 100.

[14] C. Omar, D. Moon, A. Blinn, I. Voysey, N. Collins, and R. Chugh,
“Filling typed holes with live guis,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, 2021, pp. 511–525.

[15] J. Yang, C. Jimenez, A. Wettig, K. Lieret, S. Yao, K. Narasimhan, and
O. Press, “Swe-agent: Agent-computer interfaces enable automated soft-
ware engineering,” Advances in Neural Information Processing Systems,
vol. 37, pp. 50 528–50 652, 2024.

[16] C. S. Xia and L. Zhang, “Automated program repair via conversation:
Fixing 162 out of 337 bugs for $0.42 each using chatgpt,” in Proceedings
of the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2024, pp. 819–831.

[17] C. S. Xia, Y. Deng, S. Dunn, and L. Zhang, “Agentless: Demystifying
LLM-based Software Engineering Agents,” CoRR, vol. abs/2407.01489,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2407.01489

[18] J. Liu, K. Wang, Y. Chen, X. Peng, Z. Chen, L. Zhang, and Y. Lou,
“Large language model-based agents for software engineering: A
survey,” 2024. [Online]. Available: https://arxiv.org/abs/2409.02977

[19] “Cline - AI autonomous coding agent for VS code,” https://cline.bot/.
[20] R. Cheng, T. Barik, A. Leung, F. Hohman, and J. Nichols, “Biscuit:

Scaffolding llm-generated code with ephemeral uis in computational
notebooks,” in 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 2024, pp. 13–23.

[21] P. Vaithilingam, E. L. Glassman, J. P. Inala, and C. Wang, “DynaVis:
Dynamically Synthesized UI Widgets for Visualization Editing,” in
Conference on Human Factors in Computing Systems (CHI), 2024,
https://doi.org/10.1145/3613904.3642639.

[22] S. R. Kasibatla, K. Medleri Hiremath, R. Rothkopf, S. Lerner, H. Xia,
and B. Hempel, “The Command Line GUIde: Graphical Interfaces
from Man Pages via AI Supplementary Materials,” 2025. [Online].
Available: https://doi.org/10.5281/zenodo.16749004

[23] A. Warth, P. Dubroy, and T. Garnock-Jones, “Modular semantic actions,”
ACM SIGPLAN Notices, vol. 52, no. 2, pp. 108–119, 2016.

[24] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[25] B. Ford, “Parsing expression grammars: a recognition-based syntactic
foundation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, 2004.

[26] X. V. Lin, C. Wang, L. Zettlemoyer, and M. D. Ernst, “Nl2bash: A
corpus and semantic parser for natural language interface to the linux
operating system,” arXiv preprint arXiv:1802.08979, 2018.

https://doi.org/10.1145/1460833.1460871
https://doi.org/10.1207/s15327051hci0104_2
https://www.warp.dev/
https://www.youtube.com/live/nwrCestQTaw
https://doi.org/10.1145/3332165.3347944
https://archive.org/details/MacUser9101January1991/page/n119/mode/2up
https://archive.org/details/MacUser9101January1991/page/n119/mode/2up
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/show-command
https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/show-command
https://doi.org/10.48550/arXiv.2407.01489
https://arxiv.org/abs/2409.02977
https://cline.bot/
https://doi.org/10.1145/3613904.3642639
https://doi.org/10.5281/zenodo.16749004

	Introduction
	Command Line GUIde Example
	Implementation
	Evaluation
	Discussion
	References

